
Thermal and Power Sensing and Management for Mobile
System-On-a-Chip

by
Sofiane Chetoui

M.Sc., Brown University, Providence, RI, 2020
State Engineering Degree, M.Sc., Ecole Nationale Polytechnique, Algeria, 2017

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in School of Engineering at Brown University

PROVIDENCE, RHODE ISLAND

April 2022

© Copyright 2022 by Sofiane Chetoui

This dissertation by Sofiane Chetoui is accepted in its present form
by School of Engineering as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Recommended to the Graduate Council

Date

Sherief Reda, Advisor

Date

Jacob Rosenstein, Reader

Date

Ayse K. Coskun, Reader

Date

Adel Belouchrani, Reader

Approved by the Graduate Council

Date

Andrew G. Campbell, Dean of the Graduate School

iii

Vitae

Sofiane Chetoui was born in Tebessa, Algeria. He received his State Engineering

Degree and M.Sc. in Electronics from Ecole Nationale Polytechnique, Algeria in 2017.

He received his M.Sc. in Electrical and Computer Engineering from Brown University

in 2020 during his studies in the Ph.D. program. His research aims to improve thermal

behavior, energy efficiency and performance of mobile devices through runtime manage-

ment. He is interested in thermal/power sensing, hardware characterization and modeling

of modern Mobile SoCs. He uses control theory and machine learning to design the next

generation of thermal and power management techniques. His research focuses as well on

providing a better user-experience and battery lifetime management for Mobile Devices.

sofiane chetoui@brown.edu

Brown University, RI, USA

Selected Publications:

1. S. Chetoui, M. Chen, A. Golas, F. Hijaz, A. Belouchrani, S. Reda, ”Alternating

Blind Identification of Power Sources for Mobile SoC”, in Proceedings of the ACM/SPEC

International Conference on Performance Engineering 2022.

2. S. Chetoui, R. Shahi, S. Abdelaziz, A. Golas, F. Hijaz, S. Reda, ”ARBench: Aug-

mented Reality Benchmark For Mobile Devices”, under revision in IEEE Interna-

iv

mailto:sofiane_chetoui@brown.edu

tional Symposium on Performance Analysis of Systems and Software (ISPASS)

2022.

3. S. Chetoui, S. Reda, ”Coordinated Self-tuning Thermal Management Controller for

Mobile Devices”, in IEEE Design Test. 2020 Feb 28;37(5):34-41.

4. S. Chetoui, S. Reda, ”CasCon: Cascaded Thermal And Electrical Current Throttling

for Mobile Devices”, in IEEE Embedded Systems Letters. 2021 May 13.

5. S. Chetoui, S. Reda, ”Workload-and User-aware Battery Lifetime Management for

Mobile SoCs”, in 2021 IEEE Design, Automation Test in Europe Conference Ex-

hibition (DATE) 2021 Feb 1 (pp. 1679-1684).

6. M. Said, S. Chetoui, A. Belouchrani, S. Reda, ”Understanding the sources of power

consumption in mobile SoCs”, in 2018 Ninth International Green and Sustainable

Computing Conference (IGSC) 2018 Oct 22 (pp. 1-7). IEEE.

7. Z. Yuan, P. Shukla, S. Chetoui, S. Nemtzow, S. Reda, AK. Coskun, ”PACT: An

extensible parallel thermal simulator for emerging integration and cooling technolo-

gies”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. 2021 May 11.

8. Z. Yuan, P. Shukla, S. Chetoui, C. Knox, S. Nemtzow, S. Reda, AK. Coskun, ”To-

wards Fast and Accurate Parallel Chip Thermal Simulations with PACT”.

v

Acknowledgements

This thesis would not have been possible without the constant support, guidance and inspi-

rations of many kind individuals. First and foremost, I would like to express my immense

gratitude to my advisor and mentor, Prof. Sherief Reda, whose guidance, support, and

valuable insights during the course of my research has made this thesis possible.

I would also like to thank Prof. Jacob Rosenstein, Prof. Ayse K. Coskun and Prof.

Adel Belouchrani for being on my defense committee and taking the time to review my

thesis.

I am extremely thankful for the productive collaborations with all my co-authors, Prof.

Adel Belouchrani, Prof. Ayse K. Coskun, Prof. Mostafa Said, Dr. Zihao Yuan, Abhinav

Golas, Farrukh Hijaz, Andey Donzelli, Michael Chen, Rahul Shahi, my advisor Prof.

Sherief Reda, and many others. My work would not have been possible without them.

Specifically, I would like to sincerely thank Prof. Adel Belouchrani for his valuable in-

sights and guidance.

I would like to thank Samsung SARC for giving me internship opportunities twice.

Especially, I would like to thank Can Hankendi for his distinguished mentorship. I would

like to thank the Power Methodology team at Nvidia for giving me an amazing intern-

ship opportunity, more specifically, I would like to thank Kapil Dev for his distinguished

mentorship and guidance.

vi

I would also like to thank my fellow graduate students and friends at Prof. Reda’s

group at Brown: Reza Azimi, Soheil Hashimi, Hokchhay Tran, Abdelrahman Hosny, Far-

naz Nouraei, Marina Hesham, Jingxiao Ma, Ahmed Agiza and many others for always

making the last five years memorable.

I would like to express my immense gratitude to Ghania Rais for her great care and for

being a one-of-a-kind teacher to me. I am greatly thankful for Mohamed Saoudi for his

advice and support during and after my high school studies. I would like to express my

deep gratitude for Noureddine Tayebi for his support and help before and during my PhD

track.

I would like to thank Hala Lemmouchi for the years of support, encouragements, and

many unforgettable memories.

Last but not least, I would like to thank my parents, M. Larbi Chetoui and Leila

Chamekh, and my siblings for their unwavering support and love. I have learned a lot

from them. Without them, none of what I achieved today would be possible.

.

vii

Abstract of “Thermal and Power Sensing and Management for Mobile System-On-a-
Chip” by Sofiane Chetoui, Ph.D., Brown University, April 2022

Mobile devices became an essential part of daily life with the increased computing capa-

bilities and features. The leaps that Mobile System-On-a-Chip (SoC) have taken in the

past decade led to an explosive growth of mobile devices. Mobile SoCs have become the

leading product in the semiconductor industry, due to its continually improving perfor-

mance and decreasing cost. Their designs have rapid evolution, at least a new design is

released each year, and new designs tend overshadow the older ones. Technology scaling,

heterogeneous multiprocessor designs and the integration of specialized hardware units

are among the main factors enabling the performance increase. This increase has enabled

new applications that require intensive computation, raise critical thermal, power and en-

ergy constraints. Elevated chip temperatures and power density substantially affect the

user experience due to performance throttling and decreased battery lifetime.

This thesis aims at improving the performance and the battery lifetime of mobile de-

vices through thermal and power sensing and management, under thermal, power and

energy constraints. On the sensing side, this thesis first introduces an Alternating Blind

Identification of Power sources (Alternating-BPI), a technique that accurately estimates

the power consumption of individual SoC units without the use of any design based mod-

els. The proposed technique uses a novel approach to blindly identify the sources of power

consumption, by relying only on the measurements from the embedded thermal sensors

and the total power consumption. Additionally, on the sensing side we propose a Decon-

volutional Neural Network (DCNN) based power map estimation. The proposed approach

relies only on the usage of the few available embedded thermal sensors on the SoC to es-

timate the full SoC power map. Afterwards, the thesis tries to take a step towards the

improvement of the Augmented Reality mobile experience by performing a power and

hardware characterization of Augmented Reality Applications. The characterization in-

cludes designing and developing ARBench, an augmented reality benchmark for mobile

viii

devices. The benchmark and the Alternating-BPI technique were used to study the perfor-

mance and power trade-offs of different CPU multi-core configurations, in order to provide

insights to save power while meeting the AR performance requirements. On the runtime

management side, this thesis proposes a coordinated self-tuning thermal management con-

troller on the basis of online deep learning that continuously adapts to characteristics and

operating conditions, while taking into account both skin temperature and junction tem-

perature constraints in a coordinated manner. We also propose a cascaded controller for

mobile devices that controls the different sources of current and thermal emergencies in a

coordinated manner. The controller design was inspired from the physical relations that

exist among the different current and thermal measures, and it allows to achieve better

performance while saving power. Finally, this thesis introduces a novel workload- and

user-aware battery lifetime management technique that maximizes the performance un-

der the user’s desired battery lifetime. Our approach leverages insights about the running

workloads by collecting CPU-GPU performance counters, which are used to proactively

scale the CPU-GPU frequencies using machine learning.

ix

Contents

Vitae iv

Acknowledgments vi

1 Introduction 1

1.1 Problem Characterization . 1

1.2 Major Thesis Contributions . 3

2 Background 11

2.1 Thermal and power sensing . 11

2.2 Thermal and power runtime management 14

2.3 Energy and battery lifetime management 17

3 Alternating Blind Identification of Power Sources for Mobile SoCs 19

3.1 Motivation . 21

3.2 Alternating Blind Identification of Power sources 22

3.2.1 The proposed approach . 22

3.2.2 The Alternating-BPI tool . 26

3.3 Experiments and Results . 29

3.3.1 Experimental setup . 29

3.3.2 Results . 32

3.4 Conclusion . 41

ix

4 Deconvolutional Neural Network Based Power Map Estimation 43

4.1 Motivation . 44

4.2 Deconvolutional Neural Network Based Power Map Estimation 45

4.3 Experiments and Results . 49

4.3.1 Experimental setup . 49

4.3.2 Results . 51

4.4 Conclusion . 52

5 Power and Hardware Characterization for Augmented Reality Applications 55

5.1 Motivation . 56

5.2 Experimental setup . 58

5.3 Hardware utilization and power characterization of mobile AR apps . . . 59

5.4 Augmented Reality Benchmark . 65

5.5 AR Benchmarking of Commercial Mobile Devices 70

5.6 Phase analysis of AR workloads . 73

5.7 Performance and Power evaluation of different CPU multi-core configura-
tions . 77

5.8 Conclusion . 80

6 Coordinated Self-tuning Thermal Management Controller for Mobile Devices 82

6.1 Motivation . 83

6.2 Proposed self-tuning methodology for thermal management 85

6.2.1 Proposed self-tuning Controller for junction temperature 85

6.2.2 Proposed coordinated junction & body self-tuning controller . . . 87

6.2.3 Efficient online Learning . 89

6.3 Experiments and results . 90

6.3.1 Experimental setup . 90

6.3.2 Results . 91

x

6.4 Conclusion . 96

7 CasCon: Cascaded Thermal And Electrical Current Throttling for Mobile
Devices 97

7.1 Motivation . 98

7.2 Proposed CasCon controller . 100

7.2.1 The electrical current controller 101

7.2.2 The junction temperature controller 102

7.2.3 The skin temperature controller 102

7.3 Results and Experimental Setup . 103

7.3.1 Experimental setup . 103

7.3.2 Results . 105

7.4 Conclusion . 107

8 Workload- and User-aware Battery Lifetime Management for Mobile SoCs 109

8.1 Motivation . 110

8.2 Proposed work . 112

8.2.1 Workload-aware governor . 112

8.2.2 Energy prediction model . 114

8.2.3 Frequency optimization . 115

8.3 Experiments and results . 118

8.3.1 Experimental setup . 118

8.3.2 Results . 118

8.4 Conclusion . 124

9 Summary and Possible Extensions 126

9.1 Summary of the Dissertation . 127

9.2 Possible Research Extensions . 129

Bibliography . 130

xi

List of Figures

3.1 The Alternating-BPI tool. 27

3.2 The verification and testing flow of the Alternating-BPI. 29

3.3 Layout of the big.LITTLE+GPU SoC [43] used for the testing of the
Alternating-BPI. 30

3.4 The used setup for the experimental verification of Alternating-BPI: the
865-HDK on the left side, and the Monsoon power monitor on the right side. 32

3.5 The accuracy of BPISS vs Alternating-BPI in predicting the power per-
cluster for the big.LITTLE+GPU floorplan. 34

3.6 The Alternating-BPI estimated power per-SoC Unit of the Snapdragon-
865. 36

3.7 The Alternating-BPI estimated power per-SoC Unit of the Snapdragon-
865 for the benchmarking apps. 38

3.8 The Alternating-BPI estimated percentage power consumption of per-SoC
Unit of the Snapdragon-865 for the benchmarking apps. 39

4.1 The offline training flow of the DCNN based power map estimation. . . . 46

4.2 The neural network architecture of the proposed DCNN based power map
estimation. 47

4.3 The used FLIR SC5000 Series thermal camera setup. 49

4.4 The ground truth power map vs the predicted power map by the proposed
work for the Face Detection benchmark. 53

4.5 The ground truth power map vs the predicted power map by the proposed
work for the Speech Recognition benchmark. 53

5.1 Per-Hardware unit utilization of different AR Apps running on the Snap-
dragon 865 SoC. 61

xii

5.2 Per-Hardware unit power consumption of Civilisations AR on the Snap-
dragon 865 SoC. 62

5.3 Per-AR process power consumption of Civilisations AR on the Snapdragon
865 SoC. 65

5.4 Outputs of the six benchmarks of the ARBench. 68

5.5 3DMark and Geekbench performance numbers on different Snapdragon
SoCs. 70

5.6 The per-benchmark AR performance of different Snapdragon SoCs while
running the proposed benchmark. 71

5.7 The per-benchmark AR performance of Android v10 and Android v11
while running the proposed benchmark. 72

5.8 The phase analysis methodology. 73

5.9 The canonical phase composition of different AR apps. 77

5.10 The different CPU multi-core configurations for which the performance
and power trade-off is analyzed using ARBench. 78

5.11 The per-benchmark AR performance of the different CPU multi-core con-
figurations as reported by ARBench. 79

5.12 The power savings of the different CPU multi-core configurations as to the
default configuration. 80

6.1 Coordinated self-tuning controller scheme to manage both the junction
temperature and the skin temperature. 86

6.2 Neural Network Update Mechanism. 89

6.3 Frequency distribution of the self-tuning controller compared to the regu-
lar PID while running Geekbench 25 benchmarks. 95

7.1 The electrical current and thermal traces while running Geekbench on the Google
2 XL. 99

7.2 Proposed coordinated thermal and electrical current controller. 100

7.3 Time spent on each frequency range by the different governors. 105

7.4 CasCon : run-time dynamic electrical current and temperature capping. 108

8.1 Workload- and User-aware Battery Lifetime Management. 112

xiii

8.2 Workload-aware governor. 113

8.3 CPU frequency traces while running Geekbench. 120

8.4 GPU frequency traces while running 3DMark. 122

8.5 Discharge profile. 122

8.6 QoS variation using 3DMark. 124

xiv

List of Tables

3.1 The power estimation error of the Alternating-BPI against BPI and BPISS
using three floorplan benchmarks. 32

3.2 The hardware blocks composition of each cluster. 35

3.3 The clusters used by the set of benchmarking apps. 37

4.1 DCNN parameters used in this work. 48

4.2 The different benchmarks used to evaluate the accuracy of the proposed
work. 50

4.3 The accuracy of the power map estimation of the proposed work using the
training and testing data sets. 51

4.4 The per-benchmark accuracy of the power map estimation of the proposed
work. 52

5.1 The set of Augmented Reality Apps used for the hardware characterization. 60

5.2 The description and the objective of each benchmark of ARBench. 67

5.3 The normalized average performance counter values for each AR canoni-
cal phase. 74

5.4 The canonical phase composition of the ARBench benchmarks. 75

6.1 Thermal evaluation of the implemented junction temperature controllers. . 91

6.2 Performance and thermal evaluation of the implemented controllers. . . . 94

7.1 Performance, thermal and electrical current evaluation of our controller at
25 °C. 106

7.2 Performance, thermal and electrical current evaluation of our controller at
35 °C. 106

xv

8.1 The canonical phase composition of different workloads. 115

8.2 DVFS settings (MHz) of the phase-aware performance-energy trade-off
table (PET). 117

8.3 CPU evaluation of the proposed technique using Geekbench4 (Higher scores
mean better performance). 121

8.4 CPU-GPU evaluation of the proposed technique using 3DMark (Higher
scores mean better performance). 123

xvi

Chapter 1

Introduction

1.1 Problem Characterization

Mobile devices have become an indispensable tool of daily life, with 6.64 billion smart-

phone users across the globe. The evolution of mobile devices towards multi-purpose

portable devices, used for communication, computing and entertainment is the main rea-

son behind their widespread. Mobile usage is expected to keep growing in the future, as

mobile technologies are becoming more affordable and available than ever. The increasing

computing capabilities of mobile devices enabled them to replace desktop computers in

many tasks, and with the advent of new technologies like Virtual and Augmented Reality,

mobile devices are taking an even more important role.

The growth in the number of transistors per silicon die has been one of the main driv-

ing forces in the improvement of the computing capabilities of Mobile SoCs. Moore’s

law predicted that the number of transistors in a dense integrated circuit doubles about

every two years. The slowing of Moore’s law has led the industry to explore other direc-

1

tions, such as the design of heterogeneous multi-processor designs and the integration of

specialized hardware units.

The combination of these different technologies enabled new applications and features

that require intensive computation, raising critical thermal, power, and energy constraints:

• Thermal and power constraints: As technology scales down, power density con-

siderably increases, raising critical power and thermal challenges. This is even more

challenging for mobile devices due to their form factor, the multiple sources of ther-

mal emergencies, their limited cooling capabilities, as well as the limited electric

current delivery, arising from battery specifications. Elevated chip temperature trig-

gers performance throttling mechanisms, making such temperature levels a major

performance bottleneck [73, 58, 83]. Preventing thermal violations while sustaining

the performance at acceptable levels led thermal management to become a critical

factor in determining the user experience. The temperature limits are usually defined

by the junction temperature of the chips, which has to be maintained usually under

90 °C. The other temperature that defines the limits for mobile devices is the skin

temperature, which has to be maintained under 40 °C; otherwise, the mobile device

would create a burning sensation to the end user [23, 29, 32, 41]. Additionally, the

electric current should be sustained at safe levels to respect the battery discharge

rate and the deterioration of the battery cells [85, 38, 45]. As mobile devices are

battery-powered, there are hardware and software mechanisms that keep the current

within the battery discharge specifications. In case the current exceeds some pre-

defined value, the software mechanism throttles the frequency, with a fall back to

the hardware mechanism, which shuts down the phone for safety reasons. Thus, it

is essential to devise runtime management techniques that can prevent thermal and

power violations, while maximizing the performance.

2

• Energy constraints: Battery lifetime has become one of the top usability concerns

of mobile systems [81]. The phone form factors impose a strict limit to the battery

size that can be accommodated. Thus, mobile devices are highly battery constrained

because users are implicitly expected to charge their mobile devices once a day.

On the other hand, the functionality integrated into such devices, and consequently

their power consumption will continue to grow. Various studies [51, 40, 53] tried

to build systems that adaptively balance performance and battery lifetime, since the

user experience is mainly determined by these two factors. Thus developing energy

management techniques to provide an extended battery lifetime, while meeting the

user performance expectation is critical for the user experience.

1.2 Major Thesis Contributions

In this section, we outline the major contributions made in this thesis regarding the ex-

ploration of new techniques of thermal and power sensing and management for mobile

system-on-a-chip.

1. Alternating Blind Identification of Power Sources for Mobile SoCs: In Chap-

ter 3, we introduce Alternating Blind Identification of Power sources (Alternating-

BPI), a technique that accurately estimates the power consumption of individual

SoC units without the use of any design based models. The proposed technique

uses a novel approach to blindly identify the sources of power consumption, by re-

lying only on the measurements from the embedded thermal sensors and the total

power consumption. The accuracy and applicability of the proposed technique was

verified using simulation and experimental data. Alternating-BPI is able to estimate

the power at the SoC hardware unit level with up to 98.1% accuracy. Furthermore,

3

we demonstrate the applicability of the proposed technique on a commercial SoC

and provide a fine-grain analysis of the power profiles of CPU and GPU Apps, as

well as Artificial Intelligence (AI), Virtual Reality (VR) and Augmented Reality

(AR) Apps. To summarize, the contributions of this chapter are as follows:

• We introduce the first Alternating Blind Identification of Power sources (Alternating-

BPI). The new approach allows a better accuracy and practicality than previous

blind identification techniques, and works on both simulation and experimental

data, as it does not require steady thermal states.

• The proposed technique substantially decreases the power estimation error,

especially for heterogeneous SoCs with multiple hardware units. Simulation

data has shown that the proposed technique decreases the power estimation

error as low as 1.9%, as compared to 11.2% for BPI [66]. Furthermore, we

show that the accuracy of the proposed technique remains stable when moving

from homogeneous to heterogeneous architectures, and remains stable when

the number of hardware units increase. As opposed to BPI [66] and BPISS

[72], whose accuracy dropped when increasing the number of units and mov-

ing to heterogeneous architectures.

• The technique is used to design a plug and play tool, that is made publicly

available [16], and that allows to estimate the power consumption of SoC units.

• The proposed technique is demonstrated using simulated and experimental

data. Then it is used to characterize the power profile of several benchmarking

Apps on a commercial SoC, including : CPU, GPU, Artificial Intelligence (AI)

, Virtual Reality (VR), Augmented Reality (AR) Apps. The power character-

ization provides insights about the power efficiency of the different hardware

units on a state-of-the-art commercial SoC.

4

2. Deconvolutional Neural Network Based Power Map Estimation: In chapter 4,

we propose an approach for full-chip power map estimation based on Deconvolu-

tional Neural Networks (DCNN). The proposed approach relies on the usage of the

few available embedded thermal sensors on the SoC to estimate the full SoC power

map. The contributions of this chapter are as follows:

• We propose to solve the power map estimation problem as an image genera-

tion problem using Deconvolutional Neural Networks (DCNN). The proposed

DCNN takes as input the thermal measurements from the embedded thermal

sensors and the total power to estimate the full SoC power map.

• The proposed technique allows to estimate the power map at a finer spatial

granularity than the thermal spatial granularity of the existing thermal sensors.

More specifically, it allows to estimate the power even at locations where ther-

mal measurements are not physically available.

• The proposed technique is demonstrated using a commercial SoC while run-

ning several benchmarks. The predicted power maps show a 97% similarity

(2D correlation) with the power maps estimated using the Alternating-BPI.

3. Power and Hardware Characterization of Augmented Reality Applications: In

Chapter 5, we take a step towards the improvement of the Augmented Reality mo-

bile experience by performing a power and hardware characterization of Augmented

Reality Applications. The characterization includes designing and developing AR-

Bench, an augmented reality benchmark for mobile devices. We provide an analysis

of the existing AR Apps in terms of performance, power and hardware utilization to

motivate the design of ARBench. The proposed benchmark includes various work-

loads, such that each workload evaluates a particular aspect of AR workloads by

stressing multiple hardware units of the SoC (CPU, GPU, DSP, etc). Then, AR-

Bench is used to evaluate the AR performance of existing commercial mobile de-

5

vices and Android operating systems. Furthermore, we use ARBench to perform

a phase analysis to identify a set of canonical phases that could be used to model

AR workloads, and use them to characterize existing AR Apps. Finally, the bench-

mark is used to study the performance and power trade-offs of different CPU multi-

core configurations, and we provide insights that could be used to save power while

meeting the AR performance requirements. To summarize, the contributions of this

chapter are as follows:

• We characterize the hardware utilization of several AR Apps using a commer-

cial device. Then, we analyze the power consumption per-hardware unit and

per-AR process.

• While existing AR benchmarks mainly target Desktop computers, we design

and develop ARBench, the first AR benchmark that measures the AR perfor-

mance of mobile devices. The benchmark incorporates different AR work-

loads that stress multiple hardware units of the SoC (e.g. CPU, GPU, DSP),

and measures the individual score for each AR workload.

• We provide insights about the ability of existing mobile devices to run AR

workloads, by using ARBench to evaluate the performance of several com-

mercial mobile devices and Android Operating Systems. The performance

results are shown for each individual AR workload.

• We use ARBench to perform a phase analysis to identify a set of canonical

phases that could be used to model and characterize AR workloads.

• We study the performance and power trade-off of different multi-core CPU

configurations, and provide insights about the most efficient multi-core con-

figuration that could run the AR workloads, while meeting the performance

requirements.

6

4. Coordinated Self-tuning Thermal Management Controller for Mobile Devices:

In Chapter 6, we propose a coordinated self-tuning thermal management controller

on the basis of online deep learning that continuously adapts to characteristics and

operating conditions. Furthermore, our controller takes into account both skin tem-

perature and junction temperature constraints in a coordinated manner. To summa-

rize, the contributions of this chapter are as follows:

• We design a junction temperature controller that continuously tunes the pro-

portional–integral–derivative (PID) parameters on the basis of online learning.

The controller uses a neural network (NN) that updates its weights accord-

ing to the operating conditions to reduce thermal violations while maximizing

performance.

• We design an NN-based coordinated self-tuning thermal management con-

troller that manages both the skin and the junction temperature by proactively

scaling the junction temperature threshold.

• We implemented a low-overhead controller on a real smartphone and we evalu-

ate it comprehensively compared to PID [84], thermal-aware DVFS controller

[48] and USTA [41] , under different ambient temperatures and workload char-

acteristics. Our results demonstrate that our coordinated self-tuning thermal

controller leads to 6% better performance, and spends up to 27⇥ less time in

thermal violation.

7

5. CasCon: Cascaded Thermal And Electrical Current Throttling for Mobile De-

vices: In Chapter 7, we propose a cascaded thermal and electrical current throttling

controller inspired from the physical relations that exist among the different current

and thermal measures. The proposed controller achieves better results by coordinat-

ing between the different sources of current and thermal emergencies, and dynam-

ically adjusting their caps. Testing on a state-of-the-art smartphone, the proposed

technique achieves 6.5% better performance and 18% power savings as compared

to existing techniques, while avoiding current and thermal violations using 40⇥ less

DVFS transitions. To summarize, the contributions of this chapter are as follows:

• We design a cascaded controller (CasCon) that manages the skin temperature,

the junction temperature and the electrical current in a coordinated manner.

In contrast to existing work, where the skin and junction temperature, and the

electrical current are managed separately, leading to a sub-optimal control.

• In contrast to existing work, the proposed controller dynamically changes the

thermal and electrical current caps in runtime, allowing it to save power and

improve performance. We also introduce a frequency locking function that

significantly reduces the number of DVFS transitions, hence bringing extra

power savings.

• We implement our CasCon controller on a real smartphone and we evaluate

it comprehensively at different ambient temperatures. Our results show that

the proposed controller successfully prevents current and thermal violations

even at high ambient temperatures, while bringing up to 6.5% performance

improvements and 18% power savings compared to previous work.

8

6. Workload- and User-aware Battery Lifetime Management for Mobile SoCs:

In Chapter 8, we propose a CPU-GPU workload- and user- aware battery lifetime

management technique for mobile devices using machine learning. Firstly, we de-

sign a workload-aware governor through an offline and an online analysis. A set of

CPU and GPU performance counters is used during the offline analysis to identify

a set of canonical phases (CP). In runtime, k-means is used to classify each sample

of the performance counters to one of the predefined CP. Afterwards, we build a

model that predicts the energy consumption given the user usage history. Finally,

the energy model is used to find the optimal frequency settings for the CPU and

GPU to provide the best performance while meeting the target battery lifetime. The

evaluation of the proposed work against state of the art techniques in a commercial

smartphone, shows 15.8% and 9.4% performance improvement on the CPU and

GPU, respectively. The proposed technique also shows 10× improvement in per-

formance variation, while meeting the desired battery lifetime. To summarize, the

contributions of this chapter are as follows:

• We design the first workload- and user-aware battery lifetime management

technique. The workload-awareness is achieved through performance coun-

ters, while the user awareness is incorporated by representing the user-usage

history through a set of canonical phases (CP).

• We propose a novel model that predicts the energy consumption based on the

user usage history. This model makes the proposed technique user-aware, and

helps in better meeting the user desired lifetime.

• The proposed battery lifetime management is achieved by scaling both the

CPU and the GPU DVFS levels, unlike previous techniques that do not con-

sider the GPU.

• We implement our technique on a commercial smartphone and compare its

9

performance against state-of-the-art battery management techniques. We show

that our technique achieves 15.8% and 9.4% performance improvement on the

CPU and GPU, respectively, while meeting the lifetime target and decreasing

the performance variation by 10x.

The organization for the remainder of this thesis is as follows. Chapter 2 briefly de-

scribes the background and related prior work. Next, Chapter 3 presents our proposed

Alternating Blind Identification of Power source technique. Chapter 4 introduces the

Deconvolutional Neural Networks based power map estimation. Chapter 5 shows the

results of the power and hardware characterization of Augmented Reality Applications.

Next, we introduce our proposed coordinated self-tuning thermal management controller

in Chapter 6. In Chapter 7, we propose CasCon, a cascaded thermal and electrical current

throttling controller for mobile devices. Chapter 8 introduces a novel workload- and user-

aware battery lifetime management technique. Finally, Chapter 9 summarizes the results

and findings of this thesis and provides possible future extensions of this work.

10

Chapter 2

Background

In this chapter, we describe the background and related prior work to the proposed tech-

niques in this dissertation. We start by introducing thermal and power sensing background

for Mobile SoCs in Section 2.1. In Section 2.2, we introduce related work to thermal and

power runtime management. Finally, in Section 2.3 we introduce related work to energy

and battery lifetime management.

2.1 Thermal and power sensing

The ability to measure power consumption of different hardware units is essential for the

operation and improvement of mobile SoCs, as well as the enhancement of the power effi-

ciency of the software that runs on them. Mobile SoCs are usually enabled with embedded

thermal sensors to measure the temperature at the hardware unit level; however, they lack

the ability to sense the power. Thus, devising techniques that enable fine-grain level power

profiling of Mobile SoCs, and the software that runs on them, is a major step towards im-

11

plementing efficient power and thermal management techniques, as well as, designing the

architecture of the next generation Mobile SoCs.

Various studies investigated a wide range of methods for thermal and power modeling

of heterogenuous SoCs. The standard approach used by these techniques try to identify

the state space model that links temperature to power [66, 72, 25, 35, 78] :

t(k) = At(k � 1) +Bp(k), (2.1)

where t(k) an p(k) are vectors that denote the temperature and power of the SoC hard-

ware units at time k , respectively. Both A and B are two modeling matrices that capture

the physical relationship between power and temperature. More precisely, the A matrix

represents the thermal conductance matrix, which describes the natural response of the

system, in the absence of power. The B matrix represents the forced response matrix, and

it is function of the thermal capacitance and the thermal conductance matrices. Both the A

and B are square matrices, whose dimension is equal to the number of power sources. The

state space model in Equation 2.1 is derived from the heat diffusion equation [56], which

describes the power-thermal interaction by taking into consideration the thermal conduc-

tivity, the density and the specific heat of the material. More specifically, the derivation

of the model in Equation 2.1 is performed by applying a spatial discretization on the heat

diffusion equation [56] , followed by a temporal discretization.

Being able to compute the state space modeling matrices would make it possible to

estimate and predict the power consumption, at the same level of granularity as the avail-

able thermal measurements. In the case where thermal measurements are unavailable, and

power measurements are available, being able to compute the modeling matrices would

make it possible to predict the temperature, at the same level of granularity as the avail-

12

able power measurements. There are three general approaches to identify the state space

model:

1. Design based approach: it is usually based on pre-silicon data and requires access

to the design proprietary information, such as its layout and gate level netlist, its

materials and heat sink configuration [47, 28, 57]. Thus, this approach assumes the

availability of A and B and attempts to estimate p(k). Skadron et al. [77] designed

an approach that models thermal behavior of the die and its package as a circuit

of thermal resistances and capacitances, that correspond to functional blocks at the

architecture level, which helps in capturing the physical relationship that relates

power to temperature, which is similar to finding the A and B matrices. However,

this is not a practical solution, since it is design specific, and it is prone to errors

related to variability in the semiconductor manufacturing process. Additionally, it

is computationally challenging to conduct large-scale gate-level simulation.

2. Runtime based approach: it considers the processor as a gray box, and it identifies

the state-space models based on physical measurements. Most of these techniques

use system identification techniques and mainly rely on the existence of sensors for

the power sources [25, 52, 27]. Thus, this approach assumes the availability of p(k)

and attempts to estimate A and B. However, such fine-grain power sensors are un-

available on mobile SoCs. Another type of runtime approach, relies on the usage

of infrared imaging and performance counter measurements [68, 39], however, per-

forming infrared imaging might be invasive and prone to noisy measurements. Other

runtime based techniques focus on the usage of performance counters to model the

power, for instance, Min et al. [54] proposed a general approach to build system

power estimation models based on hardware performance counters. Karan et al.

[75] derive functions for real time estimation of system power consumption using

performance counters. Kim et al. [49] proposed a statistical approach for build-

13

ing power models using performance counters as effective proxies for x86 systems.

However, all the previous techniques assume the existence of power sensors and do

not perform their power modeling at the fine-grain level.

3. The blind identification approach: it makes no assumption about the availability

of modeling matrices and the fine-grain power sensors. This approach relies on the

total power and the fine-grain thermal sensors to estimate both the modeling ma-

trices and the power sources [66]. This technique relies on the steady state thermal

data to estimate the B matrix. However, usually in practice it is not possible to reach

steady thermal state on modern SoCs. This affects the accuracy of the model and

makes it less convenient to use in practice.

The challenging task of getting fine-grain power measurements has led to the exis-

tence of only few studies that provide useful insights about the power consumption and

efficiency of the different SoC hardware units while stressed by various software applica-

tions [59, 30, 72].

2.2 Thermal and power runtime management

Mobile devices are battery-powered and composed of various computing units with a very

constrained form factor. More specifically, mobile devices should stay small enough to

hold and operate in the hand. As a result, only limited cooling techniques can be used.

The increasing user demand and the emerging new technologies are pushing the power

density of System-on-chips (SoCs) to new boundaries. This increase leads to more power

and thermal challenges, which have been investigated in various studies:

14

• Junction temperature management: Form-factor constraints make thermal man-

agement on mobile devices a unique challenge as compared to thermal management

on desktop or server processors. For instance, mobile SoCs have much faster ther-

mal transient than desktop processors since the thermal capacitance of their cool-

ing systems is significantly lower. Elevated chip temperature triggers performance

throttling mechanisms, making such temperature levels a major performance bot-

tleneck. Thermal modeling and predictive models have been widely investigated.

In particular, Gaurav et al. [76] used a power and thermal model to predict tem-

perature to dynamically compute a power budget based on which the frequency is

determined. Prakash et al. [64] proposed CPU-GPU coordinated thermal manage-

ment using two separated PID controllers and thermal prediction. A RC model that

reflects the thermal coupling between the battery and the application processor is

proposed by Xie et al. [79]; the model is then used to predict the temperature and

pre-compute safe frequencies online. Achieving sustainable performance by com-

promising short term performance was investigated by Sahin et al. in [70] and [71],

where a quality-aware frequency scaling is proposed to improve performance sus-

tainability. Different tracks in thermal management were also investigated. Bartolini

et al. [26] designed energy aware thermal controller, based on prediction models.

Kim et al. in [48] proposed a thermal-aware DVFS scaling scheme for mobile de-

vices that stabilizes the frequency by averaging over a moving window. Cochran et

al. [36] proposed thermal prediction and adaptive control phase detection based on

performance counters. Even if various elaborated techniques have been proposed

in the literature, in commercial smartphone the most conventionally used thermal

management controller is the PID, whose overall control function can be expressed

mathematically as:

u(t) = Kpe(t) +Ki

Z
t

0

e(t0)dt0 +Kd

de(t)

dt
, (2.2)

15

where Kp is the proportional gain, Ki is the integral coefficient and Kd is the deriva-

tive coefficient, while u(t) and e(t) represent the control signal and the error be-

tween the current maximum temperature and the thermal threshold of the CPU,

respectively. The tuning of the PID parameters determines the performance of the

controller. The mostly used tuning method is Zigler-Nichols [84].

Zigler-Nichols [84] is a heuristic method based on a closed-loop system, where the

Ki and Kd gains are first set to zero. The Kp gain is then increased (from zero)

until it reaches the critical gain Kcr, at which the output of the control loop has

sustained oscillations with period Pcr. Finally, Kcr and the oscillation period Pcr

are used to set the Kp, Ki, and Kd gains, where Kp = 0.6Kcr and Ti = 0.5Pcr,

and Td = 0.125Pcr. Once the oscillatory settings are dialed back according to the

Zigler-Nichols coefficients (i.e., 0.6, 0.5, and 0.125), the controller no longer leads

to a sustained thermal oscillation state, but rather a stable thermal behaviour.

• Skin temperature control: Another challenge about mobile devices is that they are

handheld; thus, the whole device’s temperature has to be limited because of skin

temperature [44]; otherwise, it would adversely impact the user’s experience. It has

been shown that the skin temperature could be a performance limiter [79, 55, 60, 41].

The authors [79] showed that the performance is linearly related to the skin tempera-

ture. Park et al. [60] conducted experiments to explain the relationship between the

operating characteristics and heat generation for all active components in a smart-

phone device, then they developed a thermal prediction model that accurately pre-

dicts the skin temperature of a mobile device. Skin temperature management has

not been as widely investigated as the junction temperature management, however a

User�specific skin temperature-aware (USTA) is proposed in [41]. The technique

relies on a machine learning model to predict the skin temperature, which is derived

offline based on empirical data gathered from thermal measurements.

16

• Current throttling: As mobile devices are battery-powered, the electric current

should be sustained at safe levels to respect the battery discharge rate and the de-

terioration of the battery cells [82]. There are hardware and software mechanisms

that keep the current within the battery discharge specifications. In case the current

exceeds some predefined value, the software mechanism throttles the frequency,

with a fall back to the hardware mechanism, which shuts down the phone for safety

reasons.

2.3 Energy and battery lifetime management

Battery lifetime has become one of the top usability concerns of mobile systems [81]. The

user experience, for battery powered-devices, depends on both performance and battery

lifetime.

Various studies tried to offer better energy savings by studying DVFS governors.

In particular, a hierarchical FSM-based frequency capping technique was proposed to

save power by allowing minor degradation in performance [61]. Choi et al. designed

a graphics-aware power governing technique that solves the energy inefficiency of frame

rendering [33]. A memory-aware cooperative CPU-GPU DVFS governor was proposed to

maximize the energy efficiency while meeting a performance target [46]. A phase-aware

web browser power management technique was proposed by Peters et al. [62]. In an

other study, an energy-efficient mobile web interaction framework that leverages a cloud-

based machine learning model was proposed [80]. Most of these techniques allow a slight

degradation in performance to improve the energy efficiency, as result, they do not prop-

erly offer a fine-grain balancing of the performance and the battery lifetime. Furthermore,

they do not take into consideration the user’s desired battery lifetime goal.

17

The most used technique in commercial smartphones for battery lifetime management

is Powersave [42]. It sets the allowed frequency to the highest possible level, and when

20% of the battery capacity is reached, the allowed frequency is set to a lower level.

Prior studies have also explored improving the user satisfaction by balancing the bat-

tery lifetime and the performance. Yan et al. [81] proposed a quality of experience (QoE)-

aware frequency governor which dynamically scales the CPU frequency at low battery

levels. Donohoo et al. [40] proposed a framework that optimizes the CPU and the screen

backlight energy consumption. Poyraz et al. [63] used built-in sensors to predict the user

satisfaction for CPU Settings to save energy. In a recent study, Lee et al. [51] proposed

BUSQ1 and BUSQ3, two dynamic quality of service (QoS) scaling approaches that au-

tomatically balance QoS and energy. BUSQ1 defines the discharge profile linearly, while

BUSQ3 defines it based on the user usage history. Afterwards, by comparing the current

battery status against the predefined discharge profile, the frequency is decreased if energy

savings are needed and is increased otherwise. However, the previously mentioned studies

do not take into consideration the GPU. Furthermore, most of these studies do not lever-

age any workload-awareness, rather, they scale the frequency independently of the running

workload. Thus, wasting several opportunities to save energy or to improve performance.

18

Chapter 3

Alternating Blind Identification of

Power Sources for Mobile SoCs

In this chapter, we investigate the use of a new approach that relies on an Alternating-

BPI algorithm to blindly estimate the power at the SoC unit level. We use the proposed

technique to develop a plug and play tool that allows to identify the power consumption

of the different SoC units. Using the proposed technique, we provide a fine-grain power

analysis of a commercial SoC and provide useful insights about its power efficiency. The

contributions of this chapter are as follows:

• We introduce the first Alternating Blind Identification of Power sources (Alternating-

BPI). The new approach allows a better accuracy and practicality than previous blind

identification techniques, and works on both simulation and experimental data, as it

does not require steady thermal states.

• The proposed technique substantially decreases the power estimation error, espe-

cially for heterogeneous SoCs with multiple hardware units. Simulation data has

19

shown that the proposed technique decreases the power estimation error as low as

1.9%, as compared to 11.2% for BPI [66]. Furthermore, we show that the accu-

racy of the proposed technique remains stable when moving from homogeneous to

heterogeneous architectures, and remains stable when the number of hardware units

increase. As opposed to BPI [66] and BPISS [72], whose accuracy dropped when

increasing the number of units and moving to heterogeneous architectures.

• The proposed technique is demonstrated using simulated and experimental data.

Then it is used to characterize the power profile of several benchmarking Apps on

a commercial SoC, including : CPU, GPU, Artificial Intelligence (AI) , Virtual

Reality (VR), Augmented Reality (AR) Apps. The power characterization provides

insights about the the power efficiency of the different hardware units on a state-

of-the-art commercial SoC. Some of the insights include: (1) Even with the new

integrated computing units to modern Mobile SoCs, like the GPU, the image signal

processor and neural engine, the CPU is still the main source of power consumption,

representing around 60% to 75% of the total SoC power. (2) The little CPU cluster

plays a major role in saving power, with a power consumption that is 5x less than

the big CPU cluster. (3) The GPU power consumption for AR Apps, represents only

9% of the total SoC power consumption, while the CPU represents 75% of the total

SoC power consumption.

The rest of the chapter is organized as follows: Section 3.1 motivates the proposed

work. Section 3.2 describes the proposed technique and the underlying physical and math-

ematical concepts, and it introduces the Alternating-BPI tool. Section 3.3 presents the

evaluation results of our technique compared against state-of-the-art techniques, as well

as the power characterization of different benchmarking Apps on a commercial SoC. Sec-

tion 3.4 concludes the chapter.

20

3.1 Motivation

The higher power density and limited cooling solutions for mobile SoCs is pushing mobile

devices towards a major performance bottleneck [44]. Thus, devising techniques and tools

that help in profiling at a fine-grain level the existing SoCs, and the software that runs on

SoCs, is a major step towards implementing efficient power and thermal management

techniques, as well as, designing the architecture of the next generation Mobile SoCs.

Sensing the power and temperatures of the different hardware units in modern SoCs

is a key enabling efficient and optimal power and thermal management techniques. Addi-

tionally, a fine-grain map of the power consumption of modern SoCs across different soft-

ware applications would provide valuable insights to improve the performance of SoCs at

the hardware and software level. However, modern processors provide only coarse-grain

power measurements of all cores using the running average power limit (RAPL) [37]. Var-

ious techniques from the literature rely on different assumptions and offer different levels

of accuracy, practicality, and feasibility have been proposed [28, 57, 27, 39].

The availability of thermal sensors on a per-hardware unit basis on mobile SoCs,

makes it possible to estimate the power consumption at the unit level using blind identifi-

cation techniques. Blind Power Identification (BPI) [66, 67, 72] was proposed to estimate

the power at the SoC unit level, based on the individual thermal measurements and the

total power consumption. However, BPI [66] relies on the thermal steady state data to es-

timate the power model parameters, which is hard to generate in practice and might affect

the accuracy. The reliance on certain tools and assumptions, the insufficient accuracy and

the lack of practicality of the available power identification techniques has led to the lack

of techniques that provide a fine-grain power measurements of modern SoCs.

21

3.2 Alternating Blind Identification of Power sources

3.2.1 The proposed approach

The proposed approach consists of identifying the state space modelling matrices with a

better accuracy. The state space model given by:

t(k) = At(k � 1) +Bp(k), (3.1)

where t(k) an p(k) are vectors that denote the temperature and power of the SoC hard-

ware units at time k , respectively. Both A and B are two modeling matrices that capture

the physical relationship between power and temperature. More precisely, the A matrix

represents the thermal conductance matrix, which describes the natural response of the

system, in the absence of power. The B matrix represents the forced response matrix, and

it is function of the thermal capacitance and the thermal conductance matrices. Both the

A and B are square matrices, whose dimension is equal to the number of power sources.

The proposed technique consists of two steps: Off-line Training step and Runtime

Estimation step. The Off-line Training step needs to be run only once for each SoC, to

capture the modeling matrices. The Runtime Estimation needs to be run each time the

per-SoC unit power needs to be identified, its little computation overhead allows it to run

on the device in runtime.

In the Off-line Training step a training data is required as input. It consists of the

per-unit SoC thermal measurements and the total power consumption. The thermal mea-

surements are generated while stressing the SoC hardware units using different patterns

22

separated by sleep periods. More precisely, different combination of stressed and idle

units should be part of the training data. This allows to capture thermal transients, and the

contribution of the different units to the total power. The output of the Off-line Training

is the state space model matrices A and B. On Algorithm 1, the Off-line Training step is

shown through lines 1 to 5, which shows how the A and B matrices of Equation 3.1 are

identified.

First, the natural response matrix is estimated using the transient temperature traces.

After stressing the cores with a workload, the power is forced to p(k)=0. In practice, this

could be achieved by stopping the running workload, and turning-off the target hardware

units. Thus from Equation 3.1, we get:

t(k) = At(k � 1), (3.2)

Equation 3.2 is used to determine the A matrix through least square minimization, as

shown in line 1 of Algorithm 1. This minimization is solved under the positivity con-

straint of the A matrix, since the A matrix represents the thermal conductance matrix, as

explained earlier in Chapter 2.

Next, the goal is to make an initial guess about the B matrix. During a steady temper-

ature state, there is no thermal variation, so the temperature at time k would be equal to

temperature at time k � 1, i.e. t(k) ⇡ t(k � 1) = ts , which gives the following using

Equation 3.1:

ts ⇡ Ats +Bp
s
, (3.3)

23

Algorithm 1: Alternating Blind Identification of Power Sources.
Input: Temperatures t(k) , Total power of p(k)
Output: Natural Response Matrix A, Forced Response Matrix B, Power Profiles

p(k)

1 Find the Natural Response Matrix A through the least square minimization:

min |t(k)�At(k � 1)|2

under the constraint A ⌫ 0

2 Initialize the B matrix :

R = (J+ I)/3

B = (I�A)R

where I is the identity matrix, J is an all ones matrix, and R is the thermal
transfer matrix

3 Repeat Power and B-Matrix estimation steps for n times:

4 P-step: Using quadratic programming find p(k) ⌫ 0 such that:

minBp(k)� (t(k)�At(k � 1))2

p(k)1 = ptot(k)

where ptot(k) is the measured total power at time k

5 B-step: Using least square minimization find B given p(k) and A :

min |Bp(k)� (t(k)�At(k � 1))|2

6 Runtime estimation: Given the A and B, and the target thermal and total power
data, solve the quadratic programming of the P step.

ts ⇡ (I�A)�1Bps, (3.4)

ts ⇡ Rps, (3.5)

24

where ts and ps represent the temperature and the power at the steady-state, and the R

matrix represents the steady-state thermal transfer matrix. The previous equations help in

defining the thermal transfer matrix R as:

R = (I�A)�1B, (3.6)

based on the physical relationship between power and temperature on a multi-unit configu-

ration, the R matrix should be a symmetric matrix with maximum values on the diagonal.

Thus, the initialization shown in line 2 of Algorithm 1. The initial guess about the R

matrix is then used to initialize the B matrix using:

B = (I�A)R, (3.7)

after initializing the B matrix, in line 3 to 5 of Algorithm 1 we determine the B matrix by

alternating n times between two steps, n being a hyperparameter:

• P-step: estimates p(k), the power consumption per-SoC unit, given an initial guess

of the B matrix. This is achieved by solving the quadratic programming optimiza-

tion shown in line 4 of Algorithm 1. The optimization is solved under two con-

straints. The first constraint is the positivity constraint of p(k), since it represents

power values. The second constraint ensures that the sum of the power consumption

of the SoC units at time k, is equal to ptot(k), the measured total power at time k.

The number of unknowns in this step is equal to the number of the target SoC units

times the number of timestamps.

• B-step: estimates the B matrix using least squares minimization, as shown in line

5 of Algorithm 1, given p(k) from the P-step and the A matrix from line 1 of

25

Algorithm 1. The number of unknowns in this step is equal to number of elements

of the B matrix, which is the square of the number of SoC units, for which the power

is identified.

Simulation and experiment data has shown that a higher number of iterations n brings

a better accuracy, however, 10 iterations could be sufficient in most cases.

After identifying the modeling matrices A and B, in the Runtime Estimation step any

thermal and power data can be given as input to estimate the power per-SoC unit. The

Runtime Estimation step estimates the power per-SoC unit by solving the same quadratic

programming as in the P-step. The user will have to only provide the temperature values

per-SoC unit and the total power consumption, this data will be used along with the A and

B matrices determined in the off-line training step, to determine the power consumption

per-SoC unit.

3.2.2 The Alternating-BPI tool

The goal of the Alternating-BPI tool is to make the fine-grain power analysis under various

devices seamless and straightforward. This would enable the research community with

a tool that helps in providing useful insights, in order to improve modern SoCs. The

Alternating-BPI tool [16] , shown in Figure 3.1, puts under the same package Algorithm

1 and the necessary data processing techniques to automate the whole process of the blind

power identification.

As shown in Figure 3.1, the tool is composed of an Off-line Training step and Runtime

Estimation step. During the Off-line Training the tool processes the data and estimates

the A and B matrices. Then, during the Runtime Estimation, it estimates the power per

26

Thermal
Transients

Identification

(Target Data)

Thermal
Transients

“A”

“B”

(Training
Data)

Identification
of the Power

Sources

“A” Matrix

Identification

“A” Matrix

Alternating-BPI Tool

Power
per-SoC Unit

Total power + Temp. per-SoC Unit

Total power +
Temp.

per-SoC Unit
 Runtime

Estimation Off-line Training

“B” Matrix

Identification

Figure 3.1: The Alternating-BPI tool.

SoC unit of any given data. The composing elements of the tool shown in Figure 3.1 are

explained below:

• The training data: is a matrix that includes the total power consumption of the SoC

on the first column, and the temperature per-SoC unit on the remaining columns.

The training data should be generated by stressing the different SoC units in different

patterns, separated by idle states, where a pattern is identified as a combination of

active and idle SoC units. The best results are obtained when the data is collected for

all the possible patterns, which requires going through all the possible configurations

of active and idle SoC units. Collecting the thermal data for different patterns helps

in estimating the contribution of each SoC unit to the total power, while the idle

states help in creating transient thermal state data, that is used to estimate the A

matrix.

• The target data: this data does not have to follow any specific patterns as required

for the training data. The target data represents the data points for which the user

wants to identify the power consumption per-SoC unit. It consists of the total power

consumption and the temperature per-SoC unit.

• Thermal transients identification: the goal of this step is to identify the thermal

transients on the training data. The thermal transients correspond to the natural

response temperature variations that are described by Equation 3.2. The thermal

27

transients are identified by tracking the thermal variation over a sliding window,

if the thermal variation exceeds a certain predefined threshold, it is considered as

a thermal transient. When a thermal transient is detected, the thermal data points

within a predefined range are considered as part of the thermal transient trace and

are saved in a matrix. This process is applied to all the training data until all the

transient states are detected and recorded. The output of this step, is the thermal

transient states.

• A Matrix identification: This step uses the thermal transients identified in the pre-

vious step to identify the A matrix, as shown on line 1 of Algorithm 1.

• B Matrix identification: This step estimates iteratively the B Matrix using the train-

ing data given as input, by alternating between the estimation of the B matrix and

p(k), as shown on line 2 to 5 of Algorithm 1.

• Identification of the power sources: This step is about the identification of the power

consumption per-SoC unit of the target data, given the A and B matrices. This

corresponds to the runtime estimation step explained in Algorithm 1. This step is

fast enough to generate the power values in real-time, for instance, using an Intel

I5-7360U CPU processor, it takes as low as 1.5 ms to generate the power data of 8

SoC units for one timestamp. This makes the proposed technique fast enough to be

deployed to generate power predictions in real-time.

28

Figure 3.2: The verification and testing flow of the Alternating-BPI.

3.3 Experiments and Results

3.3.1 Experimental setup

Simulation setup: The accuracy of the proposed technique is verified using the HotSpot

thermal simulator [47]. As shown on Figure 3.2, for a given design layout, the HotSpot

thermal simulator [47] takes as input the per-unit power traces, and produces the cor-

responding per-unit temperature traces. Figure 3.2 shows that the per-unit temperature

traces, from the HotSpot simulator [47], are then taken as input by the proposed Alternating-

BPI tool along with the total power. The estimated per-unit power, by the Alternating-BPI

tool, is then computed. Finally, the accuracy of Alternating-BPI is computed by compar-

ing the difference between the per-unit power traces given to HotSpot [47] as input, and

the estimated per-unit power by the Alternating-BPI.

We follow the same methodology as in [67], and we choose three different floorplan

benchmarks:

• 2x2 mesh : a floorplan composed of 4 units with a total maximum power budget of

80 W, and 1 cm x 1 cm as the floorplan dimensions.

29

Figure 3.3: Layout of the big.LITTLE+GPU SoC [43] used for the testing of the
Alternating-BPI.

• 3x3 mesh : a floorplan composed of 3 units with a total maximum power budget of

80 W, and 1 cm x 1 cm as the floorplan dimensions. This floorplan was chosen to

test how the increase in the number of units could affect the per-unit power accuracy.

• big.LITTLE+GPU : as shown on Figure 3.3, this floorplan is composed of 6 units,

with a total maximum power budget of 15 W, and 1 cm x 1 cm as the floorplan

dimensions. This floorplan was chosen to test how the heterogeneity of the archi-

tecture could affect the per-unit power accuracy. Additionally, this floorplan bench-

mark reflects better the existing SoCs, which are mainly based on heterogeneous

architectures.

Development board setup: There is no way to verify the accuracy of the per-unit

power estimation on a real device, due to the lack of per-unit power sensors. Actually,

the true motivation behind the proposed Alternating-BPI technique is to provide per-

unit power estimations, based on the per-unit temperature measurements, due to the non-

existence of per-unit power sensors. Despite this, a validation test could still be performed

on a real device, by running different workloads and contrasting the per-unit power num-

bers based on the hardware specification of each unit, which could validate the results. For

instance, the power consumption of the GPU should be significantly higher when running

30

a GPU benchmark, as compared to running a CPU Benchmark. Additionally, we know

from the hardware specification that certain CPU cores are designed for power efficiency,

while other cores are designed to provide maximum performance, based on this we would

expect the power numbers of the power efficient cores to be significantly lower, after tak-

ing into consideration the hardware utilization numbers. However, the exact accuracy of

the proposed technique would still be verified based on the simulation data.

Thus, the applicability of the proposed Alternating-BPI is tested on the Snapdragon-

865 hardware development board [18], shown on the left side of Figure 3.4, which runs

using the state of the art Snapdragon-865 SoC. It has a 4+3+1 CPU based on the ARM

big.LITTLE architecture. More precisely, the CPU is composed of four ”LITTLE” cores

that are designed for energy efficient computing, they have a maximum frequency of 1.8

GHz, four ”big” cores that are designed to provide maximum performance, three of them

run at a maximum frequency of 2.42 GHz, and one big core that runs at a maximum fre-

quency of 2.84 GHz [14, 65]. The SoC integrates: the Adreno 650 GPU, the Qualcomm

Hexagon 698 DSP, which is referred to as CDSP in this chapter, and the Qualcomm Spec-

tra 480 image signal processor, which is referred to as SDSP. We divide the previously

mentioned hardware blocks to six clusters, as shown in Table 3.2, for which we try to

identify the power. In order to get insights that reflect the real behavior of mobile de-

vices, the frequency is dynamically scaled by the default governor of the device during the

experiments related to the power analysis .

The thermal traces are collected by reading the SoC embedded thermal sensors using

a C code that runs on the device. As shown on the right side of Figure 3.4, we used the

Monsoon HV power monitor AAA10F to measure the total power.

31

Figure 3.4: The used setup for the experimental verification of Alternating-BPI: the 865-
HDK on the left side, and the Monsoon power monitor on the right side.

Table 3.1: The power estimation error of the Alternating-BPI against BPI and BPISS using
three floorplan benchmarks.

BPI [66] BPISS [72] Alternating-BPI
2x2 mesh (4 units) 4.42 % 4.40 % 2.44 %
3x3 mesh (9 units) 9.92 % 6.5 % 2.48 %

big.LITTLE+GPU (6 units) 11.19 % 8.84 % 1.92 %

3.3.2 Results

Verification using simulation: We choose three different floorplans as benchmarks, in-

cluding a big.LITTLE+GPU floorplan, shown on Figure 3.3, which is similar to the ar-

chitecture of the Snapdragon-865 SoC used later for the experimental validation of the

Alternating-BPI.

We compare against BPI [66], which is the first work to introduce a blind approach for

the identification of power sources. BPI [66] relies on the non negative matrix factorization

(NMF) [50] to identify the B matrix. However, the accuracy of the NMF [50] output is

sensitive to the initialization step. Thus, we additionally compare against another version

of BPI [72] that improved the initialization step by relying on the steady state temperatures,

which we refer to as BPISS [72].

32

As shown in Table 3.1, the proposed technique was able to estimate the power with

a better accuracy than BPI [66] and BPISS [72] for the three floorplan benchmarks. The

power identification is supposed to be more difficult for a higher number of clusters, as

well as, for heterogeneous systems like the big.LITTLE+GPU architecture.

As shown in Table 3.1, contrasting the results of the 2x2 mesh with the 3x3 mesh, we

realize that as the number of units increases, the estimation error of both BPI [66] and

BPISS [72] increased to 9.92% and 6.5%, respectively. On the other hand, the proposed

Alternating-BPI was able to estimate the power with a better accuracy, without any sig-

nificant increase in the estimation error, as the number of units increased. More precisely,

the estimation error of the Alternating-BPI for the 2x2 mesh and the 3x3 mesh was 2.44%

and 2.48%, respectively.

Contrasting the results of the 3x3 mesh to the big.LITTLE+GPU, we notice that as

we moved to a heterogeneous design,the estimation error of both BPI [66] and BPISS [72]

increased to 11.19% and 8.84%, respectively. On the other hand, the proposed Alternating-

BPI was able to estimate the power with a better accuracy, as low as 1.92%, without any

increase due to the heterogeneity of the architecture.

Figure 3.5 shows the predicted power by Alternating-BPI and BPISS [72], as com-

pared to the actual power per-cluster for the big.LITTLE+GPU floorplan benchmark. As

shown, BPISS [72] ability to correctly estimate the power varies across the different power

pulses and clusters. On the other hand, Alternating-BPI was able to predict with a high

accuracy the power of the different clusters, and maintain such level of accuracy across

the different power pulses and clusters. For instance, BPISS [72] was able to achieve a

much better accuracy for Cluster 3, as compared to the estimation accuracy for Cluster 1

and Cluster 2. On the other hand, the power estimation of the proposed Alternating-BPI

for the three clusters was equally accurate, while out-performing the accuracy of the other

33

0 200 400 600 800 1000 1200 1400 1600 1800
samples

0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 1

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 2Actual BPISS Alternating-BPI

0 200 400 600 800 1000 1200 1400 1600 1800
samples

0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 3

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 4

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 5

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 6

Figure 3.5: The accuracy of BPISS vs Alternating-BPI in predicting the power per-cluster
for the big.LITTLE+GPU floorplan.

technique significantly.

The accuracy improvement of the per-unit power estimation of the Alternating-BPI,

as compared to BPI [66] and BPISS [72], is mainly due to the better estimation of the B

matrix. Both BPI [66] and BPISS [72] rely on the steady state-thermal data to estimate the

B matrix. On the other hand, the Alternating-BPI relies on the iterative process introduced

in Algorithm 1, that uses the whole data to improve the accuracy across the different

iterations.

Development board testing: We used the Snapdragon-865 HDK to test the proposed

technique by identifying the state space model matrices and estimating the power per

cluster. As previously mentioned, we divide the SoC to 6 clusters. As shown on Table 3.2:

• Cluster 1: ”LIT” is composed of the four little cores of the CPU. The four cores run

at the same frequency and they could reach a maximum frequency of 1.80 GHz.

• Cluster 2: ”Big” is composed of the first three cores of the big CPU cluster. The

34

Table 3.2: The hardware blocks composition of each cluster.

Clus. 1:
LIT

Clus. 2:
Big

Clus. 3:
Big4

Clus. 4:
GPU

Clus. 5:
CDSP

Clus. 6:
SDSP

Hardware
Blocks

Core 1 Lit.
Core 2 Lit.
Core 3 Lit.
Core 4 Lit.

Core 1 Big
Core 2 Big
Core 3 Big

Core 4 Big GPU CDSP SDSP

three cores run at the same frequency and they could reach a maximum frequency

of 2.42 GHz.

• Cluster 3: ”Big4” is composed of the fourth core of the big CPU cluster. This core

runs at a different frequency than the ”Big” cluster, and could reach a maximum

frequency of 2.84 GHz.

• Cluster 4: ”GPU” is composed of the Adreno 650 GPU and could reach maximum

frequency of 587 MHz.

• Cluster 5: ”CDSP” is composed of the Qualcomm Hexagon 698 DSP, which is

supposed to be the neural engine of the 865 SoC.

• Cluster 6: ”SDSP” the Qualcomm Spectra 480 image signal processor.

The training data for the Snapdragon-865 HDK was generated by coding software

kernels that stress the different SoC units in various patterns, while collecting thermal and

power data, around 80 pulses were collected. The training data was used to train BPI [66],

as well as the proposed Alternating-BPI technique. Even though in practice we can not

verify the accuracy of the results, analysing the per-SoC unit power traces as compared to

the stress patterns helps in making a guess about the validity of the results. The BPI [66]

results for 80 pulses seemed to be invalid, because of the existence of various red-flags.

For instance, for the same hardware utilization, the power consumption of the little cluster

was predicted by BPI [66] to be higher than the power of the Big cluster. This implies that

35

Figure 3.6: The Alternating-BPI estimated power per-SoC Unit of the Snapdragon-865.

BPI [66] needs much more data to start converging towards more reasonable results.

On the other hand, Figure 3.6 shows the temperature per cluster, the total power and

the estimated power per-cluster, as estimated by the proposed Alternating-BPI, using 80

pulses, knowing that more data would help in making better power estimation. It has to

be mentioned that a hardware SoC unit could highly affect the temperature of other units,

based on their location in the layout, and the amount of power being dissipated. In the

following we show an analysis of Figure 3.6:

• [0 s - 500 s]: we stress the Little, the Big, the Big4 and the GPU clusters, and we

can see their estimated power profile increase accordingly. The Big cluster has the

highest power profile, which makes sense, because it is composed of 3 big ARM

cores. On the other hand, the little cluster shows a low power profile as compared to

the big cores and the GPU, which is due to the fact that the little cores are designed

to be power efficient and they run at a lower frequency.

• [500 s - 1000 s]: we stress only the Big cluster, and as shown in Figure 3.6,

Alternating-BPI predicted the Big cluster power to increase to the same level as

36

Table 3.3: The clusters used by the set of benchmarking apps.

Clus. 1:
LIT

Clus. 2:
Big

Clus. 3:
Big4

Clus. 4:
GPU

Clus. 5:
CDSP

Clus. 6:
SDSP

Geekbench [8] Yes Yes Yes No No Yes
3DMark [1] Yes Yes No Yes No No

VRMark [21] Yes Yes No Yes No No
AI Benchmark [2] Yes Yes Yes No Yes Yes

AR Civilisations [6] Yes Yes Yes Yes No Yes

in the first 500 seconds. The minor power increase for the other clusters might be

related to leakage power and some minor computation triggered by the OS.

• [1000 s - 1700 s]: we stress the Big and the Big 4 clusters, and as shown in Figure

3.6, Alternating-BPI was able to predict that the highest power dissipation is coming

from the stressed clusters.

Per-unit power characterization of mobile apps: we perform a fine-grain power

characterization of various mobile Apps on the Snapdragon-865 SoC using Alternating-

BPI. The used benchmarking apps and the clusters they use are shown on Table 3.3. The

chosen list includes : CPU, GPU, Virtual Reality (VR), Artificial Intelligence (AI) and

Augmented Reality (AR) Apps. These benchmarks stress all the clusters in different pat-

terns and different utilization levels. The bar graph in Figure 3.6 shows the average power

per cluster, per benchmarking app:

• Geekbench [8]: This benchmark includes 25 multi-threaded workloads of four dif-

ferent sections: cryptography, integer, floating point and memory workloads. As

shown in Figure 3.7, the Big and Big4 clusters consume up to 5 Watts, as compared

to less than 3 watts for most of the other benchmarking apps. Geekbench relies as

well on the little cluster and the SDSP with a combined power consumption of 2

watts. The results show that the little cluster, which is designed for low-power com-

puting, consumes 5x less power than the Big and Big4 clusters. Additionally, the

37

LIT Big Big4 GPU CDSP SDSP
0

0.5

1

1.5

2

2.5

3

3.5

Po
w

er
 (W

)

Geekbench
3DMark
VRMark
AI Benchmark
AR Civilisations

Figure 3.7: The Alternating-BPI estimated power per-SoC Unit of the Snapdragon-865
for the benchmarking apps.

Big4 cluster consumes up to 2x more power than the four cores of the little cluster,

which is due to the power-hungry architecture and high operational frequency, that

can reach 2.84 GHz. Figure 3.8 shows that the power consumption of the CPU (Lit-

tle + Big + Big4 clusters) account for more than 75% of the power consumption of

the Snapdragon-865 SoC.

• 3DMark [1]: 3DMark is a GPU-CPU intensive benchmark that tries to mimic gam-

ing apps. As shown in Figure 3.7, the main power goes to the GPU and the Big

clusters, with a combined power of 3.6 Watts, representing more than 65% of the

total power consumption. Additionally, even when the GPU is highly utilized, its

power consumption is 2.5x less than the power consumption of the Big + Big4 clus-

ters. Thus, the CPU Big cluster remains the biggest source of power consumption

in the SoC.

• VRMark [21]: VRMark is a virtual reality benchmark that is mainly CPU intensive.

Figure 3.7 shows that VRMark [21] has the same power profile as 3DMark [1],

except for the GPU that consumes 2x less power the VR benchmark, as compared

to the GPU benchmark. Figure 3.8 shows that for VRMark more than 65% of the

power consumption is coming from the CPU.

38

Geekbench 3DMark VRMark AI Bench. AR Civi.
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

LIT
Big
Big4
GPU
CDSP
SDSP

Figure 3.8: The Alternating-BPI estimated percentage power consumption of per-SoC
Unit of the Snapdragon-865 for the benchmarking apps.

• AI Benchmark [2]: AI Benchmark runs 46 AI computer vision tests, that mainly

run on the CPU. Figure 3.7 shows that AI Benchmark [2] has lowest power profile

amongst the benchmarking Apps, with 3x less power consumption than Geekbench

on the CPU. Figure 3.8 shows that 70% of the power consumption is coming from

the CPU.

• AR Civilisations [6]: AR Civilisations is an Augmented Reality (AR) educational

app. Figure 3.7 shows that the AR App is CPU-hungry, with up to 3 watts consumed

by the Big + Big4 clusters, which represents 50% of the total power consumption.

Even if it is an AR App, Figure 3.8 shows the GPU represents only 10% of the

total power consumption, while the little cluster, which is designed for low-power

computing, consumes up to 20% of the total power consumption. This should be

related the low 3D rendering utilization of AR Apps, as compared to Gaming Apps.

The main insights that Figures 3.7 and 3.8 show are:

• The CPU remains the main source of power consumption: Even with the new

computing units that have been integrated to modern Mobile SoCs, like the GPU,

the image signal processor and neural engine, the CPU is still the main source of

39

power consumption, representing around 60% to 75% of the total power for CPU,

GPU, VR, AI or AR Apps.

• The little cluster plays a major role in saving power: the four cores of the little

cluster are highly utilized by most Apps, yet the power consumption of the little

cluster is 5x less than the Big and Big4 clusters. The inclusion of more than four

cores, based on the LITTLE cores architecture, would strongly enable power effi-

cient computing.

• The CPU frequency boost has a very low power efficiency: the 20% frequency

boost of the Big4 core, as compared to the cores of the Big cluster, increases the

power consumption of the Big4 core by almost 2x. The latter makes sense because

the dynamic power is proportional to the voltage square multiplied by the frequency,

knowing that the frequency and the voltage on Mobile SoCs are scaled dependently

of one another, and this dependence is approximately linear. Thus, the dynamic

power is proportional to the cubic of the frequency [48]. This makes the frequency

boost highly costly from a power consumption perspective, and makes the power

efficiency drop drastically, because a 20% frequency boost will not translate to 2x

performance boost.

• The Augmented Reality Apps have a high CPU power profile and a low GPU

power profile: the Augmented Reality (AR) App shows an average CPU power

consumption of 4.5 Watts, which accounts for 75% of the total power consumption

of the SoC. On the other hand, the GPU which runs the 3D rendering, accounts for

only 9% of the total power consumption.

• The GPU is highly power efficient: 3DMark [1] is mainly about 3D rendering and

the GPU handles most of its computation, however, it is average power consumption

is only 1.85 Watts, which represents only 30% of the total power consumption, and

40

which is 2x less than the total CPU power when running GPU workloads, and 3.5X

less than the total CPU power when running CPU workloads.

Most importantly, the previous experiments demonstrate that the proposed tool could

be used to conduct experiments and investigations to characterize the power consumption

at a fine grain-level, which is an important step towards making, both the hardware and

the software, power-efficient.

3.4 Conclusion

Mobile SoCs lack the ability to sense the power at SoC unit level. The existing power

identification techniques rely on certain assumptions, and they lack accuracy and practi-

cality, which makes it challenging to get useful insights about the fine-grain power profiles

of mobile SoCs, knowing that such insights are critical for the design and improvement of

these SoCs. In this work we proposed a new technique for blind identification of power

sources. The technique relies on an Alternating-BPI approach, which allows a faster con-

vergence, a better accuracy and practicality than previous blind identification techniques,

as it does not require steady thermal states. The proposed approach decreases the estima-

tion error to 1.9%, as compared to 11.2% for BPI [66]. The accuracy of proposed work

was verified using simulation and validated using experimental data on a commercial de-

velopment board. Additionally, the new approach was used to characterize the per-unit

power profile of several bencharmaking Apps on a commercial SoC, including : CPU,

GPU, Artificial Intelligence (AI) , Virtual Reality (VR), Augmented Reality (AR) Apps.

The power characterization provides insights about the main sources of power consump-

tion and the power efficiency of the different hardware units. Some of the insights include:

(1) Even with the new computing units integrated to modern Mobile SoCs, the CPU is still

41

the main source of power consumption, representing around 60% to 75% of the total SoC

power. (2) The little CPU cluster plays a major role in saving power, with a power con-

sumption that is 5x less than the big CPU cluster. (3) The GPU power consumption for AR

Apps, represents only 9% of the total SoC power consumption, while the CPU represents

75% of the total SoC power consumption.

42

Chapter 4

Deconvolutional Neural Network Based

Power Map Estimation

In this chapter, we propose an approach for full-chip power map estimation based on

Deconvolutional Neural Networks (DCNN). The proposed approach relies only on the

usage of the few available embedded thermal sensors on the SoC to estimate the full SoC

power map. The contributions of this chapter are as follows:

• We propose to solve the power map estimation problem as an image generation

problem using Deconvolutional Neural Networks (DCNN). The proposed DCNN

takes as input the thermal measurements from the embedded thermal sensors and

the total power to estimate the full SoC power map.

• The proposed technique allows to estimate the power map at a finer spatial gran-

ularity than the thermal spatial granularity of the existing thermal sensors. More

specifically, it allows to estimate the power even at locations where thermal mea-

surements are not physically available.

43

• The proposed technique is demonstrated using a commercial SoC while running sev-

eral benchmarks. The predicted power maps show a 97% similarity (2D correlation)

with the power maps estimated using the Alternating-BPI.

The rest of the chapter is organized as follows: Section 4.1 motivates the proposed

work. Section 4.2 describes the proposed technique and the architecture of the proposed

DCNN. Section 4.3 presents the evaluation results of our technique using different bench-

marks on a commercial SoC. Section 4.4 concludes the chapter.

4.1 Motivation

The increasing processing capabilities of mobile system on chip (SoC) is raising critical

power and thermal challenges. The increase in runtime power and thermal variations

compromise the performance and reliability of integrated circuits. In order to mitigate the

effects of the increased power, runtime power and thermal management is used to prevent

violations while maximizing the performance. However, the efficiency of the power and

thermal runtime management techniques depends on accurate and fine-grain power and

thermal sensing. We highlight three main motivations for full-chip power map estimation

using a Deconvolutional Neural Network:

• Lack of fine grain power sensing in mobile SoCs: Power measurement requires

the usage of current sensors. However, the current sensors and their support circuitry

incur power, die area and design overheads. These overheads lead to a lack of fine-

grain power sensing in mobile SoCs.

• Limited number of thermal sensors: Modern mobile SoCs are enabled with mul-

tiple thermal sensors. However, the increasing runtime thermal problems require

44

more sensors to capture temperatures at a wider range of locations, although manu-

facturers would like to reduce costs by using the fewest number of thermal sensors.

• Relying solely on a limited number of power and thermal sensors is not suffi-

ciently reliable: Modern SoCs are complex chips that include multiple heteroge-

neous units, supporting a large variety of workloads. The power and thermal peak

locations in these modern SoCs are non-stationary and are very workload dependent

[69]. Thus, making it difficult to rely solely on fixed power and temperature sensors.

Thus, it is essential to devise a technique that could estimate the full-chip power map,

without incurring the design, area or power overheads of physical power and thermal

sensors.

4.2 Deconvolutional Neural Network Based Power Map

Estimation

The proposed approach relies on the idea of treating the power map estimation as an image

generation problem using a Decovolutional Neural Networks (DCNN), where a DCNN is

trained using supervised learning to generate the power map given a set of input features.

The general approach of the proposed technique relies on the estimation of the SoC

power maps using a blind power identification technique during an offline step. The esti-

mated power maps are then used to train a DCNN during the offline training. Finally, the

trained DCNN is used to directly estimate the full power map during inference.

Figure 4.1 shows the offline training flow of the DCNN based power map estimation.

45

Figure 4.1: The offline training flow of the DCNN based power map estimation.

The flow requires the collection of the following measures:

• SoC thermal-map: The thermal-map of the SoC is collected using an infrared cam-

era. A calibration process is performed to convert the digital level values reported

by the camera to actual temperature values, as collected by the internal sensors.

The calibration process is achieved by collecting thermal-map data and temperature

data using the embedded thermal sensors. Afterwards, the calibration is performed

by building a linear regression model that converts the digital levels to temperature

values.

• Embedded thermal sensor traces: The internal temperature of the SoC is collected

based on the embedded thermal sensors that are available on modern SoCs. We

collect the temperature data from 27 thermal sensors distributed across the whole

SoC, including temperature sensors on the CPU cores, the GPU and the DSPs. The

data from these sensors is collected by running a C-based code in the device, which

reads the system nodes that correspond to the target thermal sensors.

46

Figure 4.2: The neural network architecture of the proposed DCNN based power map
estimation.

• Total power traces: The total power consumption of the SoC could be collected

either using the battery current and voltage sensors, or using an external power mea-

surement tool.

The SoC thermal-map, the embedded thermal sensor traces and the total power are

collected while running various workloads.

Afterwards, as part of the offline training of the DCNN, we generate the power maps

corresponding to the collected thermal maps. The power maps are generated to be used as

a target output during the offline training. More precisely, as shown in Figure 4.1, the SoC

thermal-map and the total power consumption are given as input to the Alternating-BPI to

generate the SoC power map data.

As shown in Chapter 3, the Alternating-BPI can be used to estimate the per-unit power

consumption based on the per-unit thermal values, and the total power consumption. In our

case, each pixel from the thermal-map given as input to the Alternating-BPI is considered

as a power source. Finally, as shown in Figure 4.1, the Deconvolutional Neural Network

is trained using the embedded thermal sensors data and the total power as input features,

and the power map data generated by the Alternating-BPI is used as a target output.

47

Table 4.1: DCNN parameters used in this work.

Layer Kernel #Output Activation
Deconvolution Layer 3⇥2 3⇥2⇥128 ReLU
Deconvolution Layer 3⇥3 5⇥4⇥128 ReLU
Deconvolution Layer 5⇥4 9⇥8⇥64 ReLU
Deconvolution Layer 6⇥5 14⇥12⇥32 ReLU

Fully Connected Layer - 336 ReLU
Fully Connected Layer - 168 ReLU

Figure 4.2 shows the architecture of the proposed DCNN. The network is composed of

four deconvolutional layers and two fully connected layers. The output width and height

keep increasing throughout the deconvolutional layers, until it reaches the target output

size, which is 14⇥12 in this case. On the other hand, the channel depth keeps decreasing

from 128 channel to 32 channel at the last deconvolutional layer. Then, the output of the

deconvolutional layers is given as input to two fully connected layers. The size of the

output of the last fully connected layer is 168, which is reshaped to 14⇥12 power map.

The specific parameters of the proposed DCNN architecture is shown in Table 4.1. The

parameters include the layer type, the kernel size, the output size, and the type of activation

function being used for the output of that layer. The Mean Square Error (MSE) was the

loss function used during the training. The used optimizer was the Adaptive Moment

Estimation, usually referred to as the Adam Optimizer, with a learning rate of 2e�4.

Different parameters for the architecture have been investigated, including different

kernel sizes, activation functions, loss functions and optimizer. The hyper-parameter tun-

ing lead to choosing the previously mentioned parameters, which achieved the best per-

formance.

48

Figure 4.3: The used FLIR SC5000 Series thermal camera setup.

4.3 Experiments and Results

4.3.1 Experimental setup

Figure 4.3 shows the FLIR SC5000 Series thermal camera, which is used to perform the

thermal-map data collection. The collected thermal-maps have a sampling rate of 100 Hz

and 455⇥402 resolution, which are then sampled down to 14⇥12 using Nearest-neighbor

interpolation.

We use the Snapdragon-865 hardware development board [19], which runs using the

state of the art Snapdragon-865 SoC, used in more than 30 state of the art android mobile

devices. It has a 4+3+1 CPU based on the ARM big.LITTLE architecture. The SoC in-

tegrates: the Adreno 650 GPU, and the Qualcomm Spectra 480 image signal processor,

which is referred to as SDSP. The thermal traces are collected by reading the SoC embed-

ded thermal sensors using a C code that runs on the device. For the purposed of this work,

49

Table 4.2: The different benchmarks used to evaluate the accuracy of the proposed work.

Benchmark type

SQLite An integer workload that executes SQL queries
against an in-memory database.

SGEMM A floating point workload that performs general
matrix multiplication.

Face Detection A floating point workload that performs face
detection.

Speech Recognition A floating point workload that performs recognition
of arbitrary English speech using PocketSphinx.

Memory Copy A memory workload that runs the memcpy() routine
using different sizes and randomized offsets.

Memory Bandwidth A memory workload that measures sustained
memory bandwidth.

3DMark A GPU benchmark that performs 3D rendering
and real-time ray tracing.

we collected the internal SoC temperature from 27 thermal embedded sensors distributed

across the SoC, including the temperature from the CPU cores, the GPU and the DSPs.

We used the Monsoon HV power monitor AAA10F to measure the total power [10].

In order to train the proposed DCNN, we use the Pytorch Framework. Table 4.2 shows

the different benchmarks used to evaluate the accuracy of the proposed work. The bench-

marks used include integer, floating point, memory and GPU workloads. The training

and testing data set is composed of 1600 power maps, which are divided to 80% for the

training stage, and 20% for testing.

50

Table 4.3: The accuracy of the power map estimation of the proposed work using the
training and testing data sets.

Mean Absolute
Error (mW)

2-D Correlation
Coefficient (%)

Training dataset 12.3 97.4 %
Testing dataset 10.74 97.2 %

4.3.2 Results

Accuracy metrics: In order to evaluate the accuracy of the predicted power maps, we

compare the predicted power maps by the DCNN against the power maps estimated using

the Alternating-BPI. We use two accuracy metrics:

• The Mean Absolute Error (MAE) =
Pn

i=1

Pm
j=1|xij�yij |
n⇥m

• The 2-D Correlation Coefficient = 100 ⇤
Pn

i=1

Pm
j=1(xij�x)(yij�y)p

(
Pn

i=1

Pm
j=1((xij�x)2)(

Pn
i=1

Pm
j=1((yij�y)2)

The higher the 2-D correlation coefficient the higher the similarity between the two

images being compared, with 100% being the correlation coefficient of one image with

itself.

Evaluation results: Table 4.3 shows the accuracy of the power map estimation of the

proposed work using the training and testing data sets. Table 4.3 shows that the MAE was

12.3 mW for the training data set, with a correlation coefficient as high as 97.4%. In the

testing data-set the MAE was 10.74 mW, with a 97.2% correlation coefficient.

In order further evaluate the proposed approach, we conduct a per-benchmark accuracy

evaluation. Table 4.4 shows the per-benchmark accuracy of the power map estimation of

the proposed work. Table 4.4 shows that the MAE varies between 3.5 mW to 16.9 mW,

with most values between 5.4 mW and 13.2 mW. Additionally, Table 4.4 shows that the

51

Table 4.4: The per-benchmark accuracy of the power map estimation of the proposed
work.

Mean Absolute
Error (mW)

2-D Correlation
Coefficient (%)

SQLite 8.23 99.4 %
SGEMM 13.2 97.6 %

Face Detection 5.4 99.7 %
Speech Recognition 7.5 99.7 %

Memory Copy 3.5 99.9 %
Memory Bandwidth 8.6 92.1 %

3DMark 16.9 95.1 %

2-D correlation coefficient varies between 92.1% and 99.9%, with most values between

95.1% and 99.7%.

Figure 4.4 and Figure 4.5 show the ground truth power map vs the predicted power

map by the proposed work, for the Face Detection and the Speech Recognition bench-

marks, respectively. As shown on Figure 4.4 and Figure 4.5, the proposed work was able

to predict with a high accuracy the values and the exact location of all the high power

density locations. Additionally, Figure 4.4 and Figure 4.5 show that the proposed work

has less accuracy for the power estimation of units whose power is less than 100mW.

4.4 Conclusion

In this chapter, we observed that it is essential to devise a technique that could estimate the

full-chip power map, without incurring the design, area or power overheads of physical

power and thermal sensors. We took a first towards solving this problem by proposing an

approach for full-chip power map estimation based on Deconvolutional Neural Networks

(DCNN).The proposed approach relies only on the usage of the few available embedded

thermal sensors on the SoC and the total power to estimate the full SoC power map. The

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10
11
12

Ground Truth Power Map (mW)

79

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
30
26
0
0
0
0
0
0
0
0

0
0
0
0
23
14
0
0
0
0
0
0

0
0
0
0
0
2
0
0
0
0
0
0

0
0
0
0
4
0
0
0
23
12
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
714
1147

0

0
0
0
0
0
0
0
0

1376
1649
425
0

0
0
0
0
0
0
0
0
866
166
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0 0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10
11
12

Predicted Power Map (mW)

68

1
2
0
2
0
0
1
0
4
0
1
0

0
3
1
1
1
0
3
0
0
0
0
0

0
0
0
0
1
0
0
0
0
3
0
2

0
2
0
16
0
0
0
1
0
0
0
0

2
2
32
0
0
0
0
0
0
2
0
2

1
0
0
0
13
26
0
1
0
2
4
4

0
0
0
2
12
12
12
0
0
0
2
0

1
1
4
1
3
0
0
0
21
15
0
0

2
4
3
1
0
2
1
0
6
16
3
0

0
0
0
3
3
6
0
1
716
1131

0

0
0
2
0
3
1
1
4

1376
1622
415
0

1
0
5
0
1
4
0
0
890
162
3
0

0
0
2
0
0
2
0
0
0
3
0
0

1
0
0
1
2
0
0
2
1
0
3
0 0

50

100

150

200

Figure 4.4: The ground truth power map vs the predicted power map by the proposed work
for the Face Detection benchmark.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10
11
12

Ground Truth Power Map (mW)

63 97

88
114

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
7
0
0
0
0
0
0

0
0
0
0
0
0
52
0
0
0
0
0

0
0
0
0
0
0

2162
3084
893
213
0
0

0
0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
2

25
10
0

0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0 0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10
11
12

Predicted Power Map (mW)

107

106 142

0
0
1
3
0
1
0
0
0
0
0
0

1
0
0
2
0
0
0
0
2
2
0
2

0
0
0
1
0
4
1
0
0
3
0
0

0
4
1
9
2
0
0
1
2
0
2
2

0
0
0
0
2
4
0
1
0
0
1
4

1
2
10
0
15
14
2
2
3
1
0
0

0
1
16
13
2
22

0
0
0
2
3

0
0
2
0
0
0

2186
3075
866
163
4
0

0
1
0
0
0
0
0
0

47
0
2

0
0
1
0
0
2
0
1

27
20
0

0
3
0
2
1
0
0
17
0
0
42
1

2
3
0
1
0
0
21
2
0
55
3
0

0
1
0
0
0
0
0
1
0
0
1
0

0
0
0
0
3
1
0
3
0
1
0
0 0

50

100

150

200

Figure 4.5: The ground truth power map vs the predicted power map by the proposed work
for the Speech Recognition benchmark.

53

proposed technique allows to reconstruct the power map at a finer spatial granularity than

the thermal spatial granularity of the existing thermal sensors. More specifically, it allows

to estimate the power even at locations where thermal measurements are not available.

The proposed technique is demonstrated using a commercial SoC while running several

benchmarks. The predicted power maps show a 97% similarity (2D correlation) with the

power maps estimated using the Alternating-BPI.

54

Chapter 5

Power and Hardware Characterization

for Augmented Reality Applications

In this chapter we perform a power and hardware characterization of Augmented Reality

Apps and we design ARBench, an Augmented Reality benchmark for mobile devices. To

summarize, the contributions of this chapter are as follows:

• We characterize the hardware utilization of several AR Apps using a commercial

device. Then, we analyze the power consumption per-hardware unit and per-AR

process.

• While existing AR benchmarks mainly target Desktop computers, we design and

develop ARBench, the first AR benchmark that measures the AR performance of

mobile devices. The benchmark incorporates different AR workloads that stress

multiple hardware units of the SoC (CPU, GPU, DSP, etc), and measures the indi-

vidual score for each AR workload.

55

• We provide insights about the ability of existing mobile devices to run AR work-

loads, by using ARBench to evaluate the performance of several commercial mo-

bile devices and Android Operating Systems. The performance results are shown

for each individual AR workload.

• We use ARBench to perform a phase analysis to identify a set of canonical phases

that could be used to model and characterize AR workloads.

• We study the performance and power trade-off of different multi-core CPU config-

urations, and provide insights about the most efficient multi-core configuration that

could run the AR workloads, while meeting the performance requirements.

The rest of the chapter is organized as follows: Section 5.1 motivates the proposed

work. Section 5.2 introduces the experimental setup. Section 5.3 introduces the hard-

ware utilization and power characterization of mobile AR Apps. Section 5.4 presents the

design and development of ARBench. Section 5.5 validates the results provided by AR-

Bench, and evaluates the AR performance of different mobile SoCs and Android operating

systems. Section 5.6 presents the phases analysis of AR workloads. Section 5.7 shows the

power and performance trade-offs of different CPU multi-core configurations. Section 6.4

concludes the chapter.

5.1 Motivation

The global Augmented Reality (AR) market is expected to experience a remarkable growth.

The AR market worth $7bn in 2020, is anticipated to generated $152bn by 2030. The wide

range of applications and use cases that AR offers has made it easily adoptable in various

sectors, including manufacturing, education, service, healthcare and supply chain. It is

56

expected to make a huge impact on our daily lives by improving the human efficiency in

performing different tasks, while bringing a more immersive experience.

In 2021, the number of AR active users on mobile has increased to 810 million, be-

cause many consumers already own an AR capable smartphone. The release of software

development kits for the design of AR Apps, like ARCore and ARkit, for Android and

iOS is making mobile devices the ultimate platform to run AR Apps.

Unlike regular mobile Apps, AR Apps rely on the simultaneous usage of different

hardware-units and the execution of multiple processes. An AR app needs to consistently

read the positional and GPS data, perform camera processing, run mapping and tracking

algorithms, 3D rendering of the virtual object. These key differences, make the existing

mobile devices less suitable to offer a seamless AR experience.

In fact, the execution of AR Apps on mobile devices is facing some key challenges.

The battery lifetime has become one of the top usability concerns of mobile devices, the in-

crease in computing capabilities has outpaced the battery saving development. The battery

lifetime issue is exacerbated when using AR Apps because of their simultaneous usage of

different hardware-units, in addition to the camera that needs to be always turned on. Fur-

thermore, most AR Apps are about the mixing of a digital object with the real world, after

placing the object, the App needs to keep track of it, which is achieved using marker-less

tracking. The marker-less tracking is a difficult problem because it requires a complex

understanding of the 3D space, thus, making this essential AR feature compute intensive.

For instance, the players’ report of Pokemon GO, an AR gaming app used by more than

160 million users, has shown rising concerns about the draining of phone battery in the

background.

While few challenges are facing the widespread usage of AR Apps, we still lack a

57

good understanding of several aspects, including : A) the utilization of the different hard-

ware units in the SoC by AR Apps, B) the main hardware and software sources of power

consumption while running AR Apps, C) the performance of AR workloads on existing

commercial mobile devices, D) the difference between the various AR workloads at the

hardware and system level, E) the multi-core CPU configuration that allows to efficiently

run the different AR workloads.

5.2 Experimental setup

In order to provide insights that truly reflect the existing platforms, all the chapter ex-

periments are performed on commercial mobile devices. We use the Snapdragon-865

hardware development board [19] to run experiments that require power and hardware uti-

lization collection. In order to evaluate the performance of different mobile devices, we

use BrowserStack [7] to remotely access a variety of commercial mobile devices and run

ARBench.

The Snapdragon-865 hardware development board [19] runs using the state of the

art Snapdragon-865 SoC, used in more than 30 state of the art android mobile devices.

It has a 4+3+1 CPU based on the ARM big.LITTLE architecture. More precisely, the

CPU is composed of four Little cores designed based on the ARM A55 architecture for

energy efficient computing, they have a maximum frequency of 1.8 GHz, four Big cores

designed based on the ARM A77 architecture, and they are designed to provide maximum

performance, three of them run at a maximum frequency of 2.42 GHz, and one big core

that runs at a maximum frequency of 2.84 GHz, which we refer to as the Boost core.

The SoC integrates: the Adreno 650 GPU, and the Qualcomm Spectra 480 image signal

processor, which is referred to as SDSP. The thermal traces are collected by reading the

58

SoC embedded thermal sensors using a C code that runs on the device. We used the

Monsoon HV power monitor AAA10F to measure the total power [10]. The hardware

utilization per-unit is collected using the Snapdragon Profiler [20].

5.3 Hardware utilization and power characterization of

mobile AR apps

In this section we characterize the hardware utilization per-SoC unit of several AR Apps

using the Snapdragon-865 hardware development board [19]. Then we analyze the power

consumption of each hardware unit by applying the blind identification of power sources

[72]. Finally, based on the power consumption per-SoC unit and the hardware utilization

numbers, we identify the power consumption per AR process.

Characterization of the per-hardware unit utilization: In order to provide an ex-

haustive characterization of the existing AR Apps, we picked 11 AR Apps from different

categories. As shown on Table 5.1, we target educational, e-commerce, gaming and devel-

opment AR Apps. As described on Table 5.1, the target AR Apps have different use-cases

and operate differently. AR Apps usually merge the camera input with some virtual ob-

jects, however, the type and the number of the virtual objects integrated in the scene, as

well as the way the user interacts with the virtual objects differ from one AR app to an-

other. The set of AR Apps chosen in Table 5.1 takes this into account by including AR

Apps in which the user-virtual object interactions are different, and the inserted virtual

objects ranges from single and multiple objects, face filters and image filters.

We run the AR Apps from Table 5.1 while collecting the hardware utilization of the

different hardware units using the Snapdragon Profiler [20]. Figure 5.1 shows the per-

59

Ta
bl

e
5.

1:
Th

e
se

to
fA

ug
m

en
te

d
R

ea
lit

y
A

pp
s

us
ed

fo
rt

he
ha

rd
w

ar
e

ch
ar

ac
te

riz
at

io
n.

A
R

A
pp

s
D

es
cr

ip
tio

n
C

at
eg

or
y

V
irt

ua
l

O
bj

ec
t

C
iv

ili
sa

tio
ns

A
R

[6
]

Pl
ac

em
en

to
fa

nc
ie

nt
ar

tif
ac

ts
,

th
e

vi
rtu

al
ob

je
ct

ca
n

be
ro

ta
te

d
an

d
sc

al
ed

.
Ed

uc
at

io
na

l
Si

ng
le

ob
je

ct

M
is

si
on

to
M

ar
s

[1
2]

Pl
ac

em
en

to
f3

D
ro

ve
rs

an
d

3D
sp

ac
e,

th
e

vi
rtu

al
ob

je
ct

is
an

im
at

ed
.

Ed
uc

at
io

na
l

M
ul

tip
le

ob
je

ct
s

A
ug

m
en

tly
[5

]
Pl

ac
em

en
to

f3
D

fu
rn

itu
re

ite
m

s,
th

e
vi

rtu
al

ob
je

ct
ca

n
be

ro
ta

te
d

an
d

sc
al

ed
.

E-
co

m
m

er
ce

M
ul

tip
le

ob
je

ct
s

A
R

3D
A

ni
m

al
[3

]
Pl

ac
em

en
to

f3
D

an
im

al
s,

th
e

vi
rtu

al
ob

je
ct

ca
n

be
ro

ta
te

d.
Ed

uc
at

io
na

l
Si

ng
le

ob
je

ct

K
ni

gh
tfa

ll
A

R
[1

1]
Pl

ac
em

en
to

fa
3D

ba
ttl

efi
el

d,
th

e
vi

rtu
al

ob
je

ct
s

m
ov

em
en

tc
an

be
co

nt
ro

lle
d.

G
am

in
g

M
ul

tip
le

ob
je

ct
s

H
el

lo
A

R
[9

]
Pl

ac
em

en
to

f3
D

ob
je

ct
s,

th
e

vi
rtu

al
ob

je
ct

s
ca

n
no

tb
e

ro
ta

te
d

or
sc

al
ed

.
D

ev
el

op
m

en
t

M
ul

tip
le

ob
je

ct
s

Sa
m

su
ng

A
R

[1
5]

Pl
ac

em
en

to
f3

D
m

ob
ile

de
vi

ce
s,

th
e

vi
rtu

al
ob

je
ct

ca
n

be
ro

ta
te

d.
E-

co
m

m
er

ce
Si

ng
le

ob
je

ct

Yo
uC

am
[2

2]
Pr

oj
ec

tio
n

of
co

m
m

er
ci

al
m

ak
eu

p
pr

od
uc

ts
on

th
e

us
er

’s
fa

ce
.

E-
co

m
m

er
ce

Fa
ce

fil
te

rs

Sk
et

ch
A

R
[1

7]
Pr

oj
ec

tio
n

of
a

sk
et

ch
to

as
si

st
th

e
us

er
s

in
im

pr
ov

in
g

th
ei

rd
ra

w
in

g
sk

ill
s

Ed
uc

at
io

na
l

Im
ag

e
fil

te
r

D
ra

go
n

A
R

[4
]

Pr
oj

ec
tio

n
an

d
in

te
ra

ct
io

n
w

ith
a

3D
D

ra
go

n,
th

e
vi

rtu
al

ob
je

ct
is

an
im

at
ed

an
d

ca
n

be
ro

ta
te

d.
G

am
in

g
Si

ng
le

ob
je

ct

M
on

st
er

Pa
rk

[1
3]

Pl
ac

em
en

ta
nd

th
e

in
te

ra
ct

io
n

w
ith

3D
D

in
os

au
rs

,
th

e
vi

rtu
al

ob
je

ct
s

ar
e

an
im

at
ed

.
Ed

uc
at

io
na

l
M

ul
tip

le
ob

je
ct

s

60

Little Cluster Big Cluster Big 4 GPU SDSP ADSP
0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Civilisations AR Mission to Mars Augmently 3D Animals
Knightfall AR Hello AR Samsung AR YouCam
SketchAR Dragon AR Monster Park

Figure 5.1: Per-Hardware unit utilization of different AR Apps running on the Snapdragon
865 SoC.

hardware unit average utilization for the different tested AR Apps on the Snapdragon 865

SoC. Few insights can be observed from the figure, including:

• There is a high correlation in the per-unit hardware utilization across the different

AR Apps: comparing the per-unit utilization of the different AR apps, at the excep-

tion of certain cases, we notice that most AR apps have similar utilization numbers.

For instance, most of the AR Apps have an average of 75% utilization at the Little

cluster. This implies that frameworks like ARCore, which are used in the develop-

ment of these AR Apps play a major role in determining the computation intensity

of the AR apps, regardless of the App use-case.

• The AR Apps mainly rely on the Little cluster, Big cluster and the image processing

unit: Figure 5.1 shows that the utilization exceeds 35% on average for the CPU Little

and Big cluster and the image processing unit, which we refer to as the SDSP. This

implies that AR Apps mainly rely on these clusters to provide the AR experience.

• Even though AR Apps involve the rendering of a 3D virtual object, the GPU is not

highly used. However, this does not necessarily reflect the rendering requirements

for future AR Apps, which might include the insertion of rendering intensive vir-

tual objects, adding to this the fact that the upcoming commercial devices require a

61

21%

48%

9%

10%

13%

Little cluster
Big cluster
Big 4
GPU
SDSP

Figure 5.2: Per-Hardware unit power consumption of Civilisations AR on the Snapdragon
865 SoC.

screen refresh rate of 120 FPS, rather than 60 FPS.

Per-hardware unit power consumption: Mobile devices usually lack the ability to

measure the power at the hardware unit level. However, they are usually enabled with

thermal sensors. Thus, in order to measure the power consumption per-hardware unit we

apply the Alternating BPI algorithm from Chapter 3 to identify the power consumption

at the hardware-unit level based on the total power consumption and the per-unit thermal

measurements.

Figure 5.2 shows the percentage power consumption per-hardware unit, while running

Civilisations AR [6] on the Snapdragon 865 SoC. Figure 5.2 shows:

• The CPU is the main source of power consumption: 77% of the total SoC power

consumption is dissipated at the CPU level. More precisely, the big cluster con-

sumes 48% of the total power, while the little cluster accounts for 21% of the total

power consumption

• The power efficiency of the little cluster is well exploited by AR Apps: even though,

the average utilization of the little cluster is around 78%, its power consumption ac-

62

counts for only 21% of the total SoC power consumption. Actually, the Little clus-

ter cores are designed to be power efficient, and our power evaluation and hardware

characterization show that the Little cluster is well exploited by AR Apps.

Per-process power consumption: Based on the hardware utilization of the different

processes, and the identified power consumption per-hardware unit using the Alternating

BPI algorithm, we can identify the power consumption of the different AR processes.

This is achieved by multiplying the process utilization by the power consumption of its

corresponding unit, as estimated by the BPI [66].

In order to demonstrate this capability, we collect the hardware utilization of the dif-

ferent Augmented Reality processes, using Snapdragon Profiler, while running AR Civil-

isation on the 865 HDK. Using the Alternating-BPI we get the power consumption per

hardware block, and then we partition the power across the different tasks. The processes

in question are:

• Operating system processes: This includes all system related threads. Most of these

threads are kernel threads, and they usually run on the little cluster and the Big4

core, taking around 19% of the little cluster utilization, and roughly 1% of the Big4

core utilization.

• Image processing processes: This includes all the threads that handle the camera

sensor readings, and the image filtration and calibration. These processes usually

run on the little cluster and the SDSP. They take around 54% of the utilization of the

little cluster, and 20% of the utilization of the SDSP.

• SLAM + App workload processes: This includes threads are related to Simultaneous

localization and mapping (SLAM) algorithm, which includes computer vision and

object tracking, positional and GPS data reading, synchronization and sensor fusion.

63

These threads usually run on the Big cluster, taking around 26% of its utilization,

and on the Big4 core, taking 10% of its utilization in average.

• 3D Rendering processes: This includes the processes that run on the GPU to execute

the 3D rendering the Augmented Object. This usually takes around 15% of the GPU

utilization in the case of AR Civilisation.

• Other: This includes all other threads that are not part of the previously mentioned

processes, and that get triggered randomly.

Figure 5.3 shows the per-process power consumption of Civilisations AR [6], while

running on the Snapdragon 865 SoC. The main takeaways from Figure 5.3 are as follows:

• Operating system processes: They consume around 5% of the total power, which

is mainly due to the fact that the system threads run on the little cluster, making it

power efficient to run the system tasks.

• The Simultaneous localization and mapping (SLAM) and the other related App pro-

cesses are the main source of power consumption: The mapping and tracking of the

3D virtual objects mainly run on the big cluster and account for 54% of the total

power consumption.

• The image processing task is the second most important source of power consump-

tion: By running on the little cluster and the SDSP, the image processing processes

account for 27% of the total power consumption.

• The 3D rendering, which runs on the GPU, accounts for only 10% of the total power

consumption.

These insights could be used to improve the power efficiency of Augmented Reality

64

5%

27%

53%

9%

6%

Operating system
Image processing
SLAM + App
3D Rendering
Other

Figure 5.3: Per-AR process power consumption of Civilisations AR on the Snapdragon
865 SoC.

Apps by focusing on the most power hungry tasks, for instance, one direction could be to

off-load the SLAM algorithm to the cloud.

5.4 Augmented Reality Benchmark

The study in section 5.3 has shown that AR Apps rely on the simultaneous usage of dif-

ferent hardware units, which makes them different from regular CPU or GPU Apps. The

performance and the power consumption are determined by many concurrent processes

running on different hardware units, which implies that the measured performance by

general-purpose benchmarks might not reflect the true AR user-experience provided by

commercial mobile device. Being able to accurately measure the performance of different

AR workloads on mobile devices is a crucial step towards the optimization of AR Apps

and the improvement of the user-experience.

The AR Apps from Table 5.1 show a multitude of AR use cases from different App

categories, and as shown on Figure 5.1 these Apps stress different hardware units simulta-

neously. Thus, an AR benchmark should include several AR workloads from different AR

65

use cases, rather than relying on a single scenario. Additionally, the benchmark should be

able to stress the different hardware units simultaneously. Furthermore, an AR benchmark

should consider ongoing and future progress of AR workloads, for instance, future AR

Apps might involve the insertion of rendering intensive virtual objects with target refresh

rate of 120 FPS, which implies that the benchmark should include workloads with higher

rendering requirements than existing AR Apps.

While taking into consideration the previously mentioned requirements, we design and

develop ARBench, the first dedicated Augmented Reality Benchmark for mobile devices

and we validate its results. The proposed benchmark includes various AR workloads,

such that each AR workload evaluates a particular aspect of Augmented Reality, while

simultaneously stressing multiple hardware units of the SoC.

ARBench measures and reports the performance of each particular AR workload by

simulating an actual user session in different categories of AR applications. The bench-

mark suit consists of six benchmarks, each of which evaluates the performance of one of

four applications. The applications used are open-source samples provided with Google

ARCore, and includes HelloAR, Augmented Faces, Augmented Image and Object Recog-

nition.

The development process was composed of two stages:

• Benchmark workload generation: in order to stress mobile devices with AR work-

loads, the data associated with the workload needs to be generated. The benchmark

workload data includes recordings of the user input, such as the user screen touches

coordinates, and includes recordings of camera’s video stream and IMU data. This

is achieved by using the recording API offered by ARCore. The benchmark work-

load data was generated by adding the record feature to 6 different AR Apps, and

66

Ta
bl

e
5.

2:
Th

e
de

sc
rip

tio
n

an
d

th
e

ob
je

ct
iv

e
of

ea
ch

be
nc

hm
ar

k
of

A
R

B
en

ch
.

B
en

ch
m

ar
k

D
es

cr
ip

tio
n

D
ur

at
io

n
O

bj
ec

tiv
e

O
bj

ec
t

G
en

er
at

io
n

In
se

rts
a

si
ng

le
vi

rtu
al

ob
je

ct
on

a
su

rf
ac

e
an

d
vi

ew
s

th
e

ob
je

ct
fr

om
a

cl
os

e
di

st
an

ce
,w

hi
le

m
ov

in
g

th
e

m
ob

ile
de

vi
ce

ca
pt

ur
e

an
gl

e.
32

s
Te

st
s

ba
si

c
fu

nc
tio

na
lit

y
w

ith
lo

w
pe

rf
or

m
an

ce
re

qu
ire

m
en

ts
on

A
R

w
or

kl
oa

ds
th

at
in

vo
lv

e
th

e
in

se
rti

on
an

d
re

nd
er

in
g

of
si

ng
le

3D
vi

rtu
al

ob
je

ct
.

M
ul

ti-
O

bj
ec

t
Tr

ac
ki

ng

M
ap

s
ou

ta
la

rg
e

su
rf

ac
e

an
d

in
se

rts
m

ul
tip

le
ob

je
ct

s
in

a
w

id
es

pr
ea

d
ar

ea
.S

pe
nd

s
m

os
to

ft
he

tim
e

m
ov

in
g

ar
ou

nd
th

e
sp

ac
e

an
d

vi
ew

in
g

ob
je

ct
s

fr
om

di
ff

er
en

td
is

ta
nc

es
an

d
an

gl
es

.
16

2s
Ev

al
ua

te
s

pe
rf

or
m

an
ce

on
A

R
w

or
kl

oa
ds

w
ith

in
te

ns
iv

e
tra

ck
in

g
an

d
gr

ap
hi

cs
,t

ha
ti

nv
ol

ve
th

e
in

se
rti

on
an

d
tra

ck
in

g
of

se
ve

ra
l3

D
vi

rtu
al

ob
je

ct
s.

Sc
en

e
O

ve
rlo

ad
in

g
K

ee
ps

in
se

rti
ng

a
ve

ry
la

rg
e

nu
m

be
ro

fo
bj

ec
ts

in
a

de
ns

el
y

pa
ck

ed
fa

sh
io

n
so

th
at

m
an

y
ob

je
ct

s
ar

e
on

sc
re

en
at

th
e

sa
m

e
tim

e.
11

2s
Ev

al
ua

te
s

pe
rf

or
m

an
ce

on
A

R
w

or
kl

oa
ds

w
he

re
ve

ry
in

te
ns

iv
e

gr
ap

hi
c

w
or

kl
oa

ds
ar

e
th

e
bo

ttl
en

ec
k

fo
rp

er
fo

rm
an

ce
.

A
ug

m
en

te
d

Fa
ce

s

A
pp

lie
s

a
fa

ce
fil

te
rt

o
a

hu
m

an
fa

ce
vi

si
bl

e
in

th
e

fr
am

e.
Th

e
hu

m
an

fa
ce

ke
ep

s
m

ov
in

g
an

d
ch

an
gi

ng
ca

pt
ur

e
an

gl
es

th
ro

ug
ho

ut
th

e
be

nc
hm

ar
k.

27
s

Ev
al

ua
te

s
pe

rf
or

m
an

ce
of

fa
ce

de
te

ct
io

n
in

cl
ud

in
g

id
en

tif
yi

ng
th

e
di

ff
er

en
th

um
an

fa
ce

fe
at

ur
es

.

A
ug

m
en

te
d

Im
ag

e
In

se
rts

a
vi

rtu
al

ph
ot

o
fr

am
e

w
he

n
vi

ew
in

g
a

sp
ec

ifi
ed

ta
rg

et
im

ag
e.

Th
e

vi
rtu

al
ph

ot
o

is
vi

ew
ed

fr
om

di
ff

er
en

ta
ng

le
s

an
d

di
st

an
ce

s.
99

s
Ev

al
ua

te
s

pe
rf

or
m

an
ce

of
2D

im
ag

e
de

te
ct

io
n

an
d

tra
ck

in
g.

O
bj

ec
t

R
ec

og
ni

tio
n

Sc
an

s
re

al
ob

je
ct

s
in

a
ro

om
an

d
ap

pl
ie

s
la

be
ls

to
id

en
tif

y
th

em
.

Th
e

de
vi

ce
ke

ep
s

m
ov

in
g

th
ro

ug
ho

ut
th

e
ex

pe
rim

en
t,

su
ch

th
at

it
ca

pt
ur

es
ne

w
ob

je
ct

s.
76

s
Ev

al
ua

te
s

pe
rf

or
m

an
ce

on
A

R
w

or
kl

oa
ds

th
at

in
vo

lv
e

he
av

y
co

m
pu

ta
tio

n
fo

ro
bj

ec
t

de
te

ct
io

n
an

d
re

co
gn

iti
on

.

67

Figure 5.4: Outputs of the six benchmarks of the ARBench.

running each AR App with a particular pattern of user interaction, while recording

the previously mentioned data.

• ARBench development: after generating the AR workload data, ARBench was

designed by combining the 6 different Apps, and adding the playback features of

ARCore while collecting the performance metrics. More precisely, ARBench was

designed such that the playback functions, offered by ARCore, take as input the

recordings generated in the previous step and reconstruct the user behavior, while

displaying the recorded data. Additionally, we included the computation of the

frame rate for each benchmark, which is used as the performance metric.

In summary, for each benchmark of ARBench, the corresponding application launches

with the recording for that benchmark. The application recreates the prerecorded session,

performing all the necessary tracking and rendering. The performance metrics for each

benchmark are reported once the benchmark has finished running.

The 6 benchmarks of ARBench are summarized in Table 5.2. Figure 5.4 illustrates the

expected output of each benchmark. In the following, we introduce the different ARBench

benchmarks:

(a) Object Generation: In this benchmark, the camera is pointed at a flat surface and

a single object is inserted on the surface, as shown on Figure 5.4. The object is

68

inspected by moving the camera towards and away from it. This benchmark evalu-

ates the performance of basic AR functionality that includes SLAM and marker-less

tracking, with the insertion and rendering of single 3D virtual object.

(b) Multi-Object Tracking: First, a large surface is mapped out by moving the cam-

era around the room. Then as shown on Figure 5.4, multiple objects are inserted

randomly over the surface. The camera then moves around the room, keeping track

and viewing the objects from some distance and at different angles. This is meant to

represent a usage pattern of an AR application, where the user’s interaction with the

app can be separated into three phases: (1) mapping out the environment, (2) adding

virtual objects, (3) interacting with the virtual objects. This benchmark involves the

insertion and tracking of several 3D virtual objects.

(c) Scene Overloading: As shown on Figure 5.4, multiple virtual objects are repeatedly

inserted in a small region of the room. In total over 200 objects have been added

the scene. This benchmark evaluates performance on AR workloads where very

intensive graphic workloads are the bottleneck for performance.

(d) Augmented Faces: In this benchmark, a face filter is applied to the face visible in

the image, as shown on Figure 5.4. The application performs continuous face track-

ing and detection, including locating different features like the nose and forehead

and performs some light rendering work.

(e) Augmented Image: Searches for a specific 2D target image in the environment and

augments it with a virtual photo frame, as shown on Figure 5.4. This benchmark

evaluates performance of face tracking and identification of the different human

face features.

(f) Object Recognition: The camera scans real objects in a room and applies labels to

identify them, as shown on Figure 5.4. This benchmark evaluates performance on

69

Figure 5.5: 3DMark and Geekbench performance numbers on different Snapdragon SoCs.

AR workloads that involve heavy computation for object detection and recognition.

5.5 AR Benchmarking of Commercial Mobile Devices

In this section we validate the performance results provided by ARBench, by comparing

against the scores of CPU and GPU mobile device benchmarks. Afterwards, ARBench is

used to evaluate the AR performance of different commercial mobile SoCs and Android

operating systems.

Validation of ARBench: In order to validate ARBench, we run it on four different

commercial SoCs and we compare the reported performance results to the scores reported

by 3DMark and Geekbench, which are CPU and GPU benchmarks, respectively. The per-

benchmark performance results reported by ARBench should not be similar to the 3DMark

and Geekbench scores, because ARBench evaluates the simultaneous usage of different

hardware units, as it occurs on AR workloads. However, the results across the different

SoCs need to be correlated to reflect the CPU and GPU performance improvements.

70

Snapdragon 632 Snapdragon 845 Snapdragon 855 Snapdragon 865
0

100

200

300

400

500

600

700

Fr
am

es
 p

er
 s

ec
on

d

Object Generation Multi-Object Tracking Scene Overloading
Augmented Faces Augmented Image Object Recognition

Figure 5.6: The per-benchmark AR performance of different Snapdragon SoCs while run-
ning the proposed benchmark.

Figure 5.5 shows the 3DMark and Geekbench performance number on different Snap-

dragon SoCs. The Snapdragon SoCs, from left to right on the x-axis, are ordered from

the oldest to newest generation, such that the Snapdragon 865 is the state-of-the-art SoC.

Figure 5.5 shows an upward trend from left to right, which implies that 3DMark and

Geekbench are able to capture the performance uplift that occurs with each new genera-

tion of SoC on the CPU and GPU side. Similarly, Figure 5.6 shows an upward trend of

the frames per second for each benchmark of ARBench across the different generations of

SoCs, which implies that ARBench is able to capture the performance improvements that

occur with each new generation of SoC. Besides capturing trends that are correlated with

CPU and GPU benchmarks, ARBench is able to provide other insights about the capability

of existing mobile devices to execute AR workloads, which are outlined in the following

evaluations.

Evaluation of existing mobile SoCs: Figure 5.6 shows the per-benchmark AR per-

formance of different Snapdragon SoCs, as evaluated by ARBench. It shows few insights:

• AR performance of existing mobile SoCs greatly depends on the type of AR work-

load: figure 5.6 shows that the frames per-second have a great variation across

71

Object Generation

Multi-Object Tracking

Scene Overloading

Augmented Faces

Augmented Image

Object Recognition

0

100

200

300

400

500

600

700

Fr
am

es
 p

er
 s

ec
on

d

Android v10 Android v11

Figure 5.7: The per-benchmark AR performance of Android v10 and Android v11 while
running the proposed benchmark.

different benchmarks. For instance, the frames per second vary from 90 FPS to

590 FPS for Snapdragon 855, when running the Scene Overloading and the Object

Recognition benchmarks, respectively. This implies that the performance of existing

commercial mobile SoCs depends greatly on the type of AR workload.

• AR workloads that involve the insertion of multiple 3D virtual objects are substan-

tially more compute intensive than other AR workloads: comparing the performance

on the first three benchmarks against the performance on the last three benchmarks

on Figure 5.6, shows that AR workloads that involve the insertion of multiple 3D

virtual objects in the scene are more compute intensive than AR workloads than

involve the insertion of face filters, image filter and object recognition.

• The AR performance varies significantly across the different generation of SoCs:

Figure 5.6 shows a substantial performance improvement across the different gen-

erations of mobile SoCs for all the ARBench benchmarks, for instance comparing

the Snapdragon 632 to the Snapdragon 845, the frames per second increased from

100 FPS to 420 FPS while running the Augmented Faces benchmark.

72

Standardized

Performance
counters

ARBench

Performance
counters

Performance
Counter

Standardization

K-means Cluster
Analysis

AR Canonical Phases

Figure 5.8: The phase analysis methodology.

Evaluation of Android operating systems: in order to identify the performance im-

pact of different versions of the Android operating system, we run ARBench on two sim-

ilar mobile devices that run on different versions of Android. Figure 5.7 shows the per-

benchmark performance results for both Android v10 and Android v11. Overall, Figure

5.7 shows that the operating system version has no impact on the performance of different

AR workloads. Additionally, contrasting the results of Figure 5.6 with the results of Figure

5.7, we conclude that the main bottleneck to improve the performance of AR workloads

is more hardware related than operating system related.

5.6 Phase analysis of AR workloads

In this section we perform a phase analysis to identify a set of canonical phases that can be

used to model and characterize the composition of the different of AR workloads. First, we

introduce the approach used to perform the phase analysis, then we analyze the identified

canonical phases, then we model existing AR Apps based on the canonical phases.

As shown on Figure 5.8, we start by running ARBench on the Snapdragon 865 SoC,

while collecting the following performance counters on the CPU side: instructions, branch-

73

Table 5.3: The normalized average performance counter values for each AR canonical
phase.

Instructions Branch
misses

Cache
misses

Cache
references

Page
allocation

GPU
utilization

Phase 1 1.00 1.00 1.00 1.00 1.00 79 %
Phase 2 0.45 0.55 0.46 0.45 0.97 71 %
Phase 3 0.77 0.89 0.75 0.75 0.99 83 %
Phase 4 0.77 0.96 0.79 0.79 0.7 45 %

misses, cache misses and cache references, and on the GPU side we collect page alloca-

tion and utilization. As shown Figure 5.8, we then standardize the performance counters

by subtracting the mean of each feature and dividing by the standard deviation, in order

to get a mean of 0 and a standard deviation of 1. The standardized performance counters

are then used to conduct a k-means cluster analysis, to identify a set of clusters that cor-

respond to the canonical phases. In order to identify the number of clusters that reflect

actual AR workload phases, the cluster analysis is performed for a different number of

clusters, while keeping track of the percentage of samples of ARBench workloads that

belong to each cluster. Then the number of clusters is identified by choosing the highest

number of clusters possible, such that each cluster would at least represent 10% of the

composition of one ARBench benchmark. This aims to prevent the creation of clusters

that would represent outliers, rather than an actual canonical phase.

Table 5.3 shows the normalized average performance counter values for each identified

AR canonical phase. The values in each column are normalized by dividing by the highest

value, except for the last column that shows the GPU utilization. The identified canonical

phases are showing four different trends on the CPU and GPU:

• Phase 1: corresponds to high CPU and GPU activity with a high number of instruc-

tions, branch-misses, cache-misses, GPU page allocations and GPU utilization.

• Phase 2: corresponds to low CPU and high GPU activity with a lower number of

74

Table 5.4: The canonical phase composition of the ARBench benchmarks.

Phase 1 Phase 2 Phase 3 Phase 4
Object Generation 16 % 13 % 63 % 8 %

Multi-Object Tracking 20 % 10 % 68 % 2 %
Scene Overloading 25 % 12 % 61 % 2 %
Augmented Faces 4 % 12 % 7 % 77 %
Augmented Image 11 % 7 % 0 % 82 %
Object Recognition 2 % 14 % 0 % 84 %

instructions, branch-misses and cache-misses as compared to the other phases, with

high GPU page allocations and GPU utilization.

• Phase 3: corresponds to a high CPU and GPU activity with a high number of instruc-

tions, branch-misses, cache-misses, GPU page allocations and GPU utilization. As

compared to Phase 1, it has a lower number of instructions, cache-misses and cache-

references, however, Phase 3 has a higher number of branch-misses per instruction

as compared to Phase 1.

• Phase 4: corresponds to a high CPU and low GPU activity with a high number of

instructions, branch-misses and cache-misses. On the CPU side, Phase 4 has the

highest number of branch-misses per instruction as compared to Phase 1 and Phase

3, while on the GPU side, it has the lowest GPU utilization and page allocation.

Table 5.4 shows the canonical phase composition of the ARBench benchmarks, which

represents the percentage of time spent on each canonical phase. As shown on Figure 5.4,

the object generation, multi-object tracking and scene overloading benchmarks of AR-

Bench involve the insertion and tracking of multiple 3D virtual objects, while augmented

faces, augmented image and object recognition benchmarks are more focused on feature

extraction and tracking. Table 5.4 shows that the identified canonical phases are able to

detect the correlation that exists between the different ARBench benchmarks, such that

the first 3 benchmarks have Phase 3 as a strong component in the canonical composi-

75

tion, while the last 3 benchmarks have Phase 4 as the strong component. Table 5.4 shows

that the canonical compositions across Phase 1 and Phase 2 reflect another granularity of

the CPU and GPU computation intensity, for instance the scene overloading benchmark,

which has the highest rendering activity, spends 25% of the time in Phase 1, which is the

phase that has the highest CPU activity combined with a high GPU activity, while the

object recognition benchmark, which is less intensive that other benchmarks on the CPU

side, spends only 2% on the CPU-GPU intensive Phase 1, and spends 14% on Phase 2,

which has high GPU and low CPU activity.

In order to understand the composition of commercial AR Apps in terms of workload

phases, and to verify that ARBench is composed of AR workloads that reflect existing

commercial AR Apps, we perform a runtime canonical phase analysis of the commercial

AR Apps shown in Table 5.1. The analysis is performed by collecting the performance

counters while running the Apps on the Snapdragon 865 HDK, then each sample is clas-

sified to one of the predefined canonical phases. Figure 5.9 shows the canonical phase

composition of different AR Apps. First, Figure 5.9 shows that most AR Apps are mainly

composed of two phases : 1) intensive CPU-GPU phase, 2) intensive CPU and low GPU

utilization phase. Additionally, Figure 5.9 shows that ARBench includes workloads that

reflect the composition of existing commercial AR Apps, for instance, Mission to Mars,

Augmently, Knightfall AR, Samsung AR and Monster Park are more similar to the Ob-

ject Generation, Multi-Object Tracking and Scene Overloading benchmarks of ARBench,

in terms of canonical phase composition, while AR 3D Animal, YouCam and Sketch AR

are mostly similar to the Augmented Faces, Augmented Image and Object Recognition

benchmarks of ARBench.

76

Civilisations AR

Missions to Mars

Augmently

AR 3D Animal

Knightfall AR

Hello AR
Samsung AR

YouCam
SketchAR

Dragon AR

Monster Park

0

20

40

60

80

100

Ph
as

e
co

m
po

si
tio

n
(%

)

Phase 1 Phase 2 Phase 3 Phase 4

Figure 5.9: The canonical phase composition of different AR apps.

5.7 Performance and Power evaluation of different CPU

multi-core configurations

In order to identify the optimal hardware configuration that could support AR workloads,

we collect performance and power data for different CPU multi-core configurations. As

shown on Figure 5.10, using the Snapdragon 865 SoC we test 7 different hardware con-

figurations by turning off certain cores and capping the maximum allowed frequency on

certain CPU clusters. More precisely, we test the following configurations show on Figure

5.10 :

• 4 Little + 3 Big + 1 Boost: composed of 8 different cores, divided into 4 Little cores

with a maximum frequency of 1.8 GHz, 3 Big cores with a maximum frequency of

2.42 GHz and 1 Boost core with a maximum frequency of 2.84 GHz.

• 4 Little + 1 Boost: composed of 5 different cores, divided into 4 Little cores with

a maximum frequency of 1.8 GHz,and 1 Boost core with a maximum frequency of

2.84 GHz.

• 4 Little + 1 Big: composed of 5 different cores, divided into 4 Little cores with a

77

4 Little

3 Big + 1 Boost

4 Little

1 Big

4 Little

1 Boost

4 Little

1 Big2.05 GHz

4 Little

1 Boost1.97 GHz

4 Little1 Little

1 Boost

Figure 5.10: The different CPU multi-core configurations for which the performance and
power trade-off is analyzed using ARBench.

maximum frequency of 1.8 GHz, 1 Big core with a maximum frequency of 2.42

GHz.

• 4 Little + 1 Big2.05GHz: composed of 5 different cores, divided into 4 Little cores

with a maximum frequency of 1.8 GHz and 1 Big core with a maximum frequency

of 2.05 GHz.

• 4 Little + 1 Boost1.97GHz: composed of 5 different cores, divided into 4 Little cores

with a maximum frequency of 1.8 GHz and 1 Boost core with a maximum frequency

of 1.97 GHz.

• 1 Little + 1 Boost: composed of 2 different cores, divided into 1 Little core with

a maximum frequency of 1.8 GHz,and 1 Boost core with a maximum frequency of

2.84 GHz.

• 4 Little: composed of 4 Little cores with a maximum frequency of 1.8 GHz.

Figure 5.11 shows the per-benchmark AR performance of the different CPU multi-core

configurations shown in Figure 5.10, as reported by ARBench. Figure 5.12 shows the total

power savings for the same CPU multi-core configurations, as compared to the default

case, which includes 4 Little cores, 3 Big cores, and 1 Boost core. For this evaluation, we

use a performance threshold of 120 FPS, shown in a dotted line in Figure 5.11, which is

the refresh rate of the state-of-the-art mobile devices. Figures 5.11 and 5.12 show that:

78

Object Generation

Multi-Object Tracking

Scene Overloading

Augmented Faces

Augmented Image

Object Recognition

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 (F

PS
)

4 Little + 3 Big + 1 Boost
4 Little + 1 Boost
4 Little + 1 Big
4 Little + 1 Big2.05 GHz

4 Little + 1 Boost1.97 GHz
1 Little + 1 Boost
4 Little
120 FPS

Figure 5.11: The per-benchmark AR performance of the different CPU multi-core config-
urations as reported by ARBench.

• All the CPU multi-core configurations fail to meet the performance requirement

for the AR scene overloading workload. Even using the default configuration of a

state-of-the-art SoC, the FPS for an AR workload that includes multiple 3D virtual

objects could be as low as 42 FPS.

• Using only 2 cores, divided into 1 Boost and 1 Little core is sufficient to meet

the performance requirements for Augmented Faces, Augmented Image and Object

Recognition AR workloads, while achieving important energy savings.

• Using 5 cores, divided into 4 Little with a maximum frequency of 1.8 GHz and 1

Boost core with a maximum frequency of 1.97 GHz is sufficient to meet the per-

formance requirements for all the AR workloads, besides the Scene Overloading

benchmark, while achieving good energy savings.

• Using more than one Big core and a maximum frequency higher than 2.05 GHz is

not energy efficient to run most of the AR workloads, for a target performance of

120 FPS.

• AR workloads are substantially different and there is no optimal CPU multi-core

configuration for AR workloads, rather the best configuration that would achieve

79

4 Little + 3 Big + 1 Boost

4 Little + 1 Boost

4 Little + 1 Big

4 Little + 1 Big
2.05 GHz

4 Little + 1 Boost1.97 GHz

1 Little + 1 Big

4 Little

0

500

1000

1500

2000

2500

Po
w

er
 s

av
in

g
(m

W
)

Figure 5.12: The power savings of the different CPU multi-core configurations as to the
default configuration.

the performance requirements while saving on power depends on the kind of AR

workload that is being executed.

5.8 Conclusion

Few challenges are facing the widespread usage of AR Apps, including a lack of a good

understanding of the performance and power characteristics of existing AR Apps and com-

mercial mobile devices when running AR Apps. In this chapter, we characterized the

hardware utilization of several AR Apps using a commercial device, then we analyzed the

power consumption of AR Apps per-hardware unit and per-AR process. Afterwards, we

proposed ARBench, the first AR Benchmark for mobile devices. ARBench is composed

of different AR workloads that reflect the existing AR Apps by stressing multiple hardware

units simultaneously, and is capable of measuring the performance on each individual AR

workload. The proposed benchmark is used to provide insights about the ability of exist-

ing mobile devices and Android operating systems to run AR workloads. Additionally,

ARBench is used to perform a phase analysis to identify a set of AR canonical phases,

80

which are then used to characterize existing AR Apps. Finally, we study the performance

and power trade-off of different multi-core CPU configurations and provide insights about

the most efficient multi-core configuration that could run AR workloads, while meeting

the performance requirements.

81

Chapter 6

Coordinated Self-tuning Thermal

Management Controller for Mobile

Devices

In this chapter we propose a coordinated self-tuning thermal management controller based

on online deep learning that continuously adapts to operating conditions. Furthermore, our

controller takes into account both skin temperature and junction temperature constraints

in a coordinated manner. The major contributions of this chapter are as follows:

• We design a junction temperature controller that continuously tunes the PID param-

eters based on online learning. The controller uses a neural network that updates its

weights according to operating conditions to reduce thermal violations while maxi-

mizing performance.

• We design a neural network based coordinated self-tuning thermal management

controller that manages both the skin and the junction temperature by proactively

82

scaling the junction temperature threshold.

• We implemented a low-overhead controller on a real smartphone and we evaluate

it comprehensively compared to PID [84], thermal-aware DVFS controller [48] and

USTA [41] , under different ambient temperatures and workload characteristics. Our

results demonstrate that our coordinated self-tuning thermal controller leads to 6%

better performance, and spends up to 27⇥ less time in thermal violation.

The rest of the chapter is organized as follows. The motivation of the proposed work

is presented in Section 6.1. The proposed technique is introduced in Section 6.2. The

experimental setup, the performance and thermal evaluation, as well as the neural network

overhead estimation are presented under Section 6.3. Finally we summarize our conclu-

sions in Section 6.4.

6.1 Motivation

Many thermal management techniques in the past have been developed and evaluated in

servers and desktop computers. However, most of these techniques are not ideal for mo-

bile devices, because of the different power envelopes, dimension constraints and cooling

techniques. We highlight five main motivations for coordinated custom tuning of thermal

management techniques for mobile devices.

1. Workload dependent PID parameters: Using two different workloads, SGEMM

(floating point) and AES (cryptography), we tuned the PID parameters on a mobile

platform based on the already explained Ziegler-Nichols approach, and it turned out

that it results in different PID parameters, knowing the value of these parameters

83

defines the thermal behavior and performance of the controller:

SGEMM : Kp = 0.07 Ki = 0.007 Kd = 0.0018

AES : Kp = 0.03 Ki = 0.007 Kd = 0.0018

That is, we observe that the best PID controller parameter are workload dependent.

2. Ambient temperature dependent PID parameters: Using the same tuning approach,

we tuned the PID parameters at ambient temperature 25 �C, and re-evaluated its

thermal behavior at an ambient temperature 34 �C. Even if no thermal violation

was observed at 25 �C, our experiments showed that the controller was unable to

limit the temperature at the predefined threshold at 34 �C, since the junction tem-

perature spent 4.5 % of the overall experiment time in a thermal violation. Thus,

the behaviour of the thermal controller needs to take into consideration the ambient

temperature.

3. Multiple sources of thermal emergencies: Mobile SoCs tend to have a more hetero-

geneous makeup compared to desktop/server processors, and furthermore, the whole

device has to be limited because of skin temperature in addition to the junction tem-

perature. Using thermally aggressive benchmarks, we tracked the temperatures of

the big cluster, small cluster, the GPU and the skin temperature of our mobile de-

vice, and it turned out that thermal limitations arise from the the maximum junction

temperature within the big cluster that reached 95 �C, as compared to 80 �C and

81 �C for the little cluster and the GPU respectively, and from the skin temperature

whose temperature reached 39 �C.

4. Fast Junction thermal transients and slow skin transients: Our experiments showed

that the thermal variation in the mobile device are much rapid and can be up to

5 �C/ms compared to only 18 �C/s in the desktop processor. Thus, mobile thermal

84

controllers need fast reaction times to cope with these fast transients. Despite the fast

junction transients, the user skin thermal sensor typically shows very slow thermal

transients that can take few minutes to ramp up to unsafe levels. Thus, we need

to have different but yet coordinated mechanisms to handle both junction and skin

temperatures.

5. Previously designed thermal management techniques for desktop computers or tech-

niques demonstrated on development boards usually under-perform on mobile de-

vices, given the different thermal constraints. we implemented the thermal-aware

DVFS technique proposed by Kim et al. [48], which ended-up having 9 degrees of

thermal violation, while spending 4.6% of the experiment time in a violation, com-

pared to a regular PID that showed no thermal violation for the same performance.

6.2 Proposed self-tuning methodology for thermal man-

agement

6.2.1 Proposed self-tuning Controller for junction temperature

We first propose a self-tuning thermal controller for the junction temperature that we later,

in Subsection 6.2.2, incorporate to build a coordinated controller that takes into account

both the junction temperature and skin temperature. The proposed architecture for the

self-tuning controller of the junction temperature is depicted in the dashed rectangle in

Figure 6.1, while the secondary NN in the figure will be discussed in the next subsection.

It is composed of a neural network (NN) and a regular PID controller that work together

to keep the temperature under the predefined threshold. The output of the PID controller

is a floating-point number, based on which it picks a DVFS level from a table that contains

85

DVFS
command

Integral

 Derivative

PID
Controller

Mobile
device

NN Back-
propagation

Error

B
attery Tem

p

Kd	Ki	Kp	

CPU Temp Threshold

Σ

NN
Back-

propag
ation

Min

Counter

Moving
Average

Skin Tem
p

H
ighest C

PU
 Tem

p

Skin Temp Threshold

Junction Temp Controller

Δ

+ - -
+

Figure 6.1: Coordinated self-tuning controller scheme to manage both the junction tem-
perature and the skin temperature.

5 different frequencies, after rounding down the output to an integer, with 0 and 4 as

minimum and maximum values, respectively. The NN takes as input four features: the

current DVFS command, the thermal error, defined as the difference between the current

temperature and the predefined threshold, as well as the integral and derivative errors, that

bring information about how long the system spent above/below the thermal threshold and

how fast is the system varying, respectively. The NN gives as output the PID parameters

(i.e., Kp, Ti and Td) that are used by the PID controller to choose a frequency level. In our

work, the neural network is composed of an input layer of size 4, two hidden layers of size

8 each and 3 neurons as an output layer. The sigmoid function was used as an activation

function between the hidden layers, while a linear function was used at the output.

After applying the DVFS command the controller waits for 10 ms, then measures the

new thermal error, integral and derivative errors, which are then used by the NN to update

the weights using back-propagation and the absolute error between the target gains and the

current outputs of the NN as a loss function. The target gains Ktarget

p
, Ktarget

i
and Ktarget

d

represent the gains that the NN should aim for the next time it encounters the current

features, and they are defined according to the following equations:

86

Ktarget

p
= Kcurrent

p
+Rpe(t)

Ktarget

i
= Kcurrent

i
+Ri

Z
t

0

e(t0)dt0

Ktarget

d
= Kcurrent

d
+Rd

de(t)

dt

The neural networks is trained on the fly based on target gains to iteratively reduce the

error, to get to the optimal gains based on the corresponding features. Rp, Ri and Rd

here stand for hyper-parameters that define the rate at which we move towards the optimal

parameters, similar to the learning rate of the NN which defines the rate at which the

weights are adjusted in regard of the loss. Each gain is updated proportionally to its

respective error, where the absolute error is computed between the three outputs of the

NN and their respective target gain, because at time t, the current PID parameters are not

necessarily equally distant from their respective optimal gains.

The self-tuning controller has the advantage of being able to tune the gains based on the

current workload, and as a result, it picks the optimal frequency level that uses the thermal

available headroom efficiently, ramping DVFS levels in a faster and more effective way,

resulting in performance improvements compared to a regular PID, which has constant

gains.

6.2.2 Proposed coordinated junction & body self-tuning controller

Our thermal analysis in Section 6.1 has shown that the junction temperature, as well as

the skin temperature are the source of the thermal limitations. The skin temperature might

highly affect the user experience, because at a certain temperature level it creates unpleas-

87

ant burning sensations, and it is usually the result of an accumulated heat coming out from

the SoC, which motivates us to design a coordinated self-tuning controller to manage both

the junction and the skin temperature. The proposed scheme for such a coordinated con-

troller is depicted in Figure 6.1, where the main idea here is to build up on the previously

proposed self-tuning controller, by adding a secondary NN that continuously adjusts the

maximum allowed thermal junction threshold giving to the junction self-tuning controller.

The NN architecture takes as five inputs: (1) the error between the current skin temperature

and the maximum allowed skin temperature, (2) battery temperature, since it is highly cor-

related with the skin temperature, and (3) the current frequency level since it is correlated

with the future temperature levels. As noted earlier in Section 6.1 the skin temperature

has slow transients, the temperature of which is affected by the accumulated heat across

the whole device, as result, two other features are used as input to the NN: (4) the time

spent on the current skin temperature level, which is computed using the counter in the

scheme, and (5) a moving average of the highest CPU temperature. We define the moving

temperature average as:

Temp MA[n] = ↵Temp[n] + (1� ↵)Temp MA[n� 1], (6.1)

where Temp MA[n] stands for the temperature moving average at time n, Temp[n] is

the maximum CPU temperature at time n and ↵ is the forgetting factor, which determines

how much weight past data is given. The output of the NN is the junction temperature

threshold that would ensure that the skin temperature is below the threshold, while the

minimum function in the scheme, ensures that neither the skin nor the junction temperature

threshold are violated.

88

True

Saved
Weights

Junction Thermal
Loss > C0

Skin Thermal
Loss > C1

Update
Skin NN
Weights

Update
Junction NN

Weights

False True False

Write Write

Read

Figure 6.2: Neural Network Update Mechanism.

6.2.3 Efficient online Learning

Our controllers make use of both offline and online learning phases. In the offline training

phases, the network is trained for the first time while running some workloads. The learn-

ing process ends as soon as the skin and junction thermal loss are below the predefined

thresholds. During the online phase, for efficiency reasons the neural network weights

are only updated when needed. Figure 6.2 shows the update mechanism that relies on

continuously computing the skin thermal loss and the junction thermal loss, representing

the time the corresponding temperature spends above the predefined thresholds over the

previous 10 seconds. Both the skin and junction thermal losses are compared to two con-

stants C0 and C1, defined experimentally, such that if the loss is higher than the predefined

thresholds, the corresponding weights are updated, otherwise, the controller uses the saved

Neural Network weights. We quantify the overheads of online learning in Section 6.3 and

show it leads to net improvement in performance.

89

6.3 Experiments and results

6.3.1 Experimental setup

All the experiments are performed on an Android-based (Oreo version 8.0.0) Google Pixel

2 XL phone, since its Snapdragon-835 octa-core processor which is based on the ARM

big.LITTLE architecture is actually used in more than 20 different phone models.

The performance is measured based on the Geekbench multi-core score. The Geek-

bench score is based on the run-time of each workload, the lower the run-time the higher

the score is. Geekbench was chosen because it is the most widely used benchmark in

the mobile market by both companies and end-users. The benchmark score is based on

25 workloads of different categories, including cryptography, integer, floating-point and

memory workloads. Geekbench reports as well the score per workload category, knowing

that each one of the categories consists of several workloads. As discussed in Section 6.1

we only focus on the big cluster maximum junction temperature and the skin temperature,

since they are the source of the thermal violations based. The sampling rate of the data

collection is 2.5 ms to ensure we can control the fast junction thermal transients.

For temperature thresholds, we use a maximum of 70 °C for the junction temperature

and a body thermal threshold of 42 °C. Note that we do not use the highest possible max-

imum values to avoid the triggering of the built in threshold mechanisms within the SoC

and the Android OS. We perform some of our experiments at different ambient tempera-

tures using the thermal chamber TestEquity TEC1.

90

Max
Temp

Time spent
in violation

Thermal-aware DVFS [48] 83 °C 4.63 %
Regular PID 69 °C 0 %
Self-tuning PID 70 °C 0 %

Table 6.1: Thermal evaluation of the implemented junction temperature controllers.

6.3.2 Results

Regular PID: The PID regulator was implemented based on Ziegler-Nichols tuning method

as described earlier in Chapter 2. To reach the target steady state, a stable workload with

heavy floating point calculations was used to avoid thermal variations inherent to the work-

load. Based on the closed loop system, Kp was incremented until a steady oscillation state

was reached. The obtained values are as follows: Kp = 0.18 Ki = 0.0125 Kd =

0.003125. After tuning the controller with these parameters, to further validate the PID

regulator, we implemented the thermal-aware DVFS technique proposed by Kim et al.

[48].

As shown in Table 6.1 running the entire Geekbench 25 benchmarks at an ambient

temperature of 25 °C showed that for both the PID and the self-tuning controller the

temperature never exceeds the target 70 °C threshold, while the technique in [48] spent

4.6% in a thermal violation, with the maximum temperature reaching 83 °C, this under-

performance is due to the fact that this technique was not evaluated on a real smartphone

platform, which has much faster junction thermal transient, as previously mentioned in

subsection 6.1. For this reason, the thermal-aware DVFS technique [48] is not considered

for next comparisons, which are achieved at higher ambient temperature.

Coordinated self-tuning junction & body controller: The controller was imple-

mented using the C Language to ensure the best efficiency while minimizing the over-

head. The most critical parameters that needed to be tuned are the Rp, Ri and Rd hyper-

91

parameters and the size of the NN. The R parameters were determined by running the

controller while keeping track of the target gains, such that if the values keep just increas-

ing or take a long time to converge then the corresponding hyper-parameter is increased,

otherwise, if the gains keep oscillating between two values then the corresponding hyper-

parameter is decreased. The size of the neural network was defined by simply observing

the performance of the overall controller while gradually increasing the depth of the neural

network. The controller is engaged only each 10ms, because the online learning feature

of the controller makes it proactive, and such sampling rate prevents an undesirable high

number DVFS transitions. The results show that only within 3 runs (6 minutes of learning

overall) the network already learned to tune the PID parameters according to the different

features, the thermal violation went down from 35% on the first run to 0.07% on the third

run, while bringing 5% performance increase compared to regular PID. This performance

increase results from the ability of our controller to timely apply the highest DVFS com-

mand under the current thermal conditions by tuning the PID parameters; the collected

data show that these parameters keep tuning throughout the experiment, adapting to the

load and thermal status of the SoC, rather than being just constant numbers like in regular

PID controller. It is interesting to note that the PID parameters have spikes that correspond

to the beginning of execution of a different workload. These tuning spikes are due to the

fact that the beginning of a new workload usually leads to the highest temperature varia-

tion; thus, the NN continuously adapts the parameters at early phases until steady-state is

reached.

This continuous self-tuning nature of our controller enables it to cope with changes in

ambient temperature. Using our thermal chamber, thermal and performance evaluation ex-

periments were performed at higher ambient temperatures (34 °C) to show the advantage

of adaptive PID parameters over static parameters at different ambient temperatures and

for different workloads. It turned out that the regular PID is unable to keep the temperature

92

below the thermal threshold, even though it was able to perfectly keep the temperature un-

der the threshold at lower ambient temperatures. The regular PID spent around 22 seconds

in a thermal violation, whereas the self-tuning controller spent only 792 millisecond in a

thermal violation, which is 27 times less than the regular PID. The self-tuning controller

was able to adapt to the new thermal conditions by updating the weights, and as result, it

gives dramatically less thermal violations.

To further demonstrate the superiority of our controller, we compare it to two other

approaches:

1. USTA [41]: Using the methodology recommended by the authors [41], the decision

tree model was firstly derived offline based on the collected data that consists of

a moving average of 20 samples of the following features: the CPU temperature,

the frequency and the battery temperature. The derived model that had a maximum

number of splits equal to 10, has shown a comparable accuracy to the original work

[41] with an average error equal to 0.15 �C. Afterwards, the prediction model, as

well as the already explained mechanism were implemented in C on the phone.

This controller is designed to manage the skin temperature.

2. USTA + PID: The proposed approach is compared as well to the combination of

both (USTA+PID), where we run both techniques at the same time, to manage the

skin and junction temperature.

We report the results in Table 6.2 broken down by Geekbench workload type: cryp-

tography, integer, floating points and memory workloads. Each one of these benchmarks

was run for 20 minutes while putting the phone at an ambient temperature of 34 °C using

the thermal chamber. The reported performance on the table is the percentage increase of

the category Geekbench score compared to the score of (USTA+PID), which is used as

93

Controller Performance Thermal
Crypto Integer Float Memory Total Skin Junc Max

Our work 2.4% 4% 8% 17% 6% 10% 1.5% 73.9
PID 3.6% 1% 5.9% 15% 3.5% 66% 4.5% 75.5

USTA[41] 2.2% 1% 1% �5% 0.7% 14% 2.7% 77
USTA+PID 0% 0% 0% 0% 0% 13% 1.9% 74.2

Table 6.2: Performance and thermal evaluation of the implemented controllers.

the baseline. Adding to the performance evaluation, the thermal management efficiency

is evaluated through three metrics: the percentage time of skin and junction violation,

throughout the experiment, and the maximum reported junction temperature.

In the following the thermal and performance evaluation:

1. Thermal : Our work shows a significant improvement compared to PID and to

USTA, with only 10% of the time spent in a skin temperature violation, compared

to 66% for PID, with a maximum junction temperature of 73.9 °C compared to

77 °C for USTA. This shows the advantage of the adaptivity aspect that the proposed

technique offers through neural networks, in contrast to constant values for the other

techniques, resulting in poor performance at higher ambient temperature levels.

2. Performance : our technique brought up to 8% performance improvement on float-

ing point workloads, 17% on memory workloads and 6% improvement over the 25

benchmarks compared to USTA+PID, which actually was able to perform thermally

better than the PID regulator and the USTA running separately, but it performed

poorly in terms of performance, which actually shows the importance of a coordi-

nated management of the skin and junction temperature, that our work offers.

Keeping track of the PID parameters while running Geekbench multi-core showed,

that the PID parameters keep varying throughout the experiment, adapting to the load and

94

Regular PIDSelf-tuning controller

Figure 6.3: Frequency distribution of the self-tuning controller compared to the regular
PID while running Geekbench 25 benchmarks.

thermal status of the SoC. The proposed technique improved the performance, while hav-

ing a lower thermal violation because the neural networks learned a conservative frequency

scaling technique as shown in Figure 6.3, that tends to less frequently pick the highest fre-

quency level, where it sacrificed 11% of the time spent on the highest frequency compared

to the regular PID, but gets the advantage of generating less heat, and spending less time

at the lowest frequency level, by spending only 12% compared to the regular PID that

ended-up spending 46% of the time at the lowest frequency level.

Overhead of the self-tuning controller: In order to measure the run-time overhead, the

PID controller and the NN were set to run all the required computation on the mobile

device without applying the DVFS decisions, which allows to quantify only the overhead

coming from the computation. By comparing the scores of the three runs, that actually

reflect the run-time, for the case where the NN is performing computation, and three runs

to the case where Geekbench is executing without the NN overhead, it turned out that the

overhead is less than 1%, which is within the GB noise range. Furthermore, all of our

earlier reported performance results already incorporate the impact of the overhead.

95

6.4 Conclusion

In this work, a thermal analysis was conducted, through which we spotted the sources of

the thermal limitations, and motivated the need to devise thermal management techniques

that are relevant to the mobile devices requirements. Then we designed a coordinated self-

tuning thermal management controller based on online deep learning, that keeps varying

the PID parameters to adapt to different running conditions, and ensures both junction

and skin temperature management in a coordinated fashion. The controller was imple-

mented on a real smart-phone and evaluated comprehensively under different ambient

temperatures and workload characteristics. We showed the advantage of an adaptive and

coordinated thermal management by comparing our technique to other implemented tech-

niques from the literature. The results show that the proposed approach achieves better

performance and thermal management, with up to 6% performance increase across 25

benchmarks, while spending up to 27⇥ less time in thermal violation for the junction

temperature controller.

96

Chapter 7

CasCon: Cascaded Thermal And

Electrical Current Throttling for Mobile

Devices

In this chapter we propose a cascaded controller for mobile devices that controls the dif-

ferent sources of current and thermal emergencies in a coordinated manner. The major

contributions of this chapter are as follows:

• We design a cascaded controller (CasCon) that manages the skin temperature, the

junction temperature and the electrical current in a coordinated manner. In contrast

to existing work that tackles these issues separately, leading to a suboptimal control.

• In contrast to existing work, the proposed controller dynamically changes the ther-

mal and electrical current caps in runtime, allowing it to save power and improve

performance. We also introduce a frequency locking function that significantly re-

duces the number of DVFS transitions, hence bringing extra power savings [48].

97

• We implement our CasCon controller on a real smartphone and we evaluate it com-

prehensively at different ambient temperatures. Our results show that the proposed

controller successfully prevents current and thermal violations even at high ambi-

ent temperatures, while bringing up to 6.5% performance improvements and 18%

power savings compared to previous work.

The chapter is organized as follows: Section 7.1 motivates the proposed work. Section

7.2 describes the proposed work. Section 7.3 presents the results and the experimental

setup. Section 7.4 concludes the chapter.

7.1 Motivation

Many existing power and thermal management techniques have been evaluated for servers,

desktop computers or development boards [76, 64, 34]. However, existing techniques dis-

sociate the current throttling, the junction temperature throttling and the skin temperature

throttling by controlling each measure separately [31, 48, 41]. Even though, these throt-

tling techniques rely on the same underlying mechanisms (e.g., DVFS) to achieve the

throttling, and as a result, sub-optimal or even conflicting decisions can occur. In addition,

most techniques [76, 64, 34] are evaluated either through simulation, or through the use

of desktop/server processors or development boards that have different thermal and power

characteristics from mobile devices. Furthermore, most techniques usually evaluate their

approaches either at a fixed ambient temperature or they neglect its effect [76, 64, 79],

despite it has a strong impact on skin temperature.

We describe three motivations for coordinated thermal and electrical current throttling

for mobile devices:

98

Figure 7.1: The electrical current and thermal traces while running Geekbench on the Google 2
XL.

1. Current and thermal violations can occur separately and jointly: By running

Geekbench multi-core on the Google Pixel 2 XL mobile phone, we show in Figure 7.1, that

electrical current, junction and skin temperature violations can occur separately, as they

can occur jointly at the same time. This raises the need to design a controller that handles

all these violations in a coordinated manner by capturing the physical relationships that

exist among the different measures.

2. Multiple sources of current and thermal emergencies: The mobile Li-ion batter-

ies maximum continuous discharge and instantaneous discharge current should be limited

at 1C and 3C1, respectively [82]. Adding to the current limit, our experiments using CPU

and GPU workloads show that the big CPU cluster leads to thermal violations by reaching

95�C, while the temperature of the GPU and little CPU cluster never exceeds 80�C. Thus

the thermal limitations arise from the the maximum junction temperature within the big
1A 1C rate is defined as the discharge current that discharges the entire battery in 1 hour, that is 1⇥ and

3⇥ of its mAh rating.

99

CasCon
Controller

Current

Junction Temp
Skin Temp

Max
Current

Max
Junc Temp

Current
Control

Junction
Control

 Skin
Control

 MinMin
IJmax Icap TJmax TJcap Freq

Max
Skin Temp

Figure 7.2: Proposed coordinated thermal and electrical current controller.

CPU cluster of the SoC and the skin temperature.

3. Fast junction thermal transients, and slow skin transient: The thermal transient

on mobile SoCs can be significantly faster than on desktop processors. These fast tran-

sients can lead to high DVFS transitions, which can affect the performance and the power

consumption [48, 31]. Despite the fast junction transients, the skin temperature typically

shows very slow thermal transients that can take few minutes to ramp up to unsafe lev-

els. Thus, we need different but yet coordinated mechanisms to handle both fast and slow

transients to maximize performance while saving power.

7.2 Proposed CasCon controller

The design of the proposed controller depicted in Figure 7.2 is inspired from the physical

relationships that exist among the different measures, such that the control is driven from

the fastest time transient measure to the slowest in a coordinated manner through a cas-

caded control. The skin controller defines a maximum junction temperature TJmax, since

the increase in skin temperature is due to the heat accumulation arising from high junction

temperatures over time. The minimum between TJmax and the maximum junction tem-

100

perature allowed physically defines the junction cap TJcap given as input to the junction

controller. The junction controller defines in its turn a maximum current IJmax, since the

increase in junction temperature is due to power dissipation arising from high electrical

current. Finally, the electrical current cap Icap defined by the minimum between IJmax

and the maximum current indicated by the battery specifications is given as input to the

current controller that scales the DVFS settings.

7.2.1 The electrical current controller

The current controller takes as input Icap and the current values of frequency and electrical

current. The controller outputs a target frequency that allows to cap the electrical current at

the predefined maximum level while maximizing performance. This is achieved through

two steps:

1. Step 1: The electrical current depends on the utilization, the voltage/frequency set-

tings and the temperature. However, only the utilization and the voltage/frequency

settings are responsible for the abrupt changes of the current. Thus, we use a current-

frequency function I2F (·) to find the optimal target frequency, such that the current

does not exceed Icap. Because the utilization is linearly related to the power/current,

the current-frequency function I2F (·) is computed at a fixed utilization Uref , by

running a single-phase workload at multiple frequencies, while measuring the cor-

responding electrical current. Then the target frequency Ftarget at time t is computed

based on the current utilization U(t), as follows:

Ftarget(t) =
Uref ⇤ I2F (Icap)

U(t)
(7.1)

2. Step 2: In order to reduce the number of DVFS transitions for performance and

101

power efficiency considerations, we introduce a frequency locking function. This

function forces the CPU to spend a minimum amount of time w at the current fre-

quency level Ft, before increasing it to Ftarget. However, the frequency is decreased

without considering the time window w if Ftarget is less than the current frequency.

7.2.2 The junction temperature controller

The increase in average electrical current leads to a higher junction temperature, due to

power dissipation in computing units. As result, as shown in Figure 7.2, the thermal

controller is cascaded with the current controller. It computes IJmax, which represents the

maximum electrical current that will not lead to a junction temperature violation, using a

PID control:

IJmax(t) = Kpe(t) +Ki

Z
t

0

e(t0)dt0 +Kd

de(t)

dt
, (7.2)

where Kp , Ki ,Kd are the PID gains, while e(t) represents the error between the current

junction temperature and the junction temperature cap. The proposed junction controller

is different than a regular thermal PID controller, since it prevents thermal violations by

capping the maximum electrical current rather than directly controlling the frequency. The

PID parameters are tuned using Zigler-Nichols method [84].

7.2.3 The skin temperature controller

The increase in the junction temperature leads to heat accumulation inside the entirety of

the mobile device, which increases the skin temperature. As result, as shown in Figure

102

7.2, the skin controller is cascaded with the junction controller. The skin violations are

prevented by decreasing the maximum allowed junction temperature proportionally to the

amount of time it spends 1�C away from the skin cap as follows:

TJmax(t) = TJmax(t0)� � ⇤ (t� t0), (7.3)

where [t0, t] represents the time range spent at a skin temperature that is 1�C away from the

cap, and � is a constant defined experimentally, which determines the speed of the junction

temperature reduction. The intuition behind Equation 7.3, is that the skin temperature has

a slow transient, and the more time it spends at a certain level, the more likely for the

temperature to increase to the next level.

7.3 Results and Experimental Setup

7.3.1 Experimental setup

All the experiments are performed on an Android-based (Oreo version 8.0.0) Google Pixel

2 XL phone, that comes with the Snapdragon-835 SoC. To generalize our results for more

than one smartphone model, we specifically chose the previously mentioned SoC because

it is used in more than 20 different smartphone models. Performance is measured using

25 benchmarks of different categories, including cryptography, integer, floating point and

memory workloads from the Geekbench set. The Geekbench score is based on the runtime

of each benchmark, the lower the time, the higher the score is. The thermal and frequency

data is collected through the phone internal sensors using a C program. The CPU current

is measured using a model built using regression analysis, by collecting the total current

103

using a power monitor while running CPU-workloads.

As discussed, the CPU is the only source for thermal throttling, so our controller scales

the DVFS settings of the CPU. The I2F (·) function, the PID and the � parameters are

workload independent, so they need to be determined only once. The controller was

implemented using a C program, which reads the different sensor values and scales the

frequency each 10 ms using the android system nodes. The controller has less than 1%

run-time overhead.

It should be noted that it is not feasible to compare to the default phone governors,

since such comparison requires disabling the default governors to assess our controller,

and this is not possible without access to confidential information that is not publicly

available. As result, we compare to Governor 1 and Governor 2 that are based on current

and thermal controllers from the literature. Governor 1 uses a PID controller [84] for cur-

rent control and uses the frequency stabilization technique introduced in [48] for junction

control. Governor 2 uses a PID controller [84] for both current and junction temperature

control. The skin temperature controller of both governors is based on USTA [41].

To avoid the interference with the built-in phone controllers, the current and temper-

ature caps are set to lower values than the permitted ones to avoid any triggering of the

default phone governors. We use 1 A for current cap, we use 78°C for the junction cap and

42°C for the skin cap. The experiments are performed at different ambient temperatures

using the thermal chamber TestEquity TEC1.

104

[2.45 , 2.34] [2.32 , 2.20] [2.18 ,1.95] [1.92 , 1.80] [1.78 , 1.42]
Frequency ranges (GHz)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

CasCon
Governor 2
Governor 1

26

57

33

3

34

9

0

13

96

7 6
1

15

00

Figure 7.3: Time spent on each frequency range by the different governors.

7.3.2 Results

The proposed controller is evaluated by running the 25 multi-threaded workloads of Geek-

bench, first at an ambient temperature of 25 �C. Afterwards the evaluation is performed at

an ambient temperature of 35 �C, which is representative of hot summer conditions, using

the thermal chamber.

1. Evaluation of the coordinated thermal and electrical current controller at 25
�C: Figure 7.3 shows the time spent on each frequency range by the different governors. It

shows that CasCon picked the frequency levels to create a lasting performance, rather than

just blindly trying to run at the highest frequency levels. For instance, Governor 2 tried to

maximize the time spent at high frequencies by spending 57% of the time in the frequency

range of [2.45 GHz, 2.34 GHz], however, due to thermal and current violations this lead to

15% of the time spent at the lowest frequency range, compared to 0% for CasCon, which

gave our governor a substantial performance advantage.

As given in Table 7.1, our work has a significant performance improvement compared

to Governors 1 and 2, based on the Geekbench scores that actually reflect the runtime.

105

Table 7.1: Performance, thermal and electrical current evaluation of our controller at 25
°C.

Controller Performance Current, thermal and power
Crypto

(%)
Integer

(%)
Float
(%)

Memory
(%)

Total
(%)

N
Iviol

TJviol

(%)
DVFS
trans

Power
(%)

CasCon 14 5.7 7.6 0 6.5 0 1 127 -18
Governor 1 5.3 6.4 -7.1 -24 -7.9 1 1 243 -20
Governor 2 0 0 0 0 0 8 1 8185 0

Table 7.2: Performance, thermal and electrical current evaluation of our controller at 35
°C.

Controller Performance Current, thermal and power
Crypto

(%)
Integer

(%)
Float
(%)

Memory
(%)

Total
(%)

N
Iviol

TJviol

(%)
TSviol

(%)
Power

(%)
CasCon 3.7 3.2 6.6 6.3 4.3 1 <1 0 -4.4

Governor 1 -8.3 -9.3 -14.8 -9.7 -10.6 2295 6.6 3.3 -1.3
Governor 2 0 0 0 0 0 2607 8 0 0

As compared to Governor 2, it shows a performance improvement on most of the sec-

tions of Geekbench with an overall performance improvement of 6.5%. Furthermore, our

controller shows a significant decrease in the number of DVFS transitions, which leads to

18% power savings compared to Governor 2.

2. Evaluation of the coordinated thermal and electrical current controller at 35
�C: Figure 7.4 shows the electrical current trace, the skin temperature, and the temperature

values of the four cores of the big cluster, which correspond to the junction temperature.

The figure shows that the cascaded control helps in efficiently coordinating between the

different sources of emergency to prevent any sustained electrical current, junction tem-

perature or skin temperature violation:

• In the time range [10s, 75s], the controller was able to prevent several junction

temperature violations by dynamically changing the current cap.

• In the time range [245s, 305s] the coordination taking place between the skin tem-

106

perature, junction temperature and electrical current controllers is shown more clearly.

The skin temperature spent more than 50 seconds at 42 °C without getting to a ther-

mal violation, due to the gradual decrease of the junction cap, which then leads

to a gradual decrease of the electrical current cap. Thus, preventing skin violation

through cascaded control.

Table 7.2 shows that our technique brought a performance improvement on most of

the sections of Geekbench, with an overall performance improvement of 4.3% and 4.4%

power savings. The performance improvement seems to be less at 35 �C, because Gov-

ernor 1 and 2 had many thermal violations, allowing them to use a higher thermal budget

than our governor, which made the performance improvement seem less important as com-

pared to 25 �C. Most importantly for this experiment, the proposed controller was able to

prevent current, junction and skin temperature violations even when the ambient temper-

ature increased by 10 �C. On the other hand, Governors 1 and 2 were unable to prevent

current and thermal violations, as several violations took place.

7.4 Conclusion

In this work, we designed a cascaded thermal and electrical current controller, that man-

ages the current, the junction and the skin temperature in a coordinated manner, by captur-

ing the physical relations that exist among the different emergency sources. The controller

was implemented on a real smartphone and evaluated against different management tech-

niques from the literature at different ambient temperatures. The proposed controller,

CasCon, achieves 6.5% performance improvement and 18% power savings compared to

existing techniques, while successfully preventing current, temperature violations and sub-

stantially decreasing DVFS transitions.

107

0 50 100 150 200 250 300
0

0.5

1

C
ur

re
nt

 (A
)

Current Dynamic current cap Current cap

0 50 100 150 200 250 300
40

60

80

Te
m

pe
ra

tu
re

 (°
C

)

Core 1 Core 2 Core 3 Core 4 Dynamic temperature cap Junction cap

0 50 100 150 200 250 300
34

38

42

Te
m

pe
ra

tu
re

 (°
C

)

Skin Skin cap

Figure 7.4: CasCon : run-time dynamic electrical current and temperature capping.

108

Chapter 8

Workload- and User-aware Battery

Lifetime Management for Mobile SoCs

In this chapter, we propose a novel workload- and user-aware battery lifetime manage-

ment that maximizes the performance under the user’s desired battery lifetime. Our ap-

proach leverages insights about the running workloads by collecting CPU-GPU perfor-

mance counters, which are used to proactively scale the CPU-GPU frequencies using ma-

chine learning. Additionally, to enable the user-awareness we design a model that predicts

energy consumption based on the user usage history.

To summarize, the contributions of this chapter are as follows:

• We design the first workload- and user-aware battery lifetime management tech-

nique. The workload-awareness is achieved through performance counters, while

the user awareness is incorporated by representing the user-usage history through a

set of canonical phases (CP).

109

• We propose a novel model that predicts the energy consumption based on the user

usage history. This model makes the proposed technique user-aware, and helps in

better meeting the user’s desired lifetime.

• The proposed battery lifetime management is achieved by scaling both the CPU and

the GPU DVFS levels, unlike previous techniques that do not consider the GPU.

• We implement our technique on a commercial smartphone and compare its perfor-

mance against state-of-the-art battery management techniques. We show that our

technique achieves 15.8% and 9.4% QoS improvement on the CPU and GPU, re-

spectively, while meeting the lifetime target and decreasing the QoS variation by

10x.

The chapter is organized as follows: Section 8.1 motivates the proposed work. Section

8.2 describes our proposed technique. Section 8.3 presents the evaluation results of our

technique compared against state-of-the-art techniques. Section 8.4 concludes the chapter.

8.1 Motivation

The optimal user experience for mobile devices depends on providing a seamless perfor-

mance until the next battery recharge. However, mobile devices are used differently across

users. Furthermore, an important portion of the power consumption and performance in

the new generation of mobile devices depends on other computing units than the CPU.

Hence, we highlight four main motivations for the proposed work.

Maximizing QoS under target battery lifetime: A recent study has shown that a con-

siderable portion of the recharges are driven by context (e.g. time, location,etc.) and there

110

is a great variation among users in exploiting the available battery charge [24]. Hence,

to provide the best balance between QoS and battery lifetime, a management technique

should consider the user desired target battery lifetime. Hence, the problem formulation

of this work aims at maximizing the QoS, which is about minimizing workload runtime

for the CPU and maximizing the FPS for the GPU, given a desired target battery lifetime.

High QoS variation: We implement several battery lifetime management techniques,

namely, Powersave [42], BUSQ1 and BUSQ3 [51]. By evaluating the QoS variation we

show that the performance variation can be as high as 60%, which greatly affects the user

experience. Thus, we need to devise a management technique that provides a smooth

experience to the user.

Workload-aware management: By running different workloads on the Google Pixel

2 XL at 2.45 GHz, 2.20 GHz and 2.11 GHz, we show that the decrease in performance

caused by the frequency downscaling highly varies based on the workload. The perfor-

mance decrease ranges from 2% to 10% for 2.20 GHz, and 2% to 15% for 2.11 GHz, as

compared to the performance at 2.45 GHz. Thus, a workload-aware management would

allow to save power when the frequency is over-scaled, and to improve performance when

it is under-scaled.

Cooperative CPU-GPU management: Running 3DMark as a GPU workload and Geek-

bench as a CPU workload on a commercial smartphone, we show that the GPU has a

higher power profile with an average power of 6.8 Watts, as compared to 5.5 Watts for the

CPU workload. Thus, it is crucial to include both the CPU and the GPU in the manage-

ment technique.

111

Workload-aware CPU-GPU governor
CPU-GPU

DVFS settings

Energy
Prediction

Model

CPU-GPU DVFS
targets per canonical

phase

Battery status

User usage
history

Workload- and User-aware
Battery Lifetime Management

Frequency
Optimization

Frequencies &
CPC

Predicted Energy

CPU-GPU PCs

Figure 8.1: Workload- and User-aware Battery Lifetime Management.

8.2 Proposed work

The proposed battery lifetime management technique, which is depicted in Figure 8.1,

uses frequency optimization and an energy prediction model to find the optimal CPU-GPU

frequency targets per canonical phase (CP). The workload-aware governor continuously

collects performance counters (PC), and classifies each sample as one of the CP, then

the frequency is set to the frequency target corresponding to this CP, such that QoS is

optimized while meeting the target battery lifetime. In the following subsections, we

describe the main blocks of the proposed work, namely: A) the workload-aware governor,

B) the energy prediction model and C) the frequency optimization.

8.2.1 Workload-aware governor

The workload-aware governor (WLA) shown in Figure 8.2, is designed through an offline

analysis, during which a set of CPs are identified through cluster analysis. Then in run-

time, the workload-aware governor is used with the frequency optimization and the energy

prediction model to choose the optimal DVFS settings.

112

Figure 8.2: Workload-aware governor.

In offline analysis we aim to identify a set of CPs that can be used to detect the different

workload phases. The different steps of the analysis are presented in Algorithm 2. As

shown in Figure 8.2, we start by running a benchmark suite at different frequency levels,

while collecting the following PC on the CPU side: instructions executed, branch-misses,

cache misses and cache references, and on the GPU side we collect: GPU bus frequency

and normalized GPU utilization.

Since the values of the PCs are a function of the DVFS setting, we need to standardize

their values. We build a mean and a standard deviation models of the PCs using regres-

sion analysis, as shown in line 3, 4 and 5 of Algorithm 2. In line 6 the standardization is

performed by subtracting the mean and dividing by the standard deviation. The GPU per-

formance counters are normalized in regard of their maximum possible value. Finally, we

conduct a k-means cluster analysis [74]. We identify six (i.e., k = 6) clusters (i.e., CPs),

and compute their corresponding centroids as shown in line 7 of Algorithm 2. The number

113

Algorithm 2: Offline analysis of the WLA.
Output: CCP CP centroids

1 Run benchmark suite at different frequency levels
2 PC collect performance counters
3 �!m , �!s means and standard deviations of PCs
4 Mean PC model: �!wm =(Fc

| Fc)�1Fc
| �!m

5 Std PC model : �!ws =(Fc
| Fc)�1Fc

| �!s
6 PCs Standardize(PC,�!wm,

�!ws)
7 CCP Apply k-means on PCs and return centroids

of clusters was chosen such that each resulting canonical phase represents an actual work-

load phase. This is achieved by increasing the number of clusters, while keeping track of

the time ratio of each CP when running different workloads. This time ratio represents the

time spent on each CP, and it is referred to as the canonical phase composition (CPC).

For illustration, Table 8.1 gives the canonical phase composition (CPC) of vari-

ous workloads. The table shows that the memory copy and memory latency workloads

are mainly dominated by CP1, which means that CP1 corresponds to memory operation

phases. The table also shows that all the remaining workloads are mainly dominated by the

combination of CP1 and one of the remaining CP. Finally, we notice that Sling Shot, which

is a GPU workload, is mainly dominated by CP4, which means that CP4 corresponds to a

GPU workload.

8.2.2 Energy prediction model

In order to maximize the performance while meeting a target battery lifetime, for a set of

CPU-GPU frequencies we need to be able to predict the energy consumption given the

user usage history. For this goal, we represent the usage history through a user-specific

CPC vector, which gives the percentage of time the user spends in each CP throughout

the day. Each CPC vector represents the fractions of time spent by the user in each phase

114

Table 8.1: The canonical phase composition of different workloads.

CP1
(%)

CP2
(%)

CP3
(%)

CP4
(%)

CP5
(%)

CP6
(%)

Ray Tracing 33 1 1 0 63 2
LLVM 31 4 56 0 4 5

Gaussian Blur 46 47 2 0 3 2
Speech Recognition 31 0 0 0 1 68

Memory Copy 96 0 1 0 3 0
Memory Latency 95 1 1 0 2 1
Sling Shot (GPU) 13 0 0 87 0 0

aggregated over workloads used throughout the day. Then, we use offline regression anal-

ysis to build an energy prediction model based on the CPs discussed earlier. The model is

defined as follows:

EP(F,CPC)= Tr

P
i=k

i=1(wci · CPCi · Fci + wgi · CPCi · Fgi) + c, (8.1)

where F represents a vector of CPU and GPU frequency pairs (one pair per CP), Fci and

Fgi correspond to the CPU and GPU frequencies of the ith CP, CPCi is the ith element

of the CPC vector, Tr denotes the total runtime, k represents the number of CPs, and wci,

wgi and c are the weights to be determined by the regression analysis.

8.2.3 Frequency optimization

The frequency optimization aims to find the best CPU-GPU frequencies per CP. The opti-

mization consists of two steps that rely on the energy prediction model to find the optimal

frequency settings given the desired battery lifetime.

The CPU and the GPU combined have usually more than 30 DVFS levels, which

makes the task of choosing the best settings per CP intractable. In order to solve this

115

Algorithm 3: Workload- and User-aware Battery Lifetime Management.
Input: CCP (CP centroids), Bs (Battery status), Bc (Battery capacity), PET table,

CPC (CP composition), EP (Energy prediction model)
1 Er = Bs.Bc

2 Find FCP (i.e, column in PET) such that:

min |Er � EP (FCP , CPC)|

3 Increment or decrement FCP such that:

EP (FCP , CPC)  Er

@F 0 EP (FCP , CPC) < EP (F 0, CPC)  Er

4 While workload is running
5 PCs collect and standardize PCs
6 Find phase i that has the closest CCPi to PCs

7 (Fc, Fg) FCPi

8 end while

efficiently, we construct offline a phase-aware performance-energy trade-off table (PET).

The PET shown in Table 8.2 contains the CPU-GPU frequencies per CP that correspond to

5% decrements of the performance. It was obtained offline by running various benchmarks

at different frequencies while keeping track of the performance.

The PET table is used within the runtime frequency optimization algorithm given in

Algorithm 3 to identify the optimal DVFS settings. Algorithm 3 consists of three main

steps.

First step (lines 1-2) This step aims to make a first estimation about the optimal DVFS

settings per CP. It consists of going through the columns of the PET Table to find the

column that has the closest energy to the remaining energy.

Second step (line 3) This step consists of doing frequency increments or decrements,

to further minimize the difference between the expected energy consumption and the re-

116

Table 8.2: DVFS settings (MHz) of the phase-aware performance-energy trade-off table
(PET).

Performance
100%

Performance
95%

Performance
90%

CP1 (CPU, GPU) (2112, 256) (1958, 256) (1804, 256)
CP2 (CPU, GPU) (2342, 256) (2208, 256) (2112, 256)
CP3 (CPU, GPU) (2361, 256) (2265, 256) (1958, 256)
CP4 (CPU, GPU) (2342, 710) (2208, 670) (2035, 596)
CP5 (CPU, GPU) (2342, 256) (2112, 256) (1881, 256)
CP6 (CPU, GPU) (2342, 256) (1958, 256) (1804, 256)

maining battery energy. This is achieved by finding the setting FCP that offers the smaller

closest energy consumption to Er. The procedure consists of choosing a CP and incre-

menting or decrementing its corresponding CPU and GPU frequency, which was obtained

in the first step of the frequency optimization procedure. If from the first step we obtained

Er > EP (FCP , CPC), we increment the frequency, otherwise we decrement. After ad-

justing the frequency, we predict the new energy and check whether the equation in line 3

is satisfied, otherwise we repeat the same procedure by choosing a different CP. Through-

out this procedure, the CPs are chosen based on their corresponding value in the CPC

vector, such that the CP with smaller values are chosen first. The intuition is that CPs with

smaller values are less executed by the user, thus, they allow small changes in the energy

and performance.

Third step (lines 4-7) The optimal FCP vector identified in the previous steps is given

as input to the Workload-aware governor to assign the DVFS settings based on the current

CP. As shown in line 5 to 7 of Algorithm 3, the PCs are continuously collected, and the

classification is performed by measuring the Euclidean distance between the normalized

PCs of the running workload, and the precomputed centroids of the chosen CPs from the

offline analysis. The FCP vector identified in the previous steps of Algorithm 3 contains

frequency targets per CP, and is used after each classification to set the CPU and GPU

117

frequencies to level of the corresponding CP.

8.3 Experiments and results

8.3.1 Experimental setup

All the experiments are performed on an Android-based (Oreo version 8.0.0) Google Pixel

2 XL phone. The CPU and GPU performance are measured based on the multi-core score

of Geekbench 4.3.1, and 3DMark scores. The Geekbench score is based on the run-time

of each workload, the lower the run-time the higher the score is. The 3DMark scores are

based on the frames per second (FPS), the higher the FPS the higher the score. Geekbench

and 3DMark were chosen because they are by far the most widely used benchmarks in

the mobile market by both companies and end-users. We used the Monsoon HV power

monitor AAA10F to measure the power. The proposed work is implemented in C and

runs on the actual smartphone. The management technique takes a DVFS decision each

20 ms, it has a minor memory footprint, and its computational overhead is less than 1%.

Additionally, all the presented results already incorporate all computation overhead.

8.3.2 Results

Energy prediction model: In order to validate the prediction model, we collect the train-

ing data by running various workloads at different frequency levels. After performing

the regression analysis, the accuracy of the energy prediction model was measured as

compared to the actual energy values through several runs of workloads. The average

percentage error across all runs is 7.3%.

118

We compare against state of the art battery lifetime management techniques, namely

Powersave [42], BUSQ1 and BUSQ3 [51].

Powersave [42]: The used mobile platform allows a maximum CPU frequency of 2.45

GHz, and 710 MHz on the GPU side. When 20% of the capacity is reached, the maximum

allowed CPU and GPU frequencies are decreased by 50% to 1.26 GHz and 342 MHz,

respectively.

BUSQ1Ad [51]: In the case of a usage pattern that includes several stand-by phases,

BUSQ1 ends up over-provisioning the available battery capacity, which results in a poor

performance and a higher battery lifetime than required. For the purpose of a fair com-

parison, we evaluate our approach against a modified version of BUSQ1, referred to as

BUSQ1Ad. The only difference as compared to BUSQ1, is that the linear discharge pro-

file is steeper. Hence, the technique gets better performance, while closely meeting the

user target lifetime.

BUSQ3 [51]: Rather than using a moving average to define the discharge profile for

BUSQ3, we provide the exact discharge profile as input.

In order to perform an extensive evaluation, using two different benchmarks, we define

two different user usage patterns1:

User Usage Pattern 1:

• [0s, 500s] Geekbench multi-core (CPU)

• [500s, 700s] Stand-by period
1Based on the energy consumption during these two patterns, we calculate the expected battery lifetime

given the battery capacity of the used platform.

119

Figure 8.3: CPU frequency traces while running Geekbench.

• [700s, 1200s] Geekbench multi-core (CPU)

• [1200s, 2400s] Stand-by period

Figure 8.3 shows a portion of the CPU frequency traces of the implemented tech-

niques. The frequency of BUSQ1Ad and BUSQ3 [51] starts at 2.457 GHz, afterwards

their frequency is decremented until it reaches 1.267 GHz and 1.42 GHz, respectively.

The frequency trace of Powersave [42] also starts at 2.457 GHz, but then as the battery

capacity reaches 20% later in the experiment, the frequency is set to 1.267 GHz.

In the other hand, the energy prediction model allowed the proposed work to predict

the optimal set of frequencies that can be maintained throughout the whole experiment.

Figure 8.3 shows that the CPU frequency of the proposed work varies between 2.26 GHz

and 1.95 GHz, by switching between 5 frequency levels, which means that the shown

workload contains 5 CP phases. As shown in Table 8.3, this leads to a better performance,

reflected through a higher score, less QoS variation and a longer battery lifetime. As com-

pared to BUSQ3 [51], the proposed work is showing an improvement of 5.4% and 6.1% on

120

Table 8.3: CPU evaluation of the proposed technique using Geekbench4 (Higher scores
mean better performance).

Crypto Integer Float Memory Total QoS
Variation

Battery
Life (h)

Our work 5148
-3.7%

7704
5.4%

5344
6.1%

2476
-1.5%

5823
6.1% 1.9% 8.6

2.5%

Powersave[42] 4944
-7.5%

7501
2.6%

5064
6.4%

2426
-3.5%

5627
2.5% 62% 8.04

-4.2%

BUSQ1Ad[51] 5022
-6.1%

7200
-1.5%

4655
-2.2%

2218
-11.8%

5331
-2.9% 23% 8.49

1.2%

BUSQ3[51] 5348
0%

7310
0%

4761
0%

2514
0%

5488
0% 14% 8.39

0%

the Integer and Floating-Point sections, respectively. The total performance improvement

is 6.1% with 2.5% improvement in the battery lifetime, as compared to BUSQ3. The QoS

variation, which represents the percentage difference between the best and the worst score

throughout the experiment, shows that the proposed work has only 1.88% performance

variation, which is 7x less performance variation as compared BUSQ3.

User Usage Pattern 2:

• [0s, 950s] 3DMark Sling Shot (CPU-GPU)

• [950s, 1550s] Stand-by period

• [1550s, 2500s] 3DMark Sling Shot (CPU-GPU)

• [2500s, 5300s] Stand-by period

Figure 8.4 shows a portion of the GPU frequency traces of the implemented tech-

niques. The frequency of BUSQ1Ad and BUSQ3 [51] start at 710 MHz, then it is decre-

mented until it reaches 257 MHz and 414 MHz, respectively. For Powersave the frequency

starts at 710 MHz, but then as the battery capacity reaches 20% later in the experiment, it

is set to 342 MHz.

121

Figure 8.4: GPU frequency traces while running 3DMark.

Figure 8.5: Discharge profile.

122

Table 8.4: CPU-GPU evaluation of the proposed technique using 3DMark (Higher scores
mean better performance).

Graphics
score

Physics
score

Total
score

QoS
Variation

Battery
Life (h)

Our work 4780
(9.4%)

2718
(15.8%)

4089
(11.9%) 3.6% 8.53

(0%)

Powersave[42] 4415
(1.5%)

2484
(5.8%)

3760
(2.9%) 50% 8.85

(3.4%)

BUSQ1Ad[51] 4578
(5.3%)

2624
11.8%)

3882
(6.3%) 38% 8.2

(-4.2%)

BUSQ3[51] 4348
(0%)

2384
(0%)

3653
(0%) 55.4% 8.56

(0%)

In the other hand, the GPU frequency of the proposed work in Figure 8.4 is stable at

596 MHz. The 60 seconds portion showed in Figure 8.4 is mainly a GPU workload phase,

corresponding to CP4, whose optimal frequency was predicted to be 596 MHz. Figure

8.5 shows the battery discharge profile of our work as compared to the other techniques

while running the usage pattern 2. The figure shows that the discharge profile of Power-

save [42] drowns pretty fast in the first 1700 seconds, then the energy consumption slows

down significantly. In contrast to Powersave, in the first 1550 seconds, BUSQ1Ad is over-

conservative in energy consumption, then the remaining energy drowns rapidly. On the

other hand, our technique maintains a stable energy consumption profile. As shown in

Figure 8.5, the energy profile of the proposed work is at all times confined between the

under-conservative and the over-conservative discharge profiles. Hence, providing an opti-

mal and seamless performance, while meeting the target lifetime. This is reflected through

Table 8.4 that shows a better performance, less QoS variation and a longer battery lifetime.

As compared to BUSQ3 [51], our work is showing an improvement of 9.4% and 15.8%

on the graphics and physics sections of 3DMark, respectively, with a total performance

improvement of 11.9%.

Additionally, our work has only 3.6% performance variation, which is 15⇥ less per-

formance variation as compared to BUSQ3. This is demonstrated through Figure 8.6, that

123

Figure 8.6: QoS variation using 3DMark.

shows the normalized physics and graphics scores of 8 runs of 3DMark, divided by a 10

minutes break after the fourth run. The figure shows that the proposed work offers a seam-

less and stable performance on CPU and GPU side, as compared to the other techniques,

whose normalized score varies between 0.4 and 1.

8.4 Conclusion

This chapter investigated a workload- and user-aware battery lifetime management tech-

nique for Mobile SoCs. The proposed technique manages both the CPU and the GPU to

maximize performance while meeting a target battery lifetime. During an offline analysis

we design a Workload-aware governor by identifying a set of canonical workload phases

using cluster analysis. We build an energy prediction model based on the canonical phase

composition of the user usage history. During runtime, a frequency optimization proce-

dure uses the energy prediction model to find the optimal set of frequencies per canonical

124

phase. Finally, the Workload-aware governor identifies the phase of the current workload

and uses the frequencies per canonical phase to scale the frequency. The proposed tech-

nique achieves up to 11.9% better performance and it decreases the performance variation

by 10⇥ while meeting the user desired battery lifetime.

125

Chapter 9

Summary and Possible Extensions

This thesis aims at improving the performance and the battery lifetime of mobile devices

through thermal and power sensing and management. On the sensing side, we proposed

the Alternating-BPI technique that accurately estimates the power consumption of indi-

vidual hardware units without the use of any design based models. Additionally, we pro-

posed a Deconvolutional Neural Network (DCNN) based power map estimation. The

Alternating-BPI technique was then used to perform a power and hardware characteriza-

tion of Augmented Reality Apps. For runtime management, we proposed a coordinated

self-tuning thermal management controller based on online deep learning. In addition,

we proposed a cascaded controller for mobile devices to manage the different sources of

current and thermal emergencies, while maximizing performance. Finally, we designed

a novel workload- and user-aware battery lifetime management technique that maximizes

the performance under the user’s desired battery lifetime. Section 9.1 summarizes our

contributions. We discuss potential future extensions in Section 9.2.

126

9.1 Summary of the Dissertation

In Chapter 3, we investigated the lack of fine-grain power sensing in modern SoCs, and

proposed an Alternating Blind Identification of Power sources (Alternating-BPI), a tech-

nique that accurately estimates the power consumption of individual SoC units by relying

on the measurements from the embedded thermal sensors and the total power consump-

tion. The accuracy and applicability of the proposed technique was verified using simula-

tion and experimental data. We showed that Alternating-BPI is able to estimate the power

at the SoC hardware unit level with up to 98.1% accuracy. Furthermore, we demonstrate

the applicability of the proposed technique on a commercial SoC.

In Chapter 4, We proposed to solve the power map estimation problem as an im-

age generation problem using Deconvolutional Neural Networks (DCNN). The proposed

DCNN takes as input the thermal measurements from the embedded thermal sensors to es-

timate the full SoC power map. The proposed technique allows to estimate the power map

at a finer spatial granularity than the thermal spatial granularity of the existing thermal

sensors. More specifically, it allows to estimate the power even at locations where thermal

measurements are not physically available. The proposed technique is demonstrated using

a commercial SoC while running several benchmarks. The predicted power maps show a

97% similarity (2D correlation) with the power maps estimated using the Alternating-BPI.

In Chapter 5, we performed a power and hardware characterization of Augmented Re-

ality Applications. After performing an analysis using existing AR Apps, we designed

and developed ARBench, an augmented reality benchmark for mobile devices. Then, AR-

Bench was used to evaluate the AR performance of existing commercial mobile devices,

and to perform a phase analysis using performance counters to characterize existing AR

Apps. Finally, the benchmark was used to study the performance and power trade-offs

127

of different CPU multi-core configurations, and we provide insights that could be used to

save power while meeting the AR performance requirements.

In Chapter 6, we investigated few challenges related to thermal management on mobile

devices, including the workload and the ambient temperature dependency of the optimal

PID parameters, in addition to the challenge of controlling multiple sources of thermal

emergency. This investigation led us to propose a coordinated self-tuning thermal manage-

ment controller, that relies on online deep learning to continuously adapt to characteristics

and operating conditions. The proposed controller takes into account both skin tempera-

ture and junction temperature constraints in a coordinated manner. We implemented the

controller on a commercial smartphone, and we evaluate it comprehensively against over

techniques from the literature, under different ambient temperatures and workload charac-

teristics. Our results demonstrate that our coordinated self-tuning thermal controller leads

to 6% better performance, and spends up to 27⇥ less time in thermal violation.

In Chapter 7, we investigated the fact that existing techniques dissociate the current

throttling, the junction temperature throttling and the skin temperature throttling by con-

trolling each measure separately, which leads to sub-optimal control. Then we design a

cascaded controller (CasCon) that manages the skin temperature, the junction temperature

and the electrical current in a coordinated manner. The proposed controller dynamically

changes the thermal and electrical current caps in runtime, allowing it to save power and

improve performance. We also introduce a frequency locking function that significantly

reduces the number of DVFS transitions, hence bringing extra power savings. We imple-

ment our CasCon controller on a real smartphone and we evaluate it comprehensively at

different ambient temperatures. Our results show that the proposed controller successfully

prevents current and thermal violations even at high ambient temperatures, while bring-

ing up to 6.5% performance improvements and 18% power savings compared to previous

work.

128

In Chapter 8, we argue that the optimal balance between performance and battery life-

time depends on the user desired target battery lifetime. Hence, we propose a workload-

and user-aware battery lifetime management technique that maximizes the performance

under the constraint of the user target battery lifetime. The workload-awareness is achieved

through performance counters, while the user awareness is incorporated by representing

the user-usage history through a set of canonical phases (CP). In order to achieve the

best results, we had to design a novel model that predicts the energy consumption based

on the user usage history. Then, the proposed battery lifetime management is achieved

by scaling both the CPU and the GPU DVFS levels, unlike previous techniques that do

not consider the GPU. We implemented our technique on a commercial smartphone and

compared its performance against state-of-the-art battery management techniques. The

proposed technique achieved 15.8% and 9.4% performance improvement on the CPU and

GPU, respectively, while meeting the lifetime target and decreasing the performance vari-

ation by 10x.

9.2 Possible Research Extensions

There are several opportunities to improve thermal and power sensing and management for

Mobile SoCs. There are four natural extensions to our presented work in this thesis. First,

we showed that using the internal thermal sensors and the total power, we can predict the

full SoC power map by relying on the Alternating-BPI and a deconvolutional neural net-

work. This work could be extended to SoCs that lack thermal sensors, by building a model

that predicts the full power map of the SoC based on performance counters. Second, the

power characterization of Augmented Reality Apps has shown that they are power greedy,

with more than half the power being consumed by the mapping and tracking algorithms.

Thus, an interesting track would be to explore energy-efficient computation off-loading

129

of Augmented Reality processes to extend the battery lifetime of AR/VR headsets, un-

der latency and accuracy constraints. Third, the proposed work in this thesis, allowing

the prediction of the full power map of the SoC could be extended to predict, locate and

prevent the thermal hotspots through runtime management, even for locations on the SoC

that do not have physical thermal sensors. Finally, the proposed workload- and user-aware

battery lifetime management aims to maximize the performance given a target battery

lifetime, assuming that the user would be able to correctly estimate and provide as input

the target battery lifetime. Accurately estimating the target battery lifetime would help in

greatly improving the user experience, because this would enable a more optimal trade-off

between performance and battery lifetime. Thus, an extension to this work would be to

remove the user from the loop, by designing a machine learning algorithm able to estimate

the target battery lifetime, based on the user historical data like the date, time, and location

the previous battery recharges.

130

Bibliography

[1] 3dmark gpu benchmark. https://www.3dmark.com/.

[2] Ai benchmark. https://ai-benchmark.com/.

[3] Ar 3d animals - apps on google play. https://play.google.com/store/

apps/details?id=com.grappsgames.

[4] Ar dragon - apps on google play. https://play.google.com/store/

apps/details?id=com.laugh.ar.dragon.

[5] Augmently – augmented reality for furniture - apps on google play.

https://play.google.com/store/apps/details?id=com.

Audaxlabs.AudaxARView.

[6] Civilisations ar. https://play.google.com/store/apps/details?

id=uk.co.bbc.civilisations&hl=en_US&gl=US.

[7] cross browser testing platform. https://www.browserstack.com/.

[8] Geekbench 4. https://www.geekbench.com/geekbench4/.

[9] Hello ar core; google developers. https://developers.google.com/ar/

develop/unity/tutorials/hello-ar-sample.

131

https://www.3dmark.com/
https://ai-benchmark.com/
https://play.google.com/store/apps/details?id=com.grappsgames
https://play.google.com/store/apps/details?id=com.grappsgames
https://play.google.com/store/apps/details?id=com.laugh.ar.dragon
https://play.google.com/store/apps/details?id=com.laugh.ar.dragon
https://play.google.com/store/apps/details?id=com.Audaxlabs.AudaxARView
https://play.google.com/store/apps/details?id=com.Audaxlabs.AudaxARView
https://play.google.com/store/apps/details?id=uk.co.bbc.civilisations&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=uk.co.bbc.civilisations&hl=en_US&gl=US
https://www.browserstack.com/
https://www.geekbench.com/geekbench4/
https://developers.google.com/ar/develop/unity/tutorials/hello-ar-sample
https://developers.google.com/ar/develop/unity/tutorials/hello-ar-sample

[10] High voltage power monitor: Monsoon solutions: Bellevue. https://www.

msoon.com/high-voltage-power-monitor.

[11] Knightfall ar - apps on google play. https://play.google.com/store/

apps/details?id=com.aetn.games.knightfall.ar.

[12] Mission to mars ar - apps on google play. https://play.google.com/

store/apps/details?id=com.sndigital.marsar.

[13] Monster park ar - jurassic dinosaurs in real world - apps on google

play. https://play.google.com/store/apps/details?id=com.

vitotechnology.DinoAR.

[14] Qualcomm snapdragon 865 specs. https://www.androidauthority.com/

qualcomm-snapdragon-865-specs-1058483/.

[15] Samsung ar - apps on google play. https://play.google.com/store/

apps/details?id=com.vrai.samsungsurfaceAR.

[16] Scale lab tools. https://scale.engin.brown.edu/software/.

[17] Sketchar create art and get nft instantly - apps on google play. https://play.

google.com/store/apps/details?id=ktech.sketchar.

[18] Snapdragon 865 mobile hardware development kit. https://developer.

qualcomm.com/hardware/snapdragon-865-hdk.

[19] Snapdragon 865 mobile hardware development kit. https://developer.

qualcomm.com/hardware/snapdragon-865-hdk.

[20] Snapdragon profiler. https://developer.qualcomm.com/software/

snapdragon-profiler.

132

https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor
https://play.google.com/store/apps/details?id=com.aetn.games.knightfall.ar
https://play.google.com/store/apps/details?id=com.aetn.games.knightfall.ar
https://play.google.com/store/apps/details?id=com.sndigital.marsar
https://play.google.com/store/apps/details?id=com.sndigital.marsar
https://play.google.com/store/apps/details?id=com.vitotechnology.DinoAR
https://play.google.com/store/apps/details?id=com.vitotechnology.DinoAR
https://www.androidauthority.com/qualcomm-snapdragon-865-specs-1058483/
https://www.androidauthority.com/qualcomm-snapdragon-865-specs-1058483/
https://play.google.com/store/apps/details?id=com.vrai.samsungsurfaceAR
https://play.google.com/store/apps/details?id=com.vrai.samsungsurfaceAR
https://scale.engin.brown.edu/software/
https://play.google.com/store/apps/details?id=ktech.sketchar
https://play.google.com/store/apps/details?id=ktech.sketchar
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler

[21] Vrmark - the virtual reality benchmark. https://benchmarks.ul.com/

vrmark.

[22] Youcam makeup - selfie editor - apps on google play. https://play.google.

com/store/apps/details?id=com.cyberlink.youcammakeup.

[23] Nick Baker, Marco Liserre, Laurent Dupont, and Yvan Avenas. Improved reliability

of power modules: A review of online junction temperature measurement methods.

IEEE Industrial Electronics Magazine, 8(3):17–27, 2014.

[24] Nilanjan Banerjee, Ahmad Rahmati, Mark D Corner, Sami Rollins, and Lin Zhong.

Users and batteries: interactions and adaptive energy management in mobile sys-

tems. In International conference on ubiquitous computing, pages 217–234.

Springer, 2007.

[25] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benini. A distributed and

self-calibrating model-predictive controller for energy and thermal management of

high-performance multicores. In 2011 Design, Automation & Test in Europe, pages

1–6. IEEE, 2011.

[26] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benini. Thermal and en-

ergy management of high-performance multicores: Distributed and self-calibrating

model-predictive controller. IEEE Transactions on Parallel and Distributed Systems,

24(1):170–183, 2013.

[27] Francesco Beneventi, Andrea Bartolini, Andrea Tilli, and Luca Benini. An effective

gray-box identification procedure for multicore thermal modeling. IEEE Transac-

tions on Computers, 63(5):1097–1110, 2012.

[28] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. ACM SIGARCH Computer Ar-

chitecture News, 28(2):83–94, 2000.

133

https://benchmarks.ul.com/vrmark
https://benchmarks.ul.com/vrmark
https://play.google.com/store/apps/details?id=com.cyberlink.youcammakeup
https://play.google.com/store/apps/details?id=com.cyberlink.youcammakeup

[29] Huifeng Chen, Bing Ji, Volker Pickert, and Wenping Cao. Real-time temperature

estimation for power mosfets considering thermal aging effects. IEEE Transactions

on Device and Materials Reliability, 14(1):220–228, 2013.

[30] Huixiang Chen, Yuting Dai, Hao Meng, Yilun Chen, and Tao Li. Understanding the

characteristics of mobile augmented reality applications. In 2018 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages 128–

138. IEEE, 2018.

[31] Sofiane Chetoui and Sherief Reda. Coordinated self-tuning thermal management

controller for mobile devices. IEEE Design & Test, 2020.

[32] Ui-Min Choi, Frede Blaabjerg, and Søren Jørgensen. Study on effect of junction

temperature swing duration on lifetime of transfer molded power igbt modules. IEEE

Transactions on Power Electronics, 32(8):6434–6443, 2017.

[33] Yonghun Choi, Seonghoon Park, and Hojung Cha. Graphics-aware power governing

for mobile devices. In Proceedings of the 17th Annual International Conference on

Mobile Systems, Applications, and Services, pages 469–481, 2019.

[34] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda. Pack & cap: adap-

tive dvfs and thread packing under power caps. In 2011 44th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 175–185. IEEE, 2011.

[35] Ryan Cochran and Sherief Reda. Consistent runtime thermal prediction and control

through workload phase detection. In Design Automation Conference, pages 62–67.

IEEE, 2010.

[36] Ryan Cochran and Sherief Reda. Thermal prediction and adaptive control through

workload phase detection. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 18(1):7, 2013.

134

[37] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian

Le. Rapl: Memory power estimation and capping. In 2010 ACM/IEEE International

Symposium on Low-Power Electronics and Design (ISLPED), pages 189–194. IEEE,

2010.

[38] Da Deng. Li-ion batteries: basics, progress, and challenges. Energy Science &

Engineering, 3(5):385–418, 2015.

[39] Kapil Dev, Abdullah Nazma Nowroz, and Sherief Reda. Power mapping and model-

ing of multi-core processors. In International Symposium on Low Power Electronics

and Design (ISLPED), pages 39–44. IEEE, 2013.

[40] Brad K Donohoo, Chris Ohlsen, and Sudeep Pasricha. Aura: An application and

user interaction aware middleware framework for energy optimization in mobile de-

vices. In 29th International Conference on Computer Design (ICCD), pages 168–

174. IEEE, 2011.

[41] Begum Egilmez, Gokhan Memik, Seda Ogrenci-Memik, and Oguz Ergin. User-

specific skin temperature-aware dvfs for smartphones. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2015, pages 1217–1220. IEEE, 2015.

[42] Utkarsh Goel, Stephen Ludin, and Moritz Steiner. Web performance with android’s

battery-saver mode. arXiv preprint arXiv:2003.06477, 2020.

[43] Young-Ho Gong, Jae Jeong Yoo, and Sung Woo Chung. Thermal modeling and

validation of a real-world mobile ap. IEEE Design & Test, 35(1):55–62, 2017.

[44] Yin Hang and Hussameddine Kabban. Thermal management in mobile devices:

challenges and solutions. In 2015 31st Thermal Measurement, Modeling & Manage-

ment Symposium (SEMI-THERM), pages 46–49. IEEE, 2015.

135

[45] Yao He, XingTao Liu, ChenBin Zhang, and ZongHai Chen. A new model for state-

of-charge (soc) estimation for high-power li-ion batteries. Applied Energy, 101:808–

814, 2013.

[46] Chen-Ying Hsieh, Jurn-Gyu Park, Nikil Dutt, and Sung-Soo Lim. Memory-aware

cooperative cpu-gpu dvfs governor for mobile games. In 13th Symposium on Em-

bedded Systems For Real-time Multimedia (ESTIMedia), pages 1–8. IEEE, 2015.

[47] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan,

Kevin Skadron, and Mircea R Stan. Hotspot: A compact thermal modeling method-

ology for early-stage vlsi design. IEEE Transactions on very large scale integration

(VLSI) systems, 14(5):501–513, 2006.

[48] Jae Min Kim, Young Geun Kim, and Sung Woo Chung. Stabilizing cpu frequency

and voltage for temperature-aware dvfs in mobile devices. IEEE Transactions on

Computers, 64(1):286–292, 2013.

[49] Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, and Tajana Rosing. P

4: Phase-based power/performance prediction of heterogeneous systems via neural

networks. In 2017 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 683–690. IEEE, 2017.

[50] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788–791, 1999.

[51] Wooseok Lee, Reena Panda, Dam Sunwoo, Jose Joao, Andreas Gerstlauer, and

Lizy K John. Buqs: battery-and user-aware qos scaling for interactive mobile de-

vices. In 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 64–69. IEEE, 2018.

[52] Duo Li, Sheldon X-D Tan, Eduardo H Pacheco, and Murli Tirumala. Parameter-

ized architecture-level dynamic thermal models for multicore microprocessors. ACM

136

Transactions on Design Automation of Electronic Systems (TODAES), 15(2):1–22,

2010.

[53] Xueliang Li, Guihai Yan, Yinhe Han, and Xiaowei Li. Smartcap: user experience-

oriented power adaptation for smartphone’s application processor. In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), pages 57–60. IEEE,

2013.

[54] Min Yeol Lim, Allan Porterfield, and Robert Fowler. Softpower: fine-grain power es-

timations using performance counters. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, pages 308–311, 2010.

[55] Rajiv Mongia, A Bhattacharya, and Himanshu Pokharna. Skin cooling and other

challenges in future mobile form factor computing devices. Microelectronics Jour-

nal, 39(7):992–1000, 2008.

[56] A Munier, JR Burgan, J Gutierrez, E Fijalkow, and MR Feix. Group transformations

and the nonlinear heat diffusion equation. SIAM Journal on Applied Mathematics,

40(2):191–207, 1981.

[57] Farid N Najm. Power estimation techniques for integrated circuits. In Proceedings

of IEEE International Conference on Computer Aided Design (ICCAD), pages 492–

499. IEEE, 1995.

[58] Cameron Nelson and Jesse Galloway. Package thermal challenges due to chang-

ing mobile system form factors. In 2018 34th Thermal Measurement, Modeling &

Management Symposium (SEMI-THERM), pages 98–106. IEEE, 2018.

[59] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Francieli Z Boito,

Philippe Olivier Alexandre Navaux, and Jean-François Méhaut. Performance/energy

trade-off in scientific computing: the case of arm big. little and intel sandy bridge.

IET Computers & Digital Techniques, 9(1):27–35, 2015.

137

[60] Jihoon Park, Seokjun Lee, and Hojung Cha. Accurate prediction of smartphones’

skin temperature by considering exothermic components. In 2018 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), pages 1500–1503. IEEE,

2018.

[61] Jurn-Gyu Park, Nikil Dutt, Hoyeonjiki Kim, and Sung-Soo Lim. Hicap: Hierarchi-

cal fsm-based dynamic integrated cpu-gpu frequency capping governor for energy-

efficient mobile gaming. In Proceedings of the International Symposium on Low

Power Electronics and Design, pages 218–223, 2016.

[62] Nadja Peters, Sangyoung Park, Daniel Clifford, Sami Kyostila, R Mcllroy, Benedikt

Meurer, Hannes Payer, and Samarjit Chakraborty. Phase-aware web browser power

management on hmp platforms. In Proceedings of the International Conference on

Supercomputing, pages 274–283, 2018.

[63] Emirhan Poyraz and Gokhan Memik. Using built-in sensors to predict and utilize

user satisfaction for cpu settings on smartphones. Proceedings of the ACM on Inter-

active, Mobile, Wearable and Ubiquitous Technologies, 3(1):1–25, 2019.

[64] Alok Prakash, Hussam Amrouch, Muhammad Shafique, Tulika Mitra, and Jörg

Henkel. Improving mobile gaming performance through cooperative cpu-gpu ther-

mal management. In Proceedings of the 53rd Annual Design Automation Confer-

ence, page 47. ACM, 2016.

[65] Robin Randhawa. Software techniques for arm big. little systems. ARM, Apr, 2013.

[66] Sherief Reda and Adel Belouchrani. Blind identification of power sources in pro-

cessors. In Design, Automation & Test in Europe Conference & Exhibition (DATE),

2017, pages 1739–1744. IEEE, 2017.

138

[67] Sherief Reda, Kapil Dev, and Adel Belouchrani. Blind identification of thermal

models and power sources from thermal measurements. IEEE Sensors Journal,

18(2):680–691, 2017.

[68] Sherief Reda, Abdullah N Nowroz, Ryan Cochran, and Stefan Angelevski. Post-

silicon power mapping techniques for integrated circuits. Integration, 46(1):69–79,

2013.

[69] Sheriff Sadiqbatcha, Yue Zhao, Jinwei Zhang, Hussam Amrouch, Jörg Henkel, and

Sheldon X-D Tan. Machine learning based online full-chip heatmap estimation. In

2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pages

229–234. IEEE, 2020.

[70] Onur Sahin and Ayse K Coskun. On the impacts of greedy thermal management in

mobile devices. IEEE Embedded Systems Letters, 7(2):55–58, 2015.

[71] Onur Sahin, Lothar Thiele, and Ayse K Coskun. Maestro: Autonomous qos man-

agement for mobile applications under thermal constraints. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2018.

[72] Mostafa Said, Sofiane Chetoui, Adel Belouchrani, and Sherief Reda. Understanding

the sources of power consumption in mobile socs. In 2018 Ninth International Green

and Sustainable Computing Conference (IGSC), pages 1–7. IEEE, 2018.

[73] Krishna Sekar. Power and thermal challenges in mobile devices. In Proceedings of

the 19th annual international conference on Mobile computing & networking, pages

363–368, 2013.

[74] Shokri Z Selim and Mohamed A Ismail. K-means-type algorithms: A generalized

convergence theorem and characterization of local optimality. Transactions on pat-

tern analysis and machine intelligence, (1):81–87, 1984.

139

[75] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power estimation and

thread scheduling via performance counters. ACM SIGARCH Computer Architecture

News, 37(2):46–55, 2009.

[76] Gaurav Singla, Gurinderjit Kaur, Ali K Unver, and Umit Y Ogras. Predictive dy-

namic thermal and power management for heterogeneous mobile platforms. In Pro-

ceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,

pages 960–965. EDA Consortium, 2015.

[77] Kevin Skadron, Mircea Stan, Marco Barcella, Amar Dwarka, Wei Huang, Yingmin

Li, Yong Ma, Amit Naidu, Dharmesh Parikh, Paolo Re, et al. Hotspot: Techniques

for modeling thermal effects at the processor-architecture level. Citeseer.

[78] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control

for chip multiprocessors with online model estimation. ACM SIGARCH computer

architecture news, 37(3):314–324, 2009.

[79] Qing Xie, Jaemin Kim, Yanzhi Wang, Donghwa Shin, Naehyuck Chang, and Mas-

soud Pedram. Dynamic thermal management in mobile devices considering the ther-

mal coupling between battery and application processor. In Computer-Aided De-

sign (ICCAD), 2013 IEEE/ACM International Conference on, pages 242–247. IEEE,

2013.

[80] Fei Xu, Shuai Yang, Zhi Zhou, and Jia Rao. ebrowser: Making human-mobile web

interactions energy efficient with event rate learning. In 38th International Confer-

ence on Distributed Computing Systems (ICDCS), pages 523–533. IEEE, 2018.

[81] Kaige Yan, Xingyao Zhang, and Xin Fu. Characterizing, modeling, and improving

the qoe of mobile devices with low battery level. In 2015 48th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 713–724. IEEE, 2015.

140

[82] Masaki Yoshio, Ralph J Brodd, and Akiya Kozawa. Lithium-ion batteries, volume 1.

Springer, 2009.

[83] Ying-Ju Yu and Carole-Jean Wu. Understanding the thermal challenges of high-

performance mobile devices with a detailed platform temperature model. In 2017

IEEE International Symposium on Workload Characterization (IISWC), pages 122–

123. IEEE, 2017.

[84] John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic controllers.

trans. ASME, 64(11), 1942.

[85] Ghassan Zubi, Rodolfo Dufo-López, Monica Carvalho, and Guzay Pasaoglu. The

lithium-ion battery: State of the art and future perspectives. Renewable and Sustain-

able Energy Reviews, 89:292–308, 2018.

141

	Vitae
	Acknowledgments
	Introduction
	Problem Characterization
	Major Thesis Contributions

	Background
	Thermal and power sensing
	Thermal and power runtime management
	Energy and battery lifetime management

	Alternating Blind Identification of Power Sources for Mobile SoCs
	Motivation
	Alternating Blind Identification of Power sources
	The proposed approach
	The Alternating-BPI tool

	Experiments and Results
	Experimental setup
	Results

	Conclusion

	Deconvolutional Neural Network Based Power Map Estimation
	Motivation
	Deconvolutional Neural Network Based Power Map Estimation
	Experiments and Results
	Experimental setup
	Results

	Conclusion

	Power and Hardware Characterization for Augmented Reality Applications
	Motivation
	Experimental setup
	Hardware utilization and power characterization of mobile AR apps
	Augmented Reality Benchmark
	AR Benchmarking of Commercial Mobile Devices
	Phase analysis of AR workloads
	Performance and Power evaluation of different CPU multi-core configurations
	Conclusion

	Coordinated Self-tuning Thermal Management Controller for Mobile Devices
	Motivation
	Proposed self-tuning methodology for thermal management
	Proposed self-tuning Controller for junction temperature
	Proposed coordinated junction & body self-tuning controller
	Efficient online Learning

	Experiments and results
	Experimental setup
	Results

	Conclusion

	CasCon: Cascaded Thermal And Electrical Current Throttling for Mobile Devices
	Motivation
	Proposed CasCon controller
	The electrical current controller
	The junction temperature controller
	The skin temperature controller

	Results and Experimental Setup
	Experimental setup
	Results

	Conclusion

	Workload- and User-aware Battery Lifetime Management for Mobile SoCs
	Motivation
	Proposed work
	Workload-aware governor
	Energy prediction model
	Frequency optimization

	Experiments and results
	Experimental setup
	Results

	Conclusion

	Summary and Possible Extensions
	Summary of the Dissertation
	Possible Research Extensions
	Bibliography

