
Techniques for Adaptive Power and Thermal Sensing and
Management of Multi-core Processors

by
Ryan Cochran

B.Sc., Brown University; Providence, RI, 2008

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in School of Engineering at Brown University

PROVIDENCE, RHODE ISLAND

May 2013

© Copyright 2013 by Ryan Cochran

This dissertation by Ryan Cochran is accepted in its present form
by School of Engineering as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Recommended to the Graduate Council

Date

Sherief Reda, Advisor

Date

Ruth Iris Bahar, Reader

Date

Pedro Felzenszwalb, Reader

Approved by the Graduate Council

Date

Peter M. Weber, Dean of the Graduate School

iii

Vitae

Ryan Cochran was born in West Chester, PA in 1985. He received his B.Sc. in Elec-

trical Engineering with Honors from Brown University in 2008. He returned to Brown in

the fall of 2008 to complete a 1-year Masters program, which quickly grew into a Ph.D.

project. His principal research areas include thermal and power modeling, management,

and sensing for current and future integrated circuit technologies.

Ryan Cochran@brown.edu

http://www.scale.engin.brown.edu/~ryan

Brown University, RI, USA

Publications:

1. R. Cochran and S. Reda, ”Thermal Prediction and Adaptive Control Through Work-

load Phase Detection,” revision under review for ACM Transactions on Design Au-

tomation of Electronic Systems, 2012.

2. S. Reda, R. Cochran, and A. Coskun, ”Adaptive Power Capping for Servers with

Multi-threaded Workloads,” to appear in IEEE Micro Journal, 2012.

3. S. Reda, A. N. Nowroz, R. Cochran, S. Angelevski, ”Post-Silicon Power Mapping

Techniques for Integrated Circuits,” to appear in ElSevier VLSI Integration Journal,

2012.

iv

4. R. Cochran, C. Hankendi, A. Coskun and S. Reda, ”Pack & Cap: Adaptive DVFS

and Thread Packing Under Power Caps,” Proceedings of the International Sympo-

sium on Microarchitecture, pp. 175-185, 2011. Acceptance rate 21%.

5. R. Cochran, C. Hankendi, A. Coskun and S. Reda, ”Identifying the Optimal Energy-

Efcient Operating Points of Parallel Workloads,” Proceedings of the International

Conference on Computer-Aided Design, pp. 608-615, 2011. Acceptance rate 30%.

6. S. Reda, R. Cochran, and A. N. Nowroz, ”Improved Thermal Tracking for Proces-

sors Using Hard and Soft Sensor Allocation Techniques,” IEEE Transactions on

Computers, Vol. 60(6), pp. 841 - 861, 2011. Acceptance rate 23%.

7. R. Cochran, A. N. Nowroz and S. Reda, ”Post-Silicon Power Characterization Using

Thermal Infrared Emissions,” Proceedings of the International Symposium on Low-

Power Electronics and Design, pp. 331-336, 2010. Best Paper Award. Acceptance

rate 23%.

8. A. N. Nowroz, R. Cochran and S. Reda, ”Thermal Monitoring of Real Processors:

Techniques for Sensor Allocation and Full Characterization,” Proceedings of the

Design Automation Conference, pp. 56 - 61, 2010. Acceptance rate 24%.

9. R. Cochran and S. Reda, ”Consistent Runtime Thermal Prediction and Control

Through Workload Phase Detection,” Proceedings of the Design Automation Con-

ference , pp. 62 - 67, 2010. Acceptance rate 24%.

10. R. Cochran and S. Reda, ”Spectral Techniques for High-Resolution Thermal Char-

acterization with Limited Sensor Data,” Proceedings of the Design Automation Con-

ference, pp. 478 - 483, 2009. Acceptance rate 22%.

v

Acknowledgements

I would like to express my sincerest gratitude to my advisor, Prof. Sherief Reda, for his

patience, encouragement, and the countless hours he has contributed to help make this

thesis a reality. Without his constant guidance and insight, this work would not have been

possible.

I am also grateful to my committee members, Prof. Iris Bahar and Prof. Pedro Felzen-

szwal, for generously giving their time to review this thesis and attend my disseration.

Their comments and questions are invaluable to this work.

I would like to thank all of my co-authors, including Prof. Ayse Coskun and Can

Hankendi from Boston University, my lab mates Monami Nowroz and Stefan Angelevski,

and of course Prof. Sherief Reda. I owe much of my output over the past 4 years to their

productivity and hard effort.

Thank you to the undergraduates who have contributed so much to the lab infrastruc-

ture. Thank you to Patrick Temple and Sriram Jayakumar. Their contributions are the

backbone of the graduate research that takes place.

I would like to thank all of my friends and colleagues in the computer engineering

laboratory. Thank you for making my extended stay at Brown memorable and fun. Thank

you to my fellow lab mates Monami Nowroz, Al-Hussein El-Shafey, Kapil Dev, Kumud

Nepal, Onur Ulesel, Roto Li, Dimitra Papagiannopoulou, and Francesco Paterna for shar-

vi

ing in my graduate experience. Thank you to all those who provided a welcome distraction

at the foosball table.

Thank you to my housemate Octavian Biris for his moral support in completing this

thesis and for the fun times at 111 Governor.

Last but not least, I would like to thank my parents and Leslie for their advice and

unwavering support. Everything I have achieved to this point began with what I learned

from them.

vii

Contents

Vitae iv

Acknowledgments vi

1 Introduction 1

1.1 Problem Characterization . 1

1.2 Contributions . 7

2 Background 10

2.1 Power and Thermal Sensing . 10

2.2 Power Management . 14

2.3 Thermal Management . 17

3 Power and Thermal Sensing Techniques 24

3.1 Experimental Techniques for Sensing . 26

3.2 Thermal Sensor Allocation Techniques 34

3.3 Soft Sensing Techniques . 42

3.3.1 Proposed Soft Sensing with A Priori Characterization 43

3.3.2 Proposed Soft Sensing Using Spectral Techniques 46

3.4 Summary . 60

4 Power Management Techniques 62

4.1 Introduction . 62

viii

4.2 DVFS + Thread Packing . 64

4.3 Pack & Cap Methodology . 69

4.4 Experimental Results . 75

4.5 Summary . 81

5 Thermal Management Techniques 82

5.1 Introduction . 82

5.2 Methodology . 87

5.3 Workload Phase Classification . 91

5.3.1 Phase Classification Using K-Means Clustering 92

5.3.2 Phase Classification Using Multinomial Logistic Regression (MLR) 93

5.4 Runtime Control . 97

5.5 Experiment Results . 99

5.5.1 Offline Characterization . 100

5.5.2 Runtime Control . 104

5.6 Summary . 108

6 Conclusions 109

Bibliography . 111

ix

List of Figures

1.1 Maximum core temperature for a quad-core processor as a function of
power consumption. 5

3.1 Power measurement techniques used for lumped current measurements. . 26

3.2 Image of our experimental setup. 28

3.3 Temperatures and their corresponding digital levels for two pixel locations
on the die. 30

3.4 Examples of thermal traces of different applications on a dual-core AMD
Athlon II. 31

3.5 Thermal sensors measurements for the first 200 seconds of the gamess
and soplex workloads running in parallel. 32

3.6 Locations of hot spots of SPEC CPU workloads on AMD Athlon II pro-
cessor. 35

3.7 Locations of hot spots of SPEC powerssj transactional workload on AMD
Athlon II processor. 35

3.8 Locations of hot spots of created microbenchmark on AMD Athlon II pro-
cessor. 35

3.9 Construction procedure to initialize locations of thermal sensors. 38

3.10 Iterative procedure to improve the locations of thermal sensors. 39

3.11 Average thermal sensor error as a function of allocation technique and
number of sensors for AMD processor. 40

3.12 Sensor error for k = 4 as a function of the number of iterations. 41

3.13 Location of sensors before and after perturbation. 46

3.14 Impact of soft sensing after sensor perturbation. 46

x

3.15 Main steps used for signal reconstruction. The log of the magnitude of the
2D DFT is plotted. 50

3.16 Flow of the proposed runtime thermal characterization technique. 54

3.17 Results of full thermal characterization. We report the average error per-
centage for temperature estimation at all grid locations. 58

3.18 Impact of increasing the number of thermal sensors on the full thermal
characterization. 58

3.19 Hot spot estimation. We report the average error percentage for tempera-
ture estimation at the hottest die location. 59

3.20 Results of thermal characterization using non-unform sampling. 60

4.1 Dynamic power range achieved by DVFS and changing thread count com-
pared to using DVFS alone. Experiments are conducted on a server with
two quad-core Xeon processors. 65

4.2 Plots show the impact of DVFS and thread packing settings on runtime
and power consumption for dual quad-core processor machine. Red line
gives Pareto frontier of optimal settings at various power caps. Each blue
line gives the power and runtime results when we change the DVFS under
a fixed number of cores. We include only the cases of 8, 6, 4, 2, and 1
cores. We leave out the 3, 5, and 7 core cases for the sake of clarity. . . . 67

4.3 Proposed power capping methods. 69

4.4 Runtime and average power cap tracking accuracy of proposed techniques. 77

4.5 A detailed exploration into the first 100 seconds of the blackscholes
application, demonstrating the selected DVFS and thread packing settings
together with system power consumption. 78

4.6 Measured power traces for ferret, fluidanimate, streamcluster,
swaptions) benchmarks as Pack & Cap adapts performance to con-
strain the power consumption with the power cap (blue dotted line). The
power cap is randomly modulated every 10 seconds. 79

5.1 Illustrations of the DTM control strategy employed by the Corei7 proces-
sor compared to a predictive approach. 84

5.2 Illustration of the EM approach. 95

5.3 Lookup table interface between our offline and runtime DTM methodologies. 97

xi

5.4 The estimation accuracy for the proposed K-means and MLR approaches
as a function of the number of phases K. Reported accuracy is 3σ, where
σ is the error standard deviation. 101

5.5 Phase boundaries in principal component space. The number labels corre-
spond to the performance counters listed in Figure 5.6. 102

5.6 List of 12 performance counters used for phase classification. 102

5.7 Per-core steady-state temperatures for each phase as a function of proces-
sor frequency. 103

5.8 Estimation error (3σ) breakdown for each training workload. 104

5.9 Estimation error (3σ) as a function of processor utilization. 104

5.10 Frequency histogram comparison for MLR, MPC, and PI controllers. . . . 106

5.11 Comparison of thermal traces for MLR, MPC, and PI controller for 150
second interval. 107

xii

List of Tables

3.1 Average and maximum distance (in mm) between location of sensor re-
porting highest temperature and true hot spot location. 42

3.2 Soft sensor error as a function of the error in hard sensors. 47

4.1 Summary comparison among the proposed Pack & Cap methods and base-
line method. 80

5.1 Comparison of thermal violations and performance of proposed phase-
aware techniques to previous techniques. 106

xiii

Chapter 1

Introduction

1.1 Problem Characterization

In the past decade, power consumption has become the primary factor in overall micro-

processor design complexity due to ideal geometric scaling and non-ideal electrical scal-

ing. While geometric scaling permits smaller feature sizes and thus more transistors per

silicon-die area as well as faster transition speeds, non-ideal threshold voltage scaling pre-

vents a proportional reduction in power supply voltage for noise and performance reasons.

With each process generation, power consumption becomes increasingly constrictive on

the performance that can be realized, and it is no longer viable to simply increase the clock

speed of existing designs. This barrier to improvement is known as the “power wall”.

Higher power consumption limits processor performance in three ways. First, in-

creased power dissipation leads to increased on-chip power spatial densities and hence

higher temperatures. Elevated temperatures cause circuits to deteriorate structurally. All

circuit breakdown phenomenon (e.g., electromigration, time dependent dielectric break-

1

down, and negative bias temperature instability) are highly temperature dependent [89],

and thermal cycles create mechanical stresses due to expansions and contractions [11]. It

is increasingly difficult to design cost-efficient cooling apparatus capable of removing the

heat resulting from chip operation.

Second, increased power dissipation increases the demands on the on-chip and off-

chip power delivery networks. It is increasingly difficult to cost-effectively deliver power,

particularly in large data centers in which thousands of machines operate in parallel. Tra-

ditionally, each data center is given a maximum power constraint and is populated with

the maximum number of server units that will stay within this limit. Power constraints

also implicitly limit energy consumption.

Finally, higher power dissipation per unit of performance decreases energy efficiency,

or the amount of energy necessary to perform a task. In battery-powered devices, cost-

effective battery design limits the amount of performance that can be obtained while still

maintaining acceptable battery life. In large data-centers, electrical energy billing costs

comprise a huge component of the cost of operation. With modern data centers growing

larger and denser in order to meet increasing computational demand, energy consumption

is fast becoming the largest contributor to the total cost of ownership of data centers and

high performance computing (HPC) clusters [31, 4].

These costs taken together limit performance potential. In addition to these restric-

tions, thermal and power margins must be maintained in order to account for unpredictable

workload and environmental conditions. These margins are carefully calibrated to avoid

power and thermal emergencies that could degrade performance or damage the system. In

order to mitigate the impact of these margins on performance, nearly all modern micropro-

cessors are equipped with “control knobs” that manage the tradeoff between performance

and power. In the average case, the processor can maintain a high level of performance

2

without threatening power and thermal margins. In the rare instances in which the power

dissipation or temperatures exceed acceptable levels, the processor throttles back perfor-

mance and reduces power consumption. The techniques for detecting and responding to

excess power constitute dynamic power management (DPM), and likewise those that re-

spond to temperature constitute dynamic thermal management (DTM).

There are a number of control “knobs” available for DPM and DTM. The most popular

throttling technique is dynamic voltage frequency scaling (DVFS), in which the processor

scales back processor frequency and voltage for up to cubic reduction in power. In addi-

tion there are a number of architectural throttling techniques in which pipeline resources

and functionality are scaled up or down: i-cache throttling, decode throttling, speculation

throttling, cache resizing [11, 3]. In all cases, clock gating can be used in order to prune

the clock tree in unused resources, thus reducing wasted power consumption.

In addition, performance gains in modern processors are obtained through increased

parallelism in hardware and software, which presents new opportunities for DTM and

DPM control. Because of the “power wall”, it is increasingly difficult to get performance

gains by scaling clock speeds. Instead, performance gains are achieved through increased

hardware parallelism in the form of multi-core processing. Nearly all computing devices

from the embedded to high performance use multi-core architectures. With the increased

hardware parallelism in multi-core systems, workloads are becoming increasingly parallel.

DTM and DPM techniques use thread management techniques such as thread scheduling

and thread migration.

In order for a DTM or DPM technique to make a control decision, it must anticipate

the effect that decision will have on the power dissipation, temperature, and performance

of the system. The relationship between control decision and these metrics depends on

the device architecture and the system configuration, which remain static during runtime.

3

However, they are also strongly dependent on the workload characteristics. Given a spe-

cific architecture operating at a single control setting, the range of power and temperature

values vary dramatically within and across workloads. Accounting for only the average

power and temperature behavior in response to control decisions yields suboptimal results.

Workload-sensitive power sensing and management poses fewer challenges than for

temperature. For one, the value being controlled is typically the total chip power con-

sumption, which can be measured with a single device. Measurements from these devices

can be combined with feedback control techniques for robust control. Even in the ab-

sence of power telemetry, power can be estimated with relatively simple linear regression

models [67, 93]. A chip’s power consumption breaks down into two main components:

dynamic and static power dissipation. The dynamic power consumption Pdyn arises from

the transistor and interconnect switching activity according to

Pdyn =
1

2
αCefffVdd

2 = kfVdd
2, (1.1)

where f is the processor frequency, Vdd is the power supply voltage, and k = 1
2
αCeff

is a proportional constant that includes the switching activity α and the effective load

capacitance Ceff . This proportional constant captures the sum of the effective power

contributions from each functional unit (e.g. floating point unit, branch prediction unit,

cache). Performance counters, which are dedicated hardware registers that count architec-

tural events for various functional units (e.g. floating point operations, branch prediction

misses, cache misses), can be used to estimate utilization. Thus, the power consumption

can be estimated as a linear combination of the performance counter measurements. Given

a value for k, the effect of a DVFS control decision can be projected by direct application

of Equation 1.1 by plugging in the desired frequency and supply voltage.

4

20 30 40 50 60 70 80 90
40

45

50

55

60

65

70

Processor Power (W)

M
ax

im
um

 C
or

e
T

em
pe

ra
tu

re
 (o C

)

Figure 1.1: Maximum core temperature for a quad-core processor as a function of power
consumption.

Adaptive temperature sensing and management is considerably more difficult and re-

quires more sophisticated approaches. The value of interest is the maximum thermal hot

spot magnitude, which is a function of the power spatial distribution p(~r, t) at the 3-D

position vector ~r and time t according to the heat diffusion equation

∇ · (k(~r)∇T (~r, t))− ρc∂T (~r, t)

∂t
= −p(~r, t), (1.2)

where T (·, ·) represents temperature, ρ is the material density, c is the mass heat capacity,

and k(·) is the material thermal conductivity. If thermal sensors did not incur an area

overhead, then they could be placed at every possible hot spot location and the device

would always have an accurate thermal assessment. In reality, however, sensors occupy a

significant die area and complicate routing. Thus, they must be placed judiciously, and it

5

is possible for hot spots to occur at non-sensor location. As evidenced in Figure 1.1, total

processor power consumption is a poor proxy for maximum temperature, as two workloads

may have identical power consumption with very different maximum die temperatures.

The linear regression model does not take into account the nonlinearities that arise from

shifting power densities. For instance, if the maximum temperature hot spot occurs at the

floating-point unit, it will be a strong function of the number of floating point operations.

If the maximum hot spot happens at a distant location, however, its magnitude will be

nearly independent of the floating point activity.

The most detailed models used for runtime temperature control modeling in the liter-

ature use the finite difference approximation for the heat equation

T(t+ h) = hC−1
(
Pu(t)−AT(t)

)
+ T(t), (1.3)

where h is the time step size, t is time, T and P are N × 1 are vectors of temperatures and

power dissipations defined for a set ofN locations, A and C areN×N matrices of thermal

conductivities and capacitances, and u(t) is a unit step function [11, 105]. Estimating A

and C requires knowledge of the processor floorplan and estimating P requires numerous

assumptions about the relationship between workload behavior and local power dissipa-

tion, all of which must be manually validated. Without fine-grained power measurements

for a real processor, these models are difficult to validate. Any manual validation per-

formed for one chip design does not extend to future designs in which the physical layout

and functional unit power characteristics change significantly. In addition, the exponential

dependence of leakage power consumption on temperature must be accounted for in P.

6

1.2 Contributions

In addressing the challenges inherent to adaptive, workload-sensitive DPM and DTM, this

thesis makes the following major contributions:

• Power and Thermal Sensing: We develop infrastructure for measuring power

consumption and die temperatures of real processors with a state-of-the-art thermal

infrared camera using oil cooling [94, 19, 21]. Based on the characterization re-

sults from the camera, we propose a formulation for thermal sensor allocation to

minimize the thermal tracking error during runtime. We prove that our formula-

tion leads to a NP-hard problem and accordingly we propose a heuristic solution

method that is composed of constructive and iterative phases. The experimental

results show that our method significantly improves upon previous methods in the

literature. To circumvent limitations on thermal sensor placement, we proposed two

soft sensing techniques that combine the measurements of hard sensors to estimate

the temperatures at the ideal locations. Our first technique leverages a priori design-

time characterization data to seek customized weighted combinations to estimate the

temperatures at any desired location. Our second technique uses spectral signal re-

construction techniques based on Fourier analysis for interpolating die temperatures

from a limited number of thermal sensors [86, 21]. This soft-sensing technique is

designed for cases in which there is no a prior thermal characterization through sim-

ulations or infrared camera. We show that both soft-sensing techniques significantly

improve the thermal estimation accuracy.

• Power Management: We introduce thread reduction for multithreaded workloads

as a means of meeting low power budgets on a single server node, thus increas-

ing power allocation flexibility for datacenters composed of many server nodes.

Because thread reduction is not easily performed dynamically during runtime, we

7

propose thread packing, in which multi-threaded workloads are packed onto a vari-

able number of active cores, as a proxy for thread reduction [93, 18, 17]. We show

that thread reduction and thread packing have nearly identical power and perfor-

mance characteristics. We then devise a novel DPM method, Pack & Cap, which

makes optimal DVFS and thread packing control decisions such that performance

is maximized within a power budget. We illuminate power and performance trade-

offs between thread packing and DVFS and develop heuristics for navigating Pareto

efficient control settings. We implement Pack & Cap with several candidate power

models, including a multi-gain feedback controller as well as open-loop and closed-

loop linear regression models. We compare these techniques to a baseline feedback

technique and demonstrate up to 10% reduction in average runtime and up to 53%

improvement in average power cap accuracy. We also compare to our previous work

in [18], which uses a multinomial logistic regression (MLR) classifier, and show up

to 30% runtime improvement with similar power cap accuracy.

• Thermal Management: We introduce a novel technique for estimating the tem-

perature control response that uses the concept of workload phases [20, 22]. We

use classification techniques from machine learning to classify workload execution

intervals into phases as a function of performance counter measurements. We then

associated a thermal model with each workload phase. This method addresses the

inherent nonlinearities of workload-sensitive temperature modeling on multi-core

systems, and we demonstrate improved accuracy over the linear regression model.

Although this model can be applied to many of the control objectives in the liter-

ature, we demonstrate this technique in the case of proactive DVFS thermal con-

trol. We compare to state-of-the-art model predictive control (MPC) techniques in

the literature and show 5.8% improvement in instruction throughput with the same

number of thermal violations. When we compare our thermal phase classification

techniques to the sequential-probability-ratio-tests (SPRT) used for switching ther-

8

mal models in previous works, we demonstrate a 2.9% improvement in instruc-

tion throughput and an 97% reduction in thermal violations. In comparison to an

optimally tuned proportional-integral (PI) feedback control technique, we improve

instruction throughput by 3.9% with a 94% reduction in the number of thermal vio-

lations.

The remainder of this thesis is structured as follows. Chapter 2 surveys the state-

of-the-art sensing and management techniques in the literature. Chapter 3 details our

thermal infrared camera setup and presents our techniques for thermal sensor placement

and soft-sensing. In Chapter 4, we introduce the Pack & Cap methodology for maximizing

performance of multithreaded workloads within a power budget in a server environment.

In Chapter 5, we describe a technique for thermal control modeling using workload phases

and apply it to proactive DVFS control. Finally, in Chapter 6, we summarize our findings

and outline directions for future research.

9

Chapter 2

Background

2.1 Power and Thermal Sensing

The main difficulty in hot spot tracking of modern processors is that there can be poten-

tially large variations in the spatial and temporal die temperatures. These variations arise

from a number of causes:

• Advanced processors with larger die area naturally exhibit more spatial thermal vari-

ations.

• Workloads have different power consumption profiles and different resource utiliza-

tions. For example, a floating-point workload will have its hot spots in locations that

are different from an integer-based workload. The wide variations in the workloads

of general-purpose processors lead to larger spatial and temporal thermal variations.

• Current and future trends of processor organization are moving towards many-core

architectures with potentially 100s–1000s of cores [10]. Many-core processors will

10

further localize the power density, thus increasing the number of potential hot spot

locations [46].

Given the gravity of thermal hot spots and the variations in their locations, processor

designers utilize thermal sensors that track the processor’s hot spot temperatures. Dynamic

thermal management (DTM) techniques utilize these sensor measurements to dynamically

adapt the chip’s performance depending on its hot spot temperature. Methods of adapting

performance include frequency and voltage scaling [28, 82, 64, 41, 85, 58, 60, 114, 123];

adjusting throughput through the control of issue width and branching speculation [12,

104, 57, 60, 3]; and operating system techniques such as thread/computation migration

and scheduling [43, 90, 28, 121, 24, 26, 114, 116].

To enable DTM effectiveness, it is necessary to supply the DTM controller with ther-

mal sensor measurements at all possible hot spot locations. However, thermal sensors and

their support circuitry utilize die area real estate and increase design complexity. For ex-

ample, surveying some commercial-grade digital thermal sensors at design-reuse.com,

we found that a digital thermal sensor requires an area of 0.25 mm2 in 180 nm technology

and an area of 0.10 mm2 in a 65 nm process. For digital thermal sensors, the voltage sig-

nal of a thermal diode is routed to and measured by an analog to digital converter (ADC)

that stores its results in a register that is periodically checked by the DTM system. Digital

thermal sensors consume a good portion of die area mainly due to the need to accommo-

date the ADC. Because die size is the main recurring cost during fabrication, there is an

inherent trade-off in thermal monitoring. On one hand, designers would like to reduce

costs by using the fewest number of thermal sensors, while on the other hand, the gravity

of runtime thermal problems require higher thermal resolution. Greater thermal sensing

error forces DTM controllers to use more conservative thermal margins, thus constraining

performance unnecessarily.

11

To address the problem of thermal sensor allocation in processors, a number of tech-

niques were proposed in the literature [70, 83, 84, 98, 78, 56, 68, 122]. Rotem et al.

demonstrated that inaccuracies in thermal tracking decreases the processor’s performance

and wastes power [98]. In particular, it was shown that a 1°C accuracy translates to 2 W

power savings, and that due to lack of proximity, sensor measurements and hot spot tem-

peratures could differ by up to 10°C. Lee et al. propose the use of thermal simulators to

identify the locations of hot spots using different workloads [71] . Mukherjee and Memik

describe a clustering algorithm that computes the thermal sensor positions that best serve

clusters of potential hot spot locations [83, 78]. The locations of these hot spots are iden-

tified via workload thermal simulation, and the clusters are computed using a modified

k-means algorithm that incorporates the spatial locations of the hot spots and their tem-

peratures. Even with good placement, it is likely that sensors will fail to detect hot spots

when the number of sensors are far less than the number of hot spot locations. Thus, Long

et al. advocate using a grid-based interpolation scheme for chip multiprocessor [75]. To

compensate for the inherit limitations in regular allocation, the hot spot temperature is es-

timated by interpolating the measurements of its immediate sensor neighbors in the grid.

To circumvent the restrictions on the number of thermal sensors, another research direc-

tion proposes estimating the hot spot temperatures where no sensors are embedded using

frequency-domain interpolation techniques [21, 86]. Liu [74] proposes using Kriging esti-

mation as a general framework for estimating variability (whether manufacturing, thermal

or IR drop) at various chip locations during design time. A Kriging temperature estimator

models the die temperature as a random field and computes unknown temperatures using

a variogram function, which captures spatial correlations as a function of distance. Given

the inherent noise arising in thermal diodes, a number of papers provide techniques to

reduce the noise and provide accurate thermal tracking [56, 122].

12

Reconfigurable computing gives an excellent balance between performance and flex-

ibility. In a reconfigurable chip, hot spot locations depend on the configured architecture

which is not known at the design and manufacture time of the FPGA. Thus, there is no

way of knowing a priori the best locations for the sensors. A number of papers [84, 68]

propose thermal sensor allocation algorithms for FPGAs where the FPGA’s reconfigurable

area is covered with a number of sensors with each sensor monitoring a range of thermally-

correlated configurable logic blocks.

High-end chips, such as multi-core processors and graphical processor units, are equ-

ipped with integrated thermal sensors that monitor the on-chip temperatures during run-

time. Thermal diodes, which translate temperature variations into voltage variations, are

a popular choice for temperature sensing. The diode voltage signal is routed to and mea-

sured by an analog to digital (A/D) converter. In older processor technologies, the A/D

conversion takes place on the board, while in newer processors (e.g., Intel’s Core i7), the

A/D conversion takes place on-chip. State-of-the-art chips are typically equipped with

more than one thermal sensor. There are a number of reasons for this: (1) complex chips

with large die area require more thermal sensors to capture temperatures at a wide range

of locations; (2) the unpredictability of a processor’s workload can lead to continuous

migration of hot spots; and (3) within-die manufacturing variations lead to leakage vari-

ability that can further conceal the locations of the thermal hot spots. The thermal sensors,

together with their support circuitry and wiring, complicate the design process and in-

crease the total die area and manufacturing costs. Thus, there is an inherent tradeoff in

thermal monitoring. On the one hand, designers would like to reduce costs by using the

fewest number of thermal sensors, while on the other hand, the gravity of runtime thermal

problems require higher thermal resolution.

13

2.2 Power Management

Most modern processors eliminate unnecessary static and dynamic power by switching

unused components to low-power idle states and by clock gating. Clock gating is a tech-

nique in which additional logic is used to disable portions of the system clock tree, thus

preventing switching activity on unused components. These low-power states are imple-

mented in hardware, but their functionality is exposed to the software level via well-known

interfaces, such as the Advanced Configuration and Power Interface (ACPI) [1]. There is

typically a tradeoff between idle state power savings and the time required to return to

being active. In order to speed up these transitions Meisner et. al [77] introduce the Pow-

erNap server architecture, in which the entire server rack transitions between active and

idle state rapidly in response to instantaneous load. These techniques reduce fixed system

power costs that do not vary with processor activity (disk power, external memory power,

etc.). Within an active state, a processor can dynamically control power consumption us-

ing dynamic voltage frequency scaling (DVFS). This is a popular technique for dynamic

control because changes in frequency and voltage can be performed with minimal over-

head (on the order of micro-seconds), and it provides fine-grained control of the tradeoff

between power and performance. As indicated by Equation 1.1, the dynamic power is lin-

ear with frequency and quadratic with supply voltage. Given that the supply voltage scales

somewhere between linearly and quadratically with the frequency, reductions in processor

frequency can yield up to cubic reductions in power consumption.

As described in Chapter 1, these control knobs allow dynamic power management

(DPM) techniques to manage the tradeoff between performance and power under dynamic

workload and environmental conditions. The control objective for DPM comes in two

forms. In the first form, the DPM controller attempts to maximize performance within

a power budget. This objective is appropriate for applications in which faster is always

14

considered better as long as the constraint is met. Various techniques differ in terms of

how stringently the budget is enforced. For instance, Kontorinis et. al use tables and

centralized control hardware to guarantee that no combination of chip resource can be

fully activated simultaneously such that the power budget is violated [62]. This stringent

enforcement of peak power constitutes hard power capping, in which the explicit goal is to

never violate the power budget. On the other end of the spectrum, many works employ soft

power capping, in which the power budget can be exceeded so long as the average power

consumption is within the budget. Gandhi et. al meet power budgets by rapidly inserting

idle cycles during execution such that an average power consumption is maintained [35].

In the second form, the DPM controller attempts to maximize energy efficiency (en-

ergy consumed per unit of work) with a lower-bound on performance. In these cases,

faster is not better if the increase in power degrades energy efficiency. Many works per-

form profitability estimation, in which the controller weighs the potential improvement

in performance against the expected increase in power. Several works use performance

counter measurements in order to perform profitability estimation for DVFS [30, 27].

Other works use offline workload characterization in order to determine the optimal DVFS

settings [76, 18, 17].

Multi-core processors introduce new opportunities for power management by enabling

additional degrees freedom, including per-core DVFS. Some commercial multi-core pro-

cessors support independent frequencies for each core, but lack per-core voltage domains.

Independent voltages require extensive design investments in the power-delivery network

and the off-chip power regulators. Although some works suggest that the performance

benefits of per-core DVFS do not outweigh the added complexity of multiple voltage and

frequency domains [44], there are numerous works that develop DPM techniques for per-

core DVFS [50, 79, 112, 6, 100, 99].

15

Multi-core processors also allow additional degrees of freedom in terms of thread

scheduling and allocation. Rangan et al. propose an alternative to per-core DVFS in which

the power level of each core is fixed, and threads are rapidly migrated among these cores

in order to adapt to the time-varying computation needs of each thread [92]. Multithreaded

workloads that take advantage of the hardware parallelism in multi-core architectures are

increasingly prevalent and present additional challenges to control. Several works explic-

itly account for the interdependence among threads in multi-threaded workloads. Several

works propose a power balancing strategy that dynamically adapts the per-core power

budgets based on thread criticality [14, 8].

When considering DPM for large data-centers, which are composed of potentially

thousands of individual machines, the control objectives we have defined for individual

machines are considered at an aggregate level. Data-center power management presents

unique challenges because individual server nodes incur relatively large idle power con-

sumptions when active, and the typical data-center utilization is usually below the maxi-

mum capacity. As a result, much of the overall power consumption is wasted on machines

that are doing very little work. In addition to maintaining power within the limits of the

power delivery network, data-center DPM techniques aim for energy-proportional com-

puting, in which the overall system power consumption scales linearly with the overall

utilization [4]. A number of previous works deal with energy-proportional computing at

the aggregate level using existing hardware-level control knobs on individual machines.

Tolia et. al investigate techniques for using off-the-shelf hardware in order to approximate

energy proportional computing at the aggregate level [108]. Similarly, Elnozahy et. al use

dynamic voltage scaling (DVS) and rapid switching between on and off states in order to

reduce power consumption of web servers during periods of low utilization [29]. Gandhi

et. al develop a theoretical model for power allocation in server farms and show that it is

often advantageous for energy efficiency to operate servers at a lower-power states [34].

16

2.3 Thermal Management

The thermal control response depends on shifting spatial power densities which are a com-

plex function of workload behavior, and yet it is impossible to anticipate every possible

workload configuration when designing a DTM technique. In order to guarantee ther-

mal safety for the full range of thermal behaviors, many commercial processors combine

thermal sensor measurements with reactive feedback techniques [7]. If the measured tem-

perature exceeds a threshold, the system reacts by scaling back power consumption with

the available control knobs. In recent academic works on DTM, it is commonplace to

augment thermal sensor information with a thermal model that anticipates the thermal

trajectory. These techniques generally fit a mathematical model to a local window of ob-

served temperatures arising from the execution of an application. After being learned,

a thermal model is used to extrapolate future temperatures. The model coefficients are

typically estimated to give the total least square errors between the model results and the

observed temperatures in a set of training samples. By increasing the certainty about the

thermal control response, the system can avoid thermal violations and associated perfor-

mance penalties.

Many these previous works do not model the future temperature as an explicit function

of the power consumption, but instead model stationary patterns in the temperature time

series with auto-regressive (AR) and auto-regressive moving average (ARMA) models

[25, 23, 118]. The temperatures projected by these models are used in place of the ther-

mal sensor readings to perform control. Changes in the temperature behavior that result

from changing workload characteristics are handled using online update techniques. One

approach is to develop a bank of ARMA models and use a sequential-probability ratio test

(SPRT) to determine the likelihood of each model relative to each alternative model given

the latest thermal observations [25, 23]. The result of a statistical hypothesis test is used

17

to select the likeliest model, or if no model aptly describes the data, a new model is gener-

ated online using the latest observations. Other works use recursive least-squares update

techniques to efficiently re-estimate AR coefficients online using the latest observations

[118].

One drawback of these approaches for DVFS control is that the models are not explicit

functions of voltage or frequency. The outputs are static as a function of DVFS control

decisions and cannot be queried for the optimal setting. In addition, there is a dependence

between the model parameters and the control decisions that can lead to unpredictable be-

havior. In the case of DVFS, the optimal coefficients in the AR or ARMA model depend

on previous history of voltages and frequencies, and are used to inform future voltage

and frequency decisions. As a result, the sequence of future control decisions is an un-

predictable function of previous decisions. These techniques must rely on online update

techniques to capture changing workload characteristics. The computational cost of ma-

trix inversion in relearning model coefficients offsets the benefits of performing predictive

control. We avoid this computational cost by learning our models offline with training data

that spans a large range of workload behaviors. We then validate our models at runtime

using workload mixtures unseen in the training data.

Other works model the temperature as an explicit function of workload characteristics

without using thermal sensor measurements. Several works use a linear combination per-

formance counters and core utilization metrics to estimate the temperature [63, 69]. These

works are useful as low-cost alternatives to thermal simulation techniques when there are

limited or no thermal sensor measurements. However, they do not account for the transient

nature of temperature or thermal coupling, and most modern high-performance processors

are equipped with per-core thermal sensors.

18

The discrete time-invariant state-space model in Equation 2.1 is a standard model used

for estimating temperature in the literature [11, 112, 102, 120, 65, 109].

Tm[i+ 1] =
N∑
n=1

amnTn[i] + aidlem + ĝ
(
s, xm[i]

)
(2.1)

In this model, the temperature for node m at time i + 1 is a linear combination of its own

temperature and the temperature of the other N − 1 nodes on the previous time interval

as well as the workload thermal contribution ĝ(·, ·) and the idle thermal contribution aidlem .

The workload thermal contribution is a function of the system control setting s as well

as a vector of workload metrics xm for core m. It is a natural choice for modeling tem-

perature because it approximates continuous first-order differential equations that govern

transient thermal behavior [11, 112, 102, 120, 65, 109, 22]. It explicitly models thermal

time constants and thermal coupling among thermal nodes with the coefficients amn. It

also explicitly models the workload thermal contribution ĝ(·, ·) as a function of the control

setting and workload characteristics. The approaches in the literature differ in the form of

the voltage, frequency, and workload dependence. Several studies use the relationship

ĝ(·, ·) ∝ fα, where α is a parameter between 1 and 2 depending on how the voltage scales

with frequency [117]. Other studies relate ĝ(·, ·) to frequency f , supply voltage Vdd, and

workload cycles-per instruction (CPI) using the empirical formula

ĝ(·, ·) = kaVdd
2f + kb +

(
kc + kdf

)
CPI[i]ke , (2.2)

where ka, kb, kc, kd, and ke are parameters that must be learned [5, 6]. This formula

has a benefit in dynamic frequency scaling (DFS) in that the power is a linear function

of frequency (assuming constant voltage). As a result, it can be easily incorporated into a

19

model predictive controller (MPC) solution. The MPC minimizes a quadratic cost function

while preventing thermal overshoot for a finite prediction horizon [5, 6, 112].

However, we have found that assuming a functional form for the relationship between

power and DVFS setting is a significant source of error. In real processors, the voltage

does not always scale with the frequency in a straightforward manner. The voltage may

change with frequency for a subset of the DVFS settings, and remain constant for other

subsets. Assuming a fixed exponent for f can introduce significant error in this case. To

counter this, we calculate a distinct value for ĝ(·, ·) for each DVFS setting s.

In a similar vein, we contend that assumptions about the relationship between ĝ(·, ·)

and workload introduce significant errors. For instance, assuming that the activity factor

for a functional unit is a linear function of a performance counter metric ignores changes

in power density and hot spot location that may accompany different degrees of utiliza-

tion. Verifying model assumptions requires detailed floorplan knowledge and a carefully

calibrated set of micro-benchmarks that exercise functional units individually in order to

learn ĝ(·, ·) for each unit at each DVFS setting.

Workload phase classification is a technique for representing the average behavior of a

workload over a local time window [55, 103, 51, 15]. It is well established that workloads

execute in consistent and repetitive patterns, and this fact is reflected in all manifestations

of workload behavior (computational operations, memory operations, power, temperature

etc.). These behaviors can change instantaneously and dramatically within a workload or

across a mixture of workload. Thus, the average behavior of an entire workload gives an

incomplete picture. A workload phase is defined as a period of workload execution that

exhibits a consistent behavior with respect to a set of metrics.

20

There is a significant body of literature dealing with phase identification [103, 39, 51,

52, 15, 40, 22]. The problem generally reduces to a classification problem that takes a

vector of metrics as input. The metrics used differ depending on the application. Sev-

eral works [52, 103, 39] define these inputs using traversal counts on basic block vectors

(BBV). Each BBV represents code blocks with a single entry and exit point, and the

traversal counts reflect the control paths taken within the program. This work in phase

classification has yielded SimPoint [40], which finds representative simulation points for

workloads with long execution times. The drawback in using the BBV for phase classifi-

cation is that it requires extensive knowledge of the workload code structure, and phases

can only be defined per-workload.

A number works on workload phase identification use metrics derived from perfor-

mance counters instead [51, 22]. Most commercial processors are equipped with special

registers that count various architectural events (µ-ops retired, cache-misses, etc.). The

choice of metrics depends on the application. Isci et. al [51] use the ratio of memory

transaction to µ-ops retired as a measure of application memory-boundedness in order to

calculate power phases. In [52], Isci et. al use a set of 15 performance counters that mea-

sure computational, bus, memory, and branch activity in the context of dynamic power

management. Cho et. al [15] use instructions-per-cycle (IPC) as the sole metric in or-

der to demonstrate multi-resolution phase analysis with wavelet transforms. Kim et. al

[61] uses the joint distribution of computational and stall time performance metrics for

energy-efficient DVFS control. Our own work [22] on phase-aware temperature predic-

tion uses instructions retired, floating point operations, and conditional branch instructions

after dimensionality reduction via principal component analysis.

Given a set of training data vector, the classifier is built using some metric of similarity

among all the training vector instances. A common technique in the literature is K-means

clustering [103, 39, 40, 15, 22]. The workload is divided into time-slices, each of which is

21

associated with a d-dimensional vector measuring various behaviors within that interval.

The K-means clustering method iteratively seeks a set of K d-dimensinoal centroids that

minimize the average distance between the input vector and the closest centroid. Isci

et. al [51] use a simple thresholding scheme on a measure of the application’s memory-

boundedness in order to define 6 phases. In [52], Isci et. al explore other clustering

techniques in first pivot clustering and agglomerative clustering. In first pivot clustering,

each new sample is compared with a distance metric to an existing set of pivots, and

if the measured distance exceeds a particular threshold, then the sample is added as a

new pivot to the existing set. Agglomerative clustering is a bottom-up iterative approach.

The algorithm begins with N clusters corresponding to N training samples, and at each

iteration it performs pairwise comparisons between the clusters with a linkage function

and selects the best candidate pair of clusters to combine into a single cluster.

There are other works on thermal prediction that implicitly incorporate workload phases,

even if the words “workload phase” do not appear in the text. The approach in [26, 23]

defines a set of thermal predictions models which can be interpreted to correspond to

workload phases. Transitions between these phases and their corresponding models are

detected using statistical hypothesis tests on the measured data for each model. Phase

transitions are instead detected when the output errors produced by an alternate model are

more statistically likely to occur than those produced by the current model. This likeli-

hood calculation comes in the form of a per-core sequential probability ratio test (SPRT),

which uses a log likelihood ratio of the observed data for an alternate phase k2 and that of

the current phase k1. The SPRT method is a form of hypothesis testing for sequential data

and is a function of the evidence accumulated from the previous N samples. Acceptance

of the phase k1 forms the null hypothesis, while acceptance of k2 constitutes the alternate

hypothesis. For each incoming data sample, this test is performed between the current

model and each of the other K − 1 candidate thermal models. Acceptance of the null

22

or alternate hypothesis is determined by applying a simple threshold scheme to the log

likelihood ratio. Calculation of the log-ratio proceeds so long as its value falls between

two user-specified limits A < B. If the value is less than the lower limit A, then the null

hypothesis model k1 is accepted as the true model and the calculation is reset. Likewise,

if the value exceeds the upper limit B, then the alternate hypothesis model k2 is accepted

and the calculation is reset.

23

Chapter 3

Power and Thermal Sensing Techniques

To manage runtime power and temperatures, it is necessary to use power and thermal

sensors. The measurements of the sensors are used by the DPM and DTM systems to

adapt the performance, power consumption, and the temperatures given the operational

constraints [90, 104, 121, 58]. Power sensing is relatively easier than thermal sensing

as it only requires lumped measurement of the system’s or the processor’s total power.

In contrast, the spatial and temporal fluctuations in thermal hot spots make the task of

tracking thermal sensing particularly challenging. Furthermore, many-core processors

localize power consumption in potentially more than one spot, which further increases the

difficulty of thermal sensing [95].

The objectives of this chapter are to provide novel accurate methods for power and

thermal sensing and tracking. The contributions are as follows:

• We develop a realistic power sensing and thermal imaging setup to characterize the

thermal behavior of real processors during runtime. To tackle the challenges in

24

working with real chips, we devise multiple experimental techniques through the

use of oil-based infrared-transparent heat sinks and novel techniques for thermal

calibration. We execute a large collection of workloads in different configurations

on the experimented processor, and we track the locations of hot spots through space

and time. Our characterization results provide valuable insights into the extent of

hot spot variations during runtime.

• To track hot spots accurately as they vary depending on workloads and active cores,

we propose a thermal sensor allocation algorithm that finds the best sensor locations

for a given number of thermal sensors. Our allocation algorithm seeks to track hot

spots accurately by minimizing the worst case error between the maximum mea-

surements of the sensors and the hot spot temperatures.

• We propose soft sensing computation techniques that use the measurements of the

thermal sensors to optimally compute the temperatures where no sensors are em-

bedded. Our soft sensor techniques can improve the thermal tracking resolution and

circumvent design constraints on sensor placement. Soft sensors can also substitute

for hard sensors, thus reducing the demand on die area. We develop two techniques

for soft sensing. One technique is geared for situations where thermal character-

ization data is available a priori from either simulations or infrared imaging. The

second technique is suitable for cases where no a priori characterization is available.

The remainder of the chapter is organized as follows. Section 3.1 details our exper-

imental power and thermal sensing techniques. It includes a detailed description of new

infrared imaging experimental techniques required for thermal imaging of real processors.

In Section 3.2, we introduce techniques for thermal sensor allocation given the potential

hot spots in the design. In Section 3.3 we describe our soft sensing techniques. In Section

3.4 we summarize the main results of this chapter.

25

3.1 Experimental Techniques for Sensing

Power Sensing. To develop any lumped power-related model, it is necessary to first col-

lect a large volume of power characterization data. There are generally two approaches

used to measure the total electrical current consumption of a computing system. In the first

approach, the power supply lines are intercepted and a shunt resistor (e.g,. Figure 3.1.a)

is inserted in series with the positive supply line. In contrast to regular resistors, shunt

resistors have very low resistance (e.g., 1 mΩ) with high accuracy of about ±0.1%. The

low resistance is needed to avoid adding a voltage drop along the supply line. The changes

in voltage across the shunt resistor are proportional to the electrical current variations as

dictated by Ohm’s law. The second approach uses clamp meters (e.g., Figure 3.1.b), which

utilize the Hall effect to detect electric current variations in the supply line by measuring

the induced magnetic field variations surrounding the supply wire. Clamp meters are less

intrusive, but they are less accurate and their measurements tend to be noisy compared

to shunt resistors. In both approaches, a digital multimeter or an analog-to-digital device

is required to log the measurements of the shunt resistor or clamp meter into the power

management system of the computing device.

(a) shunt resistor (b) clamp meter

Figure 3.1: Power measurement techniques used for lumped current measurements.

26

Thermal Sensing. Due to its numerous advantage, flip-chip packaging is the state-of-

the-art method in soldering processor chips to external circuitry. In flip-chip packaging,

solder bumps are deposited onto the die pads at the top side of the die. To connect the

die to external circuitry, the die is flipped over and soldered to the package substrate. By

removing the package’s heat spreader, one can obtain optical access to every device on

the die through the silicon backside. Silicon is transparent in the infrared spectral region

(wavelengths longer than 1.1 µm), and this transparency allows the capturing of thermal

infrared emissions using infrared imaging techniques.

The main components of a high-sensitivity infrared camera are (1) a focal plane array

of photon detectors, (2) a cooler for the array, (3) a lens system, and (4) analog to digital

electronics for readout [97]. Photon detectors convert photons with energy greater than

their band gap into electron-hole pairs that can be collected by external circuitry. For mid-

range infrared imaging, it is necessary to cool the detector array to cryogenic temperatures

in order to reduce dark noise. During operation mode, one typically takes an image of the

entire die or some particular field of view within the die using the camera after integrating

the detected photocurrent for a period of time (at least a few micro to milli seconds) that

depends on the emission signal strength.

In our thermal imaging setup we use a FLIR SC5600 infrared camera with a mid-

wave infrared spectral range of 2.5 µm – 5.1 µm. Undoped and lightly doped silicon are

transparent at the mid-wave infrared range. The camera has 640 × 512 InSb quantum

detectors with 15 µm pitch between detectors. The camera’s detectors are chilled to 77

K (-196°C) and have measurement errors less than 20 mK. We use a 0.5× microscopy

kit and operate the camera with a frame rate of 100 Hz. Thus, the camera can update its

measurements every 10 ms. It is possible that a high-frequency spike could be missed by

the camera but because of the thermal capacitances associated with the chip, it is unlikely

that such spikes will be significant. To capture the infrared emissions from the back side of

27

thermo-electric
 cooler

infrared
camera

pump

motherboard

fluid
monitor

power meters

inlet outlet

die sapphire
window

Figure 3.2: Image of our experimental setup.

a processor’s die, the heat spreader of the experimented processor is removed. To enable

normal operation of the processor and the entire motherboard, it is necessary to remove

the heat generated during operation. We machined an infrared-transparent heat sink with

a sapphire window that has a 1 mm clearance between the window and the processor die

as illustrated in Figure 3.2. Chilled oil at approximately 15°C is pushed through the inlet

of the heat sink to form a thin film on top of the die that removes the heat. The oil is

pumped continuously at about 1.5 gpm using an external DC pump. The temperature of

the oil is controlled using a thermoelectric cooler. A Proteus Fluid Vision 4000 device is

used to monitor the oil’s flow rate, temperature and pressure just before the oil’s entry to

the machined sink. The measurements from the flow monitor are logged into a second

monitoring computer through a National instrument A/D acquisition device. Monitoring

and controlling the temperature of the oil is necessary for thermal calibration as will be

explained in the next paragraphs.

28

Measuring the temperature is complicated by that fact that an infrared camera is really

a photon detector that measures the infrared radiation intensities at different parts of the

chip. Thus, it is necessary to convert the digital levels (which reflect photon intensities)

recorded by the camera to temperatures. This conversion has to take place on a pixel-by-

pixel basis for the following two reasons.

1. Radiation intensity is not constant among different materials even if they are at the

same temperature. Perfect radiation emitters are black bodies with an emissivity of

1. The emissions of real materials are a fraction of the black-body level, and each

material is characterized with an emissivity value, which is defined as the ratio of

that material’s thermal emission to that of a perfect black-body at the same temper-

ature [97]. As integrated circuits are composed of different materials (e.g., copper,

silicon and dielectrics) with different spatial densities, the radiation intensities of

different parts of the chip could be different even if the chip is held at an isothermal

temperature by external means.

2. In addition to emissivities, different materials reflect radiation from the surround-

ing environment with varying intensities. The reflections from the materials of the

integrated circuit further obscure the true thermal status of the materials under ob-

servation.

To compute the pixel-by-pixel relationships between temperatures and digital levels

we devise a calibration method. While the processor is turned off, it is forced to a known

isothermal status and the digital levels at every pixel are recorded. The chip’s temperature

is scaled up at 5°C increments and the digital levels are repeatedly recorded. For example,

Figure 3.3 shows the digital levels for two pixels at different temperatures during cali-

bration. To force the chip into an known isothermal status, we devise a computer-based

29

Figure 3.3: Temperatures and their corresponding digital levels for two pixel locations on
the die.

feedback control system that controls the thermoelectric cooling/heating capacity through

a programmable current supply. The temperature output from the fluid flow monitor is fed

into a computer using the A/D acquisition device, and the computer adjusts the voltage

supply of the thermoelectric cooler/heater until fluid temperature stabilizes at the desired

level.

The relationship between the digital level Dj and temperature tj of a pixel j can be

modeled by an exponential function Dj = αje
βjtj , where αj and βj are per pixel coeffi-

cients. This relationship arises from the physics of photon detectors, in which the current

of an infrared-sensitive diode depends exponentially on the incident radiation [45]. Using

the calibration data, we compute the αj’s and βj’s of every pixel using standard curve

fitting techniques. During normal operation, the measured digital levels together with the

calibrated α’s and β’s are used to compute the pixel-by-pixel temperatures according to

the exponential relationship.

30

Figure 3.4: Examples of thermal traces of different applications on a dual-core AMD
Athlon II.

The processor used for our experiments is a dual-core 45 nm AMD Athlon II X2

240 processor with die dimensions of 14 × 8.5 mm. To collect the thermal traces for

use in the experiments, we use the CPU SPEC 2006 benchmark suite which includes 29

applications. The benchmarks have a number of integer and floating point workloads

that cover a wide range of applications such as compilers, data compression algorithms,

artificial intelligence algorithms, finite element analysis, and ray tracing. Figure 3.4 gives a

number of thermal images captured from the execution of the SPEC CPU 2006 workloads.

The thermal images demonstrate that within-die thermal gradients can reach up to 16 °C,

and that differences in workloads can lead to strong variations in hot spot locations.

Comparison between Regular Sink and Oil Sink. It is imperative to contrast the thermal

behavior of the processor using a regular metal heat sink with a fan and the proposed

infrared-transparent oil heat sink. Previous works in the literature show that the heat sink

setup has an impact on the thermal behavior [48, 80]. To contrast the thermal responses

of these two different heat sinks, we rely on the measurements of two embedded thermal

sensors in the processor; the infrared camera is irrelevant in this experiment. We monitor

the embedded thermal sensors of the same processor using these two heat sink setups

31

(b) oil-based heat sink

(a) regular metal sink + fan

Figure 3.5: Thermal sensors measurements for the first 200 seconds of the gamess and
soplex workloads running in parallel.

under identical workloads. Figure 3.5 gives the thermal sensors measurements for the first

200 seconds of the gamess+soplex workloads. Figure 3.5.a gives the measurements

while the processor is coupled with the regular heat sink and fan setup, while Figure 3.5.b

gives the measurements while the processor is coupled with the machined oil sink setup.

The measurements in Figure 3.5 lead to the following three observations.

1. The measurements show that the two setups give spatially and temporally correlated

results. That is, if sensor 1 gives a higher measurement than sensor 2 in our setup at

some point in time, then it will also give higher temperature in the other setup at the

32

same time. This result is important because the hot spot is by definition the highest

temperature on the die, and thus if we generalize the result of this experiment, we

conclude that changing the heat sink setups does not alter the location of the hot

spot. We have repeated Experiment 1 using different workloads, and we found that

this result holds.

2. The measurements show that thermal gradients exists with the two setups. The metal

sink setup shows a gradient of 5°C while the oil sink setup shows a gradient of about

10°C. This result suggests that perhaps a simple affine transformation can make the

measurements from the oil sink look like those obtained from the regular metal heat

sink.

3. The results show that the tested processor updates its thermal sensors every one

second. This updating rate is controlled by the strobing rate of the ADC of the

digital thermal sensors. High strobing rates consume a good amount of processor

power during runtime. The embedded sensor update rate is far slower than our

infrared imaging system which can update its measurements every 10 ms. In some

experiments we observed quick, yet small variations in temperature detected by the

infrared imaging system that were missed by the embedded sensors.

Characterization of Hot Spot Locations. We execute the 29 SPEC CPU workloads on

the processor to collect tens of thousands of thermal traces during the runtime operation

of the processor. We execute the workloads in single and dual workload configurations.

Using a threshold of 37 °C, we identify the hot spot location in each trace and then we plot

all the identified hot spot locations in Figure 3.6. The points in the figure give the set of

potential locations where hot spots can occur during runtime. The hot spot locations are

generally localized at and around the centers of the two cores and in the common memory

controller area between the cores. These hot spot locations are plausible as designers most

33

likely placed the frequently used core units towards the center to facilitate interconnections

to other functional units. The L2 caches are consistently the coolest areas of the processor.

The large range of possible hot spot locations for just two cores demonstrates the need for

multiple sensors to accurately track hot spots during runtime.

As with any computer design experience, designers must choose a set of representative

workloads to tune and benchmark their architectural choices. To confirm that the SPEC

CPU 2006 workloads are representative enough for the purposes of thermal research, we

re-perform the characterization with other benchmark workloads. We evaluate the hot spot

locations for the SPEC power ssj 2008 benchmark, which is a multi-threaded transactional

workload that has a client-server model of operation, and we also create our own micro-

benchmark which is a L1-cache resident floating-point kernel. We plot the locations of the

hot spots of the power ssj workload in Figure 3.7. The figure shows that these locations

are a subset of the locations identified for SPEC CPU workloads and given in Figure 3.6.

The hot spot locations of the created micro benchmark are given in Figure 3.8, and also

form a subset of the locations in Figure 3.6. These results convincingly show that SPEC

CPU 2006 is representative enough for thermal research.

3.2 Thermal Sensor Allocation Techniques

If thermal sensors did not incur an area overhead, sensor allocation would be trivial. In

reality, they do incur a significant area overhead. A recent design study shows that a

digital thermal sensor can occupy an area of 500 µm × 164 µm in 32 nm [119]. Thus it

is necessary to find the best sensor placement given a budget area and number of sensors.

Previous techniques used the k-means algorithm to allocate sensors at the centers of k hot

spot clusters. A concern with this approach arises when the number of available sensors

is less than the number of identified hot spots. In this case, the cluster centers could be

relatively far from the hot spot locations, and thus inaccurate thermal tracking can occur.

34

Figure 3.6: Locations of hot spots of SPEC CPU workloads on AMD Athlon II processor.

Figure 3.7: Locations of hot spots of SPEC powerssj transactional workload on AMD
Athlon II processor.

Figure 3.8: Locations of hot spots of created microbenchmark on AMD Athlon II proces-
sor.

35

Given a discretized set of p die locations, we define a thermal trace Ti as a vec-

tor of length p that gives the temperature at each die location in trace i. If S denotes

the set of locations of the thermal sensors, we will use the notation Ti(S) to denote the

thermal measurements at the locations specified by S for trace i. We define the track-

ing error, ei, of thermal trace i as the difference between the maximum temperature (or

hot spot) of the trace and the maximum of the measurements of thermal sensors, i.e.,

ei = sup(Ti)− sup(Ti(S)). We define the sensor error as the worst tracking error across

all traces. We believe that minimizing the worst error is more relevant than the average

error because DTM methods are designed to take care of thermal emergencies triggered

by extreme temperatures. We define the hot spot tracking problem as follows.

Hot spot tracking problem: Given a budget of k sensors and n thermal characterization

traces T1, . . . ,Tn, find the set of sensor locations S that minimizes the sensor error across

all n traces i.e., min sup{e1, . . . , en}, and such that |S| = k.

Theorem 1. The hot spot tracking problem is NP-hard.

Proof: We reduce the classical NP-hard vertex cover problem to the hot spot tracking

problem. Consequently, if a polynomial time algorithm exists for our problem then P =

NP. Given a graph that consists of a set of vertices V and a set of edges E, the objective

of the k-cover problem is to decide if there exists k vertices that are incident on all edges

[36]. Our polynomial-time reduction transforms a graph instance to a hot spot tracking in-

stance as follows. If the graph has |V | = p vertices, each labeled with a number between 1

and p, then for every edge dj = {u, v}, we generate a trace vector Tj of length |V | where

the trace is zero everywhere except at locations u and v. That is, Tj({u, v}) = 1 and 0

elsewhere. By construction, ∀j : sup(Tj) = 1 and the location of a sensor corresponds

to a vertex label. If a polynomial-time algorithm for the hot spot tracking problem exists,

36

then given the thermal traces Tj’s and k, the algorithm will return a sensor error of 1 if it

cannot find k locations that track all hot spots (and hence no k-vertex cover), and it will

return a sensor error of 0 if it finds k locations (and hence a k-vertex cover).

With NP-hardness established, an optimal algorithm (e.g., integer linear programming

or branch and bound) to the problem would require exponential runtime as a function of

the number of discrete locations on the die and the number of sensors. Thus, we propose

a heuristic solution that consists of two phases. The first phase is constructive in nature

and produces an initial set of locations, and the second phase is iterative in nature and

improves upon the results of the first phase. We describe these two phases in the next

paragraphs.

Constructive Phase: The objective of the first phase is to find a good initial set of sensor

locations. We think a good initial allocation should capture the hot spots at a number

of independent locations, as dependent locations will lead to sensor placements that are

extremely close and clustered around one or two hot spot locations. Before describing

the proposed algorithm, we introduce some notation. We first use the given thermal traces

T1, . . . ,Tn to construct a n×pmatrix characterization matrix C where each row consists

of the measurements of a temperature trace vector. We will use the notation CS to denote

the matrix formed from the set of columns of C with indices in the set S.

To achieve our objective, we propose an algorithm in Figure 3.9 that is inspired by

matrix volume sampling techniques [16]. The algorithm maintains two sets S and L: S is

the set of chosen sensor locations and L is the set of available sensor locations. In Step 1,

S is empty and L is initialized with all possible p locations. In Step 2, the algorithm picks

the location with the highest temperature based on the L2 norm and accordingly updates S

37

Procedure: Initialize locations of sensors
Input: Characterization data C as a n× p matrix
Output: Locations of k thermal sensors

Let S = ∅ and L = {1, . . . , p}

Let s1 = arg max
s∈L
||C{s}||2

Let S = S ∪ {s1} and L = L− {s1}

For i = 2, . . . , k:

Project CL into the column space of CS: P = CSC
†
SCL

Find the orthogonal components: N = CL −P

Let si = arg max
s∈L
||N{s}||2

Let S = S ∪ {si} and L = L− {si}

Return S

Figure 3.9: Construction procedure to initialize locations of thermal sensors.

and L in Step 3. The algorithm then iteratively (Steps 5–8) computes the orthogonal com-

ponents of the column vectors at the available sensors locations (Steps 5 and 6), and then

in Step 7, it picks the location with highest orthogonal L2 norm. The projection in Step

7 is carried out using standard linear algebra techniques where C†S is the Moore-Penrose

inverse which is defined as C†S = (C′SCS)−1C′S (where C′S is the transpose of the matrix

CS) [107]. The iterations are repeated until k locations are determined.

Iterative Phase: The iterative procedure takes as inputs the locations of the sensors as

computed from the constructive phase and the characterization matrix, and then it itera-

tively adjusts the sensor locations. The algorithm given in Figure 3.10 selects one sensor

at a time, while locking the locations of the other sensors, and then finds (by enumerat-

38

Procedure: Iterative improvement procedure
Input: Characterization data C and initial placement S
Output: Locations of k thermal sensors

Let ep =∞

Do:

For i = 1 . . . k

Let S ′ = S − {si}

Find location sj such that S ′ = S ′ ∪ {sj} gives least sensor error

Let S = S ′ ∪ {sj}

While ep−e
ep

< 0.001

Return S

Figure 3.10: Iterative procedure to improve the locations of thermal sensors.

ing at the p possible locations) the best new location for the selected sensor to minimize

the sensor error (Step 5). The sensor is inserted into the best new location (Step 6), and

the process is repeated for the next sensor until all sensors are selected. This constitutes

one iteration, which is repeated until the improvement in sensor error drops below a pre-

determined threshold as given by Step 7 (0.1% in our implementation).

Experimental Results. The inputs to our sensor allocation algorithm are the locations

of the hot spots and temperatures at a discrete set of die locations. These inputs could

come from either computer-based thermal simulations and/or real data measured from

infrared imaging equipment. The majority of previous work on algorithmic techniques

for thermal tracking relied on computer-based simulations. In these simulations power

traces from architectural simulators (e.g., Wattch[13]) are fed together with a processor’s

39

block-level layout to a thermal simulator (e.g., Hotspot [49]) to obtain thermal traces.

We evaluate our sensor allocation algorithm using high-resolution thermal traces obtained

from direct thermal imaging as discussed in Section 3.1. Recent studies on power and

temperature modeling confirm the value of the complementary information that thermal

imaging provides [81, 37, 48].

We implement three allocation techniques: uniformwhere the sensors are uniformly

spaced as a grid, k-means which is an implementation of the thermal-aware k-means

algorithm developed by Memik et al. [78], and the proposed thermal sensor allocation

algorithm. We report the sensor error for k = 1 to 6 in Figure 3.11, from which we observe

the following:

• The uniform technique can lead to large sensor errors (10°C), and the error does

not decrease monotonically as the number of sensors is increased. This result is

plausible as an allocation with fewer sensors could land by “luck” a sensor nearby a

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

1	 2	 3	 4	 5	 6	

Se
ns
or
	 e
rr
or
	 (C

)	

Number	 of	 sensors	

uniform	 k-‐means	 proposed	

Figure 3.11: Average thermal sensor error as a function of allocation technique and num-
ber of sensors for AMD processor.

40

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0	 1	 2	 3	 4	

Se
ns
or
	 E
rr
or
	 (C

)	

Itera7on	

Figure 3.12: Sensor error for k = 4 as a function of the number of iterations.

hot spot reducing the error. Uniformly allocated sensors should be avoided.

• The k-means algorithm produces better results than uniform allocation but it is

outperformed by the proposed algorithm. For k = 2, k-means gives 3.79°C er-

ror versus the proposed method which gives 1.15°C error. One of the problems

of k-means is that it does not take into account the frequency of hot spots at a

particular location in its clustering criteria, and it does not directly optimize for the

sensor error but rather a combined metric of location proximity and the average

temperature error.

To provide a better understanding of the contribution of the constructive and iterative

phases towards the final solution, we plot in Figure 3.12 the sensor error for k = 4 as

a function of the number of iterations. Iteration 0 is the result of the initial constructive

phase. The plot shows that it takes about 4 iterations until the improvement in sensor

error in the last iteration is less than 0.1% from the prior iteration, and that the initial

construction phase by itself produces better results than the k-means approach.

41

sensors k-means proposed
avg (mm) max (mm) avg (mm) max (mm)

1 3.32 4.76 3.10 5.08
2 0.99 4.63 0.93 5.38
3 0.85 5.14 0.57 4.92
4 1.18 5.43 0.42 4.86
5 1.30 5.43 0.44 5.43
6 1.07 4.42 0.31 3.69

Table 3.1: Average and maximum distance (in mm) between location of sensor reporting
highest temperature and true hot spot location.

In addition to temperature tracking, it is necessary to identify the locations of hot

spots. Identifying the hot spot locations enables the DTM system to take appropriate

actions in preventing a thermal emergency. For example, the DTM system can reduce

the frequency of an overheating functional unit or migrate workloads away from it. To

illustrate the advantage of our proposed algorithm in comparison to previous methods, we

compute for each thermal trace the distance between the location of the hot spot and the

location of the sensor reporting the highest temperature. We then compute the average

and maximum distances across all thermal traces. We report our results in mm in Table

3.1. The results show that our proposed algorithm is always closer to the true hot spot

location on average across all traces. This proximity enables the DTM system to make

better informed decisions to prevent thermal emergencies at the correct functional units.

3.3 Soft Sensing Techniques

In this section we propose the concept of soft sensing to augment the embedded hard sen-

sors and improve thermal tracking. We think that there are a number of possible scenarios

that would benefit from soft sensing:

42

• Because of design constraints, designers might not be able to insert hard sensors

in the desired locations. As a result, the measurements of the hard sensors will no

longer accurately track the temperatures of the hot spots. Soft sensors will allow

designers to overcome this problem by intelligently combining hard sensor mea-

surements to estimate the temperatures at the most problematic locations.

• Digital thermal sensors consume die area and thus designers limit their numbers

at the expense of thermal tracking accuracy. Soft sensing enables designers and

runtime thermal management systems to circumvent the limitations on the number

of sensors and potentially achieve full thermal characterization, where temperatures

are estimated at all possible locations.

We propose two techniques for soft thermal sensing. In Subsection 3.3.1 we propose

soft sensing techniques that are enabled by the availability of a priori thermal characteri-

zation data from either simulations or infrared imaging. In Subsection 3.3.2 we develop a

general-purpose technique for soft sensing that does not require any a priori characteriza-

tion.

3.3.1 Proposed Soft Sensing with A Priori Characterization

In our proposed technique, a soft sensor measurement is equal to a weighted linear combi-

nations of the measurements of the hard sensors. Thus, if T̂i(l) denotes the estimated soft

sensor temperature at location l at time instance i, then this measurement can be expressed

by

T̂i(l) =
k∑
j=1

w(l, j)Ti(sj), (3.1)

43

where Ti(sj) is the measurement reported in trace i by the sensor placed at location sj ,

and w(l, j) is a weight that is a function of locations l and j. To determine the best set

of weights for a location l, we utilize available thermal characterization traces to learn the

optimal linear combination of hard sensor measurements. Given n traces, we can construct

the following set of equations:

Awl =

T1(s1) · · · T1(sk)

...
...

...

Tn(s1) · · · Tn(sk)

w(l, 1)

...

w(l, k)

=

T1(l)

...

Tn(l)

 = bl, (3.2)

which can be written succinctly in matrix notation as Awl = bl. The best set of weights

that minimizes the total least square error can be computed wl = (A′A)−1A′bl = A†bl.

Computing the optimal weights can be carried only once off-line either (1) during

design time using the results from thermal modeling and simulation tools, or (2) after

fabrication when infrared imaging techniques are typically used to characterize and cali-

brate the embedded thermal sensors. The computed weights can be stored in configurable

registers of the processors. During runtime, these weights together with the hard sensor

measurements are retrieved and used by the DTM system to improve thermal tracking.

For example, if three hard sensors are deployed then only three multiplications and two

additions are required for every additional location where the temperature needs to be es-

timated. In our experiments, we found that most processors update their internal thermal

sensors every second. At this rate, the computational overhead is minimal.

44

Experimental Results. To model the impact of design constraints, we design an ex-

periment in which the sensors are embedded near the locations identified by the sensor

allocation algorithm rather than at the exact locations. We assume the thermal setup of

Section 3.1 and the sensor locations identified by the algorithm proposed in Section 3.2.

We assume that the locations identified by the sensor allocation algorithm are infeasible

due to design constraints, and we perturb these locations by a random distance that is

drawn from a Gaussian distribution with a standard deviation of 1 mm. For example,

Figure 3.13 shows the original locations of the sensors (for k = 3) and the new loca-

tions after perturbation. Using the measurements of the perturbed hard sensors, the soft

sensing technique is used to estimate the temperatures at the possible hot spot locations.

We then compare these estimates to the measurements reported from the infrared imaging

system. Figure 3.14 gives the error between the hot spots and thermal sensors using the

hard sensors alone and the hard + soft sensor technique. Compared to the earlier results

of Figure 3.11, it is clear that the small perturbations in the hard sensor locations could

introduce unpredictable errors in their measurements. The results also show that the soft

sensing technique is capable of reducing the tracking error. For example, when k = 3,

soft sensing cuts down the tracking error from 9.35°C to 4.44°C.

Since embedded hard sensors could exhibit noise in their measurements [56, 122], we

assess the impact of this noise on soft sensor measurements. We superimpose independent

normally distributed noise for each hard sensor, and then compute the tracking error of the

soft sensors. In Table 3.2 we report the error as a function of the number of sensors and

the standard deviation of the noise distribution. The second column gives the error if no

noise is assumed for the hard sensors (same results as in Figure 3.14) and the subsequent

columns show the expected trend of increasing soft sensor error as the noise increases in

the hard sensor measurements.

45

original locations locations after perturbation

(mm)

(m
m

)

Figure 3.13: Location of sensors before and after perturbation.

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	

Se
ns
or
	 E
rr
or
	 (C

)	

Number	 of	 sensors	

hard	 hard	 +	 so=	

Figure 3.14: Impact of soft sensing after sensor perturbation.

3.3.2 Proposed Soft Sensing Using Spectral Techniques

In this section, we develop soft sensing techniques for scenarios in which the only avail-

able information comes from a set of sensors at known die locations. Without detailed

a priori thermal characterization, the relationship between the sensor measurements and

soft sensor locations must be inferred using assumptions about the nature of the tempera-

46

sensors standard deviation
0°C 0.2°C 0.4°C 0.6°C 0.8°C 0.1°C

1 6.29 6.39 6.55 6.76 6.77 6.91
2 1.41 1.49 1.60 1.79 2.01 2.12
3 4.44 3.58 3.72 3.79 4.00 4.14
4 3.41 3.52 3.21 3.35 3.27 3.50
5 1.75 1.89 2.15 2.40 2.60 2.80
6 1.19 1.23 1.29 1.66 1.75 1.78

Table 3.2: Soft sensor error as a function of the error in hard sensors.

ture signal. We know that the spatial temperature profile is a low-pass filtered version of

the power density profile and can be represented sparsely in the frequency domain. Thus,

we develop frequency-domain signal reconstruction techniques in order to interpolate un-

known temperatures as a linear combination of the known sensor values.

Our approach is formally grounded in spectral Fourier analysis techniques. Applica-

tion of these techniques to temperature sensing is based on recognition that die temperature

is simply a space-varying signal, and that space-varying signals are treated identically to

time-varying signals in Fourier signal analysis. While temperature is a continuous vari-

able, any representation in computer memory must be discretized. Thus, the temperature

t(m,n) is a discrete function that is defined over a finite region 0 ≤ m ≤ M − 1 and

0 ≤ n ≤ N −1, where M and N are the resolutions required for thermal characterization.

For example, if a die has dimensions 1 cm× 1 cm, then with resolutions M = N = 128,

temperatures are evaluated for every 78 µm × 78 µm square. The two-dimensional Dis-

crete Fourier Transform (DFT) is given by

T (p, q) =
M−1∑
m=0

N−1∑
n=0

t(m,n)e−j2πpm/Me−j2πqn/N (3.3)

47

for all p = 0, 1, . . .M − 1 and q = 0, 1, . . . N − 1, and the inverse DFT is given by

t(m,n) =
1

MN

M−1∑
p=0

N−1∑
q=0

T (p, q)ej2πpm/Mej2πqn/N (3.4)

for all m = 0, 1, . . .M − 1 and n = 0, 1, . . . N − 1. To compute the DFT and the inverse

DFT efficiently, the Fast Fourier Transform (FFT) and the inverse FFT are used, achieving

an O(MN logMN) runtime as opposed to O((MN)2) [91].

Impact of Sampling on Frequency-Domain Representation of Temperature. Consider

the case in which the locations of the sensors are aligned on a lattice such that they are

equally spaced from each other. There are a number of lattices for which such uniformity

can be achieved, including hexagonal lattices, diamond lattices, and rectangular grids.

We focus on rectangular grids as they are more suitable for the tiled layouts typically

encountered in multi-core processors and GPUs. To sample the temperature t(m,n), we

assume that the thermal sensors have been placed with a horizontal/vertical spacing of

P ∈ Z+. Thus, the sampling signal s(m,n) can be described with

s(m,n) =

bM−1
P
c∑

u=0

bN−1
P
c∑

v=0

δ(m− uP, n− vP), (3.5)

where δ(·, ·) is the Dirac delta function. To obtain the sampled temperature signal ts(m,n),

we multiply the temperature with the sampling function to get

48

ts(m,n) = t(m,n)s(m,n)

= t(m,n)

bM−1
P
c∑

u=0

bN−1
P
c∑

v=0

δ(m− uP, n− vP)

=

bM−1
P
c∑

u=0

bN−1
P
c∑

v=0

t(uP, vP)δ(m− uP, n− vP) (3.6)

Consider the DFT of ts(m,n). Since ts(m,n) is the product of t(m,n) and s(m,n),

then the DFT Ts(p, q) of the sampled signal ts(m,n) is equal to the convolution of the

T (p, q) and S(p, q), which are the DFTs of t(m,n) and s(m,n) respectively. The Fourier

transform of a periodic impulse train is a periodic impulse train as well; i.e.,

bM−1
P
c∑

u=0

bN−1
P
c∑

v=0

δ(m− uP, n− vP)↔ 1

P 2

P−1∑
u=0

P−1∑
v=0

δ(p− uM
P
, q − vN

P
) (3.7)

Thus, the convolution of T (p, q) and S(p, q) gives

Ts(p, q) =
1

P 2

P−1∑
u=0

P−1∑
v=0

T (p− uM
P
, q − vN

P
). (3.8)

Temperature sampling by the thermal sensors in the space-domain has led to periodic

copies of the Fourier transform of the temperature signal in the spectral domain. Figure

3.15 visually illustrates the impact of sampling, where Figure 3.15.a gives a thermal map

of a 16-core processor in both the space and spectral-domain. After sampling, the spectral-

domain representation of Figure 3.15.b shows the repetition of the spectral map of Figure

3.15.a. According to the Nyquist-Shannon theorem, if copies of the spectral-domain tem-

perature signals are spread far “enough” apart, then overlap or aliasing between the copies

49

Figure 3.15: Main steps used for signal reconstruction. The log of the magnitude of the
2D DFT is plotted.

will not occur. The necessary spreading, which is controlled by the sampling frequency,

depends on the highest frequency seen in the temperature signal. If the temperature signal

is band-limited with frequency B, then sampling at a rate higher than 2B guarantees full

reconstruction of the original signal. Sampling at a higher rate is achieved by decreas-

ing the spacing P between the thermal sensors. Thus, thermal sensors should be spaced

such that 1/P ≥ 2B, or equivalently P ≤ 1/(2B). To minimize information loss due

50

to sampling, one must pick a bandwidth B below which most of the signal’s energy is

concentrated.

A classical result in signal processing states that time-limited signals are not band-

limited, and that band-limited signals are not time-limited; i.e., a signal cannot be simul-

taneously time-limited and band-limited [96]. Temperature, a space-varying signal, is

space-limited by the edges of the chip. Thus, the spectral representation of the temper-

ature is not band-limited. As a result, perfect reconstruction is not possible in the case

of on-chip temperatures; however, near-perfect reconstruction with negligible loss of in-

formation is possible if these edge effects are appropriately handled during reconstruction

such that the higher frequency magnitudes in the spectral domain are minimized. Tech-

niques for handling edge effects are discussed next.

Thermal Reconstruction from Samples. We have seen that sampling a signal in the

space-domain leads to periodic copies of the Fourier transform, T (p, q), of the original

signal t(m,n), in the spectral-domain. If the temperature signal is band-limited (or has

negligible energy beyond a certain frequency) then these periodic copies are well separated

from each other and aliasing is minimal. The Whittaker-Shannon-Kotelnikov (WSK) clas-

sical theorem states that to recover the original signal from the samples, it is sufficient to

extract only one copy of the signal in the spectral-domain [96]. This extraction can be

achieved using a low-pass box filter as shown in Figure 3.15.c. In the frequency domain,

this box can be expressed as

F (p, q) = 1 if |p| ≤ B and |q| ≤ B

= 0 otherwise. (3.9)

51

Taking the inverse DFT of the box filter gives the spatial-domain representation of the

filter f(m,n) which is equal to

f(m,n) = sinc(
m

B
)sinc(

n

B
). (3.10)

Reconstruction is achieved by convolving the space-domain samples with the space-

domain filter representation. That is, the reconstructed temperature of a chip tr(m,n) can

be found using

tr(m,n) =
M−1∑
u=0

N−1∑
v=0

ts(u, v)sinc(
m

B
− u)sinc(

n

B
− v). (3.11)

This result is illustrated in Figure 3.15.d. One of the practical problems that arises

when using the sinc function is that it is not space-limited. In any implementation, the

sinc function must be truncated, which has the effect of smearing its spectral-domain

representation, leading to a less than sharp box filter edge. This smearing effect can be

minimized by windowing the sinc function. In our implementations, we multiply the sinc

function by a Hamming window of the same size. The severity of the edge effects depends

on the size of the sinc function used. Edge effects can be minimized by extending the tem-

perature data by a distance larger than half the size of the filter function. The values in the

extended region can be copies of the edge values, periodic repetitions of the temperature

signal, or even a mirror image of the temperature signal. It is also useful to investigate

other filter functions that approximate a low-pass box filter in the spectral domain without

windowing [87]. We investigate three other functions.

52

• Nearest neighbor: The simplest interpolation function is nearest neighbor, in which

each location is given a temperature equal to the value measured by the sensor clos-

est to it. This is achieved by convolving the sampled temperature signal with a

rectangular function expressed as follows:

f(x, y) = 1, for x ∈ [−0.5, 0.5] and y ∈ [−0.5, 0.5]

f(x, y) = 0, otherwise

• Linear function: Linear interpolation amounts to convolving the temperature sam-

ples with a round cone function. This function corresponds to a modestly good

low-pass filter in the spectral-domain. However, it attenuates frequencies near the

cut-off frequency, resulting in smoothing of the thermal characterization results. It

also passes a good amount of energy above the cut-off frequency. The linear func-

tion is expressed as follows:

f(x, y) = g(x)g(y), where

g(u) = (1− u) for u ∈ [0, 1]

• Cubic B-spline function: Cubic B-spline functions are reasonably good low-pass

filters. They are positive in the whole interval from 0 to 2, so they smooth somewhat

more than necessary below the cut-off frequency. These filters are symmetric, so

they only need to be expressed on the interval [0, 2]. The cubic B-spline function we

53

Figure 3.16: Flow of the proposed runtime thermal characterization technique.

use is expressed as follows:

f(x, y) = g(x)g(y), where

g(u) =
u3

2
− u2 +

4

6
for u ∈ [0, 1]

g(u) =
−u3

6
+ u2 − 2u+

8

6
for u ∈ [1, 2]

All three interpolation functions are contrasted with the sinc function in Figure 3.16.

To achieve a computationally efficient thermal characterization, we propose the flow in

Figure 3.16. Instead of directly convolving in the space-domain, we first take the Fast

Fourier Transform (FFT) of the temperature samples and the space-domain representation

of the interpolation functions. We then multiply the resultant spectral-domain represen-

54

tations to get the FFT of the reconstructed 2D thermal signal. We then apply the inverse

FFT (IFFT) to get the full-resolution thermal characterization in the space-domain. If the

required thermal resolution is R = MN , then application of the proposed flow of Figure

3.16 has a runtime of O(R logR), which gives a significant advantage over the O(R2)

runtime achieved by straightforward convolution. Such speedup boost is necessary for

runtime thermal characterization.

If thermal sensors are placed non-uniformly, then directly applying the proposed flow

of Figure 3.16 could lead to large errors. Instead, it is necessary to apply signal recon-

struction algorithms that are devised to handle non-uniform samples. One such algorithm

is proposed by Sauer and Allebach [101]. This iterative algorithm consists of two steps:

1. Given the locations of the thermal sensors, construct a Voronoi diagram for the die.

All die locations that belong to the Voronoi cell of a thermal sensor are assigned the

same temperature as the thermal sensor at center of the cell.

2. The resultant 2D temperature map obtained from the first step is low-pass filtered

B (by convolving the temperature with the sinc function) using the flow of Figure

3.16.

Sauer and Allebach [101] prove that iterating these two steps leads to convergence and

reconstruction of the original signal if it is band-limited.

Experimental Results. To evaluate the effectiveness of our methodology, we set up a

tool chain that simulates temperatures for a 32 nm 16-core processor. Our tool chain

takes as inputs the processor’s floor-plan and the workload that will run on each core and

produces as output the steady-state temperatures at various grid locations. Using workload

instruction traces, dynamic power traces for each micro-architectural unit are calculated

55

and then fed together with the floor-plan into the thermal simulator. Once the steady-

state temperatures are calculated, they are fed into a leakage calculator which outputs the

corresponding leakage power of each unit. The leakage power values are then added to the

original dynamic power values, and a new thermal simulation is performed. This process

is iterated until the temperatures converge to stable values. Power and thermal simulations

are performed using the following tools.

• For dynamic power estimation, we use a Wattch-like [13] power simulator, with the

power consumption appropriately scaled to 32 nm technology based on ITRS pre-

dictions [53]. For the leakage consumption of the processor core units, we construct

a leakage model using the expressions for leakage power from PTScalar [73]. To

accurately model cache leakage power, we use CACTI 5.0 [113], which has accurate

cache leakage values at current and future technology nodes.

• We utilize HotSpot (version 4.0) [47] for thermal simulation. HotSpot takes as in-

puts the processor floor-plan and workload power traces and produces as output the

steady-state temperatures for a set of grid locations.

• We use the Alpha 21264 processor as our baseline core [59]. The 21264 is an out-

of-order speculative execution core that is commonly used as a test-bench core in

thermal management research [73, 75]. We create a 16-core processor based on the

Alpha processor. The die area of the processor is 1.1 cm×1.1 cm, and we discretize

the temperature by defining a grid with resolution M = 64 × N = 64, where each

grid location represents the temperature for an area of size 172 µm× 172 µm.

• For workloads, we use eight benchmarks from the SPEC2000 suite [42]. We use

four integer benchmarks: gcc, bzip, mcf, and twolf, and four floating point bench-

marks: ammp, equake, lucas, and mesa.

56

In each simulation, we assign each core in the 16-core processor a workload from

the SPEC2000 benchmark selection such that each core gets a random workload from

the available eight. We then assign each core a random frequency in the range 1.5 − 3

GHz. We then execute the tool chain to find the true temperatures at all grid locations.

Thermal sampling is accomplished by zeroing temperatures at all grid locations except

those corresponding to thermal sensors. The number of samples and the sample locations

are varied, and each proposed method is evaluated for each sensor configuration using the

average and maximum absolute post-reconstruction error across a set of 32 simulations.

In our first set of experiments, we determine the average and maximum absolute error

for each reconstruction method for uniformly spaced samples while varying the total num-

ber of sensors on a 16-core processor. We present results for the following cases: 1 sensor

per core, 4 sensors per core arranged on a 2× 2 grid, and 9 sensors per core arranged on a

3× 3 grid. The first case corresponds to 16 total sensors, while the second and third cases

correspond to 64 and 144 total sensors respectively. The bar-plot of Figure 3.17 summa-

rizes the average absolute error calculated for each proposed reconstruction method. We

include error values for a geostatistical-based Kriging estimator for sake of comparison.

The results show that as the number of sensors increases, the thermal characterization er-

ror decreases. Furthermore, the results show that our proposed reconstruction methods are

capable of achieving full thermal characterization with minimum average absolute error

ranging from 1.8% to 0.6%, depending on the number of the sensors. In this experimental

setting, our convolution filters deliver near identical performance, and they significantly

outperform the Kriging estimator, especially when the number of sensors are few. Our

second set of experiments will reveal a differentiation in the performance of our proposed

convolution filters. Using a single representative workload and frequency assignment, Fig-

ure 3.18 compares the thermal resolution attained by using 1, 4, and 9 sensors per core to

the true thermal characterization. We include the latter case, despite a possibly unrealistic

57

0
1
2
3
4
5
6
7
8

1 4 9

Av
er

ag
e

Te
m

pe
ra

tu
re

 E
rr

or
 %

Number of Sensors per Core

Nearest Linear Cubic Sinc Kriging

Figure 3.17: Results of full thermal characterization. We report the average error percent-
age for temperature estimation at all grid locations.

Figure 3.18: Impact of increasing the number of thermal sensors on the full thermal char-
acterization.

number of total sensors for a 16-core processor, to illustrate that increasing the number of

sensors eventually reconstructs the original signal to near perfection.

Full thermal characterization is particularly useful for advanced thermal management

techniques, examples of which include workload scheduling and per-core frequency and

58

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 4 9

Av
er

ag
e

H
ot

 S
po

t T
em

pe
ra

tu
re

Er

ro
r %

Number of Sensors per Core

Nearest Neighbor Linear Cubic Sinc Kriging [9]

Figure 3.19: Hot spot estimation. We report the average error percentage for temperature
estimation at the hottest die location.

voltage assignment. In simpler thermal management techniques (e.g., fan speed control),

only the magnitude and the location of the maximum hot spot are relevant. Thus, in our

second set of experiments, we consider the hypothetical performance of our methods in

such applications. We first identify the location and magnitude of the maximum hot spot

in the true thermal characterization. We then evaluate the temperature at that location in

our reconstructed results and report the average absolute error. We report error values for

each method explored in our first set of experiments, and in addition we implement and

compare to the neighborhood interpolation scheme in [75]. Our results in Figure 3.19

show that the sinc filter function is consistently better at interpolating the maximum hot

spot (0.4% errors for the case of 9 sensors per core), and that all of our reconstruction

techniques outperform the Kriging estimator and the method proposed in [75].

In our third set of experiments, we consider non-uniform sensor placements. Figure

3.20 shows a representative workload and marks the locations of the thermal sensors in the

processor’s floor-plan with ‘*’. We use the same workload and frequency assignment as in

Figure 3.18. Figure 3.20.a gives the output of the first step of the iterative algorithm which

constructs the Voronoi diagram, and 3.20.b gives the results after the algorithm converges

59

a. Voronoi diagram b. Final characterization

Figure 3.20: Results of thermal characterization using non-unform sampling.

using a sinc filter function. The average absolute error for full thermal characterization

using non-uniform samples is found to be 2.39%. This value confirms that our methods

are capable of handling signal reconstruction for both uniform and non-uniform sensor

placements.

3.4 Summary

In this chapter we proposed new theoretical and experimental techniques to improve ther-

mal sensing and hot spot thermal tracking in modern processors. We developed infrared

imaging techniques to characterize the thermal behavior of real processors during runtime

under different workloads. Our characterization demonstrate the extent of hot spots and

thermal gradients in modern processors. Previous thermal characterization methods meth-

ods relied on simulations to generate the thermal characterization results; our experimental

approach complements simulation-based techniques and provides a new perspective on the

thermal behavior of real processors.

60

Based on the characterization results, we proposed a formulation for thermal sensor

allocation to minimize the thermal tracking error during runtime. We proved that our

formulation leads to a NP-hard problem and accordingly we proposed a heuristic solution

method that is composed of constructive and iterative phases. The experimental results

show that our method significantly improves upon methods in the literature.

Design constraints could force designers to use very limited number of sensors or to

insert the sensors into non-ideal locations. To circumvent these limitations, we proposed

two soft sensing techniques that combine the measurements of hard sensors to estimate the

temperatures at the ideal locations. One technique leverages a priori design-time charac-

terization data to seek customized weighted combinations to estimate the temperatures at

any desired locations. The second technique does not require any a priori characterization

data, and it leverages frequency-domain analysis techniques to estimate the temperatures

from the measurements of the thermal sensors using standard Fourier bases.

61

Chapter 4

Power Management Techniques

4.1 Introduction

One of the greatest challenges for today’s cluster operators is the increasing energy cost

as a fraction of the total cost of ownership. In fact, power and cooling costs have risen

as much as 400 percent in the last decade [32]. Modern data center energy consumption

results in millions of dollars in annual electricity costs in the U.S. alone. Power capping,

in which the average or peak power of the cluster is constrained, has become a popular

technique for ensuring energy budgets, planning cluster power delivery, and managing

operational and cooling costs.

Wholesale energy markets introduce a new incentive for cluster power capping. In-

dependent System Operators (ISOs) that coordinate power transmission have to match

supply and demand in the grid. This challenge grows with the fluctuations in loads and

sources as a larger portion of highly variable green energy sources are introduced into the

grid [88]. As a result, many ISOs are looking into creating flexible reserves at the demand

62

side. Large computing clusters are candidates for demand side regulation owing to the

their load flexibility and power management features. ISOs offer credit to the demand

side for regulating their power at several second intervals; thus, fine-grained modulation

of cluster power has the potential to provide significant monetary savings.

Individual server power capping is an essential prerequisite to cluster-level power cap-

ping. Existing methods for server power capping include sleep modes, dynamic voltage-

frequency settings (DVFS) [72, 110], low-power nap modes, and throttling by idle cycle

insertion [35]. At a larger scale, it is possible to devise control techniques to coordinate

multiple levels of capping in a data center [111], and to automatically adjust server caps

based on utilization [4].

This chapter proposes a novel technique, Pack & Cap, for maximizing performance

within dynamically set power caps for multi-threaded workloads. Pack & Cap builds on

the observation that workloads on clusters are increasingly employing thread-level par-

allelism to capitalize on the hardware parallelism in multi-core processors. Parallel ap-

plications offer a new control knob for power capping, namely selecting the number of

active threads. Pack & Cap leverages thread packing, where multiple threads of an appli-

cation are packed onto a variable number of cores, as a low-cost proxy to mimic dynamic

selection of active threads.

Pack & Cap brings several important innovations over the state-of-the-art. First, it is

designed to meet instantaneous server power caps, while most prior techniques (such as

throttling and DVFS) focus on maintaining an average power consumption value. Second,

by controlling the number of active cores via thread packing in addition to DVFS, we are

able to decrease the lower bound on achievable power caps and thus achieve more dynamic

control flexibility. These two innovations enable a fine-grained power capping strategy

and higher throughput, which make our technique attractive for use in dynamic power

63

regulation. We propose a set of techniques for effective adaptive power capping. These

techniques offer different tradeoffs in terms of effectiveness, hardware requirements, of-

fline characterization efforts, and implementation costs. We conduct all experiments on

a server with two quad-core processors, making our method attractive for deployment on

real systems. We demonstrate that Pack & Cap meets the power caps with high accuracy,

while minimizing the application runtime.

4.2 DVFS + Thread Packing

DVFS is a standard technique for dynamically enforcing power caps [111, 33]. A major

contribution of our work lies in our use of a variable number of active cores as a control

knob in conjunction with DVFS while running multi-threaded workloads. This additional

control knob, which we call thread packing, allows us to (1) achieve more desirable power-

performance tradeoffs compared to using DVFS alone, and (2) decrease the lower bound

of dynamically achievable power caps, thus providing more flexibility for cluster-level

capping strategies.

The inspiration behind thread packing comes from the power-performance tradeoffs

observed while varying the number of threads in a parallel application, which we refer

to by the term thread reduction. In our initial experiments, we investigate the effects of

performing thread reduction, which we evaluate in terms of the achievable power levels

with experiments on a multi-core server. Our server is equipped with two quad-core Intel

Xeon E5520 processor chips (each core with 6 DVFS settings) and 12 GB of memory. In

Xeon processors, idle cores automatically switch to low-power states through clock gat-

ing to save energy. We run each PARSEC benchmark [9] under all the DVFS settings

with 1, 2, 4, and 8 threads. We then measure the power range, which is the difference be-

64

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

bla
cks
ch
ole
s	

bo
dy
tra
ck	

ca
nn
ea
l	

de
du
p	

fac
esi
m	

fer
ret
	

flu
ida
nim

ate
	

fre
qm
ine
	

ray
tra
ce
	

str
ea
mc
lus
ter
	

sw
ap
Bo
ns
	

vip
s	

x2
64
	

Po
w
er
	 R
an
ge
	 (W

)	

Power	 Range	 (DVFS	 +	 threads)	 Power	 Range	 (DVFS	 alone)	

Figure 4.1: Dynamic power range achieved by DVFS and changing thread count compared
to using DVFS alone. Experiments are conducted on a server with two quad-core Xeon
processors.

tween the server’s highest and lowest power level observed across all DVFS settings and

thread counts. Without thread reduction, the lowest power level is achieved by setting the

lowest DVFS setting. With thread reduction, however, lower power can be achieved by

setting the lowest DVFS setting and reduction the number of threads. Idle cores entering

low-power states yield significant power reductions. Thread reduction is useful when the

lowest DVFS setting is insufficient for meeting a power cap. In our prior work, we showed

that jointly controlling DVFS and the number of threads on a single-chip quad-core system

increases the power range by 21% compared to using only DVFS on a single quad-core

processor [18]. Further improvements in the power range are attainable in multi-processor

systems, which are more typical configurations in today’s clusters. The power range in-

creases to 41% on average across all PARSEC benchmarks running on our dual-processor

server. We display the power range comparison for each PARSEC workload for our dual-

processor machine in Figure 4.1. In addition to the increased power range, integrating the

use of the two knobs (e.g. DVFS, # threads) enables finer-grain capping, where power and

performance can be tuned more precisely to meet desired constraints.

65

While thread reduction is an effective power management tool, it cannot be applied

dynamically during execution without substantial modifications to the application code.

Thread packing, on the other hand, is a practical alternative that is applied by modifying

thread-core affinities in the operating system, thus eliminating the need for application-

specific modification. Each multi-threaded workload is constrained to execute on a sub-

set of available cores by setting thread-core affinities in the operating system (via the

sched setaffinity system call interface in Linux), while the remaining idle cores

enter low-power states. Load balancing and scheduling of threads among the active cores

on each processor are then performed transparently using the default operating system al-

gorithms. To further motivate thread packing, we verify experimentally that each thread

packing configuration has almost identical runtime and power characteristics to the thread

reduction scenario with the matching number of active cores. We perform all experiments

with the PARSEC benchmark suite [9] on the multi-chip 8-core server with static set-

tings across the execution of each workload. We disable hyper-threading (SMT) in order

to show the worst case performance penalty incurred by thread packing. We run each

benchmark using the native input set at every DVFS settings with the following thread

scenarios:

• 8 cores: We measure power and runtime for 8 threads executing on 8 cores. This case

serves as the baseline for both thread packing and thread reduction in the following

three comparisons.

• 4 cores: Power and runtime for executing 8 threads packed on 4 cores against executing

4 threads on 4 cores.

• 2 cores: Power and runtime for executing 8 threads packed on 2 cores against executing

2 threads on 2 cores.

• 1 core: Power and runtime for executing 8 threads packed on 1 core against executing

1 thread on 1 core.

66

We perform a comparison of runtime and average power between thread packing and

thread reduction for the case of 1, 2, 4 and 8 active cores for all of the PARSEC bench-

marks. For each comparison, the number of active cores is the same for both thread

packing and thread reduction (e.g., 8 threads packed onto 2 cores compared to 2 threads

running on 2 cores). Packing and reduction perform identically in the 8-core case. For

the 4-core case, thread packing increases runtime by 3.6%, but decreases average power

consumption by 0.1%. For the 2-core case, thread packing decreases runtime by 4.5%

and decreases average power by 0.9%, and for the 1-core case, packing increases run-

time by 0.7% and decreases the average power by 1.5%. These results show that when

fully utilized, the number of active cores is the primary determiner of power and runtime

for a multi-threaded application. While the runtime and power values are comparable,

thread packing permits for dynamic adjustment during workload execution without work-

load specific modifications. In addition, the allowable number of active cores in thread

packing is not constrictive. Many of the PARSEC benchmarks can only be launched with

thread counts that are a power of two. Thus, thread packing is a more practical and flexible

solution to dynamic power capping.

Figure 4.2: Plots show the impact of DVFS and thread packing settings on runtime and
power consumption for dual quad-core processor machine. Red line gives Pareto frontier
of optimal settings at various power caps. Each blue line gives the power and runtime
results when we change the DVFS under a fixed number of cores. We include only the
cases of 8, 6, 4, 2, and 1 cores. We leave out the 3, 5, and 7 core cases for the sake of
clarity.

67

When minimizing runtime in the absence of power caps, the optimal operating point

is trivially the one with the maximum number of active cores and maximum DVFS set-

ting. In the presence of power caps, however, the optimal setting that produces the best

performance within a fixed power cap varies depending on workload and environmental

conditions. Figure 4.2 provides the peak power and runtime at all possible settings for the

first 100 billion retired µops of four PARSEC benchmarks on our dual-processor server.

To simplify the task of finding for the optimal setting, we mark the power-runtime Pareto

frontier with a red line in Figure 4.2 given power and runtime measurements for each set-

ting. For each point along the frontier, there is no alternative point that achieves lower

peak power and shorter runtime. Any point that is not on the frontier cannot be optimal

because there exists a setting that on the Pareto frontier that produces both lower runtime

and lower peak power. Thus, the points on the frontier dominate the non-frontier points,

and the point along the frontier with the least runtime within the power cap is optimal. We

observe that for all frontiers, within the subset of points for which the power cap is met,

the optimal point that minimizes runtime always maximizes the number of active cores.

Thus, any control policy should select the highest number of cores for which the power

cap can be met first, and then select the highest DVFS setting within the power cap.

It is worth noting that our experiments with thread packing SPEC CPU2006 [106]

workloads show that this observation applies for single-threaded applications as well. The

combined throughput of a set of single-threaded applications scales well with the num-

ber of active cores, which is intuitive, as single-threaded applications are not limited by

the synchronization overheads encountered in multi-threaded applications. We have also

characterized the behavior of the PARSEC workloads with hyper-threading enabled and

seen that our observations about the Pareto frontier still hold. That is, the optimal oper-

ating point will always maximize the number of active physical cores within the power

constraint.

68

DVFS	

#cores	
mul/-‐gain	 	
P	 controller	

error	
run/me	

power	 cap	

power	

DVFS	

#cores	
projec/ve	
modeling	

error	

run/me	

power	

performance	 counters	 &	
thermal	 sensing	

power	 cap	

DVFS	

#cores	
projec/ve	
modeling	

run/me	 performance	 counters	 &	
thermal	 sensing	

power	 cap	

Proposed	 feedback	 technique	

Proposed	 projec/ve	 feedback	 technique	

Proposed	 projec/ve	 model	 w/o	 meter	 technique	

Figure 4.3: Proposed power capping methods.

4.3 Pack & Cap Methodology

In this work, we propose three techniques for minimizing application runtime within a

power cap. These techniques, illustrated in Figure 4.3, offer different tradeoffs in terms of

effectiveness, hardware requirements, and implementation costs. We propose a feedback

technique with a multi-gain controller that utilizes runtime power measurements without

requiring any measurements of server state (e.g., performance counters, temperatures, or

utilization). We then propose a projective feedback technique that improves capping ac-

curacy and performance by leveraging measurements of the server’s state and extensive

offline characterization. The third technique, projective modeling w/o meter, is similar to

the second technique, but it does not use a power meter. Projective modeling avoids the

additional equipment cost of power telemetry at the expense of power capping accuracy.

69

1. Proposed Feedback Technique. Feedback techniques assume that a server has access

to power measurements through either an integrated or external power meter. Based on the

measured power slack, i.e., the difference between the required power cap and the actual

power consumption, the feedback controller chooses appropriate settings to reduce the

slack. Classical feedback-based capping methods solely use DVFS for feedback control,

where the DVFS setting is adjusted using a P or PI controller based on the power slack [72,

110]. In addition to DVFS, our technique adjusts the number of active cores (i.e., thread

packing configuration). The main challenges are (1) choosing between the two control

knobs to meet the power cap, and (2) tuning the controller to achieve the desired balance

between response time and meeting the cap.

To choose among the two settings, we propose a heuristic that is based on the Pareto

frontier characterization results of Section 4.2, in which we observe that within the subset

of points that adhere to the power cap, the optimal point along the Pareto frontier max-

imizes the number of active cores. It is therefore best to avoid decreasing the number

of cores in order to reduce negative power slack, and to increase the number of cores

whenever possible to eliminate positive slack. Our heuristic makes use of experimentally

calculated proportional power gains in order to estimate the effect of DVFS and the num-

ber of active cores on power. If a positive power slack is observed, the controller increases

the number of active cores to the maximum number estimated to be within the power cap.

The remaining slack is then reduced by increasing the DVFS setting in the same manner.

If a negative power slack is observed, then the controller selects the highest DVFS setting

estimated within the power cap. If the minimum DVFS setting is estimated to be above

the power cap, however, then the number of active cores is decreased according to its pro-

portional gain to be within the cap. In this way, the controller prioritizes thread packing

(by increasing number of cores) over DVFS when there is a positive power slack, and pri-

oritizes DVFS over packing when there is a negative power slack. In our implementation,

70

we measure the power slack and apply feedback at each activation (e.g., every 1 second)

of the controller.

During offline characterization of power and runtime, we observe that DVFS pro-

portional gain depends on the number of active cores, and similarly, the thread packing

proportional gain depends on the DVFS setting. Making use of this observation, we pro-

pose the use of a multi-gain controller in which the proportional gains for both control

knobs are selected according to the current setting. We use a set of offline characterization

data gathered across multiple workloads to calculate the average change in power per unit

change in each control knob (e.g., DVFS setting or #cores), while the other control knob

(e.g., #cores or DVFS) is held constant. A different gain is calculated for each value of the

static control knob. Thus, we calculate a thread packing proportional gain for each DVFS

setting, and a DVFS proportional gain for each thread packing configuration.

2. Proposed Projective Feedback Technique. The feedback technique is able to suc-

cessfully maintain a power cap. However, it does not always yield the minimum appli-

cation runtime within the given cap as it uses a heuristic to explore the Pareto Frontier.

In addition, while the multi-gain controller in the feedback technique differentiates gains

based on the current DVFS and number of active cores, it does not explicitly model dif-

ferent workload characteristics. We improve the feedback controller by incorporating a

workload-sensitive projective modeling technique that estimates the projected power of

all possible DVFS and thread packing settings on the power slack as a function of state

measurements (i.e., performance counter and core temperature measurements), and then

selects the setting projected to be within the power cap that has the least runtime. This

modeling-based approach for adaptive power capping is divided into an offline and online

phase. The offline phase is computationally demanding and it is only performed once for a

particular server configuration. The results of the offline phase are stored in look-up tables

that are accessed by the online phase. The online phase is computationally lightweight

71

and can perform adaptive power capping on any server that has the same hardware config-

uration as the training server.

In the offline phase, we use an extensive set of data collected for multi-threaded paral-

lel workloads (e.g., PARSEC benchmark suite) to train separate power estimation models

for each DVFS and packing setting. Individualizing the models in this way emphasizes

the salient characteristics at each control setting. The training data consists of per-core

temperature measurements, system power measurements, and performance counter mea-

surements, which include the number of µops retired, floating point operations, load locks,

resource stalls, branch prediction misses, L2 misses, and L3 misses (to capture main mem-

ory activity). It is worth noting that because these metrics are gathered per-core and not

per-workload, any model that takes them as input is globally defined and will not change

depending on the workload. Our observations about performance counters indicate that

much of the variation in power and delay among workloads can be attributed to memory-

boundedness (i.e., the ratio of memory access to instructions executed) as noted in prior

work [51]. For more memory-bounded applications, the sensitivity of power and runtime

to DVFS and thread packing is much lower, as the workload incurs fixed latencies while

stalling for cache misses and memory accesses. For less memory-bound applications the

change in both power and runtime is much higher. For a frequency/thread packing setting

(f, t), a power estimate, P̂f,t[k], at time instant k is given by

P̂f,t[k] = cf,t · xf,t[k], (4.1)

where xf,t[k] denotes the input vector of state measurements, cf,t is the vector containing

model coefficients, and the operator · denotes the dot product operation. Note that the

input vector x includes a constant term in addition to the state measurements (16 terms

total). Such regression models have been successful in the past [67].

72

For learning the model coefficients, we use robust regression to reduce the impact of

spurious outlier measurements (e.g., from operating system calls) on the learned models.

Robust regression seeks to minimize a weighted total square error, i.e.,
∑

k wke
2
k, where

ek = P̂f,t[k] − Pf,t[k], in which Pf,t[k] is the true power consumption [2]. To discard

outliers, the weights, wk, should increase as the error residual |ek| decreases in value. A

popular weighting function we use is the bi-square function. In this function, wk = 0

when |ek| > r, and wk = (1 − (ek/r)
2)2 when |ek| <= r, where r is a constant that

determines the extent of outlier rejection.

Because the input metrics in x are themselves dependent on the control setting (f, t),

it is necessary to multiply the inputs by the mapping ratios. These ratios project or map

the measurements of the performance counters at the current setting (i, j) to any other

candidate setting (f, t); i.e., xi,j
m−→ xf,t. Ratios are learned from the offline character-

ization data by computing the expected measurement values of performance counters at

every setting combination. If E[xi,j] denotes a vector of expected input values at setting

(i, j), then the multiply ratios for mapping the input state from setting (i, j) to (f, t) is

E[xf,t]/E[xi,j] (element-wise division). These mapping ratios together with the model

coefficients and error standard deviations for the model learned at each setting are stored

in lookup tables for use at runtime.

At runtime, our online power capping system logs performance counter and tempera-

ture data periodically, and identifies the optimal operating settings. If measured power at

time k and current setting (i, j) is denoted by Pi,j[k] , then the power slack is denoted with

δ[k] = Pcap[k] − Pi,j[k]. Given the current input measurement vector xi,j[k], the capping

policy first identifies a set S of {DVFS, #cores} settings such that the projected power

consumption from any setting (f, t) ∈ S is the within the power cap. That is,

73

S = {(f, t)| where P̂f,t(xi,j[k]
m−→ xf,t[k + 1]) ≤ P̂i,j[k] + δ[k]}, (4.2)

where P̂i,j[k] is the current power estimate. Note that P̂i,j[k] + δ[k] is equal to P̂i,j[k] +

Pcap[k]− Pi,j[k] = Pcap[k] + (P̂i,j[k]− Pi,j[k]). The term (P̂i,j[k]− Pi,j[k]) measures the

projective model error and converges to 0 when the modeled power matches the measured

power. In this way, power measurement feedback is used to increase robustness against

constant offset modeling errors. Constant deviations between the model estimates and the

measured power can arise when the test system differs from the offline characterization

system (e.g., due to process variations, slightly different hardware configuration, ambient

temperature variation, etc.). In Equation (4.2), the state measurements xi,j[k] at the current

setting (i, j) are first mapped into each potential new setting (f, t), and then the power

consumption of each mapped measurement is estimated using the power regression model

P̂f,t(·). To pick the optimal setting, (f̂ , t̂) ∈ S, the controller first filters S to retain the

settings that use the largest number of cores t̂ and then chooses the highest DVFS setting

f̂ within the filtered set. This selection process follows the Pareto frontier observations

for minimizing runtime as discussed in Section 4.2. The projected optimal setting is then

applied to the server as shown in Figure 4.3. The overall runtime complexity of online

power capping with this approach is linear with the number of control settings, which

promises to scale well to larger numbers of settings in many-core architectures.

3. Proposed Projective Model Without Meter Technique. In this technique, we assume

that the server does not have the ability to measure power consumption. This situation

can arise with old servers or more economical servers that do not include power sensing

equipment. For such cases, we only use the model estimate P̂f,t(·) from the projective

feedback technique to guide setting selection. That is,

74

S = {(f, t)| where P̂f,t(xi,j[k]
m−→ xf,t[k + 1]) ≤ Pcap[k]}, (4.3)

and the optimal setting is selected from S as discussed earlier. In this case, power measure-

ments are only used for offline learning but are not incorporated into runtime control. The

main drawback of this approach is that constant offset modeling errors translate directly to

power cap violations. However, our experimental results demonstrate that this method can

achieve relatively good results despite the lack of hardware power telemetry. In addition,

if power cap violations are normally distributed with no bias for positive or negative power

slack, then the technique can be successfully leveraged for capping average power.

4.4 Experimental Results

We evaluate the Pack & Cap methodology in terms of the accuracy in adhering to dynamic

power caps and application performance. For quantifying the accuracy, we measure the

power cap error, which is the average negative power slack magnitude normalized by the

power cap value. The performance is simply measured using workload runtimes. All of

the experiments are performed on dual Intel quad-core Xeon E5520 system. Each proces-

sor has 6 DVFS settings ranging from 1.60 GHz to 2.27 GHz in 0.13 GHz increments. We

disable the hyper-threading feature. The server runs a Linux kernel 2.6.10.8 OS. We use

pfmon to collect performance counter data and lm-sensors to poll the on-chip ther-

mal sensors. We measure the server’s total power consumption using an Agilent 34410A

digital multimeter.

For comparison, we implement a baseline feedback technique that incrementally ad-

justs both the DVFS setting and the number of active cores (i.e., reduces setting by one

increment for negative power slack, increases by one increment for positive slack). This

75

technique engages DVFS first in order to meet the power cap and only adjusts the number

of active cores when limited by the maximum or minimum frequency. This policy is a

natural extension of the DVFS feedback techniques used in previous works for meeting

power caps [72]. By comparing to the baseline technique, we quantify the benefits of

incorporating our Pareto frontier observations into our proposed control techniques.

For all experiments, control is activated once per second. The time overhead for cal-

culating control decisions for all Pack & Cap techniques is on the order of 10 ms, which

is less than 1% of the control activation period. The time overhead for performing DVFS

control is on the order of microseconds. While the overhead for shifting threads among

the cores in thread packing is potentially higher, all performance overheads are automati-

cally accounted for in our workload runtime results. For all feedback techniques, we avoid

any actuation if the power consumption is within 2 W below the power cap because our

offline characterization shows that setting changes trigger power changes larger than 2 W.

We apply the same rule for the projective modeling technique without meter, except that

the power consumption is determined through modeling rather than measurement.

To evaluate the effectiveness of the proposed techniques in a realistic situation in which

data center nodes must meet dynamic power caps requested by ISOs, we set an aggressive

dynamic cap that changes every 10 seconds to a random value in the range 120 W - 170 W

for each PARSEC workload running with 8 threads. Figure 4.4.a and Figure 4.4.b compare

the runtime and capping accuracy of each workload. The runtime values are normalized

to those observed for the baseline feedback technique. The three proposed Pack & Cap

techniques outperform the baseline technique significantly in both runtime and power cap

accuracy. The baseline feedback controller delivers larger power cap errors (average 7.5%)

with larger runtimes, as it does not utilize power slack magnitude or knowledge of the

Pareto Frontier. Our feedback technique and projective feedback technique deliver the best

results in terms of accuracy, with average cap errors of 3.5% and 3.6% respectively. The

76

(a) runtime comparison

(b) average cap error comparison

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

bla
cks
ch
ole

bo
dy
tra
ck	

ca
nn
ea
l	

de
du
p	

fer
ret
	

flu
ida
nim

at

fre
qm
ine
	

str
ea
mc
lus
t

sw
ap
?o
ns
	

vip
s	

x2
64
	

fac
esi
m	

ray
tra
ce
	

Ru
n?

m
e	
(s
ec
on

ds
)	

Baseline	 feedback	 Proposed	 feedback	 Proposed	 projec?ve	 feedback	 Proposed	 model	 w/o	 meter	

0	

2	

4	

6	

8	

10	

12	

14	

bla
cks
ch
ol

bo
dy
tra
ck	

ca
nn
ea
l	

de
du
p	

fer
ret
	

flu
ida
nim

a

fre
qm
ine
	

str
ea
mc
lu

sw
ap
?o
ns
	

vip
s	

x2
64
	

fac
esi
m	

ray
tra
ce
	

Av
er
ag
e	
ca
p	
er
ro
r	 (
%
)	

Baseline	 feedback	 Proposed	 feedback	 Proposed	 projec?ve	 feedback	 Proposed	 model	 w/o	 meter	

Figure 4.4: Runtime and average power cap tracking accuracy of proposed techniques.

projective feedback technique outperforms the feedback technique in runtime with 0.90×

normalized runtime compared to 0.94×. This improvement is a result of the projective

feedback technique’s superior Pareto Frontier tracking ability.

The results in Figure 4.4.b also show that, as expected, the projective model w/o meter

technique delivers worse power capping accuracy, with an average error of 4.73%. The

runtime of this approach is comparable to the projective feedback technique with 0.91×

reduction over the baseline. Without using measurement feedback, the projective model

w/o meter technique has no way to correct for modeling errors. These errors can become

significant if the system differs between online testing and offline characterization, or if

the model poorly captures a particular workload. For instance, bodytrack shows larger

runtime and worse power capping accuracy compared to the other proposed techniques,

77

0 20 40 60 80 100

150

200
Po

w
er

 (W
)

Time (s)

Power Consumption

0 20 40 60 80 100
1.60
1.73
1.87
2.00
2.13
2.27

Fr
eq

ue
nc

y
(G

H
z)

Time (s)

Frequency of Operation

0 20 40 60 80 100
12
34
56
78

C

or
es

Time (s)

Number of Cores

0 20 40 60 80 100

150

200

Po
w

er
 (W

)

Time (s)

Power Consumption

0 20 40 60 80 100
1.60
1.73
1.87
2.00
2.13
2.27

Fr
eq

ue
nc

y
(G

H
z)

Time (s)

Frequency of Operation

0 20 40 60 80 100
12
34
56
78

C

or
es

Time (s)

Number of Cores

0 20 40 60 80 100

150

200

Po
w

er
 (W

)

Time (s)

Power Consumption

0 20 40 60 80 100
1.60
1.73
1.87
2.00
2.13
2.27

Fr
eq

ue
nc

y
(G

H
z)

Time (s)

Frequency of Operation

0 20 40 60 80 100
12
34
56
78

C

or
es

Time (s)

Number of Cores

0 20 40 60 80 100

150

200

Po
w

er
 (W

)

Time (s)

Power Consumption

0 20 40 60 80 100
1.60
1.73
1.87
2.00
2.13
2.27

Fr
eq

ue
nc

y
(G

H
z)

Time (s)

Frequency of Operation

0 20 40 60 80 100
12
34
56
78

C

or
es

Time (s)

Number of Cores

proposed feedback

proposed projective feedback proposed projective model without meter

baseline feedback

Figure 4.5: A detailed exploration into the first 100 seconds of the blackscholes
application, demonstrating the selected DVFS and thread packing settings together with
system power consumption.

indicating power over-estimation and under-estimation. Nevertheless, the reasonable ac-

curacy result indicates that this technique is a viable option for power capping without

power measurement equipment. Feedback-based techniques eliminate such deviations at

the expense of incorporating hardware power meters.

78

0 10 20 30 40 50 60 70 80 90 100
100

150

200

Po
w

er
 (W

)

Time (s)

ferret

0 10 20 30 40 50 60 70 80 90 100
100

150

200

Po
w

er
 (W

)

Time (s)

fluidanimate

0 10 20 30 40 50 60 70 80 90 100
100

150

200

Po
w

er
 (W

)

Time (s)

streamcluster

0 10 20 30 40 50 60 70 80 90 100
100

150

200

Po
w

er
 (W

)

Time (s)

swaptions

Figure 4.6: Measured power traces for ferret, fluidanimate, streamcluster,
swaptions) benchmarks as Pack & Cap adapts performance to constrain the power
consumption with the power cap (blue dotted line). The power cap is randomly modulated
every 10 seconds.

Figure 4.5 illustrates the measured power consumption and the control decisions (DVFS,

#cores) for the blackscholes benchmark over time. The four methods in order of pre-

sentation in Figure 4.5 have an average setting of (1.85 GHz, 6.0), (1.93 GHz, 6.3), (1.92

GHz, 6.6), and (1.92 GHz, 7.1) respectively. Note that the projective feedback technique

meets the power cap using a higher number of cores and lower average DVFS setting than

the feedback technique, which clearly indicates superior Pareto Frontier tracking. All of

the proposed techniques track the power cap tightly, eliminating power slack and reducing

runtime relative to the baseline feedback technique. The disadvantage of the projective

model w/o meter technique can be clearly seen in 60 - 70 second interval. The power

79

baseline proposed proposed projective proposed projective
feedback feedback feedback model without meter

Hardware requirements power meter power meter power meter performance counters
performance counters thermal sensors

thermal sensors
Offline characterization none simple intensive intensive
Power cap error 7.52% 3.51% 3.69% 4.73%
Application runtime 1.00× 0.94× 0.90× 0.91×

Table 4.1: Summary comparison among the proposed Pack & Cap methods and baseline
method.

projected by the model deviates from the measured power, leading to significant power

capping error. However, the measurement feedback in the projective feedback technique

successfully eliminates this modeling error.

To illustrate power track further, we also plot the power consumption of ferret,

fluidanimate,streamcluster, and swaptions) using the same sequence of

dynamic power caps as before in Figure 4.6. We use the projective feedback method

as the capping policy. Despite major differences among application characteristics, our

technique is able to track the dynamic power caps with high accuracy where the power is

within an average value of 4.7% of the cap.

We summarize the tradeoffs between our proposed techniques in Table 4.1. We have

also implemented our modeling without meter approach on a single-processor server and

compared it to our earlier capping work, which uses multinomial logistic regression (MLR)

for classification and does not use power meters [18]. Projective modeling without meter

shows a consistent improvement of 20% to 30% in runtime while still meeting the power

caps with the same accuracy as the MLR classifier.

80

4.5 Summary

Power capping is gaining importance as a method to manage energy costs and plan power

delivery in large computing clusters. In this chapter, we introduce thread reduction for

multithreaded workloads as a means of meeting low power budgets on a single server

node, thus increasing power allocation flexibility for datacenters composed of many server

nodes. Because thread reduction is not easily performed dynamically during runtime, we

propose thread packing, in which multi-threaded workloads are packed onto a variable

number of active cores, as a proxy for thread reduction. We show that thread reduc-

tion and thread packing have nearly identical power and performance characteristics. We

then introduce Pack & Cap, which makes optimal DVFS and thread packing control de-

cisions such that performance is maximized within a power budget. We illuminate power

and performance trade-offs between thread packing and DVFS and develop heuristics for

navigating Pareto efficient control settings. We implement Pack & Cap with several can-

didate power models, including a multi-gain feedback controller as well as open-loop and

closed-loop linear regression models. We compare these techniques to a baseline feed-

back technique and demonstrate up to 10% reduction in average runtime and up to 53%

improvement in average power cap accuracy. We also compare to our previous work in

[18], which uses a multinomial logistic regression (MLR) classifier, and show up to 30%

runtime improvement with similar power cap accuracy. Our next steps include extend-

ing the Pack & Cap methodology to heterogeneous architectures, and integrating it within

group power capping schemes in which sets of nodes are managed together under a com-

mon power constraint. We will also expand our techniques to differentiate between critical

and non-critical threads when performing thread packing (e.g., [8]).

81

Chapter 5

Thermal Management Techniques

5.1 Introduction

Temperature has become a true limiter to the performance and reliability of computing sys-

tems. The recent emergence of temperature as a fundamental bottleneck is a consequence

of continued ideal geometric scaling and suboptimal electric scaling. Less than ideal scal-

ing of supply voltages and threshold voltages have created a situation in which leakage and

dynamic power are not keeping pace with geometric scaling. Many-core architectures lead

to localized temperature hot spots that severely limit overall system performance, as the

speed of transistors and interconnects are negatively affected by temperature [11]. In addi-

tion, elevated temperatures cause circuits to deteriorate structurally. All circuit breakdown

phenomenon (e.g., electromigration, time dependent dielectric breakdown, and negative

bias temperature instability) are highly temperature dependent [89], and thermal cycles

create mechanical stresses due to expansions and contractions [11].

82

Every processor has a temperature limit above which the risk of physical damage in-

creases significantly. In response to thermal emergencies in which the processor die tem-

perature is in danger of exceeding this level, most processors will automatically shut down

for protection. In high performance processors, this temperature limit is the primary con-

straint on performance, and the performance potential of such processors increases with

the system cooling capacity [38]. In the past, cooling systems were designed such that a

processor could never reach the upper limit under normal operating conditions. As ther-

mal safety was effectively guaranteed, processors did not need to protect themselves. For

modern processors, traditional air-cooling systems are unable to handle the worst-case

power dissipation. With higher power densities and increasingly complex designs, it is no

longer cost effective to design advanced cooling systems to handle the worst-case thermal

emergency. Instead, modern cooling systems are designed to handle typical behavior, and

processors must transparently protect themselves against the rarely occurring emergency

by assessing the thermal risk throttling the performance accordingly.

Dynamic thermal management (DTM) techniques allow processors to assess thermal

risk and control temperature. The most well-known DTM control “knobs” include dy-

namic voltage frequency scaling (DVFS), clock gating, and thread migration/scheduling

[115, 44, 38, 25], which allow the processor to throttle performance levels and optimally

distribute workloads. In addition, DTM techniques include control algorithms that use

knowledge about the system state in order to manage the tradeoff between performance

and thermal risk. A typical control scheme has a series of thermal thresholds associ-

ated with progressively harsher performance penalties approaching the thermal emergency

level. The lowest threshold corresponds to a temperature set-point, or soft threshold, un-

der which the processor will try to maintain its temperature using fine-grained control

changes, such as selecting the optimal DVFS setting. Violations of the set-point incur only

incremental performance penalties. Each threshold above the set-point, or hard thresh-

83

Te
m
pe

ra
tu
re
	

SOFT	 limit	 (progressive	 DVFS)	

HARD	 limit	 (lowest	 frequency	
+	 clock	 ga?ng)	

EMERGENCY	 shutdown	
Te
m
pe

ra
tu
re
	

Time	

Time	

Reac?ve	 DTM	 Strategy	

Predic?ve	 DTM	 Strategy	

Frequency	 set	 to	 level	 that	 minimizes	
predicted	 temperature	 devia?on	
from	 set-‐point	

Progressive	 DVFS	 alone	 is	 not	
enough	 to	 prevent	 	 impending	
hard	 limit	 viola?on	

SOFT	 limit	 (progressive	 DVFS)	

HARD	 limit	 (lowest	 frequency	
+	 clock	 ga?ng)	

EMERGENCY	 shutdown	

Figure 5.1: Illustrations of the DTM control strategy employed by the Corei7 processor
compared to a predictive approach.

olds, is associated with progressively harsher performance penalties as the thermal risk

grows. For instance, many commercial processors use clock gating in addition to the low-

est DVFS setting when the temperature exceeds a hard limit, which translates into a very

harsh performance penalty. If the penalties associated with the hard temperature limits

fail to constrain the temperature, it eventually reaches the emergency threshold and the

system shuts down in response. This distance between the set-point (soft limit) and the

emergency level constitutes the thermal guard band. The upper portion of Figure 5.1 il-

lustrates a sample scheme employed by many popular commercial processors [7], where

the processor incurs harsh clock-gating penalties when the temperature exceeds the hard

limit.

84

The thermal response to control decisions, or control response, is highly workload de-

pendent. Workload characteristics are complex and impossible to completely anticipate,

and yet processors must guarantee thermal safety for the entire range behaviors. Com-

mercial processors typically manage this complexity with reactive feedback techniques.

If the temperature exceeds thermal thresholds, the system detects it with thermal sensors

and scales back chip power consumption using the available control knobs. In recent aca-

demic works, it is commonplace to augment thermal sensor information with a thermal

model that anticipates the thermal control response [11, 112, 102, 120, 65, 109, 25, 23,

63, 69, 117]. By increasing the certainty about the temperature behavior in response to

control decisions, thermal modeling increases the performance potential of a device in

two ways. First, for a fixed hard-limit violation rate, the more accurate thermal prediction

strategy can have a smaller thermal guard band, thus permitting higher performance levels.

Second, when holding the thermal guard band constant, a predictive strategy incurs fewer

hard threshold violations and associated performance penalties.

In order to realize this performance potential however, these thermal models must

be sensitive to differences in workload behavior; The thermal response to control de-

cisions changes significantly as a function of the executing workload(s). The discrete

time-invariant state-space model in Equation 2.1 is a standard model used for a variety

of runtime control objectives in the literature [11, 112, 102, 120, 65, 109]. The workload

thermal contribution is a function of the system control setting s as well as a vector of

workload metrics xm for core m. Capturing changes in heat source magnitude and loca-

tion as a function of workload characteristics is a difficult task. A detailed model requires

knowledge of the processor floorplan and numerous assumptions about the relationship

between workload behavior and functional unit power consumption, all of which must

be manually validated. In addition, it must handle the temperature dependence of leak-

age power consumption. Any manual validation performed for one chip design does not

85

extend to future designs in which the physical layout and functional unit power charac-

teristics change significantly. This work makes the following contributions in solving this

problem:

1. We introduce a self-contained, data-driven, and fully automated method for captur-

ing the workload dependence of ĝ(·, ·) in Equation 2.1 with appropriate granular-

ity using workload phase detection. We define workload phases as a function of

processor performance counters, which measure architectural events (instructions

executed, cace-misses, branch mis-predictions, etc.). These workload phases are

globally defined in that they are not associated with any particular workload or mix

of workloads. Using thermal sensor and performance counter measurements across

a range of control settings and workload behaviors, we use classification techniques

from the field of machine learning to automatically discriminate different control

responses and associate them with workload behaviors. By learning the thermal re-

sponse for each workload phase offline, we reduce the runtime overhead to a handful

of linear combination calculations.

2. We validate our technique entirely on a real quad-core Intel Core i7 940 based work-

station running heterogenous workload mixes selected from the SPEC CPU2006

benchmark suite. Our implementation uses real temperature values measured by

per-core embedded sensors, and manages the workstation thermal behavior through

DVFS control.

3. While our model is viable for many of the control objectives in previous works,

we demonstrate the utility of our thermal prediction methodology in a proactive

DVFS control scheme that is capable of maximizing performance within a tem-

perature constraint. It is worth noting that we do not consider the thread packing

control knob introduced in Chapter 4 for DTM because the temperature constraint

does not changed as a part of a larger control objective, as is the case with server

86

power capping. A higher temperature threshold is associated with a higher power

consumption, and we show in our Pareto frontier characterization in Section 4.2

that thread packing is only advantageous for low power caps. As a result, it is

unlikely that a thermal threshold would ever be low enough to necessitate thread

packing. In comparison to our previous work on workload phases [22], we show a

0.99% increase in instruction throughput and a 60% reduction in thermal violations.

When we compare our thermal phase classification techniques to the sequential-

probability-ratio-tests (SPRT) used for switching thermal models in previous works

[23], we demonstrate a 2.9% improvement in instruction throughput and a 97% re-

duction in thermal violations. In comparison to state-of-the-art model predictive

control (MPC) techniques [5, 6], we demonstrate a 5.8% improvement in instruc-

tion throughput with the same number of thermal violations. Finally, we compare

to a simple proportional-integral (PI) technique and demonstrate a 3.9% throughput

improvement with a 94% reduction in thermal violations.

The rest of this chapter is organized as follows. We provide an overview of our

methodology in Section 5.2. We go on to describe our phase classification approaches

in Section 5.3, and in Section 5.4 we describe our predictive DVFS control strategy. We

provide a comprehensive set of experimental results on a real quad-core system in Section

5.5. Finally, Section 5.6 summarizes the main conclusions drawn from this work.

5.2 Methodology

At the highest level our thermal prediction and control strategy divides between offline

analysis and runtime control. We avoid the computational cost of online learning in pre-

vious works [23, 118] by learning our models offline with training data that spans a large

87

range of workload behaviors. We then validate our models at runtime using workload

mixtures unseen in the training data. During offline analysis, the complex relationships

between die temperatures, workload behaviors, and processor frequency are learned using

an extensive set of training samples. The training data is comprised of per-core tempera-

ture and performance counter measurements taken across a range of workloads, processor

utilization levels, and DVFS settings. Taken as a whole, the performance counters ex-

pose the architectural behaviors associated with workload phases, which we define in this

context as periods of workload execution that demonstrate a consistent thermal control re-

sponse. In order to define phases, we develop a phase classifier that estimates the likeliest

phase as a function of performance counter inputs. Each phase is then associated with a

thermal control model that predicts each core’s thermal response to DVFS control. During

runtime, the phase classifier identifies the current workload phase for each core, and the

corresponding thermal model is used by the DVFS controller. By having advanced knowl-

edge of the thermal trajectory, the controller is better able to maximize performance and

minimize thermal risk. We explore several methods for phase classification, which we de-

tail in Section 5.3. While the offline analysis is computationally intensive and requires an

extensive set of training samples, runtime application is a simple model query and incurs

minimal performance overhead.

The overall goal is to develop a modeling technique that captures the complex relation-

ship between chip temperature and the processor frequency as a function of the workload

behavior. This workload dependence is nontrivial, as different workload behaviors pro-

duce different spatial distributions of power at the microarchitectural level, even if the total

power dissipation is the same. For instance, a workload that exercises the floating point

unit or branch prediction unit intensely will register higher temperatures than a workload

that exercises the caches, as the power dissipation is concentrated in a much smaller area.

In addition, the relationship between the maximum temperature and architectural behavior

88

can change depending on the location of the maximum temperature hot spot. If the largest

hot spot is located on the floating point unit, then the maximum die temperature will be

a strong function of the number of floating point operations. However, if the hot spot

is elsewhere on the chip, then the maximum temperature could be entirely independent

of floating point activity. The situation is further complicated by the fact that dynamic

power dissipation is somewhere between being quadratically and cubically dependent on

the processor frequency, depending on how the voltage scales, and by the leakage power

dependence on temperature.

There are two possible approaches for modeling this complexity: develop a single

complex model that is workload dependent and encapsulates nonlinearities, or develop a

set of simple models and select among them using the current workload phase and control

setting. This work takes the latter approach for the following reasons. A single complex

thermal model requires numerous assumptions about the relationship between temper-

ature and workload, which in turn requires extensive manual validation effort for each

chip design. The model designer must choose which workload metrics are most relevant

to temperature by developing a power model and a thermal model. Fine-grained power

models are difficult to verify because chips are not instrumented to measure power at

the microarchitectural level. Modeling heat flow with thermal models require extensive

floorplan knowledge and is strongly dependent on the chip-cooling apparatus. Each chip

floorplan can differ dramatically in terms of spatial power distribution and temperature

sensor layout, so this process must be repeated for each new design. Many previous works

circumvent this complexity by using simplified empirical formulas for power consumption

as a function of cycles-per-instruction (CPI), frequency, and voltage [5, 6]. Our experi-

ments in Section 5.5 show that the over-generality of these formulas can introduce enough

estimation error to offset the benefits of predictive control.

89

As stated in Section 5.1, we learn ĝ(·, ·) in Equation 2.1 for each workload phase and

DVFS setting. The values of amn and aidlem are learned by observing the response of idle

cores while running thermally aggressive workloads on adjacent cores. By assuming that

the value of ĝ(·, ·) is zero for idle cores, the remaining model parameters are estimated

using least-squares regression on the training data. Because these values reflect heat con-

ductions through static physical material, we allow them to remain constant for all phases

and settings. We estimate ĝ(·, ·) for each phase and DVFS setting to approximate the

training data observations gm[i] defined in Equation 5.1.

gm[i] = Tm[i]−
N∑
n=1

amnTn[i− 1]− aidlem (5.1)

A detailed description of our phase classification techniques is given in Section 5.3.

At the highest level, the phase classifier takes per-core performance counter values and

estimates the probability that a sample is in a particular phase. These metrics span a wide

range of architectural behavior. The classifier input values are normalized to the number

of core cycles in order to give consistent readings across all DVFS settings and utilization

levels. While these inputs capture a wide range of complex workload behavior, many

exhibit high correlations (e.g., cache read performance counters are correlated with the

retired instructions performance counter). Thus, in order to reduce the number of classifier

parameters, we use principal component analysis (PCA) as a method to reduce the input

dimensionality. PCA transforms a number of correlated variables into a smaller number

of uncorrelated variables, or principal components, while retaining most of the original

information [54]. Before applying PCA, we subtract the mean values and normalize the

inputs in order to account for the different units of measurement. The input to the phase

classifier in then the first two principal components of the performance counter values.

90

5.3 Workload Phase Classification

It is well established that workloads execute in consistent and repetitive patterns [55, 103,

51, 15], and this fact is reflected in all manifestations of workload behavior (computational

operations, memory operations, power, temperature etc.). These behaviors can change in-

stantaneously and dramatically within a workload or across a mixture of workloads. Thus,

the average behavior of an entire workload gives an incomplete picture. For instance, as

a workload enters a new control path in its execution, it can go from being CPU-bound to

being memory-bound, which has potentially large implications for control. Many state-

of-the-art control techniques leverage these fine-grained transient variations by performing

workload phase classification.

For control purposes, a workload phase is defined as a period of workload execu-

tion that exhibits a consistent control response that is distinguishable from other phases.

Workload phase detection amounts to a classification problem in which phase probabili-

ties/assignments are calculated as a function of the classifier inputs for a period of work-

load execution. The controller then uses the control model prediction associated with the

likeliest phase or a weighted average of the model predictions to perform control.

The phase classifier input vector can be defined in a number of ways, and does not need

to have the same inputs as the control models. A number of previous works use traversal

counts on basic block vectors (BBV), which define regions of code with a single entry

and exit point [103, 51]. Other works use metrics derived from performance counters

such as IPC and cache-misses per cycle [51, 22]. We define the phase classifier inputs

using performance counters for three reasons. First, they are readily available on most

commercial processors, making our approaches widely applicable. Second, they can be

measured in real-time with minimal overhead. And finally, unlike BBVs, they capture

workload behavior without prior knowledge about the workload structure.

91

We explore two techniques for learning phase definitions given a set of training data.

The first technique, K-means clustering, is an unsupervised classifier that that we ex-

plored in our previous work [22]. The K-means algorithm defines a set of K phases by

performing clustering on the classifier inputs. The main drawback of using the unsuper-

visedK-means approach is that there is no guarantee that the control response is consistent

within each phase. The tasks of defining workload phases and learning the associated con-

trol models are mutually dependent. The subset of the training data that is associated with

each phase affects the model parameter estimates, while the choice of model parameters

determines the phase boundaries. We develop a more sophisticated approach that handles

this mutual dependence by defining phase probabilities for each sample as a function of

the phase inputs. We introduce an expectation maximization (EM) algorithm that itera-

tively alternates between calculating phase probabilities and model estimation such that

the log-likelihood of the training data is guaranteed to increase. This approach is initial-

ized with and iteratively improves upon the K-means clustering phase assignments.

5.3.1 Phase Classification Using K-Means Clustering

A standard technique for defining workload phases in the literature is K-means cluster-

ing [103]. In our previous work [22], we extend workload phase classification for the

purposes of thermal control by associating each phase with a control model predicting

temperature as a function of the DVFS setting. The inputs to the K-means classifier are

the first two principal components of the performance counter metrics. During runtime,

the classifier chooses the likeliest control model by associating the incoming performance

counter measurements with one ofK predefined clusters. The associated thermal model is

then used to guide control decisions. The intuition behind this approach is that workload

intervals showing similar performance counter values are likely to have similar control

92

responses. Likewise, workload intervals with drastically different performance counter

values are likely to have distinct control responses.

The optimal cluster definitions are defined offline using a set of training data gathered

across a range of workload behaviors. Each of the M samples in our training data is as-

sociated with a d-dimensional vector xm[i] of performance counters, which are the phase

classifier input for core m at time instant i. Each phase k is defined with a d-dimensional

centroid, and each sample xm[i] belongs in the phase associated with the closest cen-

troid (Euclidean distance). The K-means clustering algorithm iteratively seeks a set of

K centroids that minimizes the average distance between each point and the closest cen-

troid. Determining the optimal centroid locations is an NP-hard problem; therefore, all

algorithm implementations are heuristic and are not guaranteed to converge to a global

optimum. The K-means algorithm alternates between an assignment step where each ob-

servation is assigned to the closest cluster centroid, and an update step where the cluster

centroids are updated based on the latest cluster assignments [66]. An average value is

calculated for gm[i] for each phase and DVFS setting combination. At runtime, we select

the average value corresponding to the current phase and future setting to be the estimate

for ĝ(·, ·).

5.3.2 Phase Classification Using Multinomial Logistic Regression (MLR)

This section develops a supervised expectation-maximization (EM) template that improves

upon the K-means approach. The tasks of defining workload phases and learning the as-

sociated control models are mutually dependent. The subset of the training data that is

associated with each phase affects the model parameter estimates, while the choice of

model parameters determines the phase boundaries. The unsupervisedK-means approach

estimates the phase assignments within the training data by clustering the classifier in-

93

puts, and then calculating the average value of gm[i] for each setting and phase. Defining

the workload phases independently of the control models can lead to suboptimal pre-

diction accuracy, as there is no guarantee that each phase will exhibit consistent thermal

behavior. To handle the mutual dependence, we develop a more sophisticated expectation-

maximization (EM) approach that is initialized with the K-means output and iteratively

improves the phase definitions and model estimates. Given a set of training data and a

set of assumptions about the control model, including the number of distinct models to be

used, the algorithm is guaranteed to increase the log-likelihood of the training data with

each iteration.

The main drawback of K-means classification is that its learning objective is not a

function of the desired phase assignments. It merely performs clustering as a function of

the inputs. Thus, we redefine the phase classifier with a multinomial logistic function in

Equation 5.2, which maps a vector of K continuous values to a set of K discrete prob-

abilities that sum to 1. Each vector value then parameterized with the dot product of a

d-dimensional set of logistic model weights wk, which are learned as a function of the

desired phase probabilities, and the phase classifier inputs xm[i].

πmki =
exp

(
wk · xm[i]

)
∑K

k′=1 exp
(
wk′ · xm[i]

) (5.2)

The variable πmki denotes the probability that sample i for corem is in phase k given input

xm[i]. In Equation 5.3, we define φmki to be the likelihood of observing output gm[i] with

setting s in phase k given the expected value µsk and error variance σ2
sk, both of which are

model parameters that must be estimated.

94

Expected	
Phases	

Parameter	
Es/ma/on	

E-‐step	 M-‐step	

Expecta/on-‐Maximiza/on	

wk	 	 	 μsk,	 σsk2	

E[Z]	

Figure 5.2: Illustration of the EM approach.

φmki = N
(
gm[i] | µsk, σ2

sk

)
(5.3)

We also introduce a binary variable zmki ∈ {0, 1}, which indicates whether sample i

for core m is in phase k. If the “true” phase assignments were known, then the logistic

and control model weights could be learned by directly maximizing the training data log-

likelihood,

L(Z) = log
N∏
m=1

K∏
k=1

M∏
i=1

(
πmki φmki

)zmki

, (5.4)

where Z is the concatenation of zmki for all values ofm, k, and i. However, with the phase

assignments unknown, we make an initial guess for E[Z] using the K-means output. The

logistic weights wk and values for µsk and σsk are then estimated such that L(E[Z]) is

maximized. The value of E[Z] can then be recomputed given the latest model estimates.

With each iteration, the observed data log-likelihood is guaranteed to increase, improving

the model to fit to the training data. The algorithm iterates between the maximization

and expectation step in this manner, depicted in Figure 5.2, until L(Z) converges within a

predefined tolerance. Each EM iteration is summarized with the following:

95

Maximization Step

[
wk, µsk, σ2

sk

]
∀s,k

= argmaxL
(
E[Z]

)
(5.5)

Expectation Step

E
[
zmki

]
=

πmki φmki
K∑
k′=1

πmk′i φmk′i

(5.6)

During runtime, the workload thermal contribution ĝ(·, ·) is calculated as a weighted sum

of average observed values for gm[i] in the training data, or

ĝ
(
s, xm[i]

)
=

K∑
k=1

πmki µsk. (5.7)

By defining phase probabilities instead of hard assignments, we are naturally able to in-

terpolate between thermal model estimates when the workload phase is uncertain. For

example, if each of the K workload phases determined to be equiprobable for phase input

xm[i], then the average value across all phases will be used for prediction. This is a stark

improvement over the hard K-means, which does not allow for uncertainty in phase de-

tection, and may produce unstable predictions if a workload straddles a phase boundary.

The interface between our offline and runtime approaches is illustrated in Figure 5.3. The

phase classifier input means, magnitudes, and principal component loadings, as well as

the phase definitions and thermal models learned using EM, are conveyed to the runtime

DTM controller using lookup tables.

96

Offline	 Analysis	 Run.me	 Control	

PCA	

Phase	 Iden.fica.on	
&	 Model	 Query	

Mean	 Subtrac.on	 &	
Normaliza.on	

V-‐F	 Control	
Decision	

look-‐up	 	
tables	

Mean	 Subtrac.on	 &	
Normaliza.on	

PCA	

Expected	
Phases	

Parameter	
Es.ma.on	

E-‐step	 M-‐step	

Expecta.on-‐Maximiza.on	

DVFS	 Control	

Means/Magnitudes	

Component	 Loadings	

Phase	 Defini.ons	

Thermal	 Models	

Thermal	 Predic.ons	 	

Model	 Inputs	 System	

Set-‐Point	

Phase	 Inputs	 Phase	 Inputs	 Model	 Inputs	

Transformed	 Inputs	 Transformed	 Inputs	

Figure 5.3: Lookup table interface between our offline and runtime DTM methodologies.

5.4 Runtime Control

Periodically during runtime, the DVFS control unit makes a control decision as function

of the projected temperature. Thermal predictions are based on performance counter and

temperature data accumulated over the previous control interval. Before phase identifi-

cation, the phase inputs are transformed as described in Section 5.2. The input averages,

normalization constants, and principal component loadings are conveyed in the lookup ta-

bles. Once transformed, the first two principal components are used in conjunction with

the MLR weights for phase identification according to Equation 5.2, which estimates the

probability of the being in a particular phase. The thermal model associated with the like-

liest workload phase is subsequently used to make thermal predictions as a function of

each potential DVFS control decision.

97

The DVFS control technique uses these thermal predictions in order to maximize per-

formance within a given thermal threshold. The thermal model associated with the current

workload phase k is queried for predictions as a function of each DVFS setting using the

state-space model in Equation 2.1 and the workload thermal contribution ĝ(·, ·) defined in

Equation 5.7. The setting with the maximum frequency such that the maximum projected

core temperature is below the temperature set-point is selected by the DVFS controller.

Given frequency f which is a function of the current setting DVFS setting s, this can be

expressed as

ssel = argmax
s

f(s) : max
m

(Tm[i+ 1]) < Tset. (5.8)

Because all model learning is performed offline, online prediction incurs negligible over-

head. Each control decision incurs 2-4 ms of overhead, which represents a performance

overhead of 0.2 − 0.4% assuming a control activation period of 1 seconds. We choose a

1 second control activation period to match the minimum sampling period of the thermal

sensing hardware on our test platform. Because our model is not a linear function of pro-

cessor frequency, it is incompatible with the quadratic model predictive controller (MPC)

techniques used in previous works on thermal control. However, our results in Section

5.5 show by combining the superior modeling accuracy of our phase-aware approaches

with a soft/hard threshold control scheme, we are able to significantly reduce hard limit

violations and improve control relative to the MPC approach.

98

5.5 Experiment Results

This section provides the details of the experimental setup, the results of our workload

phase thermal characterization techniques, and the results of our control experiments. Our

experimental setup consists of the following:

• All collection and control experiments are performed on an Intel Core i7 940 45nm

quad-core processor, running the 2.6.10.8 Linux kernel OS.

• Performance counter data are collected using the pfmon (version 3.9) utility. We poll

performance counters for each core at 1 second intervals. The phase inputs xmi are

identified in Figure 5.6.

• Each core on the Core-i7 processor is equipped with a digital thermal sensor, measur-

ing the maximum junction temperature. The pfmon tool is interfaced with the Linux

lm-sensors library to report these per-core temperatures at 1 second intervals.

• The Core-i7 processor V-F settings are manipulated with the cpufreq utility, and the

available frequency settings are: {1.60 GHz, 1.73 GHz, 1.87 GHz, 2.00 GHz, 2.13

GHz, 2.27 GHz, 2.40 GHz, 2.53 GHz, 2.67 GHz}. The voltages associated with each

frequency are set automatically in hardware. As is the case with most commercial

multi-core processors, our test platform lacks per-core frequency domains. Each DVFS

control decision is applied globally to all cores.

• To implement data collection and runtime control, we interface our data measurement

and control apparatus to a MATLAB module compiled as a C-shared library. This mod-

ule is configured to read lookup tables generated offline, buffer incoming performance

counter and temperature data, and perform control every 1 second. We choose 1 second

as our control activation period because this is the minimum update time for the thermal

99

sensing hardware on our test platform. The runtime overhead for each activation of the

control algorithm during runtime is in the range of 2-4 ms. While this runtime over-

head is 0.2-0.4 % of the control activation period, it is worth noting that because our

control algorithm is implemented in MATLAB scripting and is run using the Java Vir-

tual Machine (JVM), this overhead could be reduced even further if implemented with

optimized C code. In general, we observe that for a particular workload, the duration

of each workload phase is on the order of 10 seconds. The storage requirements of our

lookup tables are minimal and include the following: 36 µsk and σsk values correspond-

ing to every frequency and workload phase combination, 20 values corresponding to

amn and aidlem for each core, and 12 values corresponding to the MLR classifier weights

xmi for each workload phase and principal component plus a constant term.

5.5.1 Offline Characterization

For offline characterization, we build a set of training data using thermally “interesting”

workloads from the SPEC CPU2006 benchmark suite (astar, bzip2, gcc, calculix,

dealII, and tonto). While the majority of the SPEC CPU2006 workloads exhibit rela-

tively flat thermal profiles during execution, these workloads demonstrate significant tem-

perature fluctuations even with a static DVFS setting. The dynamic thermal behavior of

these workloads make them ideal for training data. Each workload is executed for 15 min-

utes with 1 to 4 instances in order to expose the thermal response to changes in processor

utilization. At the same time, we systematically throttle the DVFS setting every 5 seconds

such that every transition is exercised. Each training data sample includes per-core values

for the 12 performance counters listed in Figure 5.6, as well as per-core temperature mea-

surements and the current processor frequency. By applying PCA, we are able to reduce

this set of 12 raw phase classifier inputs to 2 principal components while retaining the

majority of observed variance.

100

0 2 4 6 8 10
2

2.5

3

3.5

Number of Phases (K)

E
st

im
at

io
n

E
rr

or
 (

o C
)

MLR
KMEANS

Figure 5.4: The estimation accuracy for the proposed K-means and MLR approaches as
a function of the number of phases K. Reported accuracy is 3σ, where σ is the error
standard deviation.

The appropriate value for the number of phases K is determined experimentally us-

ing our training data. To prevent “overfitting” , we randomly select 10000 samples from

our training data set of 21480 points to train our thermal models. We then evaluate the

prediction accuracy on the remaining data points. By incrementally increasing K, we are

able to determine the optimal number of phases beyond which there is no decrease in ther-

mal prediction accuracy. The results in Figure 5.4 show that 4 workload phases accurately

capture the salient workload dependencies across all DVFS settings for bothK-means and

MLR phase classification. The reported accuracy is reported as 3σ, where σ is the error

standard deviation. Given that the errors are normally distributed, this metric indicates the

error magnitude that < 0.1% of the training samples violate. Figure 5.4 shows that the

MLR approach yields superior estimation accuracy to K-means for all values of K.

Figure 5.5 shows the phase boundaries that results from the 4-phase MLR approach in

principal component space. The black lines indicate the projection of each performance

101

Phase	 1	

Phase	 2	

Phase	 3	

Phase	 4	

Figure 5.5: Phase boundaries in principal
component space. The number labels corre-
spond to the performance counters listed in
Figure 5.6.

Description
1 Branch prediction misses
2 Conditional branch instructions
3 Resource stalls
4 Floating-point operations
5 L3-cache misses
6 L2-cache misses
7 Load locks
8 L1-data-cache misses
9 L1-data-cache reads
10 L1-instruction-cache misses
11 L1-instruction-cache reads
12 Micro-operations retired

Figure 5.6: List of 12 performance counters
used for phase classification.

counter metric in Figure 5.6 onto the first 2 principal components. Figure 5.7 illustrates

the per-core steady-state magnitudes associated with each phase on our quad-core test

platform. It is assumed for illustration purposes that all cores are in the same workload

phase. Comparing Figures 5.5 and 5.7 reveals that phase 1, which is the most thermally

aggressive phase, corresponds to high instruction throughput with low data cache miss

rates. As the the memory activity (memory-boundedness) increases in phases 2 and 3, the

chip temperature becomes less sensitive to processor frequency. Phase 4 represents the

idle-core temperatures in which all performance counter metrics are low.

We break down the estimation error for each training workload and utilization level

in Figures 5.8 and 5.9 respectively. We compare our proposed phase-aware MLR and

K-means modeling techniques to three alternative approaches: linear regression (LR), 1-

Phase, and the MPC power modeling technique in [5, 6]. In the LR approach, we model

the power consumption in the state-space model as a weighted combination of the the 12

performance counter metrics in Figure 5.6, where a set of weights are learned for each

102

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
35

40

45

50

55

60

65

70

75

80

Frequency (GHz)

P
er

−
C

or
e

S
te

ad
y

S
ta

te
 T

em
pe

ra
tu

re
 (o C

)

Phase 1
Phase 2
Phase 3
Phase 4

Figure 5.7: Per-core steady-state temperatures for each phase as a function of processor
frequency.

DVFS setting. Because the workload phase approach implicitly captures nonlinearities,

we are able to show superior prediction accuracy relative to a single linear regression

model. The 1-Phase approach is our proposed MLR approach but with a single work-

load phase. This comparison quantifies the benefit of using workload phases. The MPC

approach models the power consumption according to Equation 2.2, which is a verified

empirical formula for power estimation that appears in previous works [5, 6]. Using CPU

power measurements in our training data, we estimate the parameters of this model us-

ing nonlinear regression. Despite being able to estimate the total power consumption

with an average absolute error of 0.62 W, this power model leads to significant estima-

tion error when performing thermal prediction with the state-space model. In addition to

giving superior temperature accuracy, our phase-aware approaches do not require inter-

mediate power measurements in order to learn a thermal model. Our automated approach

to linearizing workload dependence can be performed on any system equipped with ther-

103

0	

1	

2	

3	

4	

5	

6	

7	

8	

astar	 gcc	 tonto	 calculix	 bzip2	 dealII	 Average	

	 E
s$
m
a$

on
	 E
rr
or
	 (°
C)
	

MLR	 (proposed)	 KMEANS	 (Cochran	 and	 Reda	 2010)	 LR	 1-‐Phase	 MPC	 (Bartolini	 et.	 al	 2012)	

Figure 5.8: Estimation error (3σ) breakdown for each training workload.

0	

1	

2	

3	

4	

5	

6	

25%	 50%	 75%	 100%	 Average	

Es
#
m
a#

on
	 E
rr
or
	 (°
C)
	

MLR	 (proposed)	 KMEANS	 (Cochran	 and	 Reda	 2010)	 LR	 1-‐Phase	 MPC	 (Bartolini	 et.	 al	 2012)	

Figure 5.9: Estimation error (3σ) as a function of processor utilization.

mal sensors and performance counters. The results show accuracy improvement for the

proposed approaches across the board, with a maximum 59% improvement in prediction

accuracy relative to the MPC method.

5.5.2 Runtime Control

To verify that prediction accuracy translates to improved thermal control, we perform a

control experiment in which we integrate the proposed technique into the DVFS control

of a Core-i7 quad-core processor. We quantify our approach’s ability to maximize perfor-

104

mance within a temperature constraint for a variety of heterogenous workload combina-

tions. We evaluate each technique use a sequence of 15 combinations of between 1 and

4 workloads selected from the entire suite of SPEC CPU2006 workloads. In doing this,

we evaluate each modeling technique for a range of workload behaviors and utilization

levels. We compare our proposed MLR approach and previous K-means approach [22] to

the following alternatives:

• 1-Phase: This is the proposed approach but with a single workload phase. This

corresponds to a single estimate for ĝ(·, ·) for each DVFS setting. Comparison to

this approach quantifies the benefit of adding workload phases.

• SPRT: We use the set of models learned using MLR but use the SPRT phase switch-

ing technique [25, 23].

• MPC: In this approach, we use the power model described in Section 5.5.1 [5, 6].

Because this model is linear with frequency, we can incorporate it into a quadratic

model prediction control (MPC) objective in place of the objective described in

Section 5.4. With each control interval, the MPC controller predicts a sequence of

DVFS settings that minimizes a quadratic cost function while maintaing the temper-

ature within the thermal set-point. The cost function is the squared deviation from

the hard threshold with a prediction horizon of 3 control intervals (3 seconds).

• PI: We compare all modeling techniques to a simple proportional-integral PI feed-

back technique inspired by the reactive techniques used in commercial processors

[7]. We calibrate the proportional and integral coefficients to the temperature-

frequency gain observed for full processor utilization (Kp = 0.12 GHz/◦C, Ki =

0.04 GHz/◦C). The integral term is the sum of the soft-threshold deviations from

the previous 3 control intervals.

105

proposed previous
MLR KMEANS 1-Phase SPRT MPC PI

Violations 2 5 8 76 2 33
Average magnitude (◦C) 1.00 1.00 1.25 1.62 2.00 2.12
Temperature variance (◦C2) 1.57 1.24 2.42 7.46 4.42 5.37
Instruction throughput (109 / sec) 6.06 6.00 5.88 5.89 5.73 5.83

Table 5.1: Comparison of thermal violations and performance of proposed
phase-aware techniques to previous techniques.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1.60	
GHz	

1.73	
GHz	

1.87	
GHz	

2.00	
GHz	

2.13	
GHz	

2.27	
GHz	

2.40	
GHz	

2.53	
GHz	

2.67	
GHz	

%
	 o
f	 T

im
e	

MLR	 (proposed)	 MPC	 PI	

Figure 5.10: Frequency histogram comparison for MLR, MPC, and PI controllers.

For each approach, we use an aggressive hard thermal threshold of 55◦C and we re-

peat each experiment for integer soft threshold values within the range of 50-55◦C. In

Table 5.1, we report results for the proposed MLR method with a soft threshold of 50◦C.

In order to compare to MLR, for each alternate proposed and previous approach we re-

port results for the soft threshold that produces the smallest number of thermal violations

greater than or equal to the number of violations produced by MLR at 50◦C. The results

show that the superior workload dependence modeling for the MLR approach allows it

to achieve fewer thermal violations and higher instruction for time intervals in which the

temperature constraint is met. We also evaluate the temperature standard deviation and

show that the proposed MLR approach significantly reduce thermal oscillations and asso-

106

0 20 40 60 80 100 120 140 160
45

50

55

60

Time (s)

T
em

pe
ra

tu
re

 (o C
)

0 20 40 60 80 100 120 140 160

1.6
1.8

2
2.2
2.4
2.6

Time (s)

F
re

qu
en

cy
 (

G
H

z)

MLR (proposed)
MPC
PI

Figure 5.11: Comparison of thermal traces for MLR, MPC, and PI controller for 150
second interval.

ciated mechanical stresses, which translates into improved reliability. The MPC control

objective, which uses the CPI power model, overestimates the temperature response to

changes in DVFS setting. The decrease in prediction accuracy is not enough to offset the

benefits of the quadratic MPC objective, and leads to overly cautious DVFS control. The

MLR approach yields a significant 5.8% improvement in instruction throughput. The PI

controller, while slightly less pessimistic, is calibrated to the case of maximum utiliza-

tion. As a a result, it too overestimates the temperature response and yields suboptimal

frequency selection during periods of low utilization. The MLR approach improves the

performance 3.9% over the PI controller. While MLR and K-means produce comparable

results, the improved accuracy of the MLR approach yields slightly fewer violations and

higher performance.

In Figure 5.10, we show the a comparison of frequency selections for the MLR, MPC,

and PI approaches. The results show the the overly sensitive MPC and PI approaches

are forced to use the lowest frequency for a larger percentage of the time, whereas the

107

MLR method is able to select higher frequencies while still meeting the thermal constraint.

We illustrate this further with the temperature traces in Figure 5.11. The MPC controller

consistently maintains a lower average temperature, while the PI controller produces larger

thermal violations but lower average temperature.

5.6 Summary

In this chapter, we devise and verify a thermal prediction strategy for use in DVFS ther-

mal control. We capture complex workload dependencies and nonlinearities using a set of

simple thermal models associated with workload phases. Our approach leverages the fact

that workloads within a local window of performance counter values have similar thermal

contributions. We develop classifiers that partition the space of workload behaviors into

phases, and we calculate a distinct value of ĝ(·, ·) for each DVFS setting within each parti-

tion. We derive a novel application of the expectation-maximization (EM) algorithm using

multinomial logistic regression (MLR) to simultaneously learn workload phases and the

associated thermal models. By estimating average power consumption independently for

each DVFS setting and workload phase, we implicitly capture nonlinearities. The overall

model complexity is controlled by the number of phases K, the optimal value for which is

determined experimentally. We use training data gathered from an extensive experimental

setup on a quad-core system to estimate phases and thermal models. We demonstrate that

our workload phase approach provides superior prediction accuracy compared the models

used in previous works. We then show that this improved prediction accuracy translates

to superior DVFS thermal control by reducing thermal violations and increasing perfor-

mance. In comparison to state-of-the-art model predictive control (MPC) techniques in

previous works on thermal control, we demonstrate a 12.4% improvement in instruction

throughput with a negligible increase in the number of thermal violations. In comparison

to simple proportional-integral (PI) feedback control techniques, we improve instruction

throughput by 8.4% with an 80% reduction in the number of thermal violations.

108

Chapter 6

Conclusions

In this thesis, we sought to address two primary questions for adaptive workload-sensitive

DPM and DTM.

1. How can the processor hardware supply accurate power and thermal information to

DPM and DTM controllers using a limited number of sensors?

2. How can a device perform adaptive workload-sensitive DPM and DTM using the

measurements available at runtime?

We now assess the contributions of this thesis in answering these questions and discuss

future research extensions.

In Chapter 3, we develop infrastructure for measuring power consumption and die

temperatures of real processors with a state-of-the-art thermal infrared camera. Based on

the characterization results from the camera, we propose a formulation for thermal sensor

allocation to minimize the thermal tracking error during runtime. We prove that our formu-

lation leads to a NP-hard problem and accordingly we propose a heuristic solution method

109

that is composed of constructive and iterative phases. The experimental results show that

our method significantly improves upon methods in the literature. To circumvent limita-

tions on thermal sensor placement, we proposed two soft sensing techniques that combine

the measurements of hard sensors to estimate the temperatures at the ideal locations. Our

first technique leverages a priori design-time characterization data to seek customized

weighted combinations to estimate the temperatures at any desired locations. Our second

technique uses spectral signal reconstruction techniques based on Fourier analysis for in-

terpolating die temperatures from a limited number of thermal sensors. This soft-sensing

technique is designed for cases in which there is no a priori thermal characterization either

through simulation or infrared camera. We show that both soft-sensing techniques signif-

icantly improve thermal estimation accuracy. In the future, the techniques laid out in this

chapter will be used to characterize and deal with the additional challenges of many-core

architectures.

In Chapter 4, we introduce thread reduction for multithreaded workloads as a means of

meeting low power budgets on a single server node, thus increasing power allocation flex-

ibility for datacenters composed of many server nodes. We then propose thread packing,

in which multi-threaded workloads are packed onto a variable number of active cores, as

a flexible proxy for thread reduction. We then devise a novel DPM method, Pack & Cap,

which makes optimal DVFS and thread packing control decisions such that performance

is maximized within a power budget. We illuminate power and performance tradeoffs

between thread packing and DVFS and develop heuristics for navigating Pareto efficient

control settings. We implement Pack & Cap with several candidate power models, includ-

ing a multi-gain feedback controller as well as open-loop and closed-loop linear regression

models. We compare these techniques to a baseline feedback technique and demonstrate

up to 10% reduction in average runtime and up to 53% improvement in average power

cap accuracy. We also compare to our previous work in [18], which uses a multinomial

110

logistic regression (MLR) classifier, and show up to 30% runtime improvement with sim-

ilar power cap accuracy. In the future research, this work on individual server node power

capping can be integrated into a group power capping scheme in which sets of nodes are

managed together under a common power constraint. In order for this work to be widely

applicable, it will need to be extended to heterogenous architectures as well. And finally,

this methodology can be extended to differentiate between critical and non-critical threads

and compared to previous works which do the same [14, 8].

In Chapter 5, we introduce a novel technique for estimating the temperature control re-

sponse that uses workload phases. We use classification techniques from machine learning

to classify workload execution intervals into phases as a function of performance counter

measurements. This method addresses the inherent nonlinearities of workload-sensitive

temperature modeling on multi-core systems, and we demonstrate improved accuracy over

a linear regression model. Although this model can be applied to many of the control ob-

jectives in the literature, we demonstrate this technique in the case of proactive DVFS

thermal control. We compare to state-of-the-art model predictive control (MPC) control

techniques in the literature and show 5.8% improvement in instruction throughput with

the same number of thermal violations. When we compare our thermal phase classifica-

tion techniques to the sequential-probability-ratio-tests (SPRT) used for switching ther-

mal models in previous works, we demonstrate a 2.9% improvement in performance and

an 97% reduction in thermal violations. In comparison to optimally tuned proportional-

integral (PI) feedback control techniques, we improvement instruction throughput by 3.9%

with an 94% reduction in the number of thermal violations. In future extensions, the ther-

mal modeling approach using the discrete state-space model and workload phases should

be integrated into more complex control objectives in order to further verify its utility.

First and foremost, it can be integrated with the work in Chapter 4 by adding a thermal

constraint to the Pack & Cap objective.

111

Bibliography

[1] Advanced Configuration and Power Interface Specification.

http://ita.ee.lbl.gov/html/traces.html.

[2] E Alpaydin. Alpaydin: Introduction to Machine Learning. Cover.

[3] R. I. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Balancing.

In Proceedings of the International Symposium on Computer Architecture, pages

218–229, 2001.

[4] L. A. Barroso. The Datacenter as a Computer. Morgan Claypool, 2009.

[5] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. A Distributed and Self-

Calibrating Model-Predictive Controller for Energy and Thermal Management of

High-Performance Multicores. In Proceedings of Design, Automation and Test in

Europe Conference, pages 1–6, 2011.

[6] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. Thermal and Energy Manage-

ment of High-Performance Multicores: Distributed and Self-Calibrating Model-

Predictive Controller. IEEE Transactions on Parallel Distributed Systems, 2012.

[7] M. Berktold and T. Tian. CPU Monitoring With DTS/PECI.

http://download.intel.com/design/intarch/papers/322683.pdf.

112

[8] A. Bhattacharjee. Thread Criticality Predictors for Dynamic Performance, Power,

and Resource Management in Chip Multiprocessors. In Proceedings of Interna-

tional Symposium on Computer Architecture, pages 290–301, 2009.

[9] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, 2011.

[10] S. Borkar. Thousand core chips - a technology perspective. In Proceedings of the

Design Automation Conference, pages 746 – 749, 2007.

[11] D. Brooks, R. Dick, R. Joseph, and L. Shang. Power, Thermal, and Reliability

Modeling in Nanometer-Scale Microprocessors. IEEE Micro, 27(3):49 – 62, 2007.

[12] D. Brooks and M. Martonosi. Dynamic Thermal Management for High-

Performance Microprocessors. In Proceedings of High Performance Computer Ar-

chitecture, pages 171–182, 2001.

[13] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations. In Proceedings of the International Sym-

posium on Computer Architecture, pages 83–94, 2000.

[14] J. M. Cebrian, J. L. Aragón, and S. Kaxiras. Power Token Balancing: Adapting

CMPs to Power Constraints for Parallel Multithreaded Workloads. In Proceedings

of Parallel & Distributed Processing Symposium, pages 431–442, 2011.

[15] C. B. Cho and T. Li. Complexity-Based Program Phase Analysis and Classification.

In Proceedings of Parallel Architectures and Compilation Techniques, pages 105–

113, 2006.

[16] A Çivril. On Selecting a Maximum Volume Sub-Matrix of a Matrix and Related

Problems. Theoretical Computer Science, 2009.

113

[17] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Identifying the Optimal

Energy-Efficient Operating Points of Parallel Workloads. In Proceedings of the

International Conference on Computer-Aided Design, pages 608–615, 2011.

[18] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack & Cap: Adaptive

DVFS and Thread Packing Under Power Caps. In Proceedings of the International

Symposium on Microarchitecture, pages 175–185, 2011.

[19] R. Cochran, A. Nowroz, and S. Reda. Post-Silicon Power Characterization Using

Thermal Infrared Emissions. In International Symposium on Low Power Electron-

ics and Design, pages 331–336, 2010.

[20] R. Cochran and S. Reda. Thermal Prediction and Adaptive Control Through Work-

load Phase Detection. Revision currently under review for ACM Transactions on

Design Automation of Electronic Systems, 2012.

[21] R. Cochran and S. Reda. Spectral Techniques for High-Resolution Thermal Char-

acterization with Limited Sensor Data. In Proceedings of the Design Automation

Conference, pages 478–483, 2009.

[22] R. Cochran and S. Reda. Consistent Runtime Thermal Prediction and Control

Through Workload Phase Detection. In Proceedings of Design Automation Con-

ference, pages 62–67, 2010.

[23] A. Coskun, T. Rosing, and K. Gross. Utilizing Predictors for Efficient Thermal

Management in Multiprocessor SoCs. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 28(10):1503 – 1516, 2009.

[24] A. Coskun, T. Rosing, K. Whisnant, and K. Gross. Temperature-Aware MPSoC

Scheduling for Reducing Hot Spots and Gradients. In Proceedings of the Asia and

South Pacific Design Automation Conference, pages 49–54, 2008.

114

[25] A. K. Coskun, T. Rosing, and K. Gross. Proactive Temperature Balancing for Low

Cost Thermal Management in MPSoCs. Proceedings of the International Confer-

ence on Computer-Aided Design, 2008.

[26] A. K. Coskun, T. S. Rosing, and K. C. Gross. Proactive Temperature Manage-

ment in MPSoCs. In Proceedings of the International Symposium on Low Power

Electronics and Design, pages 165–170, 2008.

[27] G. Dhiman. Dynamic Voltage Frequency Scaling for Multi-Tasking Systems Us-

ing Online Learning. In Proceedings of International Symposium on Low-Power

Electronic Design, pages 207–212, 2007.

[28] J. Donald and M. Martonosi. Techniques for Multicore Thermal Management:

Classification and New Exploration. In Proceedings of the International Symposium

on Computer Architecture, pages 78–88, 2006.

[29] E. Elnozahy, M. Kistler, and R. Rajamony. Energy-Efficient Server Clusters. In

Power-Aware Computer Systems, volume 2325 of Lecture Notes in Computer Sci-

ence, Berlin, Heidelberg, April 2003. Springer Berlin Heidelberg.

[30] S. Eyerman and L. Eeckhout. A Counter Architecture for Online DVFS Profitability

Estimation. IEEE Transactions on Computers, 59(11):1576–1583.

[31] X. Fan, W. D. Weber, and L. A. Barroso. Power Provisioning for a Warehouse-

Sized Computer. In Proceedings of the International Symposium on Computer

Architecture, pages 13–23, 2007.

[32] D. Filani, J. He, S. Gao, et al. Dynamic Data Center Power Management: Trends,

Issues, and Solutions. Intel Technology Journal, page 59, February 2008.

[33] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. J. Drake, L. Pe-

santez, T. Gloekler, J. A. Tierno, P. Bose, and A. Buyuktosunoglu. Introducing

115

the Adaptive Energy Management Features of the Power7 Chip. Micro, IEEE,

31(2):60–75, 2011.

[34] A. Gandhi, M. Harchol-Balter, and R. Das. Optimal Power Allocation in Server

Farms. In Proceedings of SIGMETRICS, pages 157–168, 2009.

[35] A. Gandhi, M. Harchol-Balter, R. Das, and J. O. Kephart. Power Capping Via

Forced Idleness. Carnegie Mellon University Research Showcase.

[36] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, first edition, 1979.

[37] H. Hamann, A. Weger, J. Lacey, Z. Hu, and P. Bose. Hotspot-Limited Micropro-

cessors: Direct Temperature and Power Distribution Measurements. IEEE Journal

of Solid-State Circuits, 42(1):56–65, 2007.

[38] H. F. Hamann, A. Weger, James A. L., Z. Hu, P. Bose, E. Cohen, and J. Wakil.

Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution

Measurements. IEEE Journal of Solid-State Circuits, 42(1):56–65, 2007.

[39] G. Hamerly, B. Calder, T. Sherwood, and E. Perelman. Automatically Charac-

terizing Large Scale Program Behavior. Architectural Support for Programming

Languages and Operating Systems, 37, 2002.

[40] G. Hamerly, E. Perelman, and J. Lau. Simpoint 3.0: Faster and More Flexible

Program Phase Analysis. Journal of Instruction Level Parallelism, pages 1–28,

2005.

[41] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio. Ther-

mal Response to DVFS: Analysis with an Intel Pentium M. In Proceedings of the

International Symposium on Low Power Electronics and Design, pages 219–224,

2007.

116

[42] J. Henning. SPEC CPU2000: Measuring CPU Performance in the New Millen-

nium. IEEE Computer, 33(7):28–35, 2000.

[43] S. Heo, K. Barr, and K. Asanović. Reducing Power Density Through Activity

Migration. In International Symposium on Low Power Electronics and Design,

pages 217–222, 2003.

[44] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency Scaling in

Chip-Multiprocessors. In Proceedings of International Symposium on Low-Power

Electronic Design, pages 38–43, 2007.

[45] C. Hsieh, C. Wu, F. Jih, and T. Sun. Focal-Plane-Arrays and CMOS Readout Tech-

niques of Infrared Imaging Systems. IEEE Transactions on Circuits and Systems

for Video Technology, 7(4):594–605, 1997.

[46] W. Huan, M. R. Stan, K. Sankaranarayanan, R. J. Ribando, and K. Skadron. Many-

Core Design from a Thermal Perspective. In Design Automation Conference, pages

746–749, 2008.

[47] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan.

HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI De-

sign. IEEE Transactions onVery Large Scale Integration (VLSI) Systems, 14(5):501

– 513, 2006.

[48] W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, and Mircea R. Stan. Differ-

entiating the Roles of IR Measurement and Simulation for Power and Temperature-

Aware Design. In Proceedings of the International Symposium on Performance

Analysis of Systems and Software, pages 1–10, 2009.

[49] W. Huang, M. Stan, K. Skadron, and K. Sankaranarayanan. Compact Thermal

Modeling for Temperature-Aware Design. In Proceedings of the Design Automation

Conference, pages 887–883, 2004.

117

[50] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An Analysis

of Efficient Multi-Core Global Power Management Policies: Maximizing Perfor-

mance for a Given Power Budget. In Proceedings of International Symposium on

Microarchitecture, pages 347–358, 2006.

[51] C. Isci, G. Contreras, and M. Martonosi. Live, Runtime Phase Monitoring and Pre-

diction on Real Systems with Application to Dynamic Power Management. Pro-

ceedings of the International Symposium on Microarchitecture, pages 359–370, De-

cember 2006.

[52] C. Isci and M. Martonosi. Phase Characterization for Power: Evaluating Control-

Flow-Based and Event-Counter-Based Techniques. In Proceedings of International

Symposium on High-Performance Computer Architecture, pages 1–12, 2006.

[53] ITRS. International Technology Roadmap for Semiconductors.

http://public.itrs.net, 2007.

[54] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pren-

tice Hall, 6th edition, 2007.

[55] R. Joseph, M. Martonosi, and Z. Hu. Spectral Analysis for Characterizing Pro-

gram Power and Performance. In International Symposium Performance Analysis

of Systems and Software, pages 151–160, 2004.

[56] H. Jung and M. Pedram. A Stochastic Local Hot Spot Alerting Technique. In

Proceedings of the Asia and South Pacific Design Automation Conference, pages

468 – 473, 2008.

[57] H. Jung, P. Rong, and M. Pedram. Stochastic Modeling of a Thermally-Managed

Multi-core System. In Proceedings of the Design Automation Conference, pages

728 – 733, 2008.

118

[58] M. Kadin and S. Reda. Frequency and Voltage Planning for Multi-Core Processors

Under Thermal Constraints. In Proceedings of the International Conference on

Computer Design, pages 463–470, 2008.

[59] R. Kessler, E. McLellan, and D. Webb. The Alpha 21264 Microprocessor Archi-

tecture. In Proceedings of International Conference on Computer Aided Design,

pages 90–95, 1998.

[60] O. Khan and S. Kundu. A framework for Predictive Dynamic Temperature Manage-

ment of Microprocessor Systems. In Proceedings of the International Conference

on Computer-Aided Design, pages 258–263, Jan 2008.

[61] J. Kim, S. Yoo, and C. Kyung. Program Phase-Aware Dynamic Voltage Scal-

ing Under Variable Computational Workload and Memory Stall Environment.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

30(1):110–123, 2011.

[62] V. Kontorinis, A. Shayan, R. Kumar, and D. M. Tullsen. Reducing Peak Power with

a Table-Driven Adaptive Processor Core. In Proceedings of International Sympo-

sium on Microarchitecture, pages 189–200, 2009.

[63] A. Kumar, Li S., Li-Shiuan P., and N. K. Jha. System-Level Dynamic Thermal Man-

agement for High-Performance Microprocessors. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(1):96–108, 2008.

[64] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HybDTM: A Coordinated Hardware-

Software Approach for Dynamic Thermal Management. In Proceedings of the De-

sign Automation Conference, pages 548–553, 2006.

[65] P. Kumar and D. Atienza. Neural Network based On-Chip Thermal Simulator.

In Proceedings of International Symposium on Circuits and Systems, pages 1599–

1602, 2010.

119

[66] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt Rinehart

and Winston, New York, 1976.

[67] B. Lee and D. Brooks. Accurate and Efficient Regression Modeling for Microar-

chitectural Performance and Power Prediction. In Architectural Support for Pro-

gramming Languages and Operating Systems, pages 185–194, 2006.

[68] B. Lee, K. Chung, B. Koo, and N. Eum. Thermal Sensor Allocation and Placement

for Reconfigurable Systems. Transactions on Design Automation of Electronic Sys-

tems, 4(41):50:1–23, 2009.

[69] J. Lee, K. Skadron, and S. Chung. Predictive Temperature-Aware DVFS. IEEE

Transactions on Computers, 59(1):127–133, 2010.

[70] K. Lee and K. Skadron. Using performance Counters for Runtime Temperature

Sensing in High-Performance Processors. In Proceedings of the Workshop on High-

Performance, Power-Aware Computing, page 232.1, 2005.

[71] K. Lee, K. Skadron, and W. Huang. Analytical Model for Sensor Placement on

Microprocessors. In Proceedings of the International Conference on Computer

Design, pages 24–30, 2005.

[72] C. Lefurgy and X. Wang. Power Capping: A Prelude to Power Shifting. Cluster

Computing, 2008.

[73] W. Liao, L. He, and K. Lepak. Temperature and Supply Voltage Aware Performance

and Power Modeling at Microarchitecture Level. Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 24(7):1042–1053, 2005.

[74] F. Liu. A General Framework for Spatial Correlation Modeling in VLSI Design. In

Proceedings of the Design Automation Conference, pages 817–822, 2007.

120

[75] J. Long, S. Memik, G. Memik, and R. Mukherjee. Thermal Monitoring Mecha-

nisms for Chip Multiprocessors. In ACM Transactions on Architecture and Code

Optimization, volume 5(2), pages 9:1–9:23, 2008.

[76] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho. Profile-

Based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Mi-

croprocessor. In Proceedings of the International Symposium on Computer Archi-

tecture, pages 14–25, 2003.

[77] D. Meisner, B. T. Gold, and T. F. Wenisch. The PowerNap Server Architecture.

ACM Transactions on Computer Systems, 29(1):205–216, 2011.

[78] S. Memik, R. Mukherjee, M. Ni, and J. Long. Optimizing Thermal Sensor Al-

location for Microprocessors. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 27(3):516–527, 2008.

[79] K. Meng, R Joseph, and R. P. Dick. Multi-Optimization Power Management for

Chip Multiprocessors. In Proceedings of Parallel Architectures and Compilation

Techniques, pages 177–186, 2008.

[80] F. J. Mesa-Martinez, E. Ardestani, and J. Renau. Characterizing Processor Thermal

Behavior. In Architectural Support for Programming Languages and Operating

Systems, pages 193–204, 2010.

[81] F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau. Measuring

Performance, Power, and Temperature from Real Processors. In Proceedings of the

International Symposium on Computer Architecture, pages 1–10, 2007.

[82] R. Mukherjee and S. Memik. Physical Aware Frequency Selection for Dynamic

Thermal Management in Multi-Core Systems. In Proceedings of International Con-

ference on Computer Aided Design, pages 547–552, 2006.

121

[83] R. Mukherjee and S. Memik. Systematic Temperature Sensor Allocation and Place-

ment for Microprocessors. In Proceedings of the Design Automation Conference,

pages 542 – 547, 2006.

[84] R. Mukherjee, S. Mondal, and S. O. Memik. Thermal Sensor Allocation and Place-

ment for Reconfigurable Systems. In Proceedings of International Conference on

Computer Aided Design, pages 437–442, 2006.

[85] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. De Micheli.

Temperature-Aware Processor Frequency Assignment for MPSoCs Using Convex

Optimization. In CODES+ISSS, pages 111–116, 2007.

[86] A. N. Nowroz, R. Cochran, and S. Reda. Thermal Monitoring of Real Processors:

Techniques for Sensor Allocation and Full Characterization. In Proceedings of the

Design Automation Conference, pages 56–61, 2010.

[87] J. Parker, R. Kenyon, and D. Troxel. Comparison of Interpolating Methods for

Image Resampling. IEEE Transactions on Medical Imaging, 2(1):31–39, 1983.

[88] I. Paschalidis, B. Li, and M. Caramanis. A Market-Based Mechanism for Providing

Demand-Side Regulation Service Reserves. In Proceedings of the Decision and

Control and European Control Conference, pages 21 –26, December 2011.

[89] M. Pedram and S. Nazarian. Thermal Modeling, Analysis, and Management in

VLSI Circuits: Principles and Methods. Proceedings of the IEEE, 94(8):1487–

1501, 2006.

[90] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-Run: Leveraging SMT

and CMP to Manage Power Density Through the Operating System. In Proceed-

ings of the International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 260–270, 2004.

122

[91] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 1996.

[92] K. Rangan, Gu-Yeon Wei, and D. Brooks. Thread Motion: Fine-Grained Power

Management for Multi-core Systems. In Proceedings of International Symposium

on Computer Architecture, volume 37, 2009.

[93] S. Reda, R. Cochran, and A. K. Coskun. Adaptive Power Capping for Servers with

Multi-threaded Workloads. to appear in IEEE Micro, 2012.

[94] S. Reda, R. Cochran, and A. N. Nowroz. Improved Thermal Tracking for Proces-

sors Using Hard and Soft Sensor Allocation Techniques. IEEE Transactions on

Computers, 60(6):841–861, 2011.

[95] R. Ribando and K. Skadron. Many-Core Design from a Thermal Perspective. pages

746–749, 2008.

[96] M. J. Roberts. Signals and Systems. McGraw Hill, first edition, 2004.

[97] A. Rogalski. Infrared Devices and Techniques. Optoelectronics Review, pages

111–136, 2002.

[98] E. Rotem, J. Hermerding, C. Aviad, and C. Harel. Temperature Measurement in

the Intel Core Duo Processor. In Proceedings of the International Workshop on

Thermal Investigations of ICs, pages 23–27, 2006.

[99] M. Ruggiero, D. Bertozzi, L. Benini, M. Milano, and A. Andrei. Reducing the Ab-

straction and Optimality Gaps in the Allocation and Scheduling for Variable Volt-

age/Frequency MPSoC Platforms. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 28(3):378 – 391, 2009.

123

[100] J. Sartori and R. Kumar. Distributed Peak Power Management for Many-Core Ar-

chitectures. In Proceedings of Design, Automation and Test in Europe Conference,

pages 1556–1559, 2009.

[101] K. D. Sauer and J. P. Allebach. Iterative Reconstruction of Band-Limited Im-

ages from Nonuniformly Spaced Samples. IEEE Trans. Circuits and Systems,

34(12):1497–1506, 1987.

[102] S. Sharifi, R. Z. Ayoub, and T. S. Rosing. TempoMP: Integrated Prediction and

Management of Temperature in Heterogeneous MPSoCs. In Proceedings of Design,

Automation, and Test in Europe, pages 593–598, 2012.

[103] T. Sherwood, E.. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and

Exploiting Program Phases. Transactions of the International Symposium on Mi-

croarchitecture, 23(6):84–93, 2003.

[104] K. Skadron. Hybrid Architectural Dynamic Thermal Management. In Proceedings

of Design, Automation and Test in Europe, pages 10–15, 2004.

[105] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.

Temperature-aware microarchitecture. In Proceedings of the International Sympo-

sium on Computer Architecture, pages 259–270, June 2003.

[106] C. D. Spradling. SPEC CPU2006 benchmark tools. ACM SIGARCH Computer

Architecture News, pages 130–134, 2007.

[107] G. Strang. Computational Science and Engineering. Wellesly-Cambridge Press,

first edition, 2007.

[108] N. Tolia. Delivering Energy Proportionality with Non Energy-Proprotional

Systems-Optimizing the Ensemble. In First Workshop on Power Aware Comput-

ing and Systems, pages 1–6, November 2008.

124

[109] A. Vincenzi, A. Sridhar, M. Ruggiero, and D. Atienza. Fast Thermal Simulation of

2D/3D Integrated Circuits Exploiting Neural Networks and GPUs. In International

Symposium on Low Power Electronics and Design, August 2011.

[110] X. Wang and M. Chen. Cluster-Level Feedback Power Control for Performance

Optimization. In Proceedings of the International Symposium on High Performance

Computer Architecture, pages 101–110, 2008.

[111] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller. SHIP: A Scalable Hierarchical

Power Control Architecture for Large-Scale Data Centers. IEEE Transactions on

Parallel and Distributed Systems, 23(1):168–176, 2012.

[112] Y. Wang, K. Ma, and X. Wang. Temperature-Constrained Power Control for Chip

Multiprocessors with Online Model Estimation. In Proceedings of the International

Symposium on Computer Architecture, 2009.

[113] S. J. E. Wilton and N. P. Jouppi. CACTI: An Enhanced Cache Access and Cycle

Time Model. IEEE Journal Solid-State Circuits, 31(5):677–688, 1996.

[114] J. Winter and D. Albonesi. Addressing Thermal Nonuniformity in SMT Workloads.

ACM Transactions on Architecture and Code Optimization, 5(1):4:1–4:28, 2008.

[115] W. Wu, L. Jin, J. Yang, P. Liu, and Sheldon X. D. Tan. Efficient Power Modeling and

Software Thermal Sensing for Runtime Temperature Monitoring. In Transactions

on Design Automation of Electronic Systems, volume 12, 2007.

[116] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin. Dynamic Thermal Man-

agement through Task Scheduling. In International Symposium on Performance

Analysis of Systems and Software, pages 191 – 201, 2008.

125

[117] I. Yeo and Eun J. Kim. Hybrid Dynamic Thermal Management Based on Statis-

tical Characteristics of Multimedia Applications. Proceedings of the International

Symposium on Low Power Electronics and Design, pages 321–326, 2008.

[118] I. Yeo, C. Liu, and E. Kim. Predictive Dynamic Thermal Management for Multicore

Systems. In Proceedings of the Design Automation Conference, pages 734–739,

2008.

[119] M. Yuffe et al. A Fully Integrated Multi-CPU, Processor Graphics, and Memory

Controller 32-nm Processor. IEEE Journal of Solid-State Circuits, 47(1):194–205,

2012.

[120] F. Zanini, D. Atienza, and G. De Micheli. A Control Theory Approach for Ther-

mal Balancing of MPSoC. In Proceedings of the Asia and South Pacific Design

Automation Conference, pages 37–42, 2009.

[121] S. Zhang and K. S. Chatha. Approximation Algorithm for the Temperature-Aware

Scheduling Problem. In Proceedings of International Conference on Computer

Aided Design, pages 281–288, 2007.

[122] Y. Zhang, A. Srivastava, and M. Zahran. On-Chip Sensor-Driven Efficient Ther-

mal Profile Estimation Algorithms. ACM Transactions on Design Automation of

Electronic Systems, 15(3):25:1, 2010.

[123] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph. Three-Dimensional Chip-

Multiprocessor Run-Time Thermal Management. IEEE Trans on Computer Aided

Design of Integrated Circuits and Systems, 27(8):1479–1492, 2008.

126

