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Abstract 

Due to increasing constraints from power density and signal delay, 

microprocessor architectures are migrating towards multi-core design. Previously, when a 

program required increased performance in a certain function, designers typically 

implemented a single accelerator for their single processor. The move to multi-core 

designs introduces the possibility that instead of simply copying the design multiple 

times, designers can share hardware accelerators between cores. 

We propose a Hardware Library, a pool of accelerated functions that is accessible 

by multiple cores. We find that sharing provides significant reductions in the area and 

logic usage required for hardware acceleration. Contention for these units may exist in 

certain cases; however, the savings in terms of chip economy are more appealing to many 

applications. We study the performance implications for our system using various 

arrangements. Our implementation of this system is realized on an FPGA fabric. These 

devices are particularly appropriate because of their need to reduce power and the area 

savings enable designers to easy add functionality without significant chip revision. 
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Chapter 1: Introduction 
 
1.1 Transition to Multi-core Processors 
 

Until recently, most microprocessor design methodologies have revolved around a 

single pipelined processor. In creating a system for a particular application, algorithms 

were developed to run on this single scalar processing stream. Whenever a particular 

algorithm required performance enhancement, a custom hardware accelerator could be 

inserted in the pipeline to reduce computation time for critical applications such as in 

Figure 1.1. Instead of execution a function in software, the pipeline would use a custom 

block of hardware that is significantly faster. Only one logical configuration exists for 

such applications, so the design flow remained “simple”. 

 

 
Figure 1.1: Pipelined Single Processor with Hardware Accelerator 

 
 Now, microprocessor designers are migrating to designing processors with 

multiple cores. Traditionally, designers have been able to take advantage of shrinking 

feature size to increase cache size, logic density and clock speed. However, power 

density and delay considerations have made it impossible to continually increase clock 
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speed. Because of this, designers are choosing to utilize the chip area gained from 

shrinking feature size to add more cores. 

With the advent of multi-core, old maxims must be revaluated. Both new 

opportunities and difficulties arise in a multiprocessor system design. Under nominal 

conditions, multiple cores will not require the same hardware acceleration at the same 

time. Numerous cores will run the code implementing the same algorithm, but their 

execution will not necessarily be concurrent. Clearly, this condition lends itself to a 

sharing schema.  

1.2 SOPCs on FPGAs 
 

Field Programmable Gate Arrays (FPGAs) have risen to prominence in System on 

a Programmable Chip (SOPC) design for their unique properties and have displaced 

Application Specific Circuits (ASICs) in certain markets. Classic ASIC design requires a 

large investment in engineering time and fabrication cost. Not only do designers need to 

take into account the algorithmic, functional, and architectural needs of a design, they 

must also consider the underlying circuit and its fabrication and physical packaging 

constraints. FPGAs cut out the need to fabricate a new chip for every design. By using 

Combinational Logic Blocks (CLBs) composed of lookup tables, multiplexers and 

registers, any user defined design can be synthesized and mapped into the FPGA fabric. 

As shown in Figure 1.2, CLBs are organized into a two dimensional grid and are 

connected by a switching matrix. This system can configure and route any logic given 

enough blocks and interconnects. Instead of manufacturing a chip, designs simply need to 

be programmed on the FPGA. The removal of the large non-recurring engineering cost in 

product development associated with ASICs makes FPGAs an attractive option in small 
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to medium volume products and prototyping applications. Our proposed multi-core 

system is designed and implemented in such devices. Nevertheless, our design 

methodology concepts still apply to ASIC designs.  

 

  
Figure 1.2: FPGA Fabric1 

 
Modern technologies have produced FPGAs with hundreds of thousands of CLBs.  

We investigate Reduced Instruction Set Computer (RISC) cores. RISC architectures are 

characterized by their small instruction set, single cycle operations and register to register 

data operations which lend it to pipelining. These cores take as few as a couple thousand 

CLBs to synthesize; hence, a single FPGA can hypothetically hold hundreds of cores. 

Furthermore, custom logic can be added to control these cores to work in tandem with the 

standard design and accelerators can be synthesized and added easily to augment their 

                                                
1 Image Courtesy: http://www.clifford.at/papers/2004/bfcpu/fpga.jpg 
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functionality. While adding extra logic to an FPGA is a trivial task, this process is near 

impossible with an ASIC. This makes FPGAs an increasingly attractive option for multi-

core designs because of their flexibility, especially when a design is to be extended to 

multiple applications. On the other hand, FPGAs cannot offer the same low-power or 

high clock speeds some finely crafted ASICs provide. At the very least, FPGAs can claim 

an invaluable niche in prototyping. Designs can be rapidly synthesized and programmed 

to test architecture functionality and performance. For these reason, we have chosen to 

investigate our design on a FPGA platform. However, the following methodologies apply 

to both FPGA and ASIC applications. 

 
1.3 Software Libraries 
 
 Within the domain of software engineering, software libraries are created to 

provide multiple programs the same functionality without the need for multiple copies of 

identical code. This task is trivial in software because the instructions can be read by 

numerous programs with negligible overhead. Software libraries have the properties of 

depth, the ability for libraries to depend on other libraries in a hierarchy, as well as 

reusability, multiple applications being able to use the same library. Figure 1.3 

demonstrates both these properties. For instance, the particle simulator makes function 

calls to the Vector Library which contains useful features such as dot products. In turn, 

the dot product function uses the Math Library for simpler functions like evaluating 

cosine. This example demonstrates the depth property. Meanwhile, a separate application 

running an image processing algorithm accesses the FFT library. This library also uses 

the Math Library for Cosine functions even though there is only one copy, hence 

demonstrating reusability. The later property is the inspiration for a Hardware Library.  
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Figure 1.3: Software Library Sharing 

 
 
1.4 Hardware Libraries 

 
Reusability of hardware enables designers to save both power and chip area. We 

propose the concept of a Hardware Library. This entity exists as a pool of hardware 

resources that any core can use to accelerate its program’s execution. Similar to software 

libraries, redundancy of resources is avoided by a sharing scheme. Unlike software 

however, hardware units cannot be used simultaneously by multiple applications. 

Furthermore, typically hardware libraries do not exhibit depth; computational units do not 

usually directly rely upon each other to execute their function before returning to the 

CPU. Therefore, depending on the popularity of a unit, multiple copies may be necessary. 

In Chapter three, we investigate the best scheme for sharing.  
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Figure 1.4: Proposed Hardware Library 

 
 

As shown in Figure 1.4, the goal of a Hardware Library is to distribute and share 

multiple hardware accelerators among many cores. By developing a set of guidelines and 

a general design flow for such a library, engineers can more effectively utilize the 

available resources in a design. In Chapter three we propose an appropriate solution for 

the entity labeled “switching fabric” reasonable for delegating tasks and routing data. 

This hardware library would be highly desirable in many systems. In time critical 

applications, software is often too slow and hardware accelerators are necessary. 

Moreover, embedded systems in particular may have limited chip area yet still require 

speed in specialized functions. A DSP unit for example, could have separate threads 

running on multiple cores and then access a FFT unit when necessary. A FFT unit is 

costly in terms of logic and if multiple processes can share a unit, there will be a major 

savings in terms of area without sacrificing performance. Since area can be a scarce 

resource in embedded systems, such a setup becomes an attractive option. 
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This thesis has the following contributions: 

• We propose the concept of a Hardware Library, a pool of accelerators that 

take the place of software routines and are shared by multiple cores. 

• We propose a system architecture revolving around a Dispatcher capable 

of sharing the accelerators with requesting CPUs. 

• We analyze the performance and chip economy tradeoffs for differing 

sharing topologies. 

• We show how FPGAs unique properties may make them a better 

candidate than ASICs for certain applications using this design. 

This thesis is divided into two main chapteras: 

• Chapter 2: Previous Work 

• Chapter 3: Design of a Shared Hardware Library 
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Chapter 2: Previous Work 
 
2.1 Soft Core Processor Design in FPGAs 
 
 Two variations are available when embedding microprocessors in FPGA systems. 

Either one can have a microprocessor built into the silicon in what is called a hard 

processor or it can be synthesized out of CLBs. The later option, creating a soft processor 

out of configurable logic, drives the focus of this investigation. Soft processors possess 

numerous advantages over hard processors. In theory, one can have complete control 

over the design of the processor, from the pipeline through the instruction set to the 

coprocessors. In practice, it is not worth the investment of time to build up a processor 

from scratch. Instead, many vendors offer intellectual property (IP) which are a complete 

synthesizable processor description [7, 8]. Open source options are also available with the 

advantages of cost and customizability [9]. 

 Recently, much attention has been paid to optimizing the implementation of 

multiple soft cores in FPGAs. Particularly, one important obstacle to overcome revolves 

around making FPGAs more efficient than ASICs despite their tendency to consume 

more power. Trimming unneeded hardware by Instruction Set Architecture (ISA) 

subsetting for a given application is one method of reducing power [6]. Another strategy 

is to reuse hardware that is shared between soft processors . Vahid et al suggest that 

reconfigurable logic can be mutated by profilers at runtime to accelerate and map the 

binaries executed by multiple CPUs [3]. Unfortunately such a scheme suffers from the 

overhead of a profiling system. Furthermore, this system needs an FPGA fabric that can 

reconfigure on the fly. Such devices are not commonplace, rendering such setups lacking 
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the ability to generalize over all applications. Nevertheless, the ability to share hardware 

remains the main focus of our pooling strategy. 

 
 
2.2 NIOS II Processor 
 
Altera Cyclone II 
 
 Our experiments use the Altera Cyclone II FPGA chip. This chip is manufactured 

in a 90nm process and can hold up to 68,416 logic elements organized as 60 columns by 

25 rows [11]. The FPGA is mounted in a DE2 education/prototyping board which 

includes a USB programmer/UART, clock and other important features. 

 
Architecture 
 
 Altera offers their second generation NIOS II processor to embed in their 

programmable logic devices. The NIOS is a 32-bit RISC processor capable of most 

standard instructions. The NIOS II comes in three different “flavors”: economy, standard 

and fast. These three configurations essentially trade increased logic usage for better 

performance and features. Figure 2.1 summarizes the characteristics of the various NIOS 

II processors including functionality and logic usage. 

 

Figure 2.1: NIOS II "Flavors" 
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For our experiments, the standard processor was chosen as it has useful features 

used for most applications including a hardware multiplier/divider, branch prediction and 

instruction cache. All experiments were run at the standard 50 MHz clock speed. 

Furthermore, it uses a reasonable 1200 logic elements leaving a small footprint.  

 The overall architecture of the NIOS II can be seen in Figure 2.2. It contains 

features common to any RISC processor such as a large general purpose register file. It 

also has a JTAG UART used for programming and communication. Most importantly it 

has a standard Avalon  data and instruction bus so it can be connected to any devices 

conforming to this specification. 

 
Figure 2.2: NIOS II Block Diagram2 

 
 
Custom Instructions 
 

                                                
2 Altera, NIOS II Processor Reference Handbook 
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The custom instruction interface of the NIOS II can be seen in Figure 2.2. This 

logic resides directly next to the Arithmetic Logic Unit (ALU) because it will replace its 

logic when used. The custom instruction logic and I/O signals incorporated in the design 

enable designers to extend the functionality of the CPU without completely redesigning 

the processor.  

In order to write one’s own instruction, HDL is created that conforms to a specific 

I/O interface. This hardware will be accessed when the instruction is called in software. 

Moreover, C code macros are automatically created by Altera’s integrated development 

environment (IDE) tools to abstract the implementation to simple function calls. 

Instructions can be of variable length and will return based upon hardware signaling if 

desired. The NIOS II’s custom instruction functionality will be used extensively in the 

multi-core architecture to enable access to the Hardware library without completely 

redesigning the processor. 

Avalon Switch Fabric 
 
 Along with the NIOS II, Altera provides many pre-designed IP components that 

integrate with the processor. These various components instantiated in the FPGA by the 

SOPC tools provided are connected through Altera’s proprietary Avalon Switch Fabric. 

This fabric consists of Avalon master and slaves device. Logically, slave devices (such as 

memory controllers) can only be connected to and are controlled by master devices (such 

as a CPU). The switching fabric is composed of a network of multiplexers as seen in 

Figure 2.3. 
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Figure 2.3: Avalon Switch Fabric3 

 
 
 
 
2.3 C to Hardware Automation 
 
 Certain algorithms implemented in software can take far more time than can be 

afforded for a certain application. Typically in such a case, a system designer would have 

to offload this algorithm into a custom, hand-crafted, coprocessor designed specifically 

for the application. To reduce engineering time spent on such hardware design, 

companies have been offering C to hardware translation software. Such programs can 

take ANSI C code and compile them to HDL or RTL [2]. Figure 2.4 demonstrates the 

flow Altera’s C2H compiler goes through in order to accelerate C code. 

 

                                                
3 Altera, Quartus II Version 7.0 Handbook, Volume 4: SOPC Builder 
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Figure 2.4: C2H Design Flow4 

 
 Automatic hardware generators such as the C2H compiler enable simple 

generation of hardware libraries. Instead of requiring laborious HDL coding, critical 

sections of code can simply be highlighted and translated into units for the system’s 

accelerator pool. Such tools make generating a shared hardware library for any given 

application more feasible because the addition of accelerators becomes seamless. 

2.4 Computationally Demanding Applications 
 
 Many applications require hardware acceleration in order to meet requirements 

for a particular application. For instance, many signal processing applications that require 

an FFT will not be able to run in real time implemented in software alone. Also, many 

applications in scientific computing will require evaluation of numerically complex 

                                                
4Altera, Automated Generation of Hardware Accelerators With Direct Memory Access From ANSI/ISO 
Standard C Functions  
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equations. Implementing a specific function in hardware will cut down the runtime 

drastically. 

DNA sequencing has become a critical task in the field of Bioinformatics. In 

order for scientist to understand the human genome billions of base pairs of DNA must 

be processed. The sheer amount of data overwhelms simple computers and custom 

hardware can greatly increase the rate at which the genome can be decoded [5]. Hence 

the ability to effectively process DNA rises to an immediate necessity as it is the limiting 

factor in genome research. Automation of sequencing relies upon the edit distance 

algorithm which efficiently computes the smallest number of shifts, inserts and deletes 

needed to align two text strings or DNA chains [1]. In the case of DNA, this process can 

be reduced to aligning the characters T, C, G and A.  

The edit distance algorithm can be solved using a dynamic programming solution, 

where the overall problem is broken into smaller sub-problems [4]. These sub-problems 

are solved to get the overall solution. The algorithm relies upon a simple scoring matrix 

like the one shown in Figure 2.5. The algorithm proceeds as follows: 

 
Algorithm: Edit_Distance 
 

Input: String A of length N, String B of length M 
Output: The edit distance of the two strings 

 
let E be a MxN martix 

 
for i=0..M 

E [i, 0] = 0 
 

for j=0..N 
E [0, j] = 0 

 
for i=0..M 

for j=0..N 
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E[i, j] = min(  E[i-1, j] +1, 
E[I, j-1] + 1, 
match(A[i], B[j])+ E[i-1, j-1]) 

 
return E[M, N] 

 
function match(x, y) 

if x equals y 
return 0 

else 
return 1 

 
  A T G C A 
 0 1 2 3 4 5 
A 1 0 1 2 3 4 
T 2 1 0 1 2 3 
C 3 2 1 1 2 3 
T 4 3 2 1 2 3 
A 5 4 3 2 2 2  

 
 
 
 

A T G C - A 

| |  |  | 

A T - C T A 

 
 

Figure 2.5: Edit Distance Scoring Matrix5 
 
 Figure 2.5 demonstrates how the strings ATGCA and ATCTA would be scored. 

The edit distance is simply the value in the bottom right corner of the matrix. The best 

distance can be found by starting in the bottom right corner and working backward 

through the lowest scoring path. However this procedure is not needed to compute the 

scalar value of the edit distance. Given an nxn matrix, this algorithm would run in O(n2) 

time because it has two nested loops of length n. With a hardware accelerator that 

computes one of these loops in a single cycle, this algorithm runs in O(n) time. This gives 

an impressive speedup over software alone. While sequential sequencing of strings can 

be computationally complex when processed sequentially, time can be save at the 

expensive of specialized sequencing hardware. 

                                                
5Kent, K. B., Proudfoot, R. B., and Zhao, Y. 2006. Parameter-Specific FPGA Implementation of Edit-
Distance Calculation. In Proceedings of the Seventeenth IEEE international Workshop on Rapid System 
Prototyping (Rsp'06) - Volume 00 (June 14 - 16, 2006). RSP. IEEE Computer Society, Washington, DC, 
209-215. 
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Chapter 3: Design of a Shared Hardware Library 
 
3.1 Architecture of Proposed Shared Library 
 
 In order to realize a Hardware Library, the system’s cores must be connected to 

the accelerator pool and be controlled by an arbitrator unit. This control logic and data 

multiplexing is handled by a Dispatcher unit. The dispatcher is capable of queuing and 

prioritizing the cores requesting along with moving the data to the appropriate buses. 

Figure 3.1 illustrates a Dispatcher servicing two CPUs. The core logic of this unit is a 

Finite State Machine (FSM) which routes various control signals and data buses. Each 

Dispatcher directly controls any accelerators attached to it and they share a common 

clock. Furthermore, the Dispatcher takes cues from the CPUs that they request the 

accelerator using the Start signal and releases the data to them with the Done signal. 

Likewise, the accelerators must have a control logic interface with its own Start/Done 

control lines. 

 

Figure 3.1: Dispatch Unit 
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Sharing Configurations 
 
 While each core must have access to some accelerator, there are many different 

topologies to realize this sharing. Four different configurations are explored for sharing 

accelerators between cores. Each configuration uses six cores and varies the ratio of cores 

to accelerators. The first configuration is six cores to one accelerator. As seen in Figure 

3.2, all six CPUs have access to the same accelerator, but must wait if it is being used. 

This configuration requires a large dispatcher to process all six cores at once. The six to 

one configuration’s interconnection complexity, the amount of routing used to synthesize, 

will be the highest of the four configurations for the Dispatcher, but not the system. It 

will also require a large amount of control logic to traffic the cores. 

 

 

Figure 3.2: Six to One Sharing Configuration 
 
 By doubling the number of accelerators, the ratio of cores to accelerators becomes 

halved. Figure 3.3 shows the topology for a three to one sharing ratio. While this setup 

incurs additional resources for an additional accelerator, it alleviates the load on each 
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accelerator because they need to service half as many cores. Furthermore, the 

interconnect complexity and control signal logic are simplified. 

 
Figure 3.3: Three to One Sharing Configuration 

 
  

Another possible configuration with six cores and two accelerators is given in Figure 3.4. 

This could potentially be a superior design to the three to one design in Figure 3.3 

because even if one accelerator is being used it will not lock out the other. However, this 

increases the complexity of the dispatcher significantly. Furthermore, it requires more 

complicated routing to make sure all the units have access. This interconnect issue could 

be a burden if the cores or accelerators are placed significantly far away on the chip. For 

these reasons we choose to investigate the simpler design in evaluating the Hardware 

Library. 
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Figure 3.4: Alternative Configuration 
 

By adding yet another accelerator, the topology shown in Figure 3.5 is achieved. 

This layout has a sharing ratio of 2 to 1 and is the smallest ratio still requiring a 

Dispatcher unit. Once again the same benefits are seen by reducing the sharing ratio. The 

interconnect complexity and control logic are reduced. Moreover, the accelerators only 

have two cores attempting to access them. At this point the dispatchers are quite less 

complicated than the initial configuration and there will be significantly less contention 

for them to resolve. 
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Figure3.5: Two to One Sharing Configuration 

 
 Lastly, the ratio of one to one must be explored. This setup is the simplest 

configuration and involves no sharing whatsoever. Each core has complete control over 

its own accelerator and contention will never be an issue. Dispatchers are not needed, 

because there’s nothing to arbitrate. Because of the cores’ ownership of the accelerators, 

they will never need to stall. On the other hand, this case ignores the entire concept of 

sharing and there exists a tremendous overhead in requiring an accelerator for each core. 

As is apparent in Figure 3.6, one would need six times as many accelerators without 

sharing than in the six to one topology. 

 

 
Figure 3.6: One to One Sharing Configuration 
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Table 3.1 summarizes the characteristics of each configuration. The general trend 

is that increasing the sharing ratio might decrease system performance and will add to the 

interconnect complexity and Dispatcher contention. However, there will be savings in 

terms of power and area gained by sharing. If the performance degradation is acceptable, 

the saving will be worthwhile. 

 
 Guaranteed 

Performance 
Dispatcher 
Contention 

Area 
Savings 

Power 
Savings 

Interconnect 
Complexity 

Six to One Low High High High High 
Three to 
One 

Medium Medium Medium Medium Medium 

Two to One Medium Medium Medium Medium Medium 
One to One High Low Low Low Low 

Table 3.1: Sharing Configuration Summary 
 
Dispatcher Implementation 
  
 The Dispatcher’s operation uses the Finite State Machine (FSM) model to 

construct its various operations. Specifically, the Dispatcher is a Moore machine as its 

outputs are dependent on its current state alone. These outputs control the multiplexing 

logic that route the data on the buses shown in Figure 3.1 to and from the CPUs and 

accelerator. Figure 3.7 illustrates the FSM diagram of the Dispatcher servicing two cores 

with a single accelerator and Table 3.2 explains the conditions needed for state 

transitions. The diagram shows that the Dispatcher will hold in the IDLE state until either 

start_cpu_1 or start_cpu_2 is asserted. At this point, one of the cores will have a Lock on 

the accelerator and will reside in the COMPUTEX state until computation completes. 

The other core will not be able to access it until computation is finished (Dispatcher goes 

back to IDLE).  
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Figure 3.7: Diagram FSM Diagram 

 
Source State Destination State Condition 
COMPUTE1_done IDLE  
COMPUTE1_start COMPUTE1  
COMPUTE0 COMPUTE0 Accelerator => done 
COMPUTE0 COMPUTE0_done Accelerator => done 
COMPUTE0_done IDLE  
COMPUTE0_start COMPUTE0  
IDLE COMPUTE1_start !start_cpu_0 & start_cpu_1 
IDLE COMPUTE0_start start_cpu_0 
IDLE IDLE !start_cpu_0 & !start_cpu_1 
COMPUTE1 COMPUTE1_done Accelerator => done 
COMPUTE1  COMPUTE1 Accelerator => done 

Table 3.2: FSM Transition Conditions 
 
 Figure 3.8 illustrates the timing of two CPUs being serviced by the Dispatch unit 

with a single accelerator. Once CPU_1 asserts its start signal, it gains control over the 

accelerator unit and no other requests will be acknowledged. Although start_cpu_1 goes 

high during computation, the FSM will ignore it. When computation is complete, the 

results will finally be valid and latched and the done_1 signal will be asserted. CPU_1 

receives the data and can continue execution. When the second CPU dispatches a request, 

the previous results are invalidated and the process will repeat. To reduce the complexity 
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of the Dispatcher logic it does not have a non-blocking queue. Therefore, if CPU_1 is 

computing CPU_2, will stall until it gets ownership and finally done_2 is asserted. In the 

case of two requests from two cores at the same time, the Dispatcher acts as a priority 

queue. CPU_1 will get priority over all the cores, with CPU_2 being next and so on. 

 

 
Figure 3.8: Timing Diagram for the Dispatcher 

 
 
System Architecture 
 

The hardware library relies upon a pool of hardware accelerators arbitrated by a 

dispatch unit. The NIOS II custom instruction interface is taken advantage of to 

incorporate the dispatcher with the NIOS II CPUs. For the prototype all data to and from 

the main memory goes through the CPU bus. This data will then be fed to the custom 

instruction and exported to the accelerator. Each accelerator unit reports to a single 

dispatcher which can service numerous CPUs as discussed previously. The block diagram 

for the system can be seen in Figure 3.9. The entities inside the “SOPC Builder” region 
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were designed and assembled with Altera’s SOPC Builder tool inside Quartus II. Each 

system is composed of the following key components6: 

• 6 NIOS II cores each with a Custom Instruction to access the Dispatcher 

• A SDRAM controller which interfaces with 32MB of SDRAM. Each core has a 

1MB region of this memory for its program to reside and run in. 

• A performance counter for each CPU: This component acts as a binary counter 

that tracks clock cycles and can be turned on and off by software hooks. It is used 

to profile code execution times accurately. 

• Each core has a JTAG UART to communicate with the programming PC and 

report data through standard printf calls. 

 
 Figure 3.9: System Architecture 

 

                                                
6 The SOPC Builder has a quirk that it requires an On Chip Memory component for the CPUs to run even 
though they are not used. It is mentioned here only for completeness. 



 

28/48 

The components outside the SOPC Builder area in Figure 3.9 consists of modules 

coded in Verilog by hand. The Dispatcher acts as described previously and must be 

customized to accommodate the number of cores it will be serving. The hardware pool is 

not fully realized for the prototype, but the edit distance unit was hand translated from C 

to Verilog. As any unit interfacing with the Dispatcher unit, it has an interface with Start, 

Done, Data In and Data Out. 

This diagram shows how one CPU is connected to the dispatcher. The dispatcher 

relies on two 32 bit data operands as well as clock control signals. The functions selector 

notifies the dispatcher which accelerator to send the data to and can potentially support 

up to 256 units. Although, not used in the prototype, this operand is important because it 

enables multiple accelerators to exist in the pool. The custom instruction entity itself acts 

as a wrapper as it simply passes the signals straight through and enables the NIOS II to 

talk to custom written Verilog.  

Although our prototype only uses 64 total bits of data, this system can easily be 

extended. Application such as an FFT would require bulk access to the system’s memory. 

This can be implemented by connecting the NIOS II Avalon bus. Future implementations 

can include such access; the only downside would be contention on the data bus that 

many CPUs would be using as well. 
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3.2 Performance Analysis & Results 
 
Queuing Theory 
 
 Queuing theory is particularly relevant to the accelerator pools performance. 

Queuing theory models the flow of traffic through servers that service customers (for 

example customers waiting in a checkout line). In computing sciences, queuing theory 

has been applied to analyzing the scenario of a CPU accessing multiple devices such as 

hard drive disks. The concepts attempt to model the access times associated with such 

setups. For the proposed sharing system discussed however, we must model a single 

accelerator shared by multiple CPUs. The probability that an individual CPU will issue 

an accelerator request is given by the probability density function given in Equation 3.1 

and illustrated in Figure 3.10 for various values of the parameter λ.  1/ λ is the issue rate 

for the CPUs or the arrival rate for the accelerator from one CPU. 

 

 
Equation 3.1: Exponential Probability Function7 

 

 

Figure 3.10: Exponential Probability Density Function 

                                                
7 http://en.wikipedia.org/wiki/Exponential_distribution 
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The arrival of accelerator requests can be modeled using this exponential 

distribution. Each request will be dispatched some number of cycles after the last one 

completes. Figure 3.11 shows the number of cycles between consecutive requests. As is 

expected, the cycle count decreases exponentially as the cycle time increases. 

 
Figure 3.11: Histogram of Accelerator Requests Using an Exponential Distribution 

 
 
 
 
  
Event Simulator 
 
 In order to properly access the behavior of our system without the overhead of 

creating and testing numerous designs, a simulator was written in C to calculate statistics 

regarding the Dispatcher.  The hardware timing characteristics were captured in timing 
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analysis and replicated in the simulator. The simulator can accept any number of cores as 

well as a value λ for the expected request rate generated by these cores. The request times 

are generated and added to an event queue. Each event represents the core’s software 

calling the hardware library. They will contain data on the core which wants to access the 

accelerator, the time of the request and the request number. Furthermore, the list can be in 

one of three states: 

• Request: The node will want to acquire the dispatcher, but not attempted to access 

it yet. 

• Wait: The node has tried to acquire the Dispatcher but it wasn’t available and will 

try again later. 

• Terminate: The node has a lock on the Dispatcher and is waiting for it to finish. 

When the first event from each core is initially inserted, they are all requests (no core 

has the Dispatcher). The first event will be pulled out and become a terminate node. This 

new node will be inserted back in the queue at the appropriate time (the number of cycles 

needed by the accelerator). If any nodes are pulled out before the terminate finishes, they 

will be inserted behind the terminate node because they will not be able to access the 

dispatcher until it finishes. 

 To illustrate this concept, an example is shown in Figure 3.12. This demonstrates 

an exaggeratedly short event queue. The first node (Terminate is denoted T, W for Wait 

and R for Request) will be a terminate event and the Dispatcher will be freed. The wait 

event comes next. The dispatcher is freer so this event becomes a terminate event and 

will be pushed back into the appropriate time slot. 
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Figure 3.12: Simple Event Queue 

If request is pulled out of the queue but the accelerator is occupied, the core will 

be stalled and be put in the wait state. The simulator will put the node (now a wait node) 

behind that last wait node as is shown in Figure 3.13. 

 

 
Figure 3.13: Request Being Stalled 

  
The final situation arises when a wait node is pulled out of the front and the 

accelerator is now free. In this case the wait node will become a terminate node and be 

pushed back to the appropriate slot at which it will finish computation. 

Stalling 
 
 The main performance barrier faced by sharing an accelerator is a core having to 

stall because another core has a lock on the unit. Therefore it is informative to analyze the 

trends in stalling due to different sharing configurations and traffic generation. Two 

factors directly impact the amount of stalling: (1) the sharing ratio and (2) the rate, λ, at 

which requests are being generated by the cores. Since for any given Dispatcher the 

number or cores determines the sharing ratio, we can simplify the investigation of stalling 

to its two independent factors: the number of cores per library and λ. Simulations are run 
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varying these two parameters and the results are shown in a contour plot in Figure 3.14. 

As would be expected, as the number of cores increases, so does the average stalling. 

Likewise, an increase in the rate of request generation also increases stalling. However, 

the number of stalls does not linearly increase with either of these quantities. 

 
 

 
Figure 3.14: Average Stalls 

 
 In order to better understand the behavior of the stalling, Figure 3.15 presents 

slices of the contour plot at numbers of λ and cores. One can observe that the increasing 

number of cores drastically increases the stalling time for any value of lambda but 

especially for higher values. Also, increasing lambda for a given number of cores has a 

diminishing value after a certain point. What these trends infer is that the rate a core will 

need to access the accelerator can only affect performance up to a certain point. However, 

continuing to increase the core count can lead to a major slowdown. 
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Figure 3.15: Select Values of Average Stalls 

Dispatcher Queue 
 
 It is important to note that, most of the time, at least one of the cores will not be 

stalled. Figure 3.16 shows a sample of the number of cores trying to use the Dispatcher at 

once for a typical configuration. It is apparent that  

a) the Dispatcher does not stay clogged for long 

b) the number of cores accessing is rarely constant 

c) sometimes the Dispatcher is unused 

 
Figure 3.16: Cores Accessing Dispatcher 
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Utilization 

  Another important characteristic of the system to analyze is the utilization 

of the accelerator. The utilization is defined as the total time the system is busy divided 

by the total time spent. This is equivalent to: 

 

 Hence if the unit receives many requests over a small period of time it will be 

heavily utilized. Conversely, if in a long time span, the accelerator barely gets any 

requests then it is not heavily utilized. Figure 3.17 shows how the request arrival rate 

(1/λ) and the number of cores affect how the accelerator is utilized. Clearly more cores 

yield a higher utilization percentage and likewise a higher rate of requests increases 

utilization. At a certain point, too many cores in the system or too high a request rate will 

completely saturate the unit and it will always be used throughout the execution. This 

scenario is unwanted and will probably require a lower sharing ratio. 

 
Figure 3.17: Average Accelerator Utilization 
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Execution Time 
 
 A metric for raw performance of a program on a microprocessor is its execution 

time. Since the clock frequency remains constant, the number of cycles is directly 

proportional to the time it takes to execute a program. The execution time in cycles can 

be seen in Figure 3.19 as determined by the Simulator; the number of cores and arrival 

rate is varied as before. The graph possesses a striking “performance wall”. Increasing 

lambda too much will create an overwhelming performance penalty. This particular data 

set was gathered with an accelerator execution time of sixteen cycles. It can be expected 

that this walls position will vary for different configuration; however, it shows that there 

exists a cutoff at which this system no longer remains useful. 

 

 

Figure 3.19: Execution Time 
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 This data suggests that adding cores and therefore increasing your sharing ratio 

can be acceptable without a harsh performance penalty. Nevertheless, if all the cores start 

to execute a portion of code that continuously requests the accelerator the system may 

quickly suffer in performance. 

Performance Limitations 
 
 The bounds for cycles spent in computation for accelerated and non-accelerated 

systems can be useful in evaluating a system. For this multi-core sharing environment, 

given N requests that take t cycles to complete, the upper bound on the number of cycles 

needed to complete on m cores from the perspective of an individual core is: 

 
 

This case would occur when all m processors are trying to use a unit at the same time. 

The upper bound would be applicable to the last core in this line. 

 In a design without acceleration, using software to compute the formerly 

accelerated sections of code, each core will be independent of each other. Hence from 

any one cores perspective, the number of cycles needed to compute would depend on the 

cycles needed l, and the number of requests N: 

 
Therefore in order for there to be a speedup in a shared topology, one must obey the 

inequality that: 

 
or more importantly: 

 

This constraint means that, as one would expect, the complexity of the algorithm in 

software must be greater than it is in hardware for there to be any benefit of having 
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multiple cores. For example, suppose an algorithm that completes in software in n2 

number of steps. If one can accelerate it in hardware such that it become n, then the 

formula would become: 

 

Hence, if n was 16, the number of cores could not exceed 15 or the system could 

run slower than if it had excluded a hardware library. This constraint sets up a good 

design metric engineers can use to design their system and determine the number of cores 

appropriate to use with their hardware library. 

 
3.3 Implementation Overhead 
 
Logic Usage 
 
 Saving chip area is one of the primary goals of a sharing scheme. This also 

translates into reducing the amount of logic needed to synthesize the design. Decreasing 

the logic requirement opens the possibility for either added functionality, reduced power 

dissipation or even a smaller device to house the design. Figure 3.21 shows the trends in 

logic usage for the various sharing topologies. Clearly, the higher the sharing ratio, the 

less logic is needed to obtain the same functionality (but not necessarily the same 

performance). Remarkably, the six to one configuration uses nearly one third less of the 

total logic than no sharing at all. In fact, the one to one ratio nearly uses all of the 

FPGA’s logic! While their may not be a linear tradeoff between the sharing ratio and 

logic usage, it remains exceedingly important that a significant amount of logic can be 

free from one’s design. Interestingly, the number of registers needed remains the roughly 

the same for varying topologies. This can be attributed to the fact that neither the 
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Dispatcher nor the accelerators use these registers. Since the other components in the 

system remain constant, so will this statistic. 

  
Figure 3.20: Logic Usage 

 
Chip Area 
 
 Closely related to logic usage, the chip area used by the design must be 

considered by a designer. As with logic, saving chip area leaves room for other features. 

Furthermore, one could spread their design over the chip given more room to decrease 

power density which could greatly benefit cooling applications. Figures 3.22 and 3.23 are 

of the floor plan of the FPGA. Each small rectangle represents a CLB region. The 

coloring system is that darker the blue coloring, the denser the logic being used. The 

magenta represents the area used by the Dispatcher unit(s). Logically, the six to one 

design uses far less area than the two to one. 
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Figure 3.21:  Six to One Chip Area Usage 

 

 
Figure 3.22:  Two to One Chip Area Usage 
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Interconnect Complexity 
 
 The complexity and number of interconnections needed to realize a design can be 

a limiting factor. FGPAs have various varieties of interconnects that connect different 

regions of the chip. While it may not be likely, there exists a possibility that a design’s 

logic becomes so convoluted that it simply cannot be routed. At this point, one must 

consider the number of connections needed. The percentage of the connections used can 

be seen to increase inversely to the sharing ratio in Figure 3.24. This trend is logical 

because the lower ratios require more logic and this increase implies increased 

connections between the logic. 

 

  
Figure 3.23: Interconnect Complexity 

 
Delay Constraints 
  
 Finally, the delay considerations are crucial within any design. The worst case 

delays dictate the clock speed at which one’s device may be run. FGPAs already possess 

a reputation for being slow devices, so minimizing the delays becomes critical in creating 

a competitive design. Figure 3.25 tabulates the worst case delays for setup (tsu), hold (th), 

contamination (tco) and propagation (tpd) times. Once again, the higher sharing ratio 
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improves the design by reducing setup delay. Propagation and contamination delay 

remain constant. This consistency can be attributed to the fact that these delay depend on 

logic depth and the compilation tools will optimize the circuit to minimize these delays. 

Finally, hold time does not have a clear pattern and most likely the compilation tool 

obscures the trend for this attribute. 

 
Figure 3.24: Delay Constraints 
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Chapter 4: Conclusion and Future Work 
 
 In emerging microprocessor designs, power density and chip area continue to 

increase in importance.  Moreover, designers are no longer able to continue the trend of 

monotonically increasing clock speed to improve performance; nevertheless transistor 

feature size continues to shrink. In order to utilize the extra transistors, designers have 

added extra cores on the die to run sequentially. 

At the same time, FPGAs have risen to prominence for their ability to rapidly 

enable product development without the cost of fabrications. However, FPGAs in 

particular need to overcome their power shortcomings to become replacements for 

ASICs. Perhaps for applications were performance is absolutely the dominant factor, 

ASICs remain a more viable option. However, when considerations such as power, 

engineering cost, and device size become important, the proposed sharing method 

enhances the abilities of FPGAs. 

 The concept of a Hardware Shared library has been proposed. This library 

consists of hardware accelerators that run commonly used algorithms faster than is 

possible in software alone. Recent tools have been developed which can automatically 

translate section of code that need this speedup to hardware automatically. Like software 

libraries these units are shared between multiple instances running programs. However, 

because hardware cannot be replicated without a cost, one tries to minimize the number 

of copies required for a given application. 

 The need to minimize the number of copies in the library naturally lends itself to 

sharing between cores. By creating a dispatching unit, multiple cores can use the same 

accelerator in turns. Because only one core may use the accelerator at a time, a 
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performance penalty will be incurred if a core needs the accelerator but another core 

already has the lock. I was shown that one can increase the number of cores sharing an 

accelerator only to a certain point after which the performance penalty will become 

overwhelming. However, with reasonable numbers of core, one gains significant logic 

and area savings. This will reduce dynamic power consumption and leave more room for 

additional functionality. 

 Future revision of this shared hardware library will most likely focus on 

enhancing the performance of the system. While there are clear advantages in terms of 

chip economy, performance does degrade slightly for nominal operation. The source of 

slowdown comes from the cores needing to stall when another core has a lock on the 

accelerator they wish to use. In this implementation these cores will simply stall until the 

lock is released.  

A possible upgrade to this design would be to have a watchdog circuit that 

monitors the number of cores waiting for a hardware unit. Once a predefine limit of cores 

starts to wait, the watchdog will free the cores and have them execute the function in 

software thus avoiding stalling. This method would require software hooks in the 

processor architecture similar to an interrupt. With this feature the watchdog could send a 

control signal that would instantly divert the codes execution to a software 

implementation. In principle, there would be no software engineering overhead because 

the function would be written in C first to be compiled to HDL. The only penalty for such 

a feature would be the overhead of the watchdog logic and the software code size. The 

most logical limit for the watchdog to enforce would be the ratio m introduced of the 

software steps to that of the hardware. As discussed previously, if more cores are trying 
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to use the accelerator than this ratio, it would have been wiser to execute the code in 

software in the first place. 

 Even with lock contention remaining, the Dispatch system has great benefits for a 

multi-core design. The performance penalty is marginal until the discovered performance 

wall. Furthermore, the savings in terms of area, logic, and power may be preferred for 

many applications such as embedded systems. The proposed system shows a 

methodology for creating a Dispatcher to share a Hardware library and service multiple 

cores. Moreover, metrics to evaluate these systems were introduced. Like hardware 

caches, hardware designers will need to share accelerators between cores to effectively 

maintain chip economy. The Hardware Library has been established as an alternative to 

traditional accelerator design and has many benefits in terms of chip power, area, and 

logical complexity. 
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