
AI at the Edge: Efficient Deep Learning for
Resource-Constrained Environments

By

Marina Neseem

B.S., Ain Shams University, Cairo, Egypt, 2017

M.S., Brown University, Providence, RI, 2021

Thesis

Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in the School of Engineering at Brown University

PROVIDENCE, RHODE ISLAND

May 2024

© Copyright 2024 by Marina Neseem

This dissertation by Marina Neseem is accepted in its present form by the School of
Engineering as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date
Sherief Reda, Advisor

Recommended to the Graduate Council

Date
Sherief Reda, Advisor

Date
Jacob Rosenstein, Reader

Date
James Tompkin, Reader

Approved by the Graduate Council

Date
Thomas A. Lewis, Dean of the Graduate School

iii

Vitae

Marina Neseem was born and raised in Cairo, Egypt. She received her B.Sc. in Computer
and Systems Engineering from Ain Shams University, Cairo, Egypt in 2017. She received
her M.Sc. in Electrical and Computer Engineering from Brown University in 2021 during
her studies in the Ph.D. program. Her main areas of research include edge intelligence,
efficient machine learning, and hardware-software co-design.

marina neseem@brown.edu
https://marinaneseem.me/

Brown University, RI, USA

Selected Publications

1. Neseem, M., McCullough, C., Hsin, R., Leichner, C., Li, S., Chong, I., Howard,
A., Lew, L., Reda, S., Rautio, V., and Moro, D., 2024, June. PikeLPN: Mitigating
Overlooked Inefficiencies of Low-Precision Neural Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024).

2. Agiza, A.1, Neseem, M.1, and Reda, S., 2024, June. MTLoRA: A Low-Rank
Adaptation Approach for Efficient Multi-Task Learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024).

3. Neseem, M.1 , Agiza, A.1, and Reda, S., 2023, AdaMTL: Adaptive Input-dependent
Inference for Efficient Multi-Task Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW
2023).

4. Neseem, M. and Reda, S., 2021, November. AdaCon: Adaptive Context-Aware
Object Detection for Resource-Constrained Embedded Devices. In Proceedings of
IEEE/ACM International Conference On Computer Aided Design (ICCAD 2021).

5. Hosny, A.1, Neseem, M.1 and Reda, S., 2021, December. Sparse Bitmap Com-
pression for Memory-Efficient Training on the Edge. In Proceedings of IEEE/ACM

1The first two authors contributed equally to this work.

iv

Symposium on Edge Computing (SEC 2021).

6. Neseem, M., Nelson, J. and Reda, S., 2020, July. AdaSense: adaptive low-power
sensing and activity recognition for wearable devices. In 57th ACM/IEEE Design
Automation Conference (DAC 2020).

7. Ajayi, T., Chhabria, V., Fogaça, M., Hashemi, V., Hosny, A., Kahng, A., Kim, M.,
Lee, J., Mallappa, U., Neseem, M., et al., 2019, ”Toward an open-source digital
flow: First learnings from the openroad project.” In Proceedings of the 56th Annual
Design Automation Conference (DAC 2019).

v

Acknowledgments

This thesis would not have been possible without the constant support, guidance

and inspirations of many kind individuals. First and foremost, I would like to express

my immense gratitude to my advisor and mentor, Prof. Sherief Reda, whose guidance,

support, and valuable insights during the course of my research has made this thesis

possible. I would also like to thank Prof. Jacob Rosenstein and Prof. James Tompkin for

being on my defense committee and taking the time to review my thesis.

I am profoundly grateful for the fruitful collaborations with my co-authors: Abdel-

rahman Hosny, Ahmed Agiza, Jon Nelson, Daniele Moro, Ville-Mikko Rautio, In Suk

Chong, Shan Li, Conor McCullough, Lukasz Lew, Andrew Howard, Randy Hsin and Chas

Leichner.

I am grateful to the AI Compiler team at Microsoft Research for giving me two internship

opportunities. A special thanks to Mason Remy, whose mentorship and guidance were

invaluable. I also wish to express my gratitude to the Argos Codec team at Google for

offering me an internship opportunity, with a particular mention of Daniele Moro for

his mentorship. Additionally, my thanks go to Ville-Mikko Rautio for his guidance and

support during my internship and thereafter.

Words fall short of expressing my profound appreciation for my loving husband, Mark

Sidhom, whose exceptional care and support have been pivotal throughout the ups and

downs of my PhD journey. Additionally, I extend my deepest gratitude to my family for

vi

their constant support and love. I am particularly thankful to my parents, Hesham Wasfy

and Verseen Shafik, whose support has been foundational to my accomplishments. My

brother, Michael Hesham, deserves special thanks for his everlasting encouragement.

Last but not least, I am grateful to my fellow graduate students and friends in Prof.

Reda’s group at Brown, including Dr. Mostafa Said, Soheil Hashimi, Hokchhay Tan,

Abdelrahman Hosny, Farnaz Nouraei, Abdelrahman Hussein, Ahmed Agiza, Jon Nelson,

Jingxiao Ma, Manar Abdelatty, Mahdi Boulila and many others who have made the past

five years unforgettable. My heartfelt thanks also go to my friends Yostina Farid, Reza

Esfandiarpoor, and Miriam George for their companionship during my PhD years.

vii

Contents

Vitae iv

Acknowledgments vi

1 Introduction 1

1.1 Why AI on the Edge? . 1

1.2 Stages for Deploying AI on the Edge . 3

1.3 Thesis Contributions . 4

2 Background 9

2.1 Efficient Training for Deep Learning Models 9

2.2 Efficient Inference for Deep Learning Models 12

3 Efficient Model Design 14

3.1 Introduction . 14

3.2 Related Work . 16

3.3 Designing Highly Efficient Low-Precision Models 18

3.3.1 Cost Metrics for Low Precision Models 18

3.3.2 Introducing ACEv2 . 20

3.3.3 Overlooked Efficiency Bottlenecks 22

3.3.4 PikeLPN Architecture . 26

3.4 Experiments . 32

viii

3.4.1 Implementation and Training . 32

3.4.2 Results . 32

3.5 Conclusion . 37

4 Efficient Training 38

4.1 Introduction . 38

4.2 Background . 42

4.3 Leveraging Sparsity for Memory-Efficient Training 42

4.3.1 Activation Sparsity in Neural Networks 43

4.3.2 Sparse Bitmap Format . 45

4.3.3 Sparse Bitmap Compression Algorithm 48

4.4 Experiments . 49

4.5 Conclusion . 59

5 Efficient Inference with Temporal Awareness 60

5.1 Introduction . 60

5.2 Related Work . 62

5.3 Adaptive Human Activity Recognition Framework 64

5.3.1 Main Components . 65

5.3.2 Feature Extraction . 65

5.3.3 Human Activity Classifier . 66

5.4 Low-Power Sensing . 66

5.4.1 Sensor operation Modes . 67

5.4.2 Sensor configurations Design Space Exploration 67

5.4.3 Adaptive Low-Power Sensing Technique 68

5.4.4 The State Prediction Optimization Technique (SPOT) 69

5.4.5 The SPOT technique with confidence 70

5.5 Experiments and Results . 71

5.5.1 Experimental Setup . 71

ix

5.5.2 AdaSense Behavioural Analysis 72

5.5.3 Power & Accuracy Analysis . 73

5.5.4 Comparison to the previous work 74

5.6 Conclusion . 76

6 Efficient Inference with Spatial Awareness 77

6.1 Motivation . 77

6.2 Related Work . 79

6.3 Method . 81

6.3.1 Spatial-Context based Clustering 83

6.3.2 Detection Head Architecture . 84

6.3.3 Training the Adaptive Object Detection Model 85

6.4 Results . 86

6.4.1 Experimental Setup . 86

6.4.2 Spatial-Context-Based Clustering Evaluation 87

6.4.3 Branch Controller Accuracy Evaluation 88

6.4.4 AdaCon Performance and Efficiency Evaluation 89

6.4.5 AdaCon Evaluation for the Branch Controller Execution Modes . 90

6.4.6 Pareto-Frontier analysis for AdaCon 92

6.5 Conclusion . 96

7 Efficient Inference with Sample Awareness 97

7.1 Introduction . 97

7.2 Related Work . 99

7.3 Method . 101

7.3.1 Architecture Overview . 102

7.3.2 AdaMTL Policy Network . 103

7.3.3 AdaMTL Training Recipe . 105

7.4 Experiments . 108

x

7.4.1 Setup . 108

7.4.2 Quantitative Analysis . 109

7.4.3 Combining with SOTA MTL components 112

7.4.4 Qualitative Analysis . 112

7.4.5 Deployment on Vuzix M4000 AR glasses 114

7.4.6 Ablation Study . 115

7.5 Conclusion . 117

8 Summary and Possible Extensions 118

8.1 Summary of the Dissertation . 118

8.2 Possible Research Extensions . 121

8.2.1 Heterogeneous Quantization for Multi-task Models 121

8.2.2 Generalizing Power-of-two Quantization for LLMs 122

8.2.3 Low-Level Support for Dynamic Sparsification 123

8.2.4 Accelerators Support for Heterogeneous Quantization 123

A Detailed ACEv2 Derivations 125

A.1 Elementwise Multiplications . 125

A.2 Floating Point Elementwise Additions . 126

xi

List of Figures

1.1 Thesis Contributions . 3

3.1 Arithmetic Energy by multiply-accumulate versus non-quantized element-

wise operations . 18

3.2 PikeLPN building block architecture. 26

3.3 Weights distribution of pre-trained PW and DW Convolution layers . . . 27

3.4 PikeLPN-1× Accuracy during QAT . 29

3.5 PikeLPN-2× Accuracy during QAT . 30

3.6 Accuracy vs ACEv2 of PikeLPN and SOTA low-precision neural networks 33

3.7 Accuracy vs Energy Consumption by PikeLPN and SOTA low-precision

neural networks . 34

3.8 Detailed operations cost in PikeLPN vs PokeBNN 35

4.1 Preliminary Memory Footprint Analysis. 39

4.2 Activations Memory footprint for different layers in ResNet-50 and AlexNet. 43

4.3 Activations values histogram for ResNet. 44

4.4 Compressing dense activations in a bitmap. 46

4.5 Memory footprint of our proposed bitmap format as compared to other

sparse matrices. 49

4.6 Activations Memory footprint for training different classification models . 50

xii

4.7 Activations Memory footprint for training on ImageNet when using half-

precision (FP16) for storing the activations. 52

4.8 Memory Footprint with Activation Pruning 53

4.9 Classification Accuracy with activation pruning 53

4.10 Memory Footprint with Checkpointing and BitTrain 54

4.11 Memory Reduction on Jetson Nano Board 56

4.12 Runtime Reduction on Jetson Nano Board 58

5.1 Human Activity Recognition Framework. 64

5.2 Accelerometer configurations accuracy and power trade-off. 68

5.3 Low-Power Sensing HAR Framework. 69

5.4 State Prediction Optimization technique FSM 71

5.5 AdaSense Behavioural Analysis. 72

5.6 AdaSense Power and Accuracy analysis. 73

5.7 Comparison between AdaSense and Intensity Based Approach 75

6.1 Illustration of our Adaptive Object Detection model 81

6.2 Spatial-Context-based clustering for the object categories. 83

6.3 Spatial-context-based clustering output 88

6.4 Evaluation of AdaCon on RetinaNet and YOLO 90

6.5 Evaluation of AdaCon using different number of Branches. 91

6.6 Energy, Accuracy and Latency Trade-offs for AdaCon. 94

7.1 Overview of our proposed AdaMTL framework 102

7.2 Accuracy-Efficiency trade-off by AdaMTL compared to SOTA 111

7.3 Qualitative insights on the computational budget allocated by AdaMTL . 113

7.4 Sample of the generated masks by AdaMTL 114

7.5 AdaMTL Loss function ablation . 116

xiii

List of Tables

3.1 ACEv2 vs Energy under 45nm CMOS technology 20

3.2 Cost of non-quantized Batch Normalization 22

3.3 Cost of Non-Quantized Activation Funtions 23

3.4 Arithmetic Intensity for ResNet-50 model 24

3.5 Cost with various quantization granularities 25

3.6 Accuracy and cost of PikeLPN using various quantizers 27

3.7 Comparison of PikeLPN variants’ training parameters 31

3.8 Results – PikeLPN versus SOTA low-precision models 36

4.1 Memory footprint reduction on Jetson Nano Board 57

5.1 Acceleromenter Sampling Frequency and Averaging Window Combinations. 67

6.1 Detection Head Architectures for AdaCon 85

6.2 Quality of Branch Controller output . 89

6.3 AdaCon vs Static Models Parameters and MACs 93

6.4 AdaCon vs Static Models Accuracy and Efficiency Metrics 95

7.1 Quantitative analysis of AdaMTL Accuracy 109

7.2 Quantitative analysis of AdaMTL Efficiency 110

7.3 Comparison with SOTA MTL models. 111

7.4 Combining AdaMTL with SOTA MTL components. 112

7.5 Performance Analysis on Vuzix AR Glasses 114

xiv

7.6 Quality of task-aware, task-agnostic, and random policies 115

7.7 The contribution of different adaptive dimensions to AdaMTL. 115

xv

CHAPTER 1

Introduction

1.1 Why AI on the Edge?

Artificial Intelligence (AI) for edge applications represents a paradigm shift in how

data is processed and insights are generated in computing systems. Traditionally, machine

learning models have relied heavily on cloud-based infrastructures, where data collected

by edge devices (e.g., smartphones, IoT devices) is transmitted to centralized servers

for processing and analysis. However, this model faces challenges such as high latency,

bandwidth limitations, and concerns over data privacy and security. To address these

issues, there is a growing trend towards deploying machine learning models directly on

edge devices, enabling local data processing and real-time decision-making without the

need to constantly communicate with the cloud.

Deploying Artificial Intelligence (AI) on edge devices presents several challenges that

stem from the inherent constraints and operational demands of edge computing environ-

ments. Primarily, edge devices often have limited computational power, memory, and

energy resources, which restricts the complexity of AI models that can be effectively

run on such devices. This necessitates the development of lightweight, efficient models

and algorithms that can deliver reliable performance without overtaxing the device’s

1

capabilities. Furthermore, ensuring the privacy and security of data processed at the edge

is critically important, especially as these devices frequently handle sensitive information in

an increasingly interconnected landscape. This challenge is compounded by the distributed

nature of edge devices, which can complicate efforts to provide consistent updates and

patches across all devices. Additionally, achieving low latency in AI applications is crucial

for real-time decision-making processes, yet the varying network conditions and bandwidth

limitations associated with edge computing can hinder this goal. Lastly, managing and

maintaining a vast network of AI-enabled edge devices raises logistical issues, requiring

robust frameworks for remote management, diagnostics, and firmware updates to ensure

smooth and secure operations across diverse and often geographically dispersed devices.

These challenges necessitate a multidisciplinary approach, combining advancements in

machine learning, hardware engineering, cybersecurity, and network infrastructure to fully

realize the potential of AI on edge devices.

One of the key benefits of machine learning on the edge is the ability to achieve lower

latency in applications where real-time processing is crucial. For example, in autonomous

vehicles, real-time data processing and decision-making are imperative for safety and

performance. By processing data locally on the vehicle, the system can respond more

quickly to dynamic road conditions compared to relying on cloud-based computations.

Similarly, in healthcare, wearable devices can monitor vital signs and detect anomalies in

real-time, offering opportunities for immediate intervention.

Another significant advantage is the enhancement of privacy and security. By processing

data locally and minimizing the transfer of sensitive information to the cloud, edge ML

can mitigate the risks of data breaches and unauthorized access. This is particularly

important in applications dealing with personal or sensitive data, such as in smart homes

or personal health devices. Local processing ensures that only essential information, rather

than raw data, may need to be sent to centralized servers, thus enhancing user privacy.

2

Efficient Model Design
Low Precision Quantization CVPR'24

Efficient AI at the Edge

Efficient Inference
Temporal Awareness DAC'20
Spatial Awareness ICCAD'21
Instance Awareness CVPRW'23

Efficient Training
Memory Efficient Training SEC'21
Parameter Efficient Training CVPR'24

Figure 1.1: Thesis Contributions

1.2 Stages for Deploying AI on the Edge

The development of AI models suitable for resource-constrained edge devices involves

several critical steps. First, it is crucial to design highly efficient architectures tailored

for these models. Additionally, effective training and fine-tuning are imperative to

facilitate on-device personalization and to mitigate domain shifts. Lastly, ensuring efficient

inference that aligns with the resource limitations of edge devices is essential to advance

the capabilities of AI on edge devices.

This dissertation explores various challenges associated with all the three phases of

AI model deployment on edge devices, as illustrated in Figure 1.1. Initially, the thesis

investigates model compression and low-precision quantization, which are critical for

deploying AI models on edge devices. It begins by examining commonly used low-precision

cost metrics, uncovering a significant underestimation of inference costs. To rectify this,

the thesis suggests enhancements to existing cost metrics to more accurately represent

these overlooked costs, thus ensuring the models are suitable for the constraints of edge

devices. Additionally, informed by the novel cost metric, it introduces a new family

of low-precision architectures that surpass existing models in terms of efficiency and

performance.

3

Subsequently, this thesis explores efficient training strategies to facilitate model per-

sonalization, guaranteeing alignment with the unique requirements of individual users.

Our comprehensive investigation identifies memory limitations as the primary challenge

in training deep learning models on edge devices. As a response, this thesis capitalizes on

the inherent sparsity present in the feature maps to significantly lower memory demands

during training. This approach allows for the training of more sophisticated models

directly on edge devices.

Finally, this thesis presents innovative methods that utilize context-awareness to

develop efficient inference strategies. These strategies allow the model’s computational

requirements to dynamically adjust in response to the characteristics of incoming data,

optimizing performance under stringent resource constraints. To address scenarios with

temporal data dependencies, this thesis proposes a framework for adaptive inference

with temporal-awareness. This framework intelligently modulates compute resources

during runtime, guided by patterns recognized in historical data. Building on adaptive

frameworks, this thesis explores integrating spatial awareness to create efficient inference

strategies. This method involves hierarchical decision-making, starting with an early,

cost-effective assessment of the input’s spatial characteristics to determine the most

suitable specialized downstream model. Such adaptive inference strategies significantly

reduce latency and energy consumption with minimal impact on accuracy. Additionally,

this thesis introduces data-driven adaptive policies, enabling the model to learn from the

input instances how to allocate computational resources based on the complexity of the

input frame. This enhances the efficiency and accuracy of AI models and broadens the

adaptability of adaptive inference across various tasks on edge devices.

1.3 Thesis Contributions

Efficient Low-Precision Model Design: In Chapter 3, we investigate compression

techniques like quantization. Low-precision quantization is recognized for its efficacy

4

in neural network optimization. Our analysis reveals that non-quantized elementwise

operations which are prevalent in layers such as parameterized activation functions, batch

normalization, and quantization scaling dominate the inference cost of low-precision

models. These non-quantized elementwise operations are commonly overlooked in SOTA

efficiency metrics such as Arithmetic Computation Effort (ACE) [177]. In this chapter,

we propose ACEv2 - an extended version of ACE which offers a better alignment with

the inference cost of quantized models and their energy consumption on ML hardware.

Moreover, we introduce PikeLPN, a model that addresses these efficiency issues by applying

quantization to both elementwise operations and multiply-accumulate operations. In

particular, we present a novel quantization technique for batch normalization layers

named QuantNorm which allows for quantizing the batch normalization parameters

without compromising the model performance. Additionally, we propose applying Double

Quantization where the quantization scaling parameters are quantized. Furthermore, we

recognize and resolve the issue of distribution mismatch in Separable Convolution layers

by introducing Distribution-Heterogeneous Quantization which enables quantizing them

to low-precision. PikeLPN achieves Pareto-optimality in efficiency-accuracy trade-off with

up to 3× efficiency improvement compared to SOTA low-precision models.

Leveraging Sparsity for Memory-Efficient Training on the Edge: In Chapter

4, we explore the feasibility of running training on edge devices. Training on the Edge

enables neural networks to learn continuously from new data after deployment on memory-

constrained edge devices. Our analysis shows that memory footprint from activations

is the main bottleneck for training on the edge. Existing incremental training methods

fine-tune the last few layers sacrificing accuracy gains from re-training the whole model.

In this chapter, we investigate the memory footprint of training deep learning models,

and use our observations to propose BitTrain. In BitTrain, we exploit activation sparsity

and propose a novel bitmap compression technique that reduces the memory footprint

during training. We save the activations in our proposed bitmap compression format

5

during the forward pass of the training, and restore them during the backward pass for

the optimizer computations. The proposed method can be integrated seamlessly in the

computation graph of modern deep learning frameworks. Our implementation is safe by

construction, and has no negative impact on the accuracy of model training. Experimental

results show up to 34% reduction in the memory footprint at a sparsity level of 50%.

Further pruning during training results in more than 70% sparsity, which can lead to up

to 56% reduction in memory footprint. BitTrain advances the efforts towards bringing

more machine learning capabilities to edge devices.

Adaptive Inference with Temporal Awareness: In Chapter 5, we examine the

process of deriving context from historical data patterns to enhance our machine learning

(ML) framework. By leveraging this context, this framework intelligently modulates

compute resources during runtime, guided by patterns recognized in historical data To

validate this concept, we implemented this approach within a human activity recognition

ML framework, which is frequently utilized in wearable technology. Wearable devices have

strict power and memory limitations. As a result, there is a need to optimize the power

consumption on those devices without sacrificing the accuracy. This chapter presents

AdaSense – a sensing, feature extraction and classification co-optimized framework for

Human Activity Recognition. The proposed techniques reduce the power consumption by

dynamically switching among different sensor configurations as a function of the patterns

in user activity over time. The framework selects configurations that represent the pareto-

frontier of the accuracy and energy trade-off. AdaSense also uses low-overhead processing

and classification methodologies. The introduced approach achieves 69% reduction in the

power consumption of the sensor with less than 1.5% decrease in the activity recognition

accuracy.

Adaptive Inference with Spatial Awareness: In Chapter 6, we investigate

integrating spatial context awareness into model architecture design to improve its efficiency.

This method involves hierarchical decision-making, starting with an early, cost-effective

6

assessment of the input’s spatial characteristics to determine the most suitable specialized

downstream mode. By harnessing this spatial information, we seek to dynamically

enhance the efficiency of our ML model. To evaluate the efficacy of this strategy, we have

implemented it in an object detection ML framework, which is extensively employed in

applications such as surveillance cameras and augmented reality devices. Those object

detection ML frameworks often have large computational and energy requirements that

challenge their deployment on resource-constrained edge devices. Object detection takes

an image as an input, and identifies the existing object classes as well as their locations in

the image. In this chapter, we present AdaCon. AdaCon leverage the prior knowledge

about the probabilities that different object categories can occur jointly in the same spatial

context to increase the efficiency of object detection models. In particular, our technique

clusters the object categories based on their spatial co-occurrence probability. Then, it

uses those clusters to design an adaptive network. During runtime, a branch controller

decides which part(s) of the network to execute based on the spatial context of the input

frame. Our experiments using COCO dataset show that our adaptive object detection

model achieves up to 45% reduction in the energy consumption, and up to 27% reduction

in the latency, with a small loss in the average precision (AP) of object detection.

Adaptive Inference with Instance Awareness: In Chapter 7, we investigate

the model’s capability to make predictions based on learnt contextual information, and

dynamically adapt its inference process based on this context. The goal is to design a

generalizable context-aware ML model where we don’t need to handcraft the context

criteria. To test the applicability of this approach, we apply it to a vision transformer

model that performs multiple tasks simultaneously. Those multi-task models are necessary

for applications where we need to extract a lot of information from the input like augmented

reality applications running on Augmeted Reality devices. Multi-task learning (MTL)

models usually consist of a shared encoder to extract representative features from the input

frame, followed by task-specific decoders to generate predictions for each task. Generally,

7

the shared encoder in MTL models needs to have a large representational capacity in

order to generalize well to various tasks and input data, which has a negative effect on

the inference latency. In this chapter, we argue that due to the large variations in the

complexity of the input frames, some computations might be unnecessary for the output.

Therefore, we introduce AdaMTL, an adaptive framework that learns task-aware inference

policies for the MTL models in an input-dependent manner. Specifically, we attach a

task-aware lightweight policy network to the shared encoder and co-train it alongside

the MTL model to recognize unnecessary computations. During runtime, our task-aware

policy network decides which parts of the model to activate depending on the input frame

and the target computational complexity. Extensive experiments on the PASCAL dataset

demonstrate that AdaMTL reduces the computational complexity by 43% while improving

the accuracy by 1.32% compared to single-task models. Combined with SOTA MTL

methodologies, AdaMTL boosts the accuracy by 7.8% while improving the efficiency by

3.1×. When deployed on Vuzix M4000 smart glasses, AdaMTL reduces the inference

latency and the energy consumption by up to 21.8% and 37.5%, respectively, compared to

the static MTL model.

8

CHAPTER 2

Background

In this chapter, we provide the background and a concise overview of the relevant prior

work related to the techniques proposed in this dissertation. We begin with a discussion

of methods for efficient training, as detailed in Section 2.1. Following this, Section 2.2

explores prior work aimed at enhancing the efficiency of inference in deep learning models.

Additional details regarding the related work for the specific techniques discussed in this

dissertation are included in their respective chapters.

2.1 Efficient Training for Deep Learning Models

Transfer Learning. Deep learning models trained on large datasets (e.g. ImageNet

[31]) can be widely used to retrain neural networks on the edge with local data. The idea

is to keep the parameters of the feature extraction layers unchanged, and only train the

last layers [123]. Transfer learning on the edge can be used for customization of mobile

services as well as for offline retraining. This approach saves training memory because the

intermediate activations for the feature extractor do not need to be stored. However, the

accuracy can significantly drop, especially when the new data is coming from a distribution

that is very far from the distribution of the data used during the initial training. To solve

9

this issue, Cai et al. [17] proposed fine-tuning the both the final layers as well as the

biases of the feature extractor (i.e intermediate activations are not needed to compute the

gradients for the biases). This approach saves the memory footprint; however, fine-tuning

all the layers significantly increase the ability of the model to adapt on the new data.

Low Precision Training. Micikevicius et al. [113] use half precision (16 bits) for

weights, gradients, and activations. This reduces the memory footprint by a factor of 2×,

and it can be complementary to any other low-memory training technique to maximize

the savings. Courbariaux et al. [26] show that they can train models using 10-bits

multiplications without severely affecting the accuracy. Jia et al. [79] increase the training

throughput of a single GPU using a mixed-precision training method. Dipankar et al. [29]

use fixed-point integer operations to train the models. They show that this can achieve

competitive results to training with floating-point operations. All of these techniques use

lower precision to reduce the memory footprint of training and possibly the number of

operations needed, which compromises on the accuracy of the model.

Microbatching. Huang et al. [70] use microbatch-based training where they can

sequentially send smaller subsets of the batch through the network, and accumulate

the gradients until the whole batch is processed. Then, gradient update is executed

once. This approach reduces the memory footprint without affecting the total number of

operations performed. It is important to note that microbatching has a direct impact on

the statistical characteristics of batch normalization layers. That is why it needs to be

exercised carefully in order to avoid losing accuracy.

Rematerialization. Chen et al. [21] first proposed the idea of trading computation for

memory. The idea is to discard saving the activations and recalculate them, layer-by-layer,

upon backpropagation. Gruslys et al. [46] proposed a dynamic programming approach

that balances between caching of intermediate results and re-computation. The interested

reader is referred to [136] for a detailed technical report on combining some of the above

techniques for training.

10

Parameter-Efficient Training. Parameter-efficient training (PEFT) has become

increasingly important, especially when dealing with large-scale pre-trained models [66,

175, 40, 67] since traditional fine-tuning methods, which involve adjusting a significant

portion of a model’s parameters for specific tasks, can be resource-intensive. Two common

techniques in this domain are adapters [175, 40] and Low-Rank Adaptation (LoRA) [66, 32].

Adapters are lightweight modules inserted between the layers of a pre-trained model, which

allows for targeted modifications to the model’s behavior without altering the original

pre-trained weights. This approach is beneficial as it reduces the number of parameters

that need to be fine-tuned, thus lowering the computational burden. Adapters have

shown effectiveness in various tasks, providing a flexible and efficient way to adapt large

models to specific tasks or datasets. However, one limitation of adapters is the additional

parameters they introduce, which can lead to increased computational requirements during

inference. On the other hand, LoRA offers a different approach to PEFT. LoRA involves

modifying the weight matrices of a pre-trained model using low-rank decomposition.

This method allows for fine-tuning the model’s behavior while maintaining the original

structure and size of the weight matrices. The key advantage of LoRA is that it does

not introduce additional parameters during the model’s runtime. Instead, it updates

the pre-existing weights to enhance the model’s performance on new tasks with minimal

increase in computational requirements. LoRA has been successfully applied in various

fields, including NLP [66, 32, 19, 22] and computer vision [61], demonstrating its versatility

and effectiveness. Some recent studies have proposed new solutions to extend the benefits

of PEFT for multi-task adaptation. One such approach is the Hypernetworks [108], which

uses shared networks to generate adapter parameters for all layers conditioned on the

task, thus allowing for the sharing of information across different tasks while enabling

task-specific adaptation through task-specific adapters. Building on top of it, Polyhistor

[100] explores PEFT in the domain of dense vision tasks, specifically on hierarchical

vision transformers. Polyhistor proposes two ideas: decomposing hypernetworks into

low-rank matrices and using custom kernels to scale fine-tuning parameters to the different

11

transformer blocks.

2.2 Efficient Inference for Deep Learning Models

Compact Deep Learning Architectures. The optimization of compute and

memory resources for model inference on edge devices has been a critical area of focus in

recent research [20]. To address these challenges, researchers have hand-crafted compact

models [65, 107, 162, 145]. SqueezeNet, for instance, is a parameter-efficient model

designed for resource-constrained environments [71]. It achieves AlexNet-level accuracy

on the ImageNet dataset with 50 times fewer parameters by employing strategies like

replacing 3 × 3 convolutions with 1 × 1 ones, converting input channels to only 3 × 3

filters, and delaying downsampling for enhanced accuracy. Similarly, MobileNets [65]

utilize spatially separable convolutions, which split a 3× 3 convolution into two smaller

operations – a 3×1 and a 1×3 convolution—thereby reducing the computational cost and

number of parameters from 9 to 6, and consequently decreasing matrix multiplications.

Building on these advancements, MobileOne [154] has further identified parameterized

activation functions and skip connections as major sources of latency in edge devices.

Leveraging these insights, MobileOne developed a model capable of operating within

1ms on mobile platforms, showcasing significant progress in reducing latency for edge

computing applications.

Model Compression Techniques. In addition to crafting compact models, model

compression techniques have been employed to facilitate running deep neural networks

(DNNs) on small devices [50, 93]. There are three primary methods for reducing the size

of networks: quantization, pruning, and knowledge distillation. Quantization involves

converting the parameters of a DNN from floating-point representations to low-bit width

numbers, which simplifies the computational demands by eliminating costly floating-point

multiplications. Research in low-precision quantization demonstrates that networks can

be effectively quantized to 4 bits with only minimal loss in accuracy [23, 83, 2, 124].

12

Additionally, some studies focus on power-of-two quantization, which is known for its

hardware efficiency [147, 54, 91]. Pruning targets the removal of less critical parameters,

such as those near zero, to reduce the computational demands of the model [14, 76, 171,

143]. For instance, Molchanov et al. [117] utilize a loss-approximating Taylor expansion

as a gradient-based metric for identifying pruning candidates. Anwar et al. [5] and

Yang et al. [165] select candidates through random evaluations and energy consumption

weighting, respectively. Strategies such as early pruning [120] and dynamic pruning [48]

aim to enhance integration with retraining processes, thus conserving time spent on

retraining. Knowledge distillation involves constructing a smaller DNN that replicates the

functionality of a larger, more complex one [62]. This process is executed by training the

smaller network using the output predictions of the larger model, allowing the smaller

network to approximate the learning function of its larger counterpart. Collectively, these

approaches – quantization, pruning, and knowledge distillation – can be applied separately

or in combination to optimize DNNs for operation on constrained devices [50].

13

CHAPTER 3

Efficient Model Design

3.1 Introduction

Quantization has long been established as a method to improve the efficiency of deep

neural networks, resulting in smaller models and accelerated processing [41]. Recent

studies have shown impressive results in image classification tasks, making the use of

low-precision quantization (i.e., 4 bits or fewer) increasingly popular [124, 177, 104, 128].

In these compact models, convolutional and fully connected layers are typically constrained

to 4-bit precision or even less, while precision is maintained at higher levels in other layers

of the network. For example, the state-of-the-art (SOTA) binary network PokeBNN [177]

binarizes the convolutional layers of ResNet-50 [57], and to avoid accuracy loss, they

incorporate extra skip connections, extra batch normalization layers, and parameterized

activation functions (DPReLU) that are executed in high precision.

We analyze the key efficiency bottlenecks in low-precision models uncovering a fun-

damental limitation of the efficiency metrics in literature, ACE [177], CPU64 [110, 104],

Unit-gate model [181] and FA-count [133]. Those metrics exclude the elementwise opera-

tions in arithmetic calculations, a sentiment grounded in the belief that their contribution

to the total computation cost is negligible compared to MAC operations. Optimizing

14

for those metrics drives researchers to prioritize the reduction of computational precision

in Convolutional and Dense layers, yet they overlook the quantization of elementwise

operations. As a result, operations such as batch normalization, activation functions,

and quantization scaling multiplications, are often performed at full precision. Moreover,

SOTA low-precision models tend to rely extensively on mechanisms like branching [68] and

skip connections [57], which significantly increase energy costs associated with memory

reads and writes. To overcome this issue, we propose ACEv2 which extends the efficiency

metric ACE to account for all arithmetic operations in quantized neural networks including

both elementwise and MAC operations. This would help guide researchers’ choices when

designing low-precision models.

Guided by our ACEv2 metric, we design PikeLPN – a novel family of efficient low-

precision models. PikeLPN quantizes both elementwise and MAC operations. Remarkably,

PikeLPN not only achieves a 3.5× cost reduction compared to SOTA binary models [104,

177], it also achieves competitive accuracy levels on ImageNet [30].

Our contributions can be summarized as follows:

• We identify and analyze the overlooked cost of non-quantized elementwise operations

in SOTA low-precision models. Our analysis shows that the non-quantized elemen-

twise operations used in parameterized activation functions, batch normalization,

and quantization scaling dominate the inference cost of low-precision models.

• We propose ACEv2 – an extension to the existing hardware-agnostic cost metric

ACE. ACEv2 offers a better alignment with the cost of the low-precision models

and their energy consumption on ML hardware by accounting for all arithmetic

operations during inference.

• We propose PikeLPN – a novel family of low-precision architectures, which improves

the efficiency of low-precision models by quantizing both elementwise and multiply-

accumulate operations. Specifically, we propose (a) QuantNorm for effective batch

15

normalization quantization, (b) Double Quantization where quantization parameters

are also quantized, and (c) Distribution-Heterogeneous Quantization for Separable

Convolution layers to tackle their distribution mismatch problem.

The rest of the chapter is organized as follows. We review the related work in Section 3.2.

In Section 3.3, we propose ACEv2 providing detailed analysis to the overlooked efficiency

bottlenecks by previous cost metrics. Then, guided by the new cost metric, we propose

our efficient PikeLPN model. Next, we compare PikeLPN to SOTA low-precision models

in Section 3.4. Finally, we conclude in Section 3.5.

3.2 Related Work

Low-precision Quantization: A substantial body of work exists in the realm of

low-precision quantization, exemplified by studies that indicate that architectures can be

quantized to 4 bits with minimal impact on accuracy [23, 83, 2, 124]. Others perform

logarithmic quantization methods known for their hardware efficiency [147, 54, 91]. In

addition, there are attempts to push the boundaries by introducing predominantly binary

models where some of the convolution layers are quantized to 1 bit while other layers are

maintained at a higher precision [177, 104, 127]. Some researchers have also developed

automated strategies for mixed-precision modeling to dynamically choose the optimal

precision for each layer, contingent upon a predetermined efficiency metric [84]. However,

existing approaches primarily focus on the quantization of multiply-accumulate (MAC)

operations in convolution and dense layers. They commonly neglect elementwise operations

such as those in batch normalization layers and activation functions. Our empirical findings

show that this assumption becomes invalid for low-precision models, specifically 4 bits or

below.

Architectural Approaches to Low-precision Models: Several studies have

adopted architectural modifications to enhance the performance of low-precision models.

16

Many such modifications involve the integration of modules consisting solely of elementwise

operations, aiming to minimize computational and parameter overhead. For instance, the

channelwise real-valued rescaling of binarized tensors has been proposed as an effective

means to reduce quantization error [130]. This approach incorporates elementwise floating-

point multiplications for each channel. Additional methods, as suggested in [28], advocate

for per-vector quantization, which results in multiple elementwise multiplications per

channel. Studies like FracBNN [178] and PokeBNN [177] include extra Batch Normalization

layers in their predominantly binary models to expedite the training convergence. Moreover,

the use of parameterized activation functions, such as PReLU [59] and DPReLU [177],

has become a standard practice for improving the performance of low-precision models

[104, 103]. All these modifications necessitate elementwise floating-point multiplications

and additions. Moreover, the introduction of skip connections has proven beneficial in

enhancing low-precision model quality. Notably, ReActNet [104] and PokeBNN [177] are

designed with 4 and 3 parallel branches, respectively. Although skip connections only

involve elementwise additions, they contribute to an increased memory access during

inference to store multiple activations increasing the inference cost [78].

Cost Metrics for Efficiency Evaluation: MAC operations have been recognized in

literature as the principal contributors to inference cost of deep learning models. As a result,

efficiency metrics have predominantly focused on these specific operations. The CPU64

metric [103, 104, 102] has been used to gauge the efficiency of mixed-precision neural

networks when running on CPUs. With the growing utilization of specialized machine

learning hardware and accelerators, a newer metric named ACE has been introduced

[177]. ACE, an acronym for Arithmetic Computation Effort, is formulated as the product

of the number of MAC operations and the bitwidth of the two operands involved, which is

directly proportional to the number of active hardware bit-adders required. The Unit-gate

model [181] and FA-count [133] correlate very well with ACE and differ only by a small

constant factor 1. All these metrics do not consider elementwise operations. Thus, in

1They do not account for carry-save format for local accumulator representations typically used in

17

0 50 100 150 200 250 300 350 400 450Binary
INT2
INT4
INT8
FP16
FP32

89.1%

84.3%

71.1%

45.2%

13.4%

1350 1400

4.1%

Arithmetic Energy (mJ)

Multiply-Accumulate Elementwise

Figure 3.1: Arithmetic Energy on 45nm CMOS technology by multiply-accumulate
operations versus non-quantized elementwise operations for MobileNetV2. Energy costs
are calculated using Table 3.1. The figure reveals that elementwise operations are a
substantial contributor to the overall cost in low-precision models.

this chapter, we extend the ACE metric introducing ACEv2, and this extension should

generalize to other metrics as well. All these metrics, including the extended ACE, are

technology node independent.

3.3 Designing Highly Efficient Low-Precision Models

In this section, we identify previously overlooked costs in state-of-the-art (SOTA)

cost metrics. Additionally, we propose extending the Arithmetic Computational Effort

(ACE) metric [177] to provide a more accurate representation of the inference cost of

low-precision models. Subsequently, we assess the impact of various design alternatives

in low-precision models on the cost of inference. Finally, we present PikeLPN – a novel

family of low-precision models.

3.3.1 Cost Metrics for Low Precision Models

The prevalent notion is that multiply-accumulate operations in the convolution and

dense layers are the sole substantial contributors to inference cost in deep learning models

systollic arrays.

18

[124, 177, 104]. This viewpoint stems from the observation that for full precision models

the energy cost of those layers is more than 95% of the total model operations as shown

in Figure 3.1. Consequently, commonly used efficiency metrics for quantized neural

networks, such as CPU64 [103, 104, 102] and ACE [177], are tailored to exclusively

account for multiply-accumulate operations in these specified layers. Optimization in

accordance with these metrics drive researchers to prioritize reducing the precision of

multiply-accumulate operations in convolution and dense layers while maintaining high

precision for all other elementwise operations. Moreover, they re-parameterize the models

adding layers that only have elementwise operations to compensate for any accuracy

losses by low-precision quantization [177, 104]. However, our analysis reveals that these

non-quantized elementwise operations substantially contributes to the arithmetic cost

during inference of low-precision models (i.e., 8 bits and lower), thereby challenging the

prevailing assumptions.

Figure 3.1 illustrates the relative contributions of low-precision multiply-accumulate

operations and non-quantized elementwise operations to the total energy consumption

by arithmetic computations at various precisions. The data reveals a notable trend: the

proportion of energy consumed by elementwise operations becomes more significant as

the precision decreases. For example, in binary-quantized models, those non-quantized

elementwise operations account for up to 89% of the total cost. This observation highlights

the limitations of existing metrics in accurately gauging the efficiency of quantized models.

Consequently, we propose ACEv2 which extends the ACE metric [177] to account for

both multiply-accumulate operations as well as elementwise operations. We anticipate

that our comprehensive ACEv2 metric will enable more informed optimization choices

within the research community.

19

Table 3.1: Cost under 45nm CMOS technology [168, 64] 2. f(i, j) refers to the formula
used to calculate the ACEv2 cost where i and j are the precisions of the two operands.
ca = 6 and cs = 5. The correlation coefficient between ACEv2 and the independently
measured arithmetic energy consumption is 0.991.

MULTIPLY ADD SHIFT

Energy
ACEv2

Energy
ACEv2

Energy
ACEv2(pJ) (pJ) (pJ)

FP32 3.7 992 0.9 192 - -
FP16 1.1 240 0.4 96 - -

f(i, j) i · j - max(i, j) ca ·max(i, j) -

INT32 3.1 992 0.1 32 0.13 32
INT16 - 240 - 16 0.057 12.8
INT8 0.2 56 0.03 8 0.024 4.8
INT4 - 12 - 4 - 1.6
INT2 - 2 - 2 - 0.4
Binary - - - 1 - -

f(i, j) i · j - max(i, j) max(i, j) i · log2(j)/cs

3.3.2 Introducing ACEv2

ACE has been used to estimate the cost of inference on idealized ML hardware

implemented with CMOS methodology [177]. ACE is defined by its authors as the

number of bitadders (i.e., digital circuit adding 3 bits to form a 2 bit number – carry and

sum) required to perform every multiply-accumulate operation. The authors justify that

definition by showing a high correlation coefficient (i.e., 0.946) between the number of

bitadders and the independently measured energy consumption on 45nm CMOS technology.

While ACE provides a hardware-agnostic method to evaluate the efficiency of quantized

neural networks, it fails to include the elementwise operations which can be the dominating

cost factor in low precision models as shown in Figure 3.1. Moreover, ACE does not

provide a way to estimate the cost of shift operations which are required to implement

non-linear base-2 logarithmic quantization [169, 168]. We propose ACEv2 which improves

ACE by extending it to include elementwise multiplication, elementwise addition, and

shift operations. We establish the ACEv2 formulas for the previously discussed operations

as shown in Table 3.1.

2Energy costs for low-precision operations can be extrapolated linearly for addition and quadratically
for multiplication [24].

20

Elementwise Multiplications:

Using established methods for constructing multipliers, such as adder trees proposed

by Wallace and Dadda [159, 27], we calculated the number of adders needed to multiply

an i-bit number by a j-bit number as i · j −max(i, j). This formula exactly matches the

optimal number of adders for 1 <= i, j <= 64. Detailed derivation in Appendix A.

Elementwise Additions:

Fixed-point numbers added using established adders 3 activate an upper bound of

max(i, j) bit adders to add i-bit and j-bit numbers. Floating-point adders additionally

require exponent alignment, significand addition, and normalization steps [134], resulting

in a much higher energy consumption compared to fixed-point adders as shown in Table

3.1. We analyze the operations needed in floating point adders [134] and come to an

ACEv2 cost of 6× the cost of a fixed-point adder. Therefore, we derive ACEv2 for floating

point adders using ca ·max(i, j) with ca = 6. Detailed derivation in Appendix A.

Shift Operations:

A Barrel Shifter is an established method to shift and rotate i-bit numbers by j

locations in modern processors [55]. The barrel shifter is implemented as a cascade of

i log2(j) 2:1 multiplexers. Therefore, we derive ACEv2 for a shift operation as i log2(j)/cs

where cs is the ratio of the cost of a 2:1 multiplexer compared to a full adder. Since a full

adder can be efficiently implemented using five 2:1 multiplexers based on [82], we assign

cs = 5.

To verify the correctness of our ACEv2 metric, Table 3.1 shows a 0.991 correlation

coefficient between the independently measured energy consumption of various arithmetic

units on the 45nm CMOS technology and its ACEv2 cost, a notable improvement compared

to the 0.946 correlation coefficient in ACE [177]. Using those definitions, we estimate a

3While there are many methods for constructing adders, such as Carry Lookahead Adder [122] and
Ripple Carry Adder [6], the particular implementation has a limited effect on the energy use.

21

Table 3.2: The contribution of non-quantized Batch Normalization Layers to the overall
ACEv2 cost.

Model
BN Adds BN Mults BN ACEv2
(Million) (Million) (%)

MobileNetV2 (4W, 4A) 6.67 6.67 41.87
ResNet50 (1W, 1A) 10.58 10.58 41.38

more accurate arithmetic cost for any quantized model.

3.3.3 Overlooked Efficiency Bottlenecks

Batch Normalization:

Batch normalization layers, which necessitate elementwise multiplications and addi-

tions, typically retain parameters in floating-point format during deep neural network

quantization to maintain training stability and prevent accuracy loss [177, 104, 127].

Consequently, these operations are performed using floating-point (FP32) arithmetic,

with a single FP32 operation consuming approximately 18× more energy than an INT8

multiplication, as detailed in Table 3.1. Assessing the impact of these non-quantized batch

normalization layers in Table 3.2 reveals that they can account for as much as 42% of the

total ACEv2 cost in various low-precision models. This substantial contribution shows

the importance of considering the cost of these operations and potentially quantizing its

parameters.

Activation Layers:

In recent literature, low-precision models have increasingly replaced ReLU [3] activation

functions with parameterized activation functions such as PReLU [59] and DPReLU [177]

to improve performance and training stability of quantized models [104, 128]. The dynamic

parameterized rectified linear unit (DPReLU), for instance, is defined by the following

22

Table 3.3: The cost overhead when replacing a ReLU activation function with non-
quantized parameterized alternatives such as PReLU and DPReLU on a 4-bit MobileNetv2
model.

Activation
Adds Mults ACEv2 Overhead

(Million) (Million) (×109) (%)

ReLU [3] 0 0 20.44 -
PReLU [59] 0 6.1 26.5 +29.6%

DPReLU [177] 6.1 6.1 27.67 +35.3%

piecewise function:

DPReLU(x) =


η(x− α)− β if x− α > 0

γ(x− α)− β otherwise

(3.1)

Here, the parameters η, α, β, and γ are represented in floating-point format. Consequently,

the computation of DPReLU necessitates both elementwise floating-point multiplications

and additions. Our study, detailed in Table 3.3, assesses the impact of these element-

wise operations on the ACEv2 cost. We find that in a 4-bit MobileNetV2 model, the

incorporation of different activation functions — namely ReLU, PReLU, and DPReLU

— significantly influences the cost. Specifically, the use of PReLU and DPReLU, despite

their benefits on accuracy, introduces up to 35% increase in the overall inference cost. This

finding highlights the need to balance the benefits of parameterized activation functions

with their computational demands.

Skip Connections:

Skip connections are regarded as zero-cost operations in terms of arithmetic compu-

tation. Consequently, previous work overused them to improve the model performance

without having any measurable effect on the cost [177, 104, 127]. For instance, ReActNet

[104] incorporated four parallel branches, quadrupling its memory footprint compared

to a single-path model. PokeBNN [177] followed a similar design, incorporating three

parallel branches. However, such branching necessitates the concatenation of feature maps

23

Table 3.4: Arithmetic Intensity computed according to Equation (3) for a ResNet-50
model with various number of branches.

Arithmetic Intensity (Ops/Element ↑)
2 Branches 3 Branches 4 Branches

73.5 49.66 36.75

from previous layers, leading to an increase in the amount of data concurrently stored in

memory. That increase the required memory reads and writes which have significant costs.

As an example, in a processor with a 32KB cache designed using 45nm CMOS technology,

moving an 8-bit element from the cache consumes approximately 2.5pJ of energy. This

is about 12× the energy needed for an INT8 multiplication operation, which requires

only around 0.2pJ as shown in Table 3.1. This disparity becomes even more profound

when data must be transfered from DRAM, where the energy requirement balloon to

162.5pJ – 810× higher than the INT8 multiplication [64]. Quantifying this overhead in a

hardware-agnostic manner is challenging since it is influenced by a multitude of factors

including the underlying hardware architecture, memory location, and model size. Yet,

understanding its impact remains crucial to design efficient models. We advocate for the

adoption of Arithmetic Intensity as a practical metric to measure memory reads and writes

during inference [78]. Arithmetic Intensity (AIc) is defined as the ratio of the arithmetic

operations (Mc) to the amount of data, including both Weights (W) and Activations (A),

required to execute these operations as shown in Equation 3.2.

AIc =
Mc

W + A
(3.2)

Consequently, Arithmetic Intensity serves as an indicator of the amount of memory

reads and writes to perform computational operations. Adding branches lead to a

substantial increase in the amount of data that must be loaded to execute a relatively

small number of operations; hence decreasing the arithmetic intensity as shown in Table

3.4.

24

Table 3.5: ACEv2 of a 4-bit MobileNetV2 and a Binary ResNet50 model with various
quantization granularities. The Overhead represents the percentage of cost required by
the extra FP operations due to quantization (i.e. quantization scaling).

Quantization Mults ACEv2 (×109) ↓
Granularity (Million) Total Overhead (%)

MobileNetV2 - < 4W, 4A >

Layerwise [41] 6.67 20.44 32.52%
Channelwise [41] 6.67 20.44 32.52%

Sub-Channelwise [28] 13.35 27.06 48.97%

ResNet50 - < 1W, 1A >

Layerwise [41] 10.63 28.13 32.03%
Channelwise [41] 10.63 28.13 32.03%

Sub-Channelwise [28] 32.75 50.08 63.55%

Quantization Granularity Overhead:

Uniform quantization, a widely adopted technique in SOTA low-precision models [127,

124, 177], transforms discrete integer values, q, into continuous real values, r through the

affine relation

r = S(q − Z) (3.3)

where S is a scale factor. S is a critical component of quantization which is typically

learned as an arbitrary floating-point value during training. In the inference phase, this

necessitates an elementwise multiplication by S, contributing to computational overhead

[74]. Proper scaling is crucial in quantization to mitigate quantization error enabling

quantized models to maintain high accuracy. Quantization granularity dictates the level

at which scaling factors are applied in a model [41]. For example, Layerwise quantization

assigns a single scale factor based on all weights within a layer. Channelwise quantization,

widely adopted in state-of-the-art low-precision models, allocates a unique scaling factor

to each channel, catering to the varying distributions of weights and potentially enhancing

model accuracy. Sub-Channelwise quantization takes this further by assigning several

scaling factors within each channel, allowing for even finer adjustments at the expense

of increased computational cost [28]. All quantization granularities add one or more

elementwise multiplications per channel. Table 3.5 compares the ACEv2 cost of such

25

Figure 3.2: PikeLPN building block architecture.

quantization granularities. In the popular Channelwise quantization, the overhead from

elementwise multiplications is 32% of the total cost.

3.3.4 PikeLPN Architecture

Based on our comprehensive analysis, we introduce PikeLPN, a novel architecture

engineered to mitigate the inefficiencies of SOTA low-precision models. This section

introduces the basic block of our proposed PikeLPN model, explores quantization strategies

for the different layers, and proposes a novel method for quantizing batch normalization

layers without compromising the model’s accuracy.

PikeLPN Basic Block: To engineer an effective low-precision model, we first design the

baseline architecture with building blocks that are inherently efficient. With this principle

in mind, our architecture adopts separable convolutional layers, subdivided into depthwise

and pointwise convolutions, in line with the framework established by MobileNetV1

[65]. Those layers are widely recognized for their computational efficiency and have been

integrated into SOTA efficient ConvNets [144, 154]. Figure 3.2 illustrates the building block

for PikeLPN. To maximize computational efficiency, the used architecture deliberately

26

Table 3.6: Top-1 Accuracy on ImageNet vs ACEv2 cost of PikeLPN using various quantizers
for the Depthwise and Pointwise Layers. PW-Convolution layers contribute to 95% of
the number of multiply-accumulate operations in the model, that is why we lower the
precision of the PW Conv layers to 4 bits while we keep the DW Conv layers at 8-bits.

Pointwise Conv. Depthwise Convs Top-1 ACEv2

Weights Q-Params Weights Q-Params (%) (×109)

Linear-4 Arbitrary Linear-8 Arbitrary 68.50 20.91
Linear-4 PoT Linear-8 PoT 68.41 15.93

PoT-4 - PoT-8 - 64.50 10.05

PoT-4 - Linear-8 Arbitrary 67.60 12.86
PoT-4 - Linear-8 PoT 67.55 10.95

(a) (b)

Figure 3.3: Weights distribution of pre-trained PW and DW Convolution layers in PikeLPN
where (a) Sample Pointwise layer weights (b) Sample Depthwise layer weights.

avoids parameterized activation functions and skip connections that are likely to increase

computational cost as explained in Subsection 3.3.3. Finally, our model uses the first

and last blocks from the MobileNetV1 architecture due to their proven effectiveness and

reliability.

Quantizing Separable Convolution Layers: Linear quantizers results in a set of

equally spaced values since they use affine mapping as shown in Equation 3.3. Non-

uniform quantizers have different constraints. For example, Power-of-two (PoT) [115]

restrict quantization levels to be powers-of-two values. They can be used to increase the

representational density of small values, furthermore, they have the benefit of replacing

the multiplication operations during inference with shifts which are significantly cheaper

as shown in Table 3.1. However, using PoT quantizers for both pointwise (PW) and

27

depthwise (DW) convolution operations in the separable convolution block leads to

significant accuracy degradation as shown in the third row of Table 3.6. To get some

insights, we analyze the distribution of the full-precision weights of PikeLPN when pre-

trained on ImageNet. Figures 3.3(a) and 3.3(b) visualize the distributions of a sample

PW and DW weights respectively. Interestingly, the majority of the weights of the PW

layer lie around ±0.1, while the weights in the DW layer are distributed around ±2. This

mismatch in weights distribution across different layers makes low-precision quantization

for the separable convolution blocks challenging because the used values fail to capture

both distributions. To address this problem, we propose using Distribution Heterogeneous

Quantization where the pointwise weights use the more efficient PoT quantizer while

the depthwise weights use a linear quantizer. It is important to note that pointwise

convolutions contribute to 95% of the number of multiply-accumulate operations in

PikeLPN ; hence using the PoT quantizer in pointwise layers only improves the model’s

efficiency by 50% as shown in Table 3.6.

Double Quantization: Quantization requires extra elementwise multiplications by a

floating-point scaling factor which add significant overhead as shown in Table 3.5. While we

can not completely remove the scale factor, we can reduce the overhead from quantization

scale multiplications by quantizing those quantization parameters. We refer to quantizing

the quantization parameters as Double Quantization. We consider using a PoT scale for

the linear depthwise quantizer in PikeLPN which can potentially reduce the elementwise

operation from 3.7mJ to 0.13mJ based on Table 3.1. Our experiments indicates negligible

effect on accuracy when applying Double Quantization as shown in Table 3.6.

Quantizing Batch Norm Layers: Batch normalization layers are used in most modern

deep learning models to stabilize the training and improve their performance [72]. Batch

normalization is computed as follows:

batchnorm(x) =
(x− µ) ∗ γ√

σ2 + ϵ
+ β (3.4)

28

0 100 200 300 400 500
Training Iterations

0

20

40

60
Va

lid
at

io
n

To
p-

1
(%

)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)
Folded BN

0 100 200 300 400 500
Training Iterations

0

20

40

60

Tr
ai

ni
ng

 To
p-

1
(%

)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)
Folded BN

Figure 3.4: Validation (Top) and Training (Bottom) Top-1 Accuracy during QAT of
PikeLPN-1× on ImageNet for different Batch Norm Quantization techniques.

Where x is the input feature map and the batch norm parameters µ, γ, σ, β are represented

as floating-point values. To avoid performing floating point multiplications and additions,

those parameters need to be quantized as follows:

Qbatchnorm(x) =
(x−Q(µ)) ∗Q(γ)√

Q(σ)2 + ϵ
+Q(β) (3.5)

Computation folding is a commonly used approach to reduce the overhead of batch

normalization operations in quantized models (i.e., mainly in 8 bit models) [74]. However,

the batch normalization parameters (i.e., µ, γ, σ, and β) have to be quantized to the same

precision of the preceding convolution layers to enable folding. Doing that in low-precision

models (i.e., 4 bits or lower) leads to a significant loss in accuracy as shown in Figure

3.4. That is why previous low-precision model research [177, 124, 127] excluded batch

normalization layers from the quantization process, where they keep the batch norm

29

0 100 200 300 400 500
Training Iterations

66

68

70

72
Tr

ai
ni

ng
 To

p-
1

(%
)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)

0 100 200 300 400 500
Training Iterations

60.0

62.5

65.0

67.5

Va
lid

at
io

n
To

p-
1

(%
)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)

Figure 3.5: Validation (Top) and Training (Bottom) Top-1 Accuracy during QAT of
PikeLPN-2× on ImageNet for different Batch Norm Quantization techniques.

parameters as floating point numbers. However, as we showed earlier in Table 3.2, the

non-quantized batch normalization operations can add up to 40% overhead to the model’s

ACEv2 cost.

Another solution is to quantize the batch normalization parameters at a higher precision.

Figure 3.4 shows the validation accuracy curve during training when batch normalization

parameters are represented as INT8 values (denoted as 8-bit Vanilla BN). Although

the accuracy is better than the folded batch norm, we can still notice some degradation

in accuracy compared to non-quantized batch norm layers. To minimize the accuracy

loss, we propose a novel QuantNorm layer. In our QuantNorm layer, we re-write the

batch norm quantization operation as shown in Equation 3.6 where we first multiply by a

quantized scale s, then add a quantized bias b. s is represented as the quantized division

between the γ and σ parameters as shown in Equation 3.7. Using QuantNorm helps reduce

30

Table 3.7: Comparison of PikeLPN variants’ training parameters, with dropout rates
calibrated to mitigate overfitting. Each model’s training duration and learning rate
strategy are customized according to its complexity. They are initialized with weights
from an floating point PikeLPN model, employing a consistent learning rate of 10−12

during the tail period to enhance stability and validation accuracy, crucial for smaller
models.

PikeLPN Size 1× 2× 3× 6×
ACEv2 (×109) 8.68 15.74 33.97 59.10

Channel Multiplier 1.0 1.0 1.5 2.0

Activation precision (6, 1, 1) (8, 7, 1) (8, 7, 1) (8, 7, 1)

(int bits, frac bits, sign bit)

Removal of BN layers Yes No No No

between depthwise and

pointwise convolutions

Constant learning rate 300 300 20 50

tail period (epochs)

Training epochs 500 1500 1000 1000

Dropout rate 1e-3 1e-3 0.5 0.7

quantization error by allowing high precision division in the scale s computation during

training. As shown in Figures 3.4 and 3.5, our QuantNorm layer maintains close-to-FP

accuracy without any extra costs compared to vanilla quantization for batch norm layer.

After training, we pre-compute s to avoid high precision division during inference.

Qbatchnorm(x)improved = x ∗ s− b (3.6)

s = Q(
γ√

σ2 + ϵ
) (3.7)

b = Q(β)−Q(µ) ∗ s (3.8)

Model Scaling: To generate a Pareto family of models, we scale the number of output

channels as practiced in the MobileNetV1 model [65]. We also scale the precision of the

input activation to the pointwise convolution layers in the PikeLPN block. We present

31

four versions of PikeLPN arachitecture: PikeLPN-1×, 2×, 3×, and 6×. The details for

each model are described in Table 3.7. For nomenclature, the scale factor represents the

ACEv2 cost of the scaled model compared to that of the smallest model. For example,

PikeLPN-3× has approximately 3 times the ACEv2 cost of PikeLPN-1×.

3.4 Experiments

3.4.1 Implementation and Training

All models are implemented using QKeras [25], then we performed Quantization-aware

training (QAT) [74]. We train and evaluate the PikeLPN family of models on the

ILSVRC12 ImageNet classification dataset [30]. To train our low-precision models, we

follow a multi-phase training approach. We first train the full-precision model, then we

quantize the model as explained previously in Subsection 3.3.4, and train for another

500 epochs. All Models are trained with an effective batch size of 256 using an AdamW

optimizer and a Cosine Decay schedule. We use label smoothing regularization with

cross-entropy loss and a smoothing factor of 0.1 for all models. The initial learning rate

is 1e− 4 and annealed using a cosine schedule to 1e− 12. Detailed training parameters

are shown in Table 3.7. We use standard augmentation techniques like resizing, cropping,

and flipping. At test time, all PikeLPN models are evaluated on images of resolution

224× 224.

3.4.2 Results

To evaluate the accuracy-efficiency trade-off by PikeLPN, we compare its performance

to state-of-the-art low-precision models. Figures 3.6 and 3.7 show that PikeLPN establishes

the SOTA Pareto frontier for low-precision and binary models in terms of arithmetic

energy consumption and ACEv2 cost respectively. Table 7.3 compares PikeLPN to SOTA

low-precision models in terms of Top-1 Accuracy on ImageNet, Energy consumption

32

101 102

ACEv2 (Billion)

55

60

65

70

75

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et
 (%

)

XNOR-Net

Real-to-Binary

Bi-RealNet-18

Bi-RealNet-34
MeliusNet-29

MeliusNet-42

PROFIT

MobiNet

MobileNet-8b

ReActNet

PokeBNN-0.5x

PokeBNN-0.75x

PokeBNN-1x

PikeLPN-1X

PikeLPN-2X

PikeLPN-3X
PikeLPN-6X

Low-Precision Models Ours

Figure 3.6: Accuracy vs ACEv2 of PikeLPN and SOTA low-precision neural networks.
ACEv2 is an efficiency metric that estimates the cost of arithmetic operations during
inference.

in millijoules, ACEv2, and Arithmetic Intensity. We clearly see how the elementwise

operations dominate (i.e., 31 up to 93%) the ACEv2 cost for other low-precision models.

On the other hand, PikeLPN carefully quantizes the elementwise operations reducing their

contribution to the total energy consumption to less than 5%. Additionally, PikeLPN-1× is

1.5× more efficient in terms of both ACEv2 and arithmetic energy consumption compared

to MobiNet [127] (i.e., A binary version of MobileNetV1 with added skip connections)

while achieving 13.2% higher Top-1 Accuracy on ImageNet. Moreover, PikeLPN-3×

achieves 1.5% higher Top-1 accuracy than PokeBNN-0.75× [177] (i.e., A binary ResNet-50

with parameterized activation functions) while being 35% more efficient. In terms of

arithmetic intensity, PikeLPN shows a much higher arithmetic intensity when compared

to other low-precision models, this is mainly due to the absence of any skip connections.

As mentioned earlier in Section 3.3.3, high arithmetic intensity is advantageous as it

suggests a greater proportion of computational operations per data element, which can

lead to reducing the memory reads and writes by the model; hence reducing the overall

energy consumption during inference.

33

102 103

Arithmetic Energy (mJ)

55

60

65

70

75
To

p-
1

Ac
cu

ra
cy

 o
n

Im
ag

eN
et

 (%
)

XNOR-Net

Real-to-Binary

Bi-RealNet-18

Bi-RealNet-34

MeliusNet-29

MeliusNet-42

PROFIT

MobiNet

MobileNet-8b

ReActNet

PokeBNN-0.5x

PokeBNN-0.75x

PokeBNN-1x

PikeLPN-1X

PikeLPN-2X

PikeLPN-3X
PikeLPN-6X

Low-Precision Models Ours

Figure 3.7:]
Accuracy vs Energy Consumption by the arithmetic operations of our PikeLPN and

SOTA low-precision neural networks.

Moreover, to highlight the efficiency improvements in PikeLPN, Figure 3.8 illustrates

the contribution of MAC versus elementwise operations to ACEv2 for PikeLPN-1× and

PokeBNN-0.5× [177]. Since, PokeBNN-0.5× quantize the convolution layers to 1-bit

reducing the cost of multiply-accumulate (MAC) operations, it shifts the energy burden

to the elementwise operations within these remaining high-precision layers. Although

there are fewer of these elementwise operations, they use more energy because they are

still in high precision.

34

PikeLPN-1x (Ours)

ACEv2 (Billion)
10 20 30

Elementwise

PokeBNN-0.5x [48]

MAC

Figure 3.8: Contribution of multiply-accumulate (MAC) versus elementwise operations
to the efficiency metric ACEv2 for PikeLPN-1X and PokeBNN-0.5X [177]. PikeLPN
selectively increases the precision of MAC operations which allows for effectively quantizing
elementwise operations, achieving 3× more efficiency while being 2% more accurate on
ImageNet.

35

T
ab

le
3.
8:

R
es
u
lt
s
–
P
ik
eL

P
N

ve
rs
u
s
S
O
T
A

lo
w
-p
re
ci
si
on

m
o
d
el
s
in

te
rm

s
of

A
cc
u
ra
cy

an
d
E
ffi
ci
en
cy

M
et
ri
cs
.
A
C
E

v
2
is
m
ea
su
re
d

ac
co
rd
in
g
to

th
e
d
efi
n
it
io
n
in

S
ec
ti
on

3.
3.
2.

T
h
e
fo
u
rt
h
an

d
fi
ft
h
co
lu
m
n
s
sh
ow

th
e
co
n
tr
ib
u
ti
on

to
th
e
ov
er
al
l
A
C
E

v
2
co
st

b
y

m
u
lt
ip
ly
-a
cc
u
m
u
la
te

an
d
el
em

en
tw

is
e
op

er
at
io
n
s
re
sp
ec
ti
ve
ly
.
E
n
er
gy

re
p
re
se
n
ts

th
e
ar
it
h
m
et
ic

en
er
gy

ac
co
rd
in
g
to

45
n
m

C
M
O
S

te
ch
n
ol
og
y
ac
co
rd
in
g
to

ta
b
le

3.
1.

A
ri
th
m
et
ic

In
te
n
si
ty

is
an

in
d
ic
at
io
n
fo
r
th
e
m
em

or
y
re
ad

s
an

d
w
ri
te
s
re
q
u
ir
ed

b
y
th
e
m
o
d
el

as
ex
p
la
in
ed

in
S
ec
ti
on

3.
3.
3.

U
se
d
P
re
ci
si
on

s
re
p
re
se
n
t
th
e
th
e
p
re
ci
si
on

of
th
e
va
ri
ou

s
op

er
at
io
n
s
in

th
e
m
ix
ed
-p
re
ci
si
on

m
o
d
el
s.

M
o
d
e
l

A
c
c
u
ra

c
y
A
ri
th

m
e
ti
c
C
o
m
p
u
ta

ti
o
n
a
l
E
ff
o
rt

(A
C
E

v
2
)
E
n
e
rg

y
A
ri
th

m
e
ti
c
In

te
n
si
ty

U
se
d

(%
)

T
ot
al

(×
10

9
↓)

M
A
C

(%
)

E
le
m
en
tw

is
e
(%

)
(m

J
↓)

(O
p
s/
E
le
m
en
t
↑)

P
re

c
is
io
n
s

X
N
O
R
-N

et
[1
30

]
51

.2
14

3.
78

-
-

58
7.
69

-
3
2
,
1

M
ob

iN
et

[1
28

]
54

.4
12

.6
4

13
.1
7

86
.8
3

50
.6
6

2
8

-
B
i-
R
ea
lN

et
-1
8
[1
02

]
56

.4
16

6.
26

-
-

67
8.
75

-
3
2
,
1

B
i-
R
ea
lN

et
-3
4
[1
02

]
62

.2
16

8.
11

-
-

69
1.
47

-
3
2
,
1

M
ob

il
eN

et
(8
W

,
4A

)
[8
5]

64
.0

33
.8

68
.9
6

31
.0
4

11
8.
54

3
9
.5
7

3
2
,
8
,
4

M
ob

il
eN

et
(4
W

,
8A

)
[8
5]

65
.0

33
.8

68
.9
6

31
.0
4

11
8.
54

3
9
.5
7

3
2
,
8
,
4

R
ea
l-
to
-B

in
ar
y
N
et

[1
10

]
65

.4
18

6.
85

-
-

76
2.
24

-
3
2
,
1

M
el
iu
sN

et
-2
9
[1
0]

65
.8

15
8.
21

-
-

65
6.
81

-
3
2
,
1

P
ok
eB

N
N
-0
.5
x
[1
77

]
65

.2
33

.5
8

4.
18

95
.8
1

14
3.
78

2
4
.5

3
2
,
8
,
4
,
1

P
ik
e
L
P
N
-1
×

(O
u
rs
)

6
7
.5
5

8
.5
0

96
.3
8

3.
62

3
4
.9
8

3
9
.5
7

8
,
4

P
R
O
F
IT

[1
24

]
69

.0
5

20
.9
1

47
.5
1

52
.4
9

82
.7
0

3
9
.5
7

3
2
,
4

M
el
iu
sN

et
-4
2
[1
0]

69
.2
0

21
5.
71

-
-

90
1.
82

-
3
2
,
1

P
ik
e
L
P
N
-2
×

(O
u
rs
)

6
9
.2
3

1
5
.5
6

97
.8
7

2.
13

6
4
.2
0

3
9
.5
7

1
6
,
8
,
4

R
eA

ct
N
et

[1
04

]
69

.4
83

.2
4

26
.7
8

73
.2
2

36
1.
63

3
6
.7
5

3
2
,
1

P
ok
eB

N
N
-0
.7
5x

[1
77

]
70

.5
50

.6
1

5.
11

94
.8
8

21
8.
51

4
0
.4
8

3
2
,
8
,
4
,
1

M
ob

il
eN

et
(8
b
it
)
[8
5]

70
.7

51
.4
4

79
.6
1

20
.3
9

17
3.
68

3
9
.5
7

3
2
,
8

P
ik
e
L
P
N
-3
×

(O
u
rs
)

7
1
.9
5

3
3
.7
0

98
.5
2

1.
48

1
3
9
.5
9

5
2
.6
6

1
6
,
8
,
4

P
ok
eB

N
N
-1
x
[1
77

]
73

.4
68

.5
6

6.
16

93
.8
3

29
8.
44

4
0
.4
8

3
2
,
8
,
4
,
1

P
ik
e
L
P
N
-6
×

(O
u
rs
)

7
3
.5
9

5
8
.7
4

98
.8
7

1.
13

2
4
3
.8
5

6
3
.3
8

1
6
,
8
,
4

36

3.5 Conclusion

Our investigation into SOTA low-precision models uncovered overlooked efficiency

bottlenecks, particularly noting that operations traditionally considered negligible—such

as elementwise operations in activation functions, batch normalization, and quantization

scaling can contribute up to 90% of the inference cost. Addressing these challenges, we

proposed ACEv2 which extends the efficiency metric ACE to better reflect the inference

cost of low-precision models. Moreover, we introduced PikeLPN, a novel family of models

that quantizes both elementwise and multiply-accumulate operations. Specifically, we

propose (a) a novel QuantNorm layer for effective batch normalization quantization,

(b) Double Quantization where quantization parameters are also quantized, and (c)

Distribution-Heterogeneous Quantization for Separable Convolution layers to tackle their

distribution mismatch problem. PikeLPN achieves up to a threefold reduction in inference

cost over existing low-precision models while improving the Top-1 accuracy in ImageNet

dataset.

37

CHAPTER 4

Efficient Training

4.1 Introduction

Over the past decade, deep learning has achieved unprecedented successes in various

domains. Researchers have realized the benefits of deploying deep learning models on edge

devices; therefore, they started to develop techniques to make them more resource efficient

[51]. However, only deploying the pre-trained models on edge devices is not sufficient.

Edge devices are continuously collecting rich and sensitive data. This new data can be

used to fine-tune those models which would significantly improve their performance and

their adaptive capability to new environments.

A prime example for on-device learning is model personalization. With advances in

digital services, large tech companies strive to make their services as unique to each

of their users as possible. For example, personal assistants such as Siri (Apple), Alexa

(Amazon), Cortana (Microsoft), and Google Assistant recognize the voice and the accent

of their owner, and learn to not recognize other voices after their initial setup. Human

activity recognition [94], health applications [141] and smart home appliances [81] also

demand model personalization to improve user satisfaction. Model personalization defeats

the purposes of generalizability, which is the primary metric for the performance of deep

38

ResNet-50

ResNet-101

MobileNet-V2
VGG-16

AlexNet

SqueezeNet
0

1000

2000

3000

4000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Raspberry Pi A

Raspberry Pi 3

Jetson Nano

(a)

0 500 1000 1500 2000
Memory Footprint (MB)

ResNet-101

ResNet-50

MobileNet-V2

GoogleNet

SqueezeNet
Activations
Parameters
Gradients

(b)

1 2 4 8 16 32 64
Batch Size

0

1000

2000

3000

4000

5000

6000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

44.4% 88.7% 1.8X
3.5X

7.1X

14.2X

28.4XParameters
Gradients
Activations

(c)

Figure 4.1: Memory Footprint. (a) Training Memory Footprint at Batch Size 32. (b)
Memory Footprint Components for MobileNet-v2, ResNet-50, and Resnet-101 with Batch
Size 16. (c) Memory footprint using different batch sizes for ResNet-50.

learning models. Training on the edge not only makes model personalization more feasible,

but also keeps data private and safe.

Current approaches send the data to cloud servers in order to execute training epochs to

fine-tune the models. After that, updated versions of the models are deployed on the edge

devices. However, this approach risks the privacy of the data which could be sensitive, such

as medical data that are protected by HIPAA regulations [156]. Moreover, continuously

syncing data requires a huge network bandwidth. For example, traffic surveillance cameras

deployed at every street intersection in a city would require sending gigabytes of data to

the cloud everyday, which is extremely expensive. Furthermore, it can be even unfeasible

due to weak or limited internet connection as it is the case in remote agricultural lands

[90], or even in space exploration missions (e.g. Mars Rovers) [137, 157]. That is the

reason why on-device learning is essential to push the limits of edge capabilities.

On-device learning is significantly challenging due to the energy, compute, and memory

constraints on the edge devices. Some work has started exploring training on the edge

[51, 97]. Memory footprint is one of the main challenges for training on the edge. Figure

4.1-a shows the memory required for training some of the modern computer vision models.

We observe that even the memory of a Jetson Nano board is insufficient for training an

average state-of-the-art model [142]. During training, memory has three main components:

(i) the model parameters, (ii) the activations for each layer computed during the forward

39

pass, and (iii) the gradients computed during the backward pass. In Figure 4.1-(b), we

see that the memory for activations is the dominant factor. In addition, the memory

footprint increases significantly as the batch size increases as shown in Figure 4.1-(c).

However, little work has been devoted in optimizing the activations memory with respect

to the amount of work invested in optimizing the parameters memory. The main reason

is that model optimization has been the main use case for deploying models for inference

on the edge devices. To solve this problem, [89] proposed retraining the fully connected

layers only, while Cai et. al. [17] suggest training the biases and the fully connected

layers only, while freezing all the weights. In other words, the idea is to not save the

activations because they are only needed to compute the weights gradients, which is

partially discarded in their proposals. However, this limits the network’s capacity to learn

from the new data, and reduces the accuracy gains from retraining. Having the flexibility

to tune all the weights of a model maximizes the benefits of on-device learning.

Other researchers have explored general techniques to reduce the memory footprint of

training regardless of the used hardware. Model parameters can be sparsified throughout

training, which reduces the number of model parameters and gradients, leaving the

activations memory unaffected [118]. Using half precision [113] and reducing the batch

size [70] have a direct impact on reducing the memory footprint of training, and improve

parallelization. However, these techniques introduce a toll on the accuracy of the pre-

trained models. Furthermore, checkpointing reduces the memory footprint during training

by only storing the activations of a subset of layers, and recomputing the needed layers again

during backpropagation [21]. This provides a trade-off between the memory footprint and

the number of floating-point operations (FLOPs). Nonetheless, this method is targetted

towards training deeper models on server-scale GPUs.

In this work, our goal is to reduce the memory footprint of model training on the edge

without affecting the accuracy. The rationale is that we opt for training on the edge to

improve the accuracy of the already trained models, while complying with constraints

40

(e.g. data privacy, cloud connectivity, bandwidth). That raises a fundamental question

“How much memory is needed for training?”, and more specifically “How much memory is

needed to store the activations?”. By analyzing the activations, we found that activations

by nature are sparse. More than 70% of the stored activations are zeros due to ReLU

non-linearity which is used in most neural network models. We leverage this observation

to make on-device learning more feasible.

In BitTrain, we propose to detach the activation storage from their involvement in

computations. This allows us to compress the activations for later use during the backward

pass. We also introduce activations pruning which can further increase the memory savings

while producing a memory accuracy trade-off. Our contributions can be summarized as

follows:

• In modern deep learning frameworks, we detach the activations storage from the

Tensor representation in computation graphs1, allowing us to address the memory

footprint issues of neural network activations.

• We present BitTrain, a novel Bitmap Sparse Compression method to efficiently store

the activations with negligible computational overhead, and with no change to the

underlying computation graph. By construction, our compression is safe and has no

negative impact on the model accuracy.

• We analyze the theoretical and empirical memory reduction by using our method.

Experimental results show that we can achieve up to 34% memory saving at a

sparsity level of 50% per convolution activation. Combining our method with

existing work that increase sparsity, we can achieve up to 56% memory saving at a

sparsity level of 75%.

• Since BitTrain is orthogonal to existing methods, we study the effect of combining

our method with existing techniques, namely: low-precision training, activation

1Computation graphs are how modern deep learning frameworks represent neural networks for both
training and inference.

41

pruning, and checkpointing. Then, we discuss how each combination affects the

amount of memory required for training.

The rest of the chapter is organized as follows. In Section 4.2, we give a brief background

on the most common sparse data formats in literature. Then, we present our methodology

for reducing the memory footprint in Section 4.3. In Section 4.4, we present a detailed

theoretical and empirical analysis of our method. Moreover, we investigate the gains from

combining our method with existing techniques. Finally, we conclude our study in Section

4.5.

4.2 Background

Sparse Data Formats. For highly sparse matrices, storing the non-zero elements

and their indices is more efficient than storing all the values in a dense format. The

most popular format is the Coordinate list format (COO). It stores each non-zero value

(floating-point) along with its n-dimensional indices (fixed-point). Modern deep learning

frameworks offer efficient implementations for the COO format. However, this format is

optimized for reducing the number of matrix operations, and is only memory-efficient

if the matrix has a high sparsity ratio (i.e., 80%); otherwise, the dense format would

consume less memory.

4.3 Leveraging Sparsity for Memory-Efficient Train-

ing

Deep Learning frameworks represent activations for Convolutional Neural Networks as

four-dimensional matrices. In modern deep learning frameworks, they are represented in

a dense matrix format of dimensions (batch size, num channels, height, width) where

batch size is the batch size used during either training or testing, num channels is the

42

Conv BatchNorm MaxPool Others
0

10

20

30

40

50

M
em

or
y

Fo
ot

pr
in

t (
%

)
Non-Zero Activations
Zero Activations

(a) ResNet-50

Conv MaxPool Others
0

10

20

30

40

50

M
em

or
y

Fo
ot

pr
in

t (
%

)

Non-Zero Activations
Zero Activations

(b) AlexNet

Figure 4.2: Activations Memory footprint for different layers in ResNet-50 and AlexNet.

number of channels at any given layer, height and width are the height and the width

of the activation maps respectively. The goal of BitTrain is to reduce the total memory

footprint required for training a model. In the following, we derive the foundations of our

method and describe the implementation details.

4.3.1 Activation Sparsity in Neural Networks

Exploiting Sparsity. In the modern deep learning frameworks (i.e. PyTorch and

TensorFlow), the input activation for each layer is stored during the forward pass, then

those activations are used for calculating the gradients during the backward pass. Storing

the activations for all the layers creates a huge memory footprint during the training

process as illustrated earlier in Figure 4.1b. However, most of modern deep learning

models use the rectified linear activation function (ReLU) [3]. Using ReLU activation

functions results in sparse activations in the successive layers. We can leverage this sparsity

to compress the activations, and hence reduce the memory footprint for training.

In Figure 4.2, we analyze the contribution of the activations of various layers types

(e.g. Convolution, Batch Normalization, Max Pooling) to the memory footprint, as well

as the average activation sparsity for those layer types throughout the whole models.

Figures 4.2a and 4.2b shows that the memory used to store the activations of the different

layers types in ResNet-50 and AlexNet respectively. For ResNet-50, we notice that the

43

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Activations Values

0%

10%

20%

30%

40%

50%

60%

70%

Figure 4.3: Activations values histogram for ResNet.

memory used to store the convolution and the batch normalization activations dominates

the memory used by the other layers. While for AlexNet, the convolution and the max

pooling layers activations dominate the memory. That means that we should direct our

efforts towards reducing the memory used to store the activations of those three layers

(convolution, batch normalization, max pooling).

From Figure 4.2, we can also notice that the activations sparsity is relatively high

for the convolution and the max pooling layers. However, it is not a surprise that the

activations sparsity for the batch normalization layer is very low. That means that using

a sparse representation for the batch normalization activations will not offer any reduction

in the memory footprint. To overcome this problem, we apply the double mask batch

normalization introduced by Lieu et al. [97]. The idea is to use the sparse pattern of the

the inputs to the normalization layer as a mask to apply for its outputs. In other words,

it propagates sparsity through the batch normalization layer and helps our method reduce

more memory.

Moreover, we analyze the activation values throughout the whole network. Figure

4.3 shows a histogram of the activation values for all the layers of a pre-trained ResNet

model. We notice that more that 70% of the activations are close to zero. This implies

44

that we can neglect storing those activations (i.e. we can assume that they are zeros),

and hence increase the activations sparsity which would further increase the gain from

our compression methodology.

Memory vs. Matrix Operations. In server-grade model training, a large GPU

memory can accommodate model parameters as well as activations calculated during the

forward pass. On edge devices, memory is not only a scarce resource, but may also be

shared between the main CPU and the GPU (if exists). For example, the Nvidia Jetson

Nano board houses an ARM Cortex-A57 MPCore processor that shares a 4GB memory

with a Maxwell-based GPU that performs up to 4 floating-point operations per clock cycle

[7]. External memory access has an interrupt latency of at least 200 clock cycles assuming

zero wait state [167] – a figure that is empirically higher depending on the system load

and the cache status. Due to the limited memory available, convolution activations from

earlier layers will be offloaded to disk (using virtual memory pages), since they are the

least recently used. If no swap memory is available, the training process will be killed by

the operating system.

Building on the research done on checkpointing (where activations are not saved at all;

instead re-calculated), we propose to trade expensive matrix multiplications for cheaper

memory operations. This trade-off is analogous to Memoization in algorithmic contexts

[9]. In essence, we take advantage of sparsity and save input activations in a compressed

format that leaves more memory for the following dense operations to be performed.

Although the compression and decompression processes add operations to the training

loop, they save the disk access time resulting from memory swapping.

4.3.2 Sparse Bitmap Format

Computation Graphs. Modern deep learning frameworks (e.g. Tensorflow [1] and

PyTorch [126]) have offered an adequate level of abstraction for training deep learning

models. A developer can now imperatively describe the architecture of their neural

45

Convolution
Layer Activation Maps save for backward

non-zero activations

bi
tm

ap compress

ou
tp

ut
 g

ra
di

en
ts

decompress

calc.
grad.activation gradients

....

....

Memory
Footprint

....

compress

decompress

calc.
grad.....

Figure 4.4: Compressing dense activations in a bitmap.

network, and the framework takes care of the compiling code to lower-level constructs

that work efficiently with different hardware interfaces (especially GPUs). To make this

happen seamlessly, these framework construct a computation graph that can be used to

track and execute the necessary elements of the backpropagation algorithm (in a process

called auto-differentiation [125]). The computation graph can be either static or dynamic.

In a static computation graph, the neural network is constructed once in the beginning,

and then gets attached to a training session. In this case, memory occupied by the sizes

of its tensors (i.e. matrices) is reserved in the beginning. On the other hand, dynamic

computation graphs get built dynamically, reserving memory for tensors immediately

after declaring them, and releasing them when they go out of scope. This distinction

is important in our work, since there is no memory management APIs offered by these

frameworks in their Python interfaces. Optimizing memory has to be implemented at the

lower level (using C++), which we describe later in Section 4.4.

Bitmap Format. As discussed in Section 4.2, there is a plethora of sparse matrix

representation formats. These formats are mainly designed for both storage and operations.

In other words, mathematical operations such as multiplication, division, and inverse

are defined and computationally efficient. We adopt a bitmap format that is optimal

for storage as shown in Figure 4.4. During the forward pass, input activations for a

46

Algorithm 1 Dense to Bitmap Matrix Compression
Input :Dense Activation Matrix (T)
Output :Bitmap Matrix (B)
B.shape = T .shape // deep copy
Flatten T
for i in 0, .., length(T) do

if T [i] == 0 then
Push 0 bit to B.bitmap

else
Push T [i] to B.values
Push 1 bit to B.bitmap

end

end
delete T // free dense memory

given layer is compressed into: (i) a vector containing the non-zero elements, and (ii) a

bitmap that sets a bit to 1 at the indices of the non-zero elements. In the backward pass,

these activations are decompressed in order to calculate the gradients with respect to

the activations as part of the backpropagation algorithm. The bitmap format represents

the minimum perceivable memory required to store the information in a matrix; that

is non-zero elements (represented as half-, single- or double-precision) and a single bit

for each element index. We denote the memory footprint as Md and Mb for stashing

activations in a dense format and bitmap format respectively. For single-precision (FP32),

the memory footprint (in bytes) would be calculated as:

Md = 4× total activations

Mb = 4× non-zero activations + (1/8) × total activations

We also compare the bitmap format with the COO format, which represents indices as

either integers (4 bytes) or longs (8 bytes). We denote the memory footprint (in bytes) of

the COO format as Mc, and it can be calculated as:

Mc = (4 + [4|8]× num-dimensions)× non-zero activations

where 4 is the size of single-precision for saving the activation values, and [4|8] are the sizes

for either integer or long indices. For example, PyTorch and Tensorflow use long indices

by default in their COO implementations. Figure 4.5 shows that the COO format is only

47

Algorithm 2 Bitmap to Dense Matrix Decompression
Input :Bitmap Matrix (B)
Output :Dense Activation Matrix (T)
Construct 1-dimensional T ; initialize j = 0
for i in 0, .., length(B).bitmap do

if B.bitmap[i] is set then
Push B.values[j] to T ; increment j

else
Push 0.0 to T // half-, single- or double-precision

end

end
reshape T to B.shape
delete B // free bitmap memory

efficient if the activations have a sparsity of at least 80% (20% non-zero activations).

We observe that the dense representation consistently maintains a low memory footprint.

However, the proposed sparse bitmap format can reduce the memory footprint even if

the activations matrix has low sparsity. Unlike other sparse matrix formats, the sparse

bitmap format is used for stashing the activations until they are needed in the backward

pass, and not for directly operating on them (e.g. multiplication).

4.3.3 Sparse Bitmap Compression Algorithm

In order to achieve empirical memory reductions, our algorithm avoids copying matrices

in function calls. Compressing a dense matrix to a bitmap matrix is outlined in Algorithm

1. We first start by keeping a copy of the shape (dimension sizes) of the original matrix.

Operating on a vector is also necessary to avoid complex index resolution operations, so

we flatten the dense matrix. This is an in-place operation that does not move values

to different memory locations. Lines 3 to 10 scans the vector, constructing the bitmap

and stashing the non-zero elements. Finally, line 11 frees the memory used by the dense

matrix to be used in the subsequent layers. Algorithm 2 performs the opposite operation

in the backward pass. In particular, it maps the non-zero elements to a dense vector

matching the bitmap, and then reshapes the data (in-place) according to the previously

saved shape.

48

0 20 40 60 80 100
Percentage of Non Zero Activations

0

25

50

75

100

125

150
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Activations Matrix Dimension = [32, 3, 224, 224]
Dense
COO Long Indices
COO Int Indices
Sparse Bitmap Indices

Figure 4.5: Memory footprint of our proposed bitmap format as compared to other sparse
matrices.

Note that both algorithms are linear runtime. They take O(n) time, where n is the

total number of activations in a matrix. In the next section, we provide additional

implementation details for a modern deep learning framework.

4.4 Experiments

Our experimental analysis tests the hypothesis of memory reduction using the sparse

bitmap format both theoretically and empirically. First, we analyze the memory footprint

reduction in state-of-the-art CNN-based architectures using both ImageNet [31] and

CIFAR 10 [86] image datasets. Afterwards, we study the compound reduction in training

memory footprint when combining BitTrain with other orthogonal training methods such

as low precision training, activation pruning, and checkpointing. Finally, we present our

own implementation of BitTrain, and analyze the on-board memory footprint reduction

as well as the runtime overhead.

Setup. In our experiments, we use PyTorch version 1.7, and in the C++ implementa-

49

ResN
et-

18

ResN
et-

34

ResN
et-

50

ResN
et-

101

MobileN
et-

V2
VGG-16

Squeez
eN

et

Goog
leN

et
0

250

500

750

1000

1250

1500

1750

2000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

18%
19%

19%

20%

16%

53%

41%

29%

Dense
BitTrain

(a)

ResN
et-

18

ResN
et-

34

ResN
et-

50

ResN
et-

101

MobileN
et-

V2
VGG-16

Squeez
eN

et

Goog
leN

et
0

5

10

15

20

25

30

35

40

M
em

or
y

Fo
ot

pr
in

t (
M

B)

19%
20%

20%

20%

17%

56%

38%

29%

Dense
BitTrain

(b)

Figure 4.6: Activations Memory footprint for training different classification models on
(a) ImageNet (b) Cifar10.

tion, we use libtorch version 1.7. We use Clang version 10.0.0 as the compiler, and compile

using C++14 standards. Empirical memory footprint measurements are performed on

Nvidia Jetson Nano board that has 4GB of memory. More details on the implementation

and memory measurements is provided below.

Classification Models. Our sparse bitmap format reduces the memory footprint

for storing activations with high sparsity as previously illustrated in Figure 4.5. To

access the overall impact of using our proposed methodology on the memory footprint

during training, we choose 8 state-of-the-art classification models that vary in size and

complexity. We analyze the training memory footprint of those models for two different

classification datasets: CIFAR-10 (Input resolution is 32 × 32), and ImageNet (Input

resolution is 224× 224). Figure 4.6 shows the memory footprint of BitTrain in comparison

to classical training (referred to as Dense). Figures 4.6a and 4.6b represent training

different classification models on ImageNet, and CIFAR-10 respectively. The results show

that BitTrain reduces the memory footprint by up to 56%, this improvement is achieved

by leveraging the activations sparsity that are naturally found in those models. We can

notice that the improvements tends to be higher for VGG-16, SqueezeNet, and GoogleNet.

The reason is that those models tend to have higher sparsity percentages because they

50

do not have any batch normalization layers. In the following Section, we propose using

activations pruning to increase the activations sparsity, and hence maximize the memory

footprint reduction that could be achieved by our sparse bitmap compression technique.

Combining BitTrain with Low Precision. Neural network parameters are typically

represented in single-precision (FP32) [IEEE 32-bit]. Using half-precision (FP16) [IEEE

16-bit] has shown to be sufficient for the general case of training neural network as discussed

in Section 4.2. It reduces the memory footprint of all components (model parameters,

activations, and optimizer gradients). Low precision training is supported in modern

deep learning frameworks, and is as straightforward as specifying the float16 data type

for all parameters and model inputs. Figure 4.7 shows the memory footprint reduction

that can be achieved when combining our bitmap format for saving the activations with

half-precision arithmetic. We observe that combining using half-precision activation values

with our sparse bitmap compression offers a 55-75% saving in the memory required for

storing the activations when compared to the dense full-precision baseline. This means

that using our proposed technique achieves up to an additional 25% when used with

half-precision than using half-precision alone. As for the accuracy, Sohoni et al. [136]

show that training with half-precision does not meaningfully affect the final accuracy. It is

important to note that half-precision requires native hardware support in order to achieve

empirical results [106].

Combining BitTrain with Activation Pruning. As illustrated in Figure 4.3,

more than 70% of the activations have values that are close to zero. This means that

70% of the activations are not effective during the training process. We leverage this

fact to further increase the activations sparsity which would further improve the memory

footprint when using our sparse bitmap compression. In our implementation, we only

store the activations that exceed a certain pre-defined close-to-zero threshold. However, if

the activation value is less than the threshold, we prune this value (i.e. set it to zero). In

Figure 4.8, we analyze the effect of using activation pruning along with BitTrain on the

51

ResN
et-

50

ResN
et-

101

MobileN
et-

V2
VGG-16

Squeez
eN

et

Goog
leN

et
0

250

500

750

1000

1250

1500

1750

2000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

57%

57%

55%
75%

69%
62%

Dense - Full Precision
Dense - Half Precision
BitTrain - Full Precision
BitTrain - Half Precision

Figure 4.7: Activations Memory footprint for training on ImageNet when using half-
precision (FP16) for storing the activations.

training memory footprint. Figures 4.8a and 4.8b show the training memory footprint for

five different models on ImageNet, and CIFAR-10 respectively. We analyze the memory

savings using different activation pruning thresholds (0, 0.01, 0.05, 0.1). The results

shows that memory footprint reduction increases as the activation pruning threshold

increases. This is expected because increasing the activation pruning threshold increases

the percentage on zero elements in the model, which maximizes the gains from using our

sparse bitmap compression technique. We can notice that the gains from using activation

pruning varies from one model to another depending on the percentage of close-to-zero

activations in the model. For example, using activation pruning with ResNet-50 and

ResNet-101 achieves up to an additional 49% reduction in memory footprint, while it

provide insignificant memory footprint reduction when applied to GoogleNet.

We also analyze the accuracy of using BitTrain along with the activation pruning on

CIFAR-10 in Figure 4.9. We can see that the accuracy drop varies between different

models. The accuracy drop depends on the significance of the pruned values, and how

the model training adapts to the pruning. This creates a memory-accuracy trade-off. For

some models like ResNet-50, it might be worth it to trade a negligible loss in accuracy for

52

SqueezeNet ResNet-50 ResNet-101 GoogleNet MobileNet-V2
0

250

500

750

1000

1250

1500

1750

2000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

41%

19%

20%

29%

16%

29%

40%

43%

47%
59%

30%
35%60%

69%

Dense
BitTrain_0.0
BitTrain_0.01
BitTrain_0.05
BitTrain_0.1

(a)

SqueezeNet ResNet-50 ResNet-101 GoogleNet MobileNet-V2
0

5

10

15

20

25

30

35

40

M
em

or
y

Fo
ot

pr
in

t (
M

B)

38%

20%

20%

29%

17%

29%

41%

40%

48%
60%

31%
34%60%

70%

Dense
BitTrain_0.0
BitTrain_0.01
BitTrain_0.05
BitTrain_0.1

(b)

Figure 4.8: Activations pruning analysis for classification models with different pruning
thresholds. In all figures Bitmap x denotes that our sparse bitmap compression is used
along with activation pruning with threshold x (a) Training Memory footprint for ImageNet
(b) Training Memory footprint for CIFAR-10.

SqueezeNet ResNet-50 ResNet-101 GoogleNet
65

70

75

80

85

Ac
cu

ra
cy

 (%
)

BitTrain_0
BitTrain_0.01
BitTrain_0.05
BitTrain_0.1

Figure 4.9: Classification Accuracy on Cifar-10 for different models when training under
different activation pruning thresholds.

up to a 49% reduction in the memory footprint. However, it might not be worth it for

models like GoogleNet, where using the activation pruning achieves a modest reduction in

the memory footprint.

Combining BitTrain with Checkpointing. Checkpointing is used in literature

to trade computations for memory. The idea is to only store some of the intermediate

activations, and re-compute the others during backpropagation. In this section, we

implement the checkpointing algorithm, then combine it with BitTrain to analyze the

53

2 4 8 16 32 64 128
Checkpointing Segment

300

400

500

600

700

800

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Dense + Checkpointing
BitTrain + Checkpointing
Dense
BitTrain

Figure 4.10: Memory footprint reduction for the activations when using checkpointing for
partial storage of the activations for MobileNet-V2 when trained on ImageNet.

compound memory savings. We implement the checkpoint-every-m checkpointing strategy

as it is the commonly-used approach for checkpointing [136]. In the checkpoint-every-m

strategy, the input activations of every m layers are stored during the forward pass. For

example, assume that we have a simple feedforward model with m × n layers. During

the forward pass, we store the activations for one layer every m layers. This divides the

model into n segments, where each segment has one layer with stored input activation

(i.e., we store the input activations for n layers). During the backward pass, we recompute

the activations of all the layers for each segment, and we store them temporarily in

order to compute gradients with respect to the layers within the segment. After this,

we discard the temporarily stored activations and proceed to the next segment. We

combine the checkpoint-every-m checkpointing strategy with BitTrain, and analyze the

compound effect on the memory footprint as shown in Figure 4.10. Using our sparse

bitmap compression, we can achieve up to an extra 25% reduction in memory footprint

compared to checkpointing alone.

Implementation Details. High-level languages used in the deep learning frameworks

do not provide fine-grained memory management APIs. For example, Python depends on

garbage collection techniques the frees up memory of a given object (i.e. tensor or matrix)

when there is no references to it [151]. This leaves very little room to the developer in

54

controlling how tensors are stored in memory. Moreover, all data types in Python are

of type PyObject, which means that numbers, characters, strings, and bytes are actually

Python objects that consumes more memory for object metadata in order to be tracked by

the garbage collector. In other words, defining bits or bytes and expecting to get accurate

memory measurements is infeasible. Therefore, we implemented BitTrain in C++, using

bitset and vector data types from the C++ standard library for storing the bitmap and

the non-zero activations respectively. Our implementation extends libtorch’s C++ API

[126], by defining a tensor that inherits from the default tensor implementation. We chose

libtorch because its tensor definition separates the tensor storage from its definition in

the computation graph, allowing us to implement Algorithms 1 and 2. Furthermore, it

allows our tensor to integrate natively to its dynamic computation graph.

Measuring Memory Footprint. Advances in memory hierarchies (i.e., cache,

memory, virtual memory) has made it challenging to measure the exact memory consumed

by training a neural network. In addition, deep learning frameworks heavily depend on

shared libraries on the host system that can be used by other processes. In BitTrain, we

measure the memory footprint using the Unique Set Size (USS) of the running process.

USS is the memory that is unique to the process and which would be freed if the process

was to be terminated at the moment of measurement. On Linux, we calculate this value

by parsing all the private blocks in /proc/pid/smaps. We note that previous methods

described in [17, 97, 118] do not provide implementations, and do not measure the actual

memory footprint. Rather, they only present approximate calculations from the PyTorch

APIs. Since BitTrain is mainly focusing on edge devices, we show how the implementation

is compared to the theoretical estimations.

Activations Memory Reduction. Table 4.1 shows the memory reduction per

convolution activations as compared to the calculated results. Although a batch size

of 32 is more stable for training [135], we chose a batch size of 16 as a more realistic

benchmark for training on the edge. We tested our compression against convolutional

55

0 1 2 3 4 5 6 7 8
Number of activations 1e6

0

100

200

300

400

500

M
em

or
y

(M
B)

Dense
90% Sparsity
80% Sparsity
70% Sparsity
60% Sparsity
50% Sparsity
40% Sparsity
30% Sparsity
20% Sparsity
10% Sparsity

Figure 4.11: On-board (Jetson Nano) memory reduction as a function of the activation
size and sparsity level (implementation using libtorch C++ API).

layer sizes (number of channels, width and height of activation maps) in ResNet, which can

be representative of many convolution layer sizes in the literature. First, we observe that

while the empirical gain deviates from the theoretical calculations, the implementation

is still efficient at different sparsity levels. For example, at 50% sparsity, our method

achieves up to 34% memory reduction. According to Figure 4.3 in Section 4.3, sparsity

can be expected to be more than 70%. In this case, we save activations memory by up to

56% depending on the size of the activations.

Moreover, we analyzed how the bitmap format scales with the increasing number

of activations. Figure 4.11 shows that it scales sub-linearly as compared to the saving

activations in a dense format. We observe that memory savings is proportional to the

number of activations and the sparsity level. This proves that BitTrain is a step towards

to enabling training modern convolutional neural networks on edge devices.

56

T
ab

le
4.
1:

M
em

or
y
fo
ot
p
ri
n
t
re
d
u
ct
io
n
w
h
en

u
si
n
g
ou

r
p
ro
p
os
ed

b
it
m
ap

fo
rm

at
fo
r
st
or
in
g
co
n
vo
lu
ti
on

ac
ti
va
ti
on

s.
C
on

vo
lu
ti
on

si
ze
s
ar
e
ch
os
en

as
th
ey

ap
p
ea
r
in

or
d
er

in
th
e
R
es
N
et

m
o
d
el
.
O
n
-b
oa
rd

is
ex
ec
u
te
d
a
J
et
so
n
N
an

o
b
oa
rd
.

B
a
tc
h

S
iz
e

C
h
a
n
n
e
ls

W
id
th

H
e
ig
h
t

n
u
m

e
le
m
e
n
ts

%
n
o
n
-

z
e
ro

s

D
e
n
se

T
e
n
so

r
(M

B
)

B
it
m
a
p

T
e
n
so

r
(M

B
)

T
h
e
o
re

ti
c
a
l
O
n
-b

o
a
rd

T
h
e
o
re

ti
c
a
l
Im

p
ro

v
(%

)
O
n
-b

o
a
rd

Im
p
ro

v
(%

)

16
3

22
4

22
4

2,
40

8,
44

8
0%

9.
19

10
.5
3

0.
29

96
.8
8

2
.5
0

7
6
.2
6

25
%

9.
19

10
.7
7

2.
58

71
.8
8

5
.1
4

5
2
.2
7

50
%

9.
19

10
.8
3

4.
88

46
.8
8

7
.4
7

3
1
.0
2

75
%

9.
19

10
.8
7

7.
18

21
.8
8

9
.7
1

1
0
.6
7

10
0%

9.
19

10
.7
6

9.
47

-3
.1
3

1
2
.0
3

-1
1
.8
0

16
7

11
2

11
2

1,
40

4,
92

8
0%

5.
36

7.
17

0.
17

96
.8
8

2
.6
7

6
2
.7
6

25
%

5.
36

7.
11

1.
51

71
.8
8

4
.0
7

4
2
.7
6

50
%

5.
36

6.
96

2.
85

46
.8
8

5
.1
9

2
5
.4
3

75
%

5.
36

7.
4

4.
19

21
.8
8

6
.9
7

5
.8
1

10
0%

5.
36

7.
17

5.
53

-3
.1
3

8
.1
1

-1
3
.1
1

16
64

56
56

3,
21

1,
26

4
0%

12
.2
5

13
.9
5

0.
38

96
.8
8

3
.0
3

7
8
.2
8

25
%

12
.2
5

13
.9
5

3.
45

71
.8
8

6
.1

5
6
.2
7

50
%

12
.2
5

13
.8
6

6.
51

46
.8
8

9
.1
2

3
4
.2
0

75
%

12
.2
5

13
.4
8

9.
57

21
.8
8

1
1
.7
7

1
2
.6
9

10
0%

12
.2
5

13
.8
5

12
.6
3

-3
.1
3

1
5
.2
4

-1
0
.0
4

16
12

8
28

28
1,
60

5,
63

2
0%

6.
13

7.
41

0.
19

96
.8
8

2
.1
0

7
1
.6
6

25
%

6.
13

7.
64

1.
72

71
.8
8

4
.0
2

4
7
.3
8

50
%

6.
13

7.
38

3.
25

46
.8
8

5
.3
1

2
8
.0
5

75
%

6.
13

7.
65

4.
79

21
.8
8

6
.9
1

9
.6
7

10
0%

6.
13

7.
92

6.
32

-3
.1
3

8
.8
3

-1
1
.4
9

16
25

6
14

14
80

2,
81

6
0%

3.
06

4.
80

0.
10

96
.8
8

2
.3
6

5
0
.8
3

25
%

3.
06

4.
61

0.
86

71
.8
8

3
.1
6

3
1
.4
5

50
%

3.
06

4.
99

1.
63

46
.8
8

4
.3
9

1
2
.0
2

75
%

3.
06

4.
95

2.
39

21
.8
8

5
.1
1

-3
.2
3

10
0%

3.
06

4.
33

3.
16

-3
.1
3

5
.2
4

-2
1
.0
2

57

Figure 4.12: On-board (Jetson Nano) runtime reduction of bitmap compres-
sion/decompression vs. recalculating activations (checkpointing) at 50% sparsity.

Runtime. We analyzed the runtime savings that the memory operations (from

bitmap compression and decompression) offer when compared to the expensive matrix

multiplication operations for one layer convolution. Figure 4.12 shows that the bitmap

compression saves up to 31% of runtime at the activation size of over 48m elements. While

memory operations are slower than floating-point operations (in terms of clock cycles),

in the edge training use case, we find that it is indeed faster to perform pure memory

operations than floating-point calculations due to the fact that memory is the constraint.

This is also desirable as it would reduce the total power consumed by the training.

Therefore, our bitmap compression/decompression method is even more compute-efficient.

Summary. Using sparse bitmap compression is an efficient way to reduce the memory

footprint for training deep learning models on the edge, with 18-53% overall training

memory reduction of well-established image classification models. We have shown that

memory reduction can indeed be measured empirically, achieving up to 34% memory

reduction in storing convolution activations at a sparsity level of 50% (resulting from ReLU

activations). Our method is orthogonal to existing methods in the literature, and further

pushes down the memory footprint. For example, pruning increases sparsity to more than

58

75%, which can save up to 56% of the activations memory footprint, with negligible effect

on the accuracy. Furthermore, low-precision can also double down memory consumption

with up to 55-75% reduction. In addition, using bitmap compression for saving the

activation outperforms classic checkpointing by eliminating the need for reproducing

expensive matrix operations.

4.5 Conclusion

We propose BitTrain – a Sparse Bitmap Compression technique for memory-efficient

training on the edge. Unlike previous methods that focus on saving memory to train deeper

models on server-grade infrastructure, BitTrain directly optimizes the training memory

footprint by addressing the most critical component of it – activations memory. We

exploit activations sparsity and save them in a compressed format that scales sub-linearly

with the total number of activations. BitTrain reduces the training memory footprint

with no effect on the accuracy. Extensive experiments on benchmark datasets show that

our method is orthogonal to existing work, and can be efficiently combined with them.

BitTrain is a step further for efficient learning on the edge.

BitTrain is a first step towards enabling a new frontier in edge intelligence capabilities.

In the future, BitTrain can be extended to further enable on-device learning. First, the

compression and decompression processed can be integrated into the autograd libraries of

the modern deep learning frameworks. The idea is to provide a seamless implementation

similar to the checkpointing API. Second, defining native matrix operations on the bitmap

format would make it more convenient for transfer learning on the edge. This will push the

frontier of special hardware support for model “adapting” pre-trained models to new data

locally on constrained devices. Third, combining all discussed methods in an integrated

and efficient implementation would improve the empirical results, and push them closer

to the theoretical calculations. This work democratize AI for low-resource settings and

can also advance the state-of-the-art of privacy-sensitive AI applications.

59

CHAPTER 5

Efficient Inference with Temporal

Awareness

5.1 Introduction

Recent advances in wearable devices show a strong potential to revolutionize applica-

tions in both health monitoring and patient diagnosis. For example, wearable devices have

a big influence in post-op rehabilitation. A successful surgery depends on monitoring the

patient’s condition after the surgery, which is carried out through clinical visits. However,

these visits are often insufficient and can be greatly enhanced by continuous monitoring

using wearable devices. For example, it was recently shown that a wearable stretch sensor

can be used to provide feedback for physical therapy or rehabilitation exercises [8, 4].

Also, special robotic devices can be used for post-stroke shoulder rehabilitation to identify

misalignment [39]. Furthermore, a recent work uses wearable devices to detect hidden

anxiety and depression in young children [111]. Activity recognition models have also

been used to enhance health monitoring for the elderly. A case study uses wearable

sensors and other environmentally placed sensors to predict health decline and critical

health situations [174] and another one uses inertial wearable sensors and gait detection

60

to provide useful digital bio-markers in dementia [43].

Wearable devices have very limited power and memory constraints. For example,

Human Activity Recognition (HAR) platforms need to reach a satisfying activity recogni-

tion accuracy while consuming low power, resulting in a power-accuracy trade-off, which

creates the need to co-optimize all the power consuming components of the device.

Usually wearable devices have two main energy consuming components: the sensors

and the processing unit. In HAR platforms [11] [119], there are two main stages: first,

collecting real time data from an accelerometer and/or a gyroscope, and second, pre-

processing the data to extract some features before forwarding them to a classifier to

analyze the user activity, such as walking, sitting, running, etc. Many recent works have

presented optimized classification algorithms that are low in power and memory [87,

49, 88]. A few recent papers addressed methods to reduce the power consumption of

the sensors by shutting down some of them [12] or by switching the sensors to a lower

sampling frequencies with less intense user activities [119]. However, we observe that the

averaging window is also a key factor affecting the sensor’s energy consumption. Moreover,

switching the sensors to different sampling rates introduces a classification challenge as

each sampling rate provides a feature set of different size; this challenge was overlooked

in previous works by retraining different classifiers for each used sampling rate creating

a memory overhead. To tackle this challenge, we are the first to consider manipulating

the feature extraction step to output the same feature size for data from different sensor

configurations.

In AdaSense, we propose a novel low-power sensing technique that optimizes the

power consumption of wearables while maintaining high activity recognition accuracy. We

co-optimize the sensor, the feature extraction and the classifier to enhance the energy

consumption of wearable devices. Our main contributions can be summarized as follows:

• Sensor Configurations Design Space Exploration: We provide a complete

61

evaluation for the trade-off between activity recognition accuracy and power con-

sumption under 16 different accelerometer sampling frequency and averaging window

combinations to pick the optimal sensor configurations that trade off the accuracy

with the power consumption in an optimal way.

• Adaptive Low-Power Sensing technique: Using the outcomes of the sensor

configurations design space exploration, we introduce a novel technique that dy-

namically switches the sensor operation among these different configurations as a

function of the user activity. We also provide detailed results for the recognition

accuracy, memory and power consumption in comparison to the previously used

techniques.

• Features Extraction and Classification: We propose a new feature extraction

methodology which unifies the features set for heterogeneous data coming from

various accelerometer configurations (i.e. sampling frequency and averaging window).

This enables the usage of a single classifier that is capable of recognizing the human

activity regardless the chosen configuration.

The rest of the chapter is organized as follows. We summarize the related work in

Section 5.2. Then, we present our activity recognition framework in Section 5.3. In

Section 5.4, we analyze the design space of the different sensor configurations, and we

propose our adaptive low-power sensing technique. Next, we show the experimental setup

and results in Section 5.5. Finally, we conclude in Section 5.6.

5.2 Related Work

Due to the tight energy constraints of wearable devices, recent work have focused on

approaches to minimize power consumption while maintaining high performance (recogni-

tion accuracy) [119]. Researchers have determined that the sensor is responsible for a large

fraction of the device’s power consumption, reaching about 47% [12]. Therefore, reducing

62

the sensor’s power consumption significantly decreases the total energy requirement for

the device. This can be done by switching the sensor to low-power mode, reducing the

sampling frequency [119], turning off the sensor intermittently, shutting down one of the

sensor’s axes [12] or using compressed sensing techniques for selective sampling [105].

However, to the best of our knowledge there has not been any approach that considers

the averaging window of the sensor to maximize power savings.

There are some approaches that consider using approximate circuits to achieve sig-

nificant power savings without sacrificing much accuracy [53, 52], while others focus

on minimizing the power consumption of the used machine learning algorithms [87, 49].

Feature extraction and data processing also require significant energy, so researchers have

developed techniques to reduce the complexity of the extracted features in order to save

power [180]. For example, statistical features are relatively simple to calculate, while the

Fourier Transform and Discrete Wavelet Transform are more computationally complex,

so we can dynamically choose which features to calculate based on the required power

budget [12].

Once the relevant design points have been identified, various approaches attempt to

determine the optimal strategy for switching between these design points at runtime.

NK et al. [119] propose to switch to power saving design points when the user is doing

low-intensity activities because these do not require as many data points to classify. Liu

et al. [161] instead propose to use compressed sensing techniques to determine how many

samples are needed for reconstruction and consequently sample as needed.

Finally, the machine learning classifier must be compatible with the dynamic sensor

data. If the sensor data is acquired under settings that are different from the training data,

then the accuracy can be significantly degraded. NK et al. [119] address this problem

by retraining a separate neural network for each design point, while Liu et al. [161] use

linear interpolation to normalize for variable sampling rate.

63

Buffer

Feature
Extraction

Classifier

Features

Accelerometer
Reading

Data Batch

Classified
User

Activity
HAR Framework

Figure 5.1: Human Activity Recognition Framework.

5.3 Adaptive Human Activity Recognition Frame-

work

The ultimate goal of our HAR framework is to read an accelerometer’s 3-axis data, and

analyze them into one of six daily activities: sit, stand, walk, go upstairs, go downstairs

and lie down. Two main components are needed to do that task: the feature extraction

and the classification. Both tasks should be done on the wearable device, so the needed

processing power and storage memory should be meticulously considered. Moreover as

mentioned in Section 5.1, the HAR classifier should handle heterogeneous sensor data

of different nature, e.g., different sampling frequencies and averaging windows, without

creating a processing or a memory overhead. AdaSense tackles this heterogeneous data

problem by using a new feature extraction technique that unifies the size of the features

vector regardless the accelerometer’s configurations. In this section, we first explain the

main components of the HAR framework, then we present our new methodology for

feature extraction as well as the used activity classification model.

64

5.3.1 Main Components

The main components of our HAR framework can be summarized in Fig. 5.1. The

input is the data collected by the accelerometer, and the output is the user activity class.

A batch of sensor data is needed to perform meaningful classification, so a buffer is added

to control the classification frequency. The buffer stores the accelerometer data over two

consecutive seconds. Then every one second, we push the collected data batch in the

buffer through the rest of the pipeline, where we run feature extraction and classification

to predict the user activity. We introduce one second overlap between the data batches

to give the classifier some insightful information about the previous classification data

batch. The challenge is that the data batch size depends on the sampling frequency, i.e.,

the number of samples stored in the buffer during one second period would be 100 with

100 Hz sampling frequency, and 50 when the sampling frequency is 50 Hz, making the job

harder for the classifier. This issue would be handled during the feature extraction by

constructing similar size feature set regardless the size of the processed data batch.

5.3.2 Feature Extraction

We can split the used features set into two categories: statistical features and Fourier

transform coefficients. The statistical features include the mean and the standard deviation

of the signal for the x, y and z coordinates. These statistical quantities capture the general

structure of the accelerometer data over the selected batch. The Fourier transform

coefficients capture frequency information for each activity. However, we noticed that

we do not need to use all the Fourier transform components. For the sake of activity

recognition, the first three coefficients in each coordinate, representing the frequency

components up to 3 Hz, are enough to get around 97% recognition accuracy. The big

advantage of using these features is that the feature vector size would be the same

regardless of the size of the processed data batch. This solves part of the classifier’s

problem; however, the classifier still needs to adapt to the information in the features

65

depending on the used sampling frequency and averaging window.

5.3.3 Human Activity Classifier

AdaSense’s classifier must gracefully handle heterogeneous sensor data in order to

maintain high accuracy. This task is not trivial because classification accuracy can

degrade significantly if the sensor configurations of the test data are different from the

configurations of the training data. A commonly used approach is to retrain a different

model for each sensor configuration, which is guaranteed to provide high recognition

accuracy but adds memory overhead to store multiple classifiers [119]. However, since

we have unified the size of the feature set for different sampling rates, we can do the

classification using one neural network with two layers: one hidden layer with RELU

activation function and an output layer with 6 neurons and a softmax. By training this

network on data from different sampling frequencies and averaging windows, we expect it

to perform well using much less memory depending on the different sensor configurations

used, i.e if there are four different sensors configurations, using our method will need one

network instead of four different networks using 4× less memory to store the weights.

5.4 Low-Power Sensing

Wearable devices have two main power consuming components: the sensors and the

processing unit. In Section 5.3, we described our HAR framework structure and the

used methodologies to perform efficient processing and classification. In this section,

we describe how AdaSense optimizes the power consumption of the sensor. We first

analyze the accuracy and power trade-off for different sensor configurations. Next, we

use the outcome of this analysis to design an adaptive controller that changes the sensor

configurations according to the user activity.

66

Table 5.1: Acceleromenter Sampling Frequency and Averaging Window Combinations.

• 100Hz / 128 (F100 A128) • 50Hz / 128 (F50 A128)
• 25Hz / 128 (F25 A128) • 12.5Hz / 128 (F12.5 A128)
• 6.25Hz / 128 (F6.25 A128) • 25Hz / 32 (F25 A32)
• 12.5Hz / 32 (F12.5 A32) • 6.25Hz / 32 (F6.25 A32)
• 50Hz / 16 (F50 A16) • 25Hz / 16 (F25 A16)
• 12.5Hz / 16 (F12.5 A16) • 6.25Hz / 16 (F6.25 A16)
• 50Hz / 8 (F50 A8) • 25Hz / 8 (F25 A8)
• 12.5Hz / 8 (F12.5 A8) • 6.25Hz / 8 (F6.25 A8)

5.4.1 Sensor operation Modes

Usually sensors has two operation modes: normal mode and low-power mode. For the

sensor to give less noisy readings, the output is not just the instantaneous reading at

the required sampling point. Instead, it is the average of the collected samples over a

certain window before the sampling point; the size of that window is called the averaging

window. In normal mode, the sensor stays on all the time, so the averaging window does

not affect the power consumption. However, in low-power mode, the sensor switches

between normal and suspend modes, so both the sampling frequency and the averaging

window determine the time in which the sensor has to be on; hence, significantly affecting

the power consumption.

5.4.2 Sensor configurations Design Space Exploration

Using the setup mentioned in Section 5.3, we study the power consumption and the

recognition accuracy at different sensor configurations. We choose 16 different sampling

frequency and averaging window combinations given in Table 5.1, and we analyze the

accuracy and power trade-off as illustrated in Fig. 5.2. Each point in the graph represents a

different sensor configuration, and each configuration has a unique current-accuracy value

which is a factor of the sampling rate and the noise due to using lower averaging windows.

We observed that the four configurations {F100 A128, F50 A16, F12.5 A16, F12.5 A8},

highlighted by the diamond shape, dominate the others, and create a Pareto front that

67

25 50 75 100 125 150 175 200
Current Consumption per unit time (uA)

92

94

96

98
R

ec
og

ni
tio

n
A

cc
ur

ac
y

F100_A128F50_A16
F12.5_A16

F12.5_A8

F6.25_A128

Normal
Mode

Low-Power
Mode

Figure 5.2: Accelerometer configurations accuracy and power trade-off.

optimally trades off accuracy with power. F100 A128 has the highest accuracy and

current consumption, whereas F12.5 A8 has the lowest accuracy and current consumption.

However, the other red points do not offer any benefits in the energy-accuracy trade-off;

for example, the point F6.25 A128 marked by the blue rectangle is dominated by the

point F12.5 A16 which has higher accuracy and lower current consumption.

5.4.3 Adaptive Low-Power Sensing Technique

To reduce the sensor’s power consumption, AdaSense introduces a new technique that

switches among different sampling frequencies and averaging windows. Our adaptive

controller dynamically switches to a lower power configuration when the user activity is

stable (i.e, the user has been doing the same activity for a long time), and switches back

to the highest accuracy configuration when the user activity changes to capture the right

one. In other words, if the user has been walking for a certain period of time, it means

that this user is steadily doing the same activity and will probably continue doing it for

a while, so we can lower the sampling frequency and averaging window to reduce the

power consumption of the sensor. However, if the activity keeps changing rapidly, then

the sensor needs to operate at its highest power to capture the correct activity. Fig. 5.3

68

Motion
Detection

Sensor

Human Activity Recognition
Engine

Adaptive Controller

Current
Activity

Averaging Window

Sampling Frequency

Feature
Extraction Classification

State Prediction
Optimization

Technique

Figure 5.3: Low-Power Sensing HAR Framework.

shows the proposed framework for AdaSense. The sensor first operates at its high power

configurations, then it forwards the collected data to the HAR framework. As explained

in Section 5.3, the HAR framework classifies the data, and feeds its output to an adaptive

controller which in turn adjusts the next episode’s sensor configurations. Our controller

uses a novel technique called state prediction optimization technique (SPOT) to take its

decision.

5.4.4 The State Prediction Optimization Technique (SPOT)

The adaptive controller in AdaSense makes its decision regarding the sensor’s configu-

ration using our SPOT technique which is based on a simple finite state machine. First,

we have four states representing the four optimal sensor configurations chosen during the

design space exploration analysis earlier. These four states are sorted in descending order

according to the power consumption. The accelerometer starts working at the first state

(F100 A128), and every one second it compares the current classification output with the

previous classification output. When the activity stabilizes, i.e when the classifier output

remains the same for few classification attempts called stability threshold, it moves to the

lower power state. If the classified user activity changed at any state, the sensor returns

back to the first high accuracy state.

69

For example, suppose we chose to operate on four different states named {F100 A128,

F50 A16, F12.5 A16, F12.5 A8} as shown in Fig. 5.4, and C1, C2, C3, C4 are the

conditions that control the transition from one state to another such that:

• C1: Current Activity == Last Activity & Counter < stability threshold

• C2: Current Activity == Last Activity & Counter = stability threshold

• C3: Current Activity != Last Activity

• C4: Current Activity == Last Activity

SPOT starts by operating at F100 A128, and frequently classifies the output data from the

sensor and increment a counter whenever the current activity matches the previous one. It

continues to do so till the counter reaches the stability threshold. At that point, it switches

to the next state in which it follows the same behaviour, successively switching to the

next states till it reaches the last one and stays there. If at any state the current activity

did not match the previous one, SPOT resets the counter, and switches immediately to

the first high accuracy state, then the behaviour is repeated as long as the device is on.

5.4.5 The SPOT technique with confidence

The total power consumption depends on the time spent at each state. In SPOT, the

decision to move from a lower power state to a higher power state is taken when the

classifier reports a change in the human activity. The classifier reports that the activity is

changed in two cases: when the activity actually changes, or when the classifier mispredicts

due to some noise in the sensor’s data. As a result, we introduce the confidence parameter

in SPOT, which adds some tolerance to the noisy data. This confidence is the classifier’s

probability of the chosen output class; for example, if we have two output classes (walk,

sit), and the softmax at the classifier’s output layer gave the probabilities (0.8, 0.2), then

the classification would be “walk” with confidence 0.8. In SPOT with confidence, the

decision to move to a higher power state is taken when the classifier reports that the

70

F100_A128 C1

C2

C3

C4

F50_A16

F12.5_A16F12.5_A8

Figure 5.4: State Prediction Optimization technique FSM, states named as F(sampling
frequency) A(averaging window), while C1-C4 are the conditions directing the flow from
the first to the last state as a function of the activity stability.

activity is changed with a confidence higher than a certain threshold called confidence

threshold.

5.5 Experiments and Results

5.5.1 Experimental Setup

Hardware Used: We evaluate the proposed adaptive sensing technique using a Texas

Instruments CC2640R2F MCU [149] integrated with a Bosch Sensortec BMI160 16-bit

inertial measurement unit (IMU) [16]. We operated the IMU in both the normal mode

and the low-power mode to set different sampling frequencies and averaging windows.

Data: We only enabled the IMU’s accelerometer, and we collected data with the x, y

and z sensor readings at different sampling frequencies and averaging windows. Then we

used the collected data to evaluate our methodology. Using the setup mentioned in Section

5.3, we trained our neural network on an extensive data set of 7300 activity windows of the

four optimal acceleromenter configurations {F100 A128, F50 A16, F12.5 A16, F12.5 A8}

analyzed in table 5.1. The data recorded 6 different activities: walk, sit, lie down, go

upstairs, going downstairs, stand.

71

(a) 3-axes Accelerometer Readings with Time.

(b) Sensor Current Consumption per unit time.

Figure 5.5: AdaSense Behavioural Analysis.

5.5.2 AdaSense Behavioural Analysis

As an illustration of AdaSense’s performance, we analyze its inputs and outputs over a

time interval of 120 seconds as shown in Fig. 5.5. We show a whole use case in which the

user sits for the first 60 seconds, then the user changes the activity and starts to walk for

another 60 seconds. Fig. 5.5a shows the inputs from the accelerometer over the chosen

time interval where the y-axis is the x, y and z axes of the accelerometer reading. Fig.

5.5b shows the classification and power analysis, the y-axis is the current consumption in

µA. We observe that AdaSense starts operating at the high power configuration of the

sensor F100 A128, and then it gradually switches to lower power configurations, until it

reaches the minimum F12.5 A8 after 28 seconds. It stays there till the activity changes

at time 60 seconds when the sensor switches back to the highest power state again, and

repeatedly does the same behaviour till it also reaches the minimum after another 28

seconds.

72

(a) Classification Accuracy with Stability Threshold.

(b) Total Power Consumption with Stability Threshold.

Figure 5.6: AdaSense Power and Accuracy analysis.

5.5.3 Power & Accuracy Analysis

We first analyze the impact of the proposed methodology to co-optimize the sensor,

feature extraction and classification of the HAR framework on the activity recognition

accuracy and the sensor’s power consumption. Fig. 5.6a shows the accuracy of classification

as we increase the stability threshold which determines the stability of the activity; hence,

switch the sensor to a lower configuration. We compare the accuracy under three scenarios.

In the first scenario, we prevented the controller from switching among different sensor

configurations, i.e. the sensor operates on the high power configuration {F100 A128}

all the time; we take this as our baseline to measure how switching between different

configurations affects the accuracy. In the second and the third scenarios, we analyze

AdaSense using our two different adaptive controllers: SPOT and SPOT with confidence

of value 0.85 respectively to switch among the four sensor configurations when the user

activity becomes stable. In the three scenarios, we trained a single neural network on

data from the four different accelerometer configurations mentioned before, and we used

that model to test the classification accuracy while changing the setup of the adaptive

sensor configurations controller.

73

From the results of Fig. 5.6a, we observe that the accuracy increases as the value of

the stability threshold increases. Specifically, as the stability threshold increases from zero

to 20 seconds, the classification accuracy rapidly increases from 91% to 96.5%. Then, the

accuracy saturates within a range of 1.5% below the baseline. This reduction in accuracy

is expected because when the stability threshold is low (i.e., < 20 seconds), the adaptive

controller promptly switches to low-power accelerometer configurations; however, since

the user activity is not stable for a long time, it triggers changes among different sensor

configurations which result in a lower recognition accuracy. When the stability threshold

is high enough (i.e., > 20 seconds), the loss in accuracy is negligible when compared to

the baseline.

Next, we compare the total power consumption for the sensor as a function of the

stability threshold in seconds. As shown in Fig. 5.6b, the power consumption increases

with the increase in the stability threshold; when the stability threshold is low, the sensor

rapidly switches to a low-power configuration after few seconds, so more time is spent

at the lower power configurations which minimizes the total power consumption by the

sensor. However, as the stability threshold increases, the time spent on the low-power

sensor configuration decreases, so the total power increases. Furthermore, at stability

threshold of 60 seconds, the power consumption matches the baseline as the sensor spends

all the time operating at the high power configuration. In average, the total power can be

reduced by 60% using SPOT and 69% using SPOT with confidence.

5.5.4 Comparison to the previous work

This section compares the accuracy and the power consumption of AdaSense to the

related work. NK et al. [119] use an activity intensity based approach to reduce the power

consumption of the sensors; the sensors switch to low-power mode with low-intensity user

activities (i.e. stand, sit, lie down), and operate at the normal mode with more intense

activities (i.e. walk, go upstairs, go downstairs). NK et al. define the intensity of the

74

High Medium Low
User Activity Setting

6

7

8

9

10

11

12
Po

w
er

 C
on

su
m

pt
io

n(
uA

)

10.7

7.1
6.8

9.3 9.4 9.4

90

92

94

96

98

100

102

A
cc

ur
ac

y(
%

)

96.7

97.6 97.5

98.3
99.0

98.6

Power - IbA
Power - AdaSense
Accuracy - IbA
Accuracy - AdaSense

Figure 5.7: Comparison between AdaSense and Intensity Based Approach(IbA) [119] in
terms of Accuracy and Power Consumption under different user activity settings.

activity using the first derivative of the accelerometer readings, and they retrain separate

classifiers for each used sampling frequency. Fig. 5.7 summarizes the comparison, the

x-axis shows three user activity settings {High, Medium, Low}, which differs in terms

of the user activity change rate. High means that the user activity is not stable (i.e.

changes every 10 seconds), while Low means that the user activity is quite stable (i.e. it

takes the user at least 1 minute to change the activity). The left y-axis shows the power

consumption of using AdaSense versus the activity intensity based technique. As expected,

when the user activity setting is high, AdaSense spends most of the time at the high power

sensor configuration; therefore, the power consumption is relatively high. However when

the user activity starts to be more typical, the power consumption is reduced by at least

25% compared to the previous work. The right y-axis shows the recognition accuracy.

The results show that AdaSense has has slightly lower recognition accuracy (i.e ranging

from 1% to 1.5%) depending on the setting in comparison to the technique used by NK

et al.. This loss in accuracy is acceptable in trade of the significant power and memory

savings.

Memory Requirements: While NK et al. retrain different neural networks for the

75

different sampling frequencies, AdaSense trains a single classifier on data from different

sensor configurations, consuming 2× less memory to store the classifier(s) weights. This

memory reduction is important for wearable devices as they only have few KBs of memory.

Data Processing Overhead: In AdaSense, we do not need to compute the derivative

of the collected sensor data to switch among the different configurations. Therefore, we

prevent computations overhead that might compromise the power savings from the sensor.

5.6 Conclusion

Wearable devices have many advantageous applications in health services, and with

the advancement in the research done to reduce the power consumption on those wearable

devices, their deployment in real applications would become more practical. This chapter

presented a low-power sensing technique for activity recognition on wearable devices.

Using an adaptive controller, we dynamically switched the sensor to lower sampling

frequencies and averaging windows depending on the stability of the user-activity. We

analyzed the trade-off between the accuracy and the power consumption for different

sensor configurations. Then, we designed an adaptive controller that switches among the

resulting optimal sensor configurations. We also co-optimized the features extraction and

the classification achieving up to 69% reduction in total power consumption with less

than 1.5% degradation in the recognition accuracy.

76

CHAPTER 6

Efficient Inference with Spatial

Awareness

6.1 Motivation

Convolutional neural networks (CNNs) are used to achieve high accuracy in object

detection tasks [131, 132]. In object detection, the input is an image, and the outputs

are the object classes and their location in the image represented by the bounding box

coordinates. CNN-based object detectors can be divided into two main categories: two-

stage detectors [132, 60] and one-stage detectors [131, 95]. Two-stage detectors first

identify some regions of interest (ROIs) as candidates, and then classify and regress those

ROIs to identify the objects and their bounding boxes. One-stage detectors directly predict

the object categories and the bounding boxes using some default anchors. One-stage

detectors are less accurate than two-stage detectors, but they are more efficient; hence

they are more suitable for edge devices.

In recent years, the deployment of CNNs on edge devices like mobile phones, smart

glasses, and augmented reality devices has become essential for real-time response and

for data privacy reasons. However, those networks have high memory and computational

77

power demands, which challenge their deployment on resource-constrained embedded

devices. These devices are battery-operated, so low energy consumption is crucial. They

also have memory constraints, so the model should be compact. Finally, those models

have real-time constraints when deployed on edge devices.

To reduce the memory and computational demands of CNNs, researchers have explored

pruning and quantization of those models to create a trade-off among energy, latency, and

accuracy [42]. Others use dynamic networks [148, 170, 176, 146] that can be reconfigured

during runtime to accommodate the target accuracy and efficiency. Another effective

approach is to use hierarchical networks [80]. Those networks have shown success in image

classification tasks because each image has only one object, so the objects can be grouped

based on their visual or semantic similarities [44]. However, for object detection, an image

can have objects that are not visually or semantically similar. Therefore, the previously

proposed methods would not work for object detection. For example, a scene with a

parking meter next to a car is very likely to happen. None of the techniques based on

visual or semantic similarity will group the car and the parking meter together. Another

example is a scene with a couch and a television. However, in a spatial-context-based

approach, a car and a parking meter will be grouped together, while a couch and a

television will form another group. Thus, we propose using the spatial context to group

the object classes, this would allow our adaptive model to efficiently complete the detection

task by executing a single branch, making it appropriate for resource-constrained devices.

In this chapter, we propose a novel approach that leverages the information about the

spatial context of the objects to design an efficient adaptive model for object detection. Our

adaptive model reduces the energy consumption, the latency, and the memory footprint for

object detection with a negligible loss in accuracy. Our contributions can be summarized

as follows:

• To the best of our knowledge, AdaCon is the first work to introduce an adaptive

methodology for one-stage object detectors handling images with multiple objects.

78

Our adaptive method enables efficient object detection on resource-constrained

embedded devices.

• AdaCon leverages the information about the spatial-context of the object categories

to construct a knowledge graph. Then, we use the constructed knowledge graph to

design our adaptive context-aware object detection model.

• We introduce a simple yet effective and generalizable methodology that can be easily

applied to design the neural network architecture of the detection branches for our

adaptive model.

• We apply our adaptive methodology to two different state-of-the-art object detectors,

and we compare different generated adaptive models representing different energy-

accuracy trade-offs to the static baselines.

• We deploy our AdaCon models on an embedded Nvidia Jetson nano board, and

analyze the accuracy, latency, and energy of the different architectures. Our adaptive

model achieves up to 45% reduction in energy, and up to 27% reduction in the

latency with small loss in average precision on the COCO dataset.

The rest of the chapter is organized as follows. We review the related work in Section 6.2.

Then, we introduce our adaptive object detection technique in Section 6.3. Next, we show

the experimental setup and results in Section 6.4. Finally, we conclude in Section 6.5.

6.2 Related Work

Object Detection: Object detection is a well-researched topic because it is essential in

many applications like augmented reality, surveillance, and autonomous driving. However,

most object detectors are not suitable for embedded or wearable devices because they are

based on complex power-hungry DNNs with large memory footprint. One-stage detectors

such as YOLOv3 [131] and RetinaNet [95] are faster than most two-stage detectors like

79

Faster R-CNN [132] and Mask R-CNN [60], so they are more suitable for real-time response

on edge devices. Thus, we choose YOLOv3 [131], and RetinaNet [95] as a the baseline

architecture on which we apply our method for adaptive context-aware object detection.

Efficient Neural Networks: Over the past few years, the need for efficient computing

on edge devices increased, so researchers started designing compact networks [65, 107, 162].

Others used pruning and quantization [37, 42]. In this chapter, we consider a different

research direction for optimization by exploring adaptive networks that can leverage the

nature of the object detection task. Our approach is an orthogonal effort to build more

efficient neural networks that are suitable for constrained embedded devices.

Dynamic/Adaptive Neural Networks: Adaptive neural networks have been adopted

by many researchers to reduce the computational complexity needed for neural networks,

hence reduce the latency and energy requirements without sacrificing much accuracy.

Tann et al. [148, 146] and Yu et al. [170] trained a single network at different widths

to permit adaptive accuracy-energy trade-offs at runtime. Others skip some layers [160],

or deploy some early exit criteria [15] to reduce the computation complexity. Recently,

Zhang et al [176] proposed building Domain-Aware networks that decide which part of

the network to run based on the weather and the time of the day in which the device is

operating. All these methods are generic for convolutional neural networks and image

classification, but they have barely been applied to object detection. Our work is different

because we leverage the information about the spatial context of the object categories.

The spatial context implies the probability that different objects can occur jointly, and

this is an essential information that can be used to further optimize object detection

models.

Context-aware Object Detection: On another research thread, some researchers have

been exploring the use of prior knowledge about the real world to improve the accuracy

of object detection models. Fang et al [36], and Xu et al [164] integrate knowledge-graphs

and adjacency-matrices to leverage the information about the co-occurrence and the

80

Figure 6.1: Illustration of our Adaptive Object Detection model. The backbone is first
executed to extract features from the input image. Then, the branch controller takes the
extracted features, and route them towards one or more of the downstream detection
heads. Only the chosen head(s) are then executed to get the detected object categories
and their bounding boxes.

locations of the objects for more accurate object detection. Their main goal is to increase

the model accuracy, and they achieve this by adding more computational complexity,

which further reduces the model efficiency. However, our criteria is different, because we

exploit the idea of using the prior knowledge to build efficient adaptive object detection

models. Our adaptive model architecture reduces the energy consumption, latency, and

runtime memory requirements of object detectors, making them more appropriate for

resource-constrained devices.

6.3 Method

Modern object detectors are typically composed of two main parts: a backbone which

extracts the features from the input image, and a head which is used to predict the object

categories and their bounding boxes. In this work, we propose an adaptive context-aware

neural network architecture for object detection. We achieve this architecture by leveraging

the information about the co-occurrence of objects in the spatial domain while designing

our object detection model.

Our adaptive model consists of two main components: spatial-context-based clustering

and a hierarchical object detection model. In the spatial-context-based clustering, we

81

extract the information about the co-occurrence of object categories from the training

data, and use this information to cluster the object categories, where each cluster has the

objects that co-occur in the spatial domain with high probability. Then, we leverage the

extracted information to design an adaptive object detection model.

As illustrated in Figure 6.1, our adaptive object detection model consists of three

main components: backbone, branch controller, and a pool of specialized branches. The

backbone is a CNN responsible for extracting the features from the input image. The

branch controller is a regression model with a sigmoid activation function at its output.

The branch controller has an input size similar to the output feature maps of the backbone,

and the number of its outputs is equal to the number of clusters chosen while running the

spatial-context-based clustering. Those outputs represent the confidence score that the

input image belongs to the corresponding spatial context. Using the confidence scores in

the branch controller, we enable two modes of operation: single-branch execution where

only the branch with the highest score is selected, and multi-branch execution where all

the branches with scores higher than a certain threshold are selected. The final component

of our model is a pool of specialized detection heads (branches). Each specialized branch

is responsible for detecting the objects that belong to one spatial context.

During run-time, the input image first passes through the backbone, then the output

of the backbone is passed to the branch controller which classifies those feature maps

to one or more spatial contexts. Receiving the decision from the branch controller, we

execute the chosen branch(es), and concatenate their outputs to complete the detection

task. In this Section, we are going to explain in detail the clustering method in Section

6.3.1. Section 6.3.2 shows our method for selecting the architecture of the specialized

branches. Finally, we explain the training method for our adaptive object detection model

in Section 6.3.3.

82

Figure 6.2: Spatial-Context-based clustering for the object categories.

6.3.1 Spatial-Context based Clustering

The ultimate goal of our clustering technique is to group objects that can co-occur in

the same scene. Then, we use those clusters to construct our hierarchical detection model

where each cluster has a corresponding branch in the model. This would guarantee high

performance and high efficiency because it would enable detecting most of the objects

in a scene by executing only one branch of the detection model. Figure 6.2 shows our

spatial-context-based clustering technique. First, we construct the co-occurrence matrix

of the object categories where each value represents the frequency of the co-occurrence

of the object categories in the same scene across all the training dataset. Then, we

extract the common objects. Those are the object categories that have high probability of

co-occurrence with more than 75% of other object categories. We remove those common

objects from the co-occurrence matrix, and add them later to each cluster. Our intuition

is that some objects such as a “person” or a “backpack” can co-occur with any other

object in any spatial setup. Thus, it is better that our network considers the presence of

those common objects all the time. Next, we convert the frequency-based co-occurrence

matrix to a correlation matrix. Then, we use the correlation matrix to build a knowledge

graph using Fruchterman-Reingold force-directed algorithm [38]. As shown in Figure 6.2,

the nodes of the knowledge graph represent the object classes, and the edges represent the

probability of the co-occurrence of the connected objects in the same scene. Afterwards, we

use agglomerative clustering to group the nodes based on their location in the knowledge

graph. This results in clusters of object classes where the inter-cluster objects have low

83

probability of appearing together in the same scene, while the intra-cluster objects have a

high likelihood of occurring jointly.

6.3.2 Detection Head Architecture

In our hierarchical adaptive model, each branch (i.e., detection head) is responsible for

detecting a subset of the object classes. The number of object classes assigned to a certain

branch depends on the total number of branches in the adaptive model, as well as the

outcome of the spatial-context clustering as explained in Section 6.3.1. This means that

for a given model with a certain number of branches, the object classes are not equally

distributed among those branches. Therefore, the number of object classes should be

considered while designing the branch architecture to guarantee that each branch has an

appropriate representational capacity to make it efficient without sacrificing accuracy.

We propose a systematic approach to choose the detection head architecture. Our

approach can be easily generalized to different object detection models. For a given model,

we choose the head architecture of the static baseline model as our template. For each

branch detection head, we define a compression factor equal to the number of object

classes assigned to this branch, divided by the total number of object classes. Then for

each layer in the template head architecture, we keep the same number of layers, but we

compress the model by reducing the number of channels in each layer by the previously

calculated compression factor.

For example, assuming that we use a two-branch AdaCon model to detect 30 object

classes, and our spatial-context-based clustering assigned 18 and 12 objects to the first and

the second branches, respectively. Then, the compression factor for the first branch is 18/30,

while it is 12/30 for the second branch. Table 6.1 compares the number of parameters, and

the number of multiply-and-accumulate (MAC) operations for the compressed branches,

as well as the static baseline template for YOLOv3 [131] and RetinaNet [95]. We can

notice that the total number of parameters and MAC operations for the branches are

84

always smaller than the corresponding template. Moreover, the various branches would

not be active at the same time. Therefore, the dynamic number of parameters and MAC

operations at a time would be significantly smaller, which reduces the memory footprint

as well as the latency and the energy. More analysis is presented in Section 6.4.

Table 6.1: Detection Head (Branches) Architectures for AdaCon models with various
number of branches.

Model Branches Parameters Branches MACs

(M) (Gops)

RetinaNet

Baseline 6.7 22.5

2 Branches 3.0, 2.1 4.2, 2.9

3 Branches 2.1, 1.4, 1.4 2.9, 1.9, 1.9

4 Branches 1.7, 1.4, 1.4, 0.5 2.4, 1.9, 1.9, 0.7

5 Branches 1.4, 1.3, 1.4, 0.5, 0.6 1.9, 1.8, 1.9, 0.7, 0.9

YOLOv3

Baseline 21.3 8.4

2 Branches 6.0, 9.2 2.4, 3.6

3 Branches 6.0, 3.8, 3.8 2.4, 1.5, 1.5

4 Branches 5.0, 3.8, 3.8, 1.2 1.9, 1.5, 1.5, 0.5

5 Branches 3.8, 3.6, 3.8, 1.2, 1.5 1.5, 1.4, 1.5, 0.5, 0.6

6.3.3 Training the Adaptive Object Detection Model

Each module of our adaptive network is trained separately with the correct pairs of

inputs and labels depending on the task assigned to this module. We use a multi-stage

training technique to train our adaptive model. In stage 1, we train the backbone. Then

in stage 2, we freeze the backbone, and concurrently train our branch controller as well as

the detection branches.

Training the backbone: In our implementation, we train the backbone as a part of the

static model. We then take the pre-trained backbone and use it as the backbone of our

adaptive model.

Training the branch controller: The branch controller is a regression model with

85

few convolutional layers and a sigmoid activation layer at the output. It predicts the

probability that the input image belongs to each spatial context. As shown in Figure 6.1,

the inputs to the branch controller are the feature maps generated by the backbone for

each image, and the labels are the dominant spatial-context on each image. To generate

the labels for training the branch controller, we map the objects in every image to their

spatial-context according to the output of the spatial-context-based clustering, and we

label the image with the dominant spatial context.

Training the detection branches: The detection branches are trained concurrently

on the relevant object categories according to the output of the spatial-context-based

clustering proposed in Section 6.3.1. The input to each branch is also the feature maps

generated by the backbone for each image, and the labels are the bounding boxes and the

object categories in the image.

6.4 Results

6.4.1 Experimental Setup

Dataset: We evaluate our method using the Microsoft COCO dataset [96]. This dataset

has over 120K training images with 80 different object categories. The 80 categories cover

a wide range of indoor (i.e., bedroom, kitchen, bathroom, living room, office, etc.) and

outdoor scenes (i.e., street, park, farm, zoo, etc.). The images in the COCO dataset

are all collected from real world scenes with some occlusions, and under various lighting

conditions. Those images are annotated with the bounding boxes for the different object

categories.

Implementation: We implemented our proposed technique using PyTorch. We used our

spatial-context-based clustering to cluster the 80 objects of COCO dataset into different

number of clusters as mentioned in Section 6.3.1. We apply our adaptive context-aware

object detection technique to two different state-of-the-art one-stage object detectors:

86

YOLOv3 [131], and RetinaNet [95]. In order to modify the static models into an adaptive

context-aware network, we use a pre-trained backbone, and replace the detection head

with our pool of specialized branches as well as our branch controller as explained in

Section 6.3. We used Darknet-53 backbone with YOLOv3, and ResNet50 backbone with

RetinaNet.

Hardware and Analysis Tools: We deploy our object detection model on an NVIDIA

Jetson Nano board as a representative device of modern embedded systems [77]. This

board has a low-power embedded GPU, a Quad-core ARM Cortex CPU with 4 GB of

RAM, and it uses about 5 to 10 Watts depending on the workload. We analyzed the

latency and the power consumption of our proposed technique on the Jetson Nano board.

We used Nvidia’s Tegrastats utility to measure the latency and the power consumption.

We also used the COCO official APIs to evaluate the model accuracy.

In this Section, we evaluate our spatial-context-based clustering by visualizing some

of the formed clusters in Section 6.4.2. In Section 6.4.3, we validate the ability of the

branch controller to detect the right spatial context for the input images. After that, we

analyze the overall performance and efficiency of our AdaCon models in Section 6.4.4.

Then, we show the effect of the introduced branch controller execution modes in Section

6.4.5. Finally, we analyze the accuracy-efficiency trade-off that our AdaCon models can

achieve by choosing a different number of clusters, as well as different branch controller

execution modes in Section 6.4.6.

6.4.2 Spatial-Context-Based Clustering Evaluation

To evaluate our spatial-context-based clustering technique, we visualize the formed

clusters for a subset of the COCO dataset. For the purpose of clear visualization only,

we choose 30 representative object categories covering different spatial contexts (i.e.,

indoors, outdoors, street, farm, living room, kitchen, etc.). Figure 6.3 shows the result

of our spatial-context-aware clustering technique when choosing different number of

87

(a) 3 Clusters (b) 4 Clusters (c) 5 Clusters

Figure 6.3: Our spatial-context-based clustering output for 30 object categories from the
COCO dataset. The formed clusters become more fine-grained as the number of clusters
increase.

clusters. Each node in Figure 6.3 represents a different object category, and the distance

between any two objects represents the probability of their co-occurrence in the same

scene (spatial context). We can notice that as the number of clusters increases, the

clustering automatically becomes more fine-grained. For example, clustering the objects

into two clusters results in an indoor objects cluster, and another one for the outdoor

objects. Clustering the objects into four clusters, further categorizes the outdoor objects

into objects that can be found on a farm, and others that can be found on a street, while

categorizes the indoor objects to living room and kitchen objects.

6.4.3 Branch Controller Accuracy Evaluation

The branch controller takes the feature maps generated by the backbone for each

image, and decides which branch(es) to execute based on the spatial context in the image

(i.e., each spatial-context has a corresponding detection branch in our adaptive object

detection model). The ultimate goal of the branch controller is to determine the dominant

spatial context in the input image. The branch controller achieves that goal by assigning

confidence scores that the input image belongs to each spatial context. Then, the dominant

context would be the one with the highest confidence score.

The branch controller accuracy is crucial for the accuracy of our adaptive model. The

reason is that as the accuracy of the branch controller decreases, its ability to take the

88

Table 6.2: Branch Controller accuracy in detecting the correct spatial-context for different
AdaCon models.

Model name Backbone Num. Accuracy Param MAC

Branches (%) (M) (Gops)

Yolov3 Darknet53 2 95.3

2.53 0.4
Yolov3 Darknet53 3 93.3

Yolov3 Darknet53 4 93.2

Yolov3 Darknet53 5 91.7

RetinaNet Resnet50 2 93.3

0.55 0.17RetinaNet Resnet50 3 90.9

RetinaNet Resnet50 4 89.5

right decision about which branch(es) to execute decreases, and this directly affects the

performance of the adaptive model. To validate the decision-making capability of our

branch controller, we analyze its accuracy in detecting the dominant spatial context on

COCO dataset. Table 6.2 shows the accuracy of the branch controller for different AdaCon

models with different number of branches. As illustrated in the Table 6.2, our branch

controller is a light-weight model (i.e., the number of parameters and MAC operations

are low) to prevent any memory, or compute overhead. The results show that the branch

controller accuracy is higher with fewer number of branches. This is expected because its

task becomes more complex as the number of branches increase.

6.4.4 AdaCon Performance and Efficiency Evaluation

To analyze the overall performance of our proposed adaptive technique, we show the

average precision, the latency per inference, and the energy per inference of our AdaCon

models with different number of branches compared to the static baselines in Figures 6.4a,

6.4b, and 6.4c, respectively. The x-axis shows the different static and adaptive models

with different number of branches (i.e., Ada-YOLO 2B denotes an AdaCon-YOLO model

with two branches operating in the single-branch execution mode). In Figure 6.4a, the

89

Base
line

Ada-R
etin

a 2
B

Ada-R
etin

a 3
B

Ada-R
etin

a 4
B

Base
line

Ada-Y
olo

 2B

Ada-Y
olo

 3B

Ada-Y
olo

 4B

Ada-Y
olo

 5B
24

26

28

30

32

m
AP

 (%
)

28.4

27.3
26.4 26.3

31.8 31.6

30.4 30.1
29.3

Accuracy of Static vs AdaCon models

(a)

Base
line

Ada-R
etin

a 2
B

Ada-R
etin

a 3
B

Ada-R
etin

a 4
B

Base
line

Ada-Y
olo

 2B

Ada-Y
olo

 3B

Ada-Y
olo

 4B

Ada-Y
olo

 5B
500

550

600

650

700

750

800

850

La
te

nc
y

(m
s)

822

649

607
582

600

539 526 520 519

Latency of Static vs AdaCon models

(b)

Base
line

Ada-R
etin

a 2
B

Ada-R
etin

a 3
B

Ada-R
etin

a 4
B

Base
line

Ada-Y
olo

 2B

Ada-Y
olo

 3B

Ada-Y
olo

 4B

Ada-Y
olo

 5B
1600

1800

2000

2200

2400

2600

2800

3000

En
er

gy
 (m

J)

2990

2097
1959

1806

2145

19051870
17941788

Energy of Static vs AdaCon models

(c)

Figure 6.4: Evaluation of (a) Average Precision (b) Latency (c) Energy for AdaCon-
RetinaNet and AdaCon-YOLO models with different number of branches under single-
branch execution mode compared to the static baseline models. Input image resolution is
416× 416.

y-axis shows the mean average precision of the object detection. In Figures 6.4b and

6.4c, the y-axis represents the latency per inference in milliseconds, and the energy per

inference in millijoules, respectively. The results show that the average precision of the

detection models decreases as the number of branches increases. The reason is that the

accuracy of the branch controller decreases as the number of branches increases, leading

to more misses by the branch controller. On the other hand, the energy and the latency

decrease as the number of branches increase. The reason is that for models with more

branches, each branch is responsible for a smaller subset of the object classes, hence it is

more compact as explained in Section 6.3.2.

6.4.5 AdaCon Evaluation for the Branch Controller Execution

Modes

As explained in Section 6.3, our branch controller gives a confidence score for executing

each branch based on the spatial context of the input image. We introduce two modes

of operation: single-branch execution (single) mode where only the branch with the

highest confidence score gets executed, and multi-branch execution mode (multi). In the

multi-branch execution, all the branches with a confidence score higher than a certain

threshold are executed. These execution modes not only boost the accuracy, but they also

90

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

29.5

30.0

30.5

31.0

31.5

32.0

Ac
cu

ra
cy

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches
AdaCon 5 branches

(a) Average Precision of
AdaCon-YOLO

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

520

530

540

550

560

570

580

590

600

La
te

nc
y

(m
s)

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches
AdaCon 5 branches

(b) Latency of AdaCon-YOLO

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

1800

1850

1900

1950

2000

2050

En
er

gy
 (m

J)

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches
AdaCon 5 branches

(c) Energy of AdaCon-YOLO

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

26.4

26.6

26.8

27.0

27.2

27.4

Ac
cu

ra
cy

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches

(d) Average Precision of
AdaCon-RetinaNet

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

580

590

600

610

620

630

640

650

660

La
te

nc
y

(m
s)

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches

(e) Latency of AdaCon-
RetinaNet

single
multi0.5

multi0.4
multi0.3

multi0.2
multi0.1

Branch Controller Execution Mode

1800

1850

1900

1950

2000

2050

2100

2150

En
er

gy
 (m

J)

AdaCon 2 branches
AdaCon 3 branches
AdaCon 4 branches

(f) Energy of AdaCon-
RetinaNet

Figure 6.5: Evaluation of the Average Precision, the Latency and the Energy for AdaCon-
YOLO and AdaCon-RetinaNet models under different branch controller execution modes.
single represents single-branch execution mode, while multix represents multi-branch
execution mode where x represents the confidence score threshold used by the branch
controller. Input image resolution is 416× 416.

add some flexibility during runtime because they enable a trade-off between the efficiency

and the accuracy without the need to use a different model, or even re-train the existing

model.

To analyze the effects of the different branch controller execution modes, we compare

the accuracy, energy, and latency of the adaptive models under different branch controller

execution modes as shown in Figure 6.5. The x-axis gives the different branch controller

execution modes. single represents single-branch execution mode, while multix represents

multi-branch execution mode where x represents the confidence score threshold used by the

branch controller. The y-axis shows the mean average precision, the latency per inference

in milliseconds, and the energy consumption per inference in millijoules in Figures 6.5a,

6.5b, 6.5c, respectively for AdaCon-YOLO, and in Figures 6.5d, 6.5e, and 6.5f, respectively

91

for AdaCon-RetinaNet. We can notice that as the branch controller threshold decreases,

more branches are executed, boosting the accuracy. On the other hand, executing more

branches adds an overhead to the latency and the energy of our adaptive model. Figures

6.5b, and 6.5c show that multi-branch execution for AdaCon models with a larger number

of branches can have a bigger overhead on the latency and energy. This is reasonable

because if the threshold for multi-branch execution is low, more branches get executed,

adding a bigger computational overhead when compared to AdaCon models with a fewer

number of branches.

6.4.6 Pareto-Frontier analysis for AdaCon

As mentioned in Section 6.4.3, and 6.4.5, AdaCon has two different knobs that can

be tuned to achieve the required performance and efficiency trade-off. These knobs are

the number of branches, and the branch controller execution mode. We combine the

settings from the two knobs, and generate 30 different adaptive models. We name our

adaptive models as (nB-mode), where n refers to the number of branches in the AdaCon

model, and mode refers to the branch controller execution mode (i.e., multi or single),

along with the branch controller threshold in case of multi execution. In Figure 6.6, we

analyze the energy/accuracy and the latency/accuracy trade-offs for AdaCon-RetinaNet,

and AdaCon-YOLO along with the static baselines. In this experiment, we use input

resolution 416× 416.

Figures 6.6a, and 6.6c show the energy/accuracy trade-off for AdaCon-RetinaNet, and

AdaCon-YOLOv3, respectively. The x-axis shows the energy per inference in millijoules,

while the y-axis shows the average precision. The red circles represent the static baselines,

and the green stars represent the Pareto-frontier adaptive models. The Pareto-frontier

models maximize the accuracy, and minimize the energy. Finally, the dominated models

(i.e., the models with lower accuracy, and higher energy consumption than other models)

are shown as blue triangles. Similarly, in Figures 6.6b, and 6.6d, the green stars represent

92

Table 6.3: Results - AdaCon vs Static Models Efficiency Metrics - Sparam represents the
total number of parameters for the model. Dparam represents the number of parameters
used by the adaptive model at a time. MACs is the number of multiply-accumulate
operations.

Model Image Sparam Dparam MACs
Size (M) (M) (%) (Gops) (%)

RetinaNet 416 32.44 0.00 - 41.08 -
AdaCon 2B-multi 0.1 416 32.97 30.15 -7.1% 26.50 -35.5%
AdaCon 3B-multi 0.1 416 32.76 29.13 -10.2% 20.98 -48.9%

RetinaNet 320 32.44 0.00 - 24.27 -
AdaCon 2B-multi 0.3 320 32.97 30.15 -7.1% 15.49 -36.2%
AdaCon 3B-multi 0.5 32.76 29.13 -10.2% 12.19 -49.8%
AdaCon 4B-single 320 32.97 28.74 -11.4% 12.06 -50.3%

YOLOv3 416 61.92 61.92 - 33.01 -
AdaCon 2B-multi0.1 416 58.31 51.53 -16.8% 28.34 -14.1%
AdaCon 3B-multi0.3 416 56.75 48.44 -21.8% 27.11 -17.9%
AdaCon 5B-single 416 56.95 45.88 -25.9% 26.10 -20.9%

YOLOv3 320 61.92 61.92 - 19.53 -
AdaCon 2B-multi0.2 320 58.31 51.59 -16.7% 16.78 -14.1%
AdaCon 3B-multi0.5 320 56.75 47.88 -22.7% 15.91 -18.5%
AdaCon 4B-single 320 56.90 46.56 -24.8% 15.60 -20.1%

the pareto-frontier models, which maximize the accuracy, and minimize the latency. We

can notice that the Pareto-frontier includes AdaCon models with a different number of

branches, and different branch execution modes. The Pareto-frontier models cover a

range of efficiency-performance trade-off, and provide run-time flexibility for our AdaCon

models.

For RetinaNet, our AdaCon Pareto-frontier models achieve around 27% to 45% reduc-

tion in the energy consumption, and 20% to 27% reduction in latency, while losing less

than two points of average precision. Similarly, for YOLOv3, our adaptive Pareto-frontier

models achieve around 8% to 17% reduction in the energy consumption, and 8% to 13%

reduction in latency, while sometimes slightly increasing the accuracy.

To provide more insights on the performance of our adaptive object detection models,

we show the detailed analysis for the static baseline, as well as some of the Pareto-frontier

93

1800 2000 2200 2400 2600 2800 3000
Energy per inference (mJ)

26.5

27.0

27.5

28.0

28.5

m
AP

(5
0:

95
)

Retina

4B-single
4B-multi0.3

3B-multi0.5
3B-multi0.1

2B-single
2B-multi0.2

2B-multi0.1

(a) Energy/Accuracy trade-off for static
and AdaCon-RetinaNet models

600 650 700 750 800
Latency per inference (ms)

26.5

27.0

27.5

28.0

28.5

m
AP

(5
0:

95
)

Retina

4B-multi0.5
4B-multi0.2

3B-multi0.4
3B-multi0.1

2B-multi0.5
2B-multi0.3

2B-multi0.1

(b) Latency/Accuracy trade-off for static
and AdaCon-RetinaNet models

1800 1850 1900 1950 2000 2050 2100 2150
Energy per inference (mJ)

29.5

30.0

30.5

31.0

31.5

32.0

m
AP

(5
0:

95
)

YOLOv3

5B-single

4B-single

4B-multi0.5
3B-multi0.5

3B-multi0.3

2B-multi0.4
2B-multi0.2

2B-multi0.1

(c) Energy/Accuracy trade-off for static
and AdaCon-YOLOv3 models

520 530 540 550 560 570 580 590 600
Latency per inference (ms)

29.5

30.0

30.5

31.0

31.5

32.0
m

AP
(5

0:
95

)
YOLOv3

5B-single

4B-single

3B-single
4B-multi0.5

3B-multi0.5
3B-multi0.4

3B-multi0.3

2B-single
2B-multi0.3

2B-multi0.2
2B-multi0.1

(d) Latency/Accuracy trade-off for static
and AdaCon-YOLOv3 models

Figure 6.6: Energy, Accuracy and Latency Trade-offs for the different adaptive models.
The adaptive models are named as (nB-mode), where n refers to the number of branches
in the AdaCon model, and mode refers to the branch controller operation mode (i.e.,
single or multi), and the branch controller threshold in case of multi execution.

AdaCon models in Tables 6.4 and 6.3. In Table 6.4, we analyze three different standard

metrics for the model accuracy: AP50, AP75, and AP50:95. AP50 and AP75 represent the

average precision with intersection over union (IOU) > 0.5 and > 0.75, respectively.

AP50:95 is the mean of the average precision for IOU ranging from 0.5 to 0.95 with a

step size of 0.05, so it is the most representative to the overall accuracy of the model.

We also analyze some efficiency metrics: the latency per inference in milliseconds, and

energy per inference in millijoules. In Table 6.3, Static parameters (Sparam) represents

the total number of parameters for the model. Dynamic parameters (Dparam) represents

94

Table 6.4: Results - AdaCon vs Static Models Accuracy and Efficiency Metrics - Latency
and Energy are measured per inference. Efficiency is Accuracy/(Energy × Latency)

Model Image Accuracy Latency Energy Efficiency

Size AP50:95 (%) AP50 AP75 (ms) (%) (mJ) (%) (%)

RetinaNet 416 28.4 - 44.7 29.6 823.0 - 2990.4 - -

AdaCon 2B-multi 0.1 416 27.5 -3.2% 43.5 28.6 659.0 -19.9% 2163.2 -27.7% +67.2%

AdaCon 3B-multi 0.1 416 26.8 -5.6% 42.8 27.8 628.0 -23.7% 1947.9 -34.9% +89.9%

RetinaNet 320 26.1 - 41.3 27.1 627.0 - 2349.7 - -

AdaCon 2B-multi 0.3 320 25.1 -3.8% 40.1 26.1 504.0 -19.6% 1521.5 -35.2% +84.8%

AdaCon 3B-multi 0.5 320 24.4 -6.5% 39.2 25.4 483.0 -23.0% 1351.2 -42.5% +111.0%

AdaCon 4B-single 320 24.0 -8.0% 38.5 24.7 458.0 -27.0% 1273.1 -45.8% +132.3%

YOLOv3 416 31.8 - 55.3 33.1 601.0 - 2145.9 - -

AdaCon 2B-multi0.1 416 31.9 +0.3% 53.2 33.6 549.0 -8.7% 1955.5 -8.9% +20.5%

AdaCon 3B-multi0.3 416 31.0 -2.5% 52.1 32.6 535.0 -11.0% 1854.7 -13.6% +26.7%

AdaCon 5B-single 416 29.3 -7.9% 49.7 30.5 520.0 -13.5% 1788.2 -16.7% +27.8%

YOLOv3 320 29.3 - 52.0 30.4 414.0 - 1451.1 - -

AdaCon 2B-multi0.2 320 29.1 -0.7% 49.1 30.6 380.0 -8.2% 1256.3 -13.4% +25.0%

AdaCon 3B-multi0.5 320 28.0 -4.4% 47.6 29.1 366.0 -11.6% 1206.3 -16.9% +30.0%

AdaCon 4B-single 320 27.3 -6.8% 46.6 28.3 359.0 -13.3% 1205.4 -16.9% +29.4%

the number of parameters used by our adaptive model at a time. We used Dparam as

an estimate of the memory footprint of our adaptive model. MACs is the number of

multiply-accumulate operations measured in Giga operations.

In general, we want to increase the accuracy, and reduce the energy as well as the

latency of our models. That is why we define the Efficiency metric as Accuracy/(Energy×

Latency) to compare the overall quality of the static versus the adaptive models. Our

Pareto-frontier AdaCon models can achieve up to 1.32×, and 30% improvement in

Efficiency over the static baseline for RetinaNet, and YOLOv3, respectively. The results

show that our AdaCon technique achieves higher efficiency for RetinaNet compared to

95

YOLOv3. The reason is that the reductions in latency and energy are directly proportional

to the reduction in the number of MAC operations as shown in Tables 6.4 and 6.3. Our

technique is mainly focused on the detection head component of the object detection

model. The detection head represents around 62% and 25% of the total number of MAC

operations for RetinaNet and YOLOv3, respectively. That is why the improvements are

more significant for RetinaNet.

6.5 Conclusion

In this chapter, we present a novel spatial-context aware adaptive network for object

detection. Using the prior knowledge about the co-occurrence of objects in the real world

scenes, we categorize the objects according to their probability to occur jointly. Then,

we design an energy-efficient adaptive model that consists of three parts: a backbone

to extract the features in the images, a branch controller that route the output of the

backbone to the right specialized branch(es) according to the spatial context of the input

image, and a pool of context-specialized branches. Our method improves the overall model

efficiency by up to 30% for YOLOv3 and 132% for RetinaNet. AdaCon reduces the energy

consumption by 8% to 45%, the latency by 8% to 27%, with a small loss in the accuracy.

96

CHAPTER 7

Efficient Inference with Sample

Awareness

7.1 Introduction

Modern computer-vision-based applications require solving multiple tasks simultane-

ously in order to form a complete perception of the surrounding visual environment. For

example, a simple augmented reality application might need to determine the surface

normals, estimate the depths, detect an object of interest, and track it. Similarly, an

autonomous vehicle should be able to detect both static and dynamic objects in the scene,

determine their proximity and track them [73, 116]. Moreover, all that complex processing

needs to be performed on every input frame in real-time, which is extremely challenging,

especially since those applications usually run on resource-constrained devices with strict

compute, memory, and energy budgets. That is why enabling efficient computation models

where these tasks can be performed simultaneously is crucial to make those applications

practical.

In recent years, Multi-task learning (MTL) has been used to learn related vision

tasks simultaneously [138, 98, 173]. On the one hand, MTL models leverage shared

97

representations and inter-task interactions to improve performance on each task, potentially

outperforming single-task models. On the other hand, compared to single-task models,

MTL models can reduce both the memory footprint, the energy consumption, and the

latency during inference since they avoid recomputing the features in the shared layers.

Different approaches have been proposed to determine which layers should be shared

across tasks and which layers should be task-specific in MTL models [114, 163, 140].

One common MTL approach is to have a shared encoder that extracts the critical

features from the input scene, followed by some task-specific decoders that predict the

output of the corresponding task [153, 152, 163]. Generally, the shared encoder in MTL

models needs to have a large representational capacity in order to generalize well to various

tasks and input data from different complexities. Vision Transformers have proven to be

a powerful tool for extracting strong feature representations from the inputs, improving

the performance of the downstream tasks [101, 45, 150]. Hence, few recent works have

explored using them as a shared encoder for feature extraction in MTL models [13, 166].

Although these approaches achieve impressive performance outcomes, their computational

complexity and memory footprint are usually huge, making them impractical for real-time

processing. That’s why, in this work, we focus our efforts on improving the computational

complexity of transformer-based Multi-task Learning models.

Real-world visual scenes have large variations in complexity. For example, a scene

with a single object and an open background would be easier to process than one with

an occluded object and a cluttered background. We argue that treating all input frames

equally regarding processing complexity can be wasteful. Therefore, we propose using an

adaptive inference policy to reduce the computational complexity of MTL models based

on the input complexity. Dynamic Input-dependent inference policies have only been

explored for single-task image classification problems [172, 112]. However, MTL models

are more complex due to inter-task dependencies and complex architectures.

To this end, we propose an adaptive MTL framework that recognizes the unnecessary

98

computations in the model depending on the input complexity. We achieve this by learning

an adaptive task-aware policy network that ultimately decides on which parts of the MTL

model to activate during runtime. Our contributions can be summarized as follows:

• We propose an adaptive Multi-task Learning framework that optimizes Transformer-

based MTL models depending on the input complexity.

• We introduce a task-aware policy network, and we show that it is more effective in

recognizing the unnecessary computations in MTL models compared to task-agnostic

policy networks.

• To prove that our policy network can be easily plugged to improve MTL models’

efficiency, we combine AdaMTL with a SOTA MTL model [152] and show that

AdaMTL boosts the accuracy by 7.8% while improving the efficiency by 3.1×.

• We deploy AdaMTL on the Vuzix M4000 AR glasses [158], reducing the inference la-

tency and the energy consumption by up to 21.8% and 37.5%, respectively, compared

to the static MTL model.

The rest of the chapter is organized as follows. We review the related work in Section 7.2.

Then, we introduce our adaptive input-dependent MTL framework in Section 7.3. Next,

we show the qualitative and quantitative analysis of our methodology as well as the

ablation study in Section 7.4. Finally, we conclude in Section 7.5.

7.2 Related Work

Deep Multi-task Architectures For dense prediction tasks, deep multi-task archi-

tectures usually consist of an encoder that extracts a feature representation from the

input frame, followed by task-specific decoders that generate predictions for each of the

downstream tasks [163, 114, 152]. Researchers categorize multi-task architectures based

on the location of task interactions into encoder- and decoder-focused architectures [153].

99

Encoder-focused architectures share the information between tasks in the encoder stage

[114, 99], while the decoder-focused architectures exchange information between tasks in

the decoding stage [152, 163]. Moreover, some approaches share the information across

tasks in both encoder and decoder stages [140, 13]. In this chapter, our baseline MTL

model follows an encoder-focused architecture where a shared encoder is used to extract

visual features from the input frame, followed by task-specific decoders. Moreover, our

MTL framework can easily adopt other decoder-based task-interaction techniques, as we

will show in Subsection 7.4.3.

Vision Transformer Models Transformers [155] have achieved impressive perfor-

mance improvements in various domains such as language understanding [33], speech

recognition [47], and computer vision [34, 150]. The self-attention modules in transformers

have proved to be capable of extracting strong feature representations from the inputs,

improving the performance of the downstream tasks. To preserve local visual context,

Vision Transformers (ViTs) split the input image into patches which are embedded as

tokens [34]. Those tokens pass through successive ViT blocks. Each ViT block has a

multi-head attention module followed by a multi-layer perceptron module to extract the

global relationship among input tokens. Improvements have been made to ViTs enabling

data-efficient training [150] as well as efficient inference [45]. Inspired by ResNets [58],

Swin Transformers [101] use a hierarchical ViT block architecture as well as shifted window

attention to serve as a general-purpose backbone for computer vision tasks. That is why,

ViTs started replacing CNNs as a backbone for different computer vision tasks such as

image classification [150, 45], object detection [18], and segmentation [139]. Moreover,

several works proposed using them for multi-task learning [13, 166].

Sparsely-Activated Vision Models As computer vision models become increasingly

complex, researchers have started sparsifying the models to prevent redundant computa-

tions. For example, DSelect-k [56] and M3ViT [92] proposed Mixture-of-Experts (MoE)

architectures that use trainable sparse gates to activate a subset of experts depending

100

on the given input. Other methods employ early-exiting strategies to adaptively allocate

computations depending on input complexity [179, 69]. In early exiting, an exit layer is

added at every intermediate exit, and a confidence metric is used to take the decision.

However, such strategies could be impractical for MTL models due to the huge computa-

tional overhead of adding MTL exit layers (i.e., a set of task-specific decoders) at each

intermediate exit as well as the difficulty of confidence estimation in the encoder stage.

Other dynamic models skip redundant layers [160], while others use a bottleneck layer to

direct the computations in an input-dependent manner [121]. More recent approaches use

lightweight policy networks to generate execution strategies based on the input complexity

[172, 112]. Despite the effectiveness of these approaches for image classification problems,

adaptive policies have not yet been explored for MTL scenarios. Sparsifying MTL models

is more challenging; the multi-objective nature of those models complicates the overall

objective of optimizing the performance of the different tasks in addition to the policy

networks. Therefore, there is a need to explore and develop techniques that can adaptively

sparsify MTL models based on input complexity while being aware of the multi-objective

nature of those models.

7.3 Method

In this section, we propose AdaMTL – an adaptive end-to-end Multi-task Learning

framework. We start by presenting our transformer-based MTL architecture in Subsection

7.3.1. In Subsection 7.3.2, we introduce our task-aware policy network that dynamically

recognizes the unnecessary computations in the MTL model depending on the input

complexity. Finally, we explain our proposed multi-staged task-aware training recipe in

Subsection 7.3.3.

101

N
orm

als
D

ecoder
S
em

S
eg

D
ecoder

S
aliency

D
ecoder

AdaMTL Tokens Policy Network
Normals Sub-Network
SemSeg Sub-Network

Sal Sub-Network

AdaMTL Block
Policy Network

Executed

Skipped

Example Tokens Policy
Network Output

Task-S
pecific M

ulti-S
cale Fusing

Shared Hierarchical Encoder

2

0

3

Figure 7.1: Overview of our proposed AdaMTL framework integrating our AdaMTL Block
Policy Network and our AdaMTL Tokens Policy Network. The AdaMTL Block policy
network decides on which blocks to activate during runtime. If the decision is to activate a
certain block, our AdaMTL Tokens policy network runs to decide which tokens to process
through that block. Our policy network achieves a task-aware behavior that improves the
quality of the generated policies for multi-task learning models.

7.3.1 Architecture Overview

Figure 7.1 illustrates an overview of our proposed adaptive end-to-end Multi-task

Learning framework - AdaMTL. AdaMTL consists of two main components: a static

MTL model and a lightweight policy network. Our MTL model has three parts: a Shared

Hierarchical Encoder, a learnable task-specific multi-scale fusing layer, and a pool of

task-specific decoders. We adopt an off-the-shelf hierarchical Vision Transformer Swin

[101] as our shared encoder to extract visual features from the input frames. Vision

Transformers (ViTs) usually split the input image into patches which are embedded as

tokens. Those tokens pass through successive ViT blocks. Each ViT block has a multi-

head attention module followed by a multi-layer perceptron module to extract the global

relationship among input tokens. Our learnable multi-scale fusing layers use a residual

blocks-based architecture [58]. They are added to combine the features at different scales

(i.e., receptive fields) in an informative way for every downstream task. Finally, we use

simple task-specific decoders consisting of two convolutional layers. Each decoder takes

102

the output from the corresponding multi-scale fusing layer to generate the corresponding

task predictions.

On top of our static MTL model, AdaMTL adds a lightweight policy network that runs

alongside the original model to decide which parts of the model to activate, adapting to

the complexity of the input frame. Our policy network works as a multi-grained decision

maker; it consists of an AdaMTL Block policy network and an AdaMTL Tokens policy

network. The AdaMTL Block policy network decides on which blocks to activate during

runtime. If the decision is to activate a certain block, our AdaMTL Tokens policy network

runs to decide which tokens to process through that block. Our intuition behind AdaMTL

is that not all patches in the input frame are equally informative; for example, a patch of

an input frame from the background is less informative than a patch with a person for

a task such as human-parts detection. Moreover, the receptive field at which different

patches should be processed differs depending on the scale of the objects in the input

frame. For example, an image with multiple smaller objects might benefit from being

processed by the first few layers of the models where the receptive field is small. However,

the later layers with larger receptive fields are essential for an accurate output on a

zoomed-in frame with one object. In other words, our AdaMTL Policy Network decides

which patches are needed to accurately perform the downstream tasks and the receptive

field at which those patches should be processed.

7.3.2 AdaMTL Policy Network

Our policy network works as a multi-grained decision maker; the Block Policy Network

decides on which blocks to activate, while the Tokens Policy Network decides on which

tokens (i.e., patches) to process through the activated blocks. Our Block Policy Network

generates a learnable binary mask for each block in the shared encoder. We use this

binary mask to recognize the necessary blocks needed by the MTL model in order to

perform well on the downstream tasks. Similarly, for each block, we attach a Tokens

103

Policy Network that generates a learnable policy to determine the tokens that need to

be processed through the activated block. Intuitively, the policy network should learn to

recognize the most informative patches in every input frame as well as the receptive field at

which it needs to be processed. Each policy network has two simple fully-connected layers,

followed by a Gumbel Softmax activation to generate binary masks [75]. We devise two

different settings for the policy network: a task-agnostic policy network and a task-aware

policy network.

Task-agnostic Policy: In the task-agnostic setting, the policy network is unaware of the

number of downstream tasks. We achieve this by co-training the whole policy network

alongside the MTL model. We mainly experiment with this setting to show the necessity

of task awareness while creating an effective policy network for multi-task scenarios.

Task-aware Policy: In the task-aware setting, we want our policy network to capture

task-specific computational needs. We achieve this by dividing the policy network into sub-

networks, where each sub-network is responsible for recognizing the necessary blocks/tokens

for the corresponding task. As shown in Figure 7.1, the AdaMTL Tokens Policy Network

consists of a sub-network for each task (i.e., Normals Controller, Semantic Segmentation

Controller, Saliency Controller, etc.). Each sub-network makes a decision that is plausible

to its respective task. Finally, to get a unified policy, we make a decision to activate a

token if at least one of the tasks needs to process it. The intuitive way to combine the

masks would be to apply the logical ORing operation on all the generated task-specific

masks. However, to make it more learnable, we combine the masks using addition and

clamping. As shown in the example output from the Tokens Policy Network in Figure 7.1,

the policy network only activates a token if at least one task-specific policy sub-network

decides to activate it.

104

7.3.3 AdaMTL Training Recipe

For our adaptive MTL framework to work effectively, we need to learn the MTL model

weights as well as the execution policy (i.e., policy network’s binary masks) that achieves

the target efficiency without compromising the accuracy of the various tasks in our MTL

model. Our end-to-end training recipe consists of 3 stages:

Stage 1: Static MTL Model Training

First, we train a static MTL model. We adopt a shared encoder along with task-specific

decoders to perform multi-task learning as explained in Subsection 7.3.1. For our shared

encoder, we use the publicly-available pre-trained Swin Transformer backbones [101].

Then, we attach the multi-scale fusing layer as well as task-specific decoders, and we

fine-tune the end-to-end MTL model to get our static baseline. In this stage, our loss

function is the weighted sum of the losses of the various downstream tasks as follows.

Lstage1 =
m∑
i

ωtask i × Ltask i (7.1)

where ωtask i and Ltask i are the weight and the loss of the various tasks in the MTL model,

respectively, and m is the number of downstream tasks in the MTL model. We adopt the

task weights used by Vandenhende et. al. [152].

Stage-2: Policy Network Initialization

We aim to co-train both the policy network as well as the MTL model. Randomly

initializing the policy network while co-training can lead to degrading the model accuracy

since the policy network would make random decisions in the earlier epochs. That’s why

we choose initialization weights for the policy network that activates all the blocks and

the tokens. To achieve this, we freeze the static MTL model and pre-train our AdaMTL

policy network with the following loss function:

105

Lstage2 =
blocks∑

k

(1−Mb/k) +
blocks∑

k

(1−Mt/k) (7.2)

Where Mb/k and Mt/k are the output masks generated by the Block Policy Network

and the Tokens Policy Network attached to the Encoder block k, respectively. This results

in an adaptive model that behaves exactly like the static model, where all blocks and

tokens are activated. This acts as a good initialization point to start co-training the policy

network and the MTL model.

Stage 3: Policy Network/MTL Model Co-training

In this stage, we co-train the policy network along with the MTL model. Our goal is

to learn the binary masks that our policy network should generate in order to meet the

target computational budget (i.e., the target percentage of the MTL model components

to be activated) while maintaining the accuracy of the downstream tasks. Thus, we use a

multi-objective loss as shown in Equation 7.3. Our loss function incorporates the various

task losses Ltasks as well as the efficiency loss Leff multiplied by a factor α. α represents

the efficiency weight which controls the trade-off between accuracy and efficiency. In

our experiments, we set α to unity; however, different values can be used to control the

trade-off depending on the application requirements.

Lstage3 = Ltasks + αLeff (7.3)

The efficiency loss incorporates the efficiency of the decisions made by the blocks

as well as the tokens controller, as shown in Equation 7.4. In order to minimize the

number of activated blocks, we set Lblocks as mean squared error (MSE) between the

actual percentage of the activated blocks and the target percentage of activated blocks as

shown in Equation 7.5. Similarly, we set Ltokens as the MSE between the actual percentage

of the activated tokens and the target percentage of activated tokens. However, it is

106

Algorithm 3 AdaMTL - Alternating Task Training (ATT)

Input : model: Model w/ initialized policy network Tasks: Task names in MTL model
m: Number of tasks in MTL model
epochsatt: Number of epochs for ATT
Li: Loss for the epoch i

for i in 0, . . . , epochsatt do
current task = Tasks[i%m] Li = Lcurrent task + αLeff for task in Tasks do

if task = current task then
model.unfreeze decoder(task) model.enable policy network(task)

end
else

model.freeze decoder(task) model.disable policy network(task)
end

end
train one epoch(model, Li)

end

common for hierarchical ViTs to have more tokens in the earlier layers compared to the

later layers (i.e., the earlier layers have smaller receptive fields, thus more patches, while

later layers have larger receptive fields, thus fewer patches). This means that the number

of tokens does not linearly reflect the computational complexity since layers with more

tokens have smaller embedding dimensions per token, while layers with fewer tokens have

larger embedding dimensions. That’s why we multiply the percentage of tokens in each

layer by a weight ωd equivalent to the embedding dimension in this layer as shown in

Equation 7.6.

Leff = Lblocks + Ltokens (7.4)

Lblocks = MSE(
Bactiv

Btotal

,
Btarget

Btotal

) (7.5)

Ltokens = MSE(
ωd × Tactiv

Ttotal

,
ωd × Ttarget

Ttotal

) (7.6)

To make our policy network task-aware, we co-train each task-specific policy sub-

network independently with the end-to-end model. Sequentially co-training the policy

107

sub-networks along with the end-to-end model suffers from catastrophic forgetting (i.e.,

the model gets biased towards behaving well on the last task, and the performance

deteriorates on the earlier tasks). That’s why we propose an Alternating Task Training

(ATT) where we shift the focus between the tasks every one epoch. Algorithm 3 shows

the steps of our ATT technique. For each epoch, we choose a task to focus on, and we

set the loss accordingly, as shown in lines 2 and 3, respectively. Then, we only activate

the decoder and the policy sub-network corresponding to the chosen task, as shown in

lines 4-13. We train the MTL model for one epoch using that setting. Then, we move on

to co-training the decoders and the policy sub-networks of the other tasks. Finally, we

perform end-to-end fine-tuning to improve the overall model accuracy. The training loss

remains the same as in Equation 7.3, and we unfreeze all the model’s components. This

results in an adaptive MTL model that generates task-aware inference policies depending

on the complexity of the input.

7.4 Experiments

7.4.1 Setup

Dataset: We evaluate our method on the PASCAL dataset [35]. Following other work in

MTL literature [166, 152, 163], we use the PASCAL-Context split that has annotations

for various dense prediction tasks such as semantic segmentation, human part detection,

surface normals estimation, and saliency distillation. It has 4,998 images in the training

split and 5,105 in the validation split.

Implementation and Training details: We implemented AdaMTL using PyTorch.

As mentioned in Subsection 7.3.1, we adopt the publicly available pre-trained Swin

Transformer backbone [101] as our shared encoder. To get our adaptive MTL model, we

employ a three-stage training recipe as explained in Subsection 7.3.3. In Stage 1, we

fine-tune the Swin Transformer backbone along with our task-specific decoders for 1000

108

Table 7.1: Quantitative analysis of AdaMTL on PASCAL dataset. The table shows
the accuracy by our adaptive MTL model compared to the single-task model as well as
static MTL models. H and L represent high and low computational complexity targets
for AdaMTL, respectively. ∆ m (ST) shows the change in the average accuracy of the
tasks compared to the single-task model, respectively. ↓ means the lower the better,
while ↑ means the higher the better. Bolded values represent the Pareto-frontier of the
accuracy-efficiency trade-off.

Policy Backbone
Image Sal Human Parts Sem Seg Normals ∆ m (ST)
Size maxF ↑ mIoU ↑ mIoU ↑ mERR ↓ (%) ↑

Single-Task Swin-T 224 71.93 48.63 60.35 18.45 0.00

Static MTL
Swin-T

224 74.15 47.62 59.08 19.20 -1.20
AdaMTL (H) 224 73.72 47.64 57.13 19.16 -2.18
AdaMTL (L) 224 73.01 46.85 55.9 19.54 -3.86

Static MTL
Swin-S

224 75.00 50.66 61.84
AdaMTL (H) 224 75.23 51.22 61.88 18.79 +2.65
AdaMTL (L) 224 74.75 50.07 59.91 18.61 +1.31

Static MTL
Swin-B

384 73.93 56.68 67.47 17.69 +8.81
AdaMTL (H) 384 76.55 56.28 65.04 17.74 +8.43
AdaMTL (L) 384 76.23 55.04 62.63 17.92 +6.46

epochs. Then in stage 2, we freeze the MTL model and initialize the policy network by

training it to activate the whole MTL model. We run this stage for another 80 epochs.

Finally, in stage 3, we use our proposed Alternating Task Training technique to co-train the

policy network along with the MTL model for another 150 epochs, followed by fine-tuning

the end-to-end AdaMTL model for another 150 epochs. Our method does not only increase

the model efficiency during inference, but it also reduces the carbon emission since we

avoid retraining complex ViTs from scratch by reusing off-the-shelf pre-trained backbones;

AdaMTL needs only 1 V100 GPU for around 24-48 hours (i.e., depending on the used

backbone) in order to run our end-to-end training recipe.

7.4.2 Quantitative Analysis

Accuracy-Efficiency Trade-off: We apply AdaMTL on three SOTA ViTs from the

Swin Transformer family [101]. We include Swin-Tiny, Swin-Small, and Swin-Base,

representing three different scales of ViTs in terms of computational complexity. We

include two different computational complexity targets: H and L. H represents a higher

109

Table 7.2: Quantitative analysis of AdaMTL on PASCAL dataset. The table shows the
efficiency metrics by our adaptive MTL model compared to the single-task model as
well as static MTL models. H and L represent high and low computational complexity
targets for AdaMTL, respectively. ∆ FLOPS (ST) show the change in percentage of
FLOPS compared to the single-task model, respectively. ↓ means the lower the better,
while ↑ means the higher the better. Bolded values represent the Pareto-frontier of the
accuracy-efficiency trade-off.

Policy Backbone
Image GFLOPS ∆ FLOPS (ST) Params
Size ↓ (%) ↓ (M) ↓

Single-Task Swin-T 224 18.33 1 × 111.42

Static MTL
Swin-T

224 5.79 0.32 × 34.77
AdaMTL (H) 224 5.34 0.29 × 34.87
AdaMTL (L) 224 4.82 0.26 × 34.87

Static MTL
Swin-S

224 12.5 0.68 × 67.02
AdaMTL (H) 224 12.51 0.66 × 67.12
AdaMTL (L) 224 10.35 0.57 × 67.12

Static MTL
Swin-B

384 59.39 3.24× 108.66
AdaMTL (H) 384 51.29 2.80× 108.88
AdaMTL (L) 384 41.229 2.25× 108.88

computational budget where the target percentage of activated tokens and blocks are

60% and 90%, respectively. L represents a lower computational budget where both the

target percentage of activated tokens and blocks are set to 50%. In both settings, the

accuracy-efficiency trade-off weight (i.e., α in Equation 7.3) is set to unity. To evaluate the

accuracy-efficiency trade-off by AdaMTL, we compare it to two baselines: (1) Single-Task

models and (2) Static MTL models (i.e., our base MTL model before attaching our task-

aware policy network). Table 7.1 shows the accuracy, the computational complexity (i.e.,

FLOPS) as well as the model size (i.e., Params) of AdaMTL compared to the single-task

model and the static MTL models. ∆ m (ST) and ∆ FLOPS (ST) show the change in the

average accuracy of the tasks and percentage of FLOPS compared to the single-task model,

respectively. Results show how our method enhances the accuracy-efficiency trade-off for

MTL models. For example, by applying AdaMTL to Swin-S backbone, we can get an

MTL model with 43% less FLOPS and 1.31% more accuracy compared to the single-task

model. Similarly, by applying AdaMTL to Swin-T backbone, we can get an MTL model

with 71% less FLOPS and only 2.18% drop in accuracy compared to the single-task

110

0 25 50 75 100 125 150 175
5

0

5

10

15

20

25
-3.1X

+7.8%

400 425
FLOPS (G)

 m
 -

ST
 (%

)

AdaMTL (Swin-T)
AdaMTL (Swin-S)
AdaMTL (Swin-B)
AdaMTL (Swin-B 384)

AdaMTL + MTI-Net
Single Task (Swin-T)
PAD-Net [33]

MTI-Net [29]
ASTMT [18]
InvPT (ViT-B) [34]

Figure 7.2: Accuracy-Efficiency trade-off by AdaMTL compared to SOTA MTL techniques.
The x-axis shows the FLOPS, while the y-axis represents the average accuracy of the
tasks compared to the single-task model.

Table 7.3: Comparison with SOTA MTL models.

Method Backbone
∆ m (ST) ∆ FLOPS (ST)

↑ (%) ↓ (%)

PAD-Net [163] HRNet-18 +4.98 23.21×
AdaMTL (Ours) Swin-B +6.46 2.25 ×
ASTMT [109] R26-DLv3 +8.38 5.66 ×

AdaMTL (Ours) Swin-B +8.81 3.24 ×
MTI-Net [152] ResNet-50 +13.49 9.6 ×
InvPT [166] ViT-B +27.20 21.35 ×

model. Therefore, given any target computational complexity, AdaMTL can meet it while

potentially improving the accuracy.

Comparison to SOTA MTL models: We also compare the accuracy-efficiency trade-

off of AdaMTL to four SOTA MTL models that vary in computational complexity and

accuracy. Figure 7.2 shows the accuracy and the computational complexity of AdaMTL

compared to those of PAD-Net [163], ASTMT [109], MTI-Net [152], and InvPT [166].

We can notice that AdaMTL dominates both PAD-Net and ASTMT. Moreover, AdaMTL

achieves a more efficient trade-off compared to MTI-Net and InvPT. As shown in Table

111

Table 7.4: Combining AdaMTL with SOTA MTL components.

Method Backbone
∆ m ∆ FLOPS Params
% ↓ (M)

Single-Task Swin-T +0.00 18.33 G 111.42
AdaMTL Swin-B +8.81 1.1× 108.66

MTI-Net [152] ResNet-50 +13.49 9.6× 91.00
AdaMTL + MTI-Net Swin-B +20.29 3.1× 101.14

7.3, AdaMTL has 3× less FLOPS than MTI-Net and 7× less FLOPS than InvPT. It

is important to note that our effort in AdaMTL is directed specifically toward enabling

efficient Multi-Task learning. That is why we argue that while the performance of MTI-Net

and InvPT is impressive, their demanding computational complexity might not be suitable

for real-time processing on resource-constrained devices.

7.4.3 Combining with SOTA MTL components

Our adaptive MTL framework can easily adopt other SOTA MTL components to

further enhance the accuracy-efficiency trade-off. In this section, we show a case study

where we integrate AdaMTL with the SOTA MTL concepts in MTI-Net [152] in order

to improve both its efficiency and accuracy. MTI-Net has two main modules: (1) A

multi-scale multi-modal distillation unit to model task interactions at different scales and

(2) A feature propagation module that propagates distilled task information from lower

to higher scales. In this experiment, we attach those two modules between the shared

hierarchical encoder and the task-specific decoders in our AdaMTL framework. Following

the exact same training recipe introduced in Subsection 7.3.3, the results in Table 7.4

show that AdaMTL can be integrated with other MTL modules from MTI-Net to boost

MTI-Net ’s accuracy by 7.8% while improving its efficiency by 3.1×.

7.4.4 Qualitative Analysis

Figure 7.3 shows some insights about the allocated amount of computations by AdaMTL

for input frames of different visual complexity. Figures 7.3a, 7.3b, 7.3c, and 7.3d shows

112

examples where AdaMTL allocated 55%, 65%, 75%, and 85% of the static model FLOPS

respectively. We can see that AdaMTL allocates fewer computations to simple frames

with fewer objects as compared to complex scenes with multiple objects and cluttered

backgrounds. Figure 7.3e shows a histogram of AdaMTL’s computational complexity per

example for all the images in PASCAL validation set. The red line represents the average

number of FLOPS needed to process all the images. We can notice that AdaMTL adapts

to the large variation in the computational complexity requirement by various images in

the dataset.

To gain more insights into the decisions made by our policy network, we visualize a

sample of the generated tokens masks in Figure 7.4. Column 7.4a represents the input

frames, while columns 7.4b, 7.4c, and 7.4d represent the generated tokens masks by our

policy network at different layers, such that the white areas represent activated tokens.

We can notice that the policy network tends to activate more tokens in the earlier layers

to understand the global features of the input frame. Then, it narrows down its scope in

the later layers, focusing on the most informative patches (i.e., patches with the main

objects) in the input frame. We can also notice that more tokens are activated in the

sample in the bottom row which is expected since it is more complex (i.e., multiple objects

and cluttered background).

(a) 55%
FLOPS

(b) 65%
FLOPS

(c) 75%
FLOPS

(d) 85%
FLOPS

3.00 3.25 3.50 3.75 4.00 4.25 4.50
GFLOPS

0

250

500

750

1000

1250

Sa
m

pl
e

Im
ag

es

(e) GFLOPs Histogram of AdaMTL
on PASCAL dataset

Figure 7.3: Qualitative insights on the computational budget allocated by AdaMTL
to process input frames of different complexity. We can notice that AdaMTL assigns
fewer computations for simpler scenes, as in (a) and (b), while it justly assigns more
computations to process more complex and cluttered scenes as in (c) and (d).

113

(a) Input Frame (b) Layer 1 (c) Layers 12-15 (d) Layer 18

Figure 7.4: Sample of the generated masks by AdaMTL tokens policy network. The white
areas in (b)-(d) represent activated tokens.

Table 7.5: Performance Analysis on Vuzix Augmented Reality Glasses [158]. We analyze
the percentage of the inference latency and the energy consumption by our AdaMTL
model compared to its corresponding static model.

Method Backbone
Inference Energy

Latency (%) Consumption (%)

AdaMTL Swin-T -20.6% -35.3%
AdaMTL Swin-S -21.8% -37.5%

7.4.5 Deployment on Vuzix M4000 AR glasses

We compile our AdaMTL model using PyTorch for Android [129], and we deploy it on

the Vuzix M4000 AR glasses [158]. The Vuzix glasses have an 8 Core 2.52Ghz Qualcomm

XR1 board with 6GB RAM. It operates using Android 11.0. Using the Battery Historian

tool [63] to profile the energy consumption on the device, we record the average latency

and energy consumption across random samples from the PASCAL validation dataset.

Table 7.5 shows that AdaMTL reduces the inference latency and the energy consumption

by up to 21.8% and 37.5%, respectively, compared to its corresponding static MTL model.

114

Table 7.6: Comparison between the quality of our task-aware policy, the task-agnostic,
and the random execution policy.

Policy Backbone ∆ m (ST) ∆ FLOPS (ST)
(%) ↑ ↓

Random

Swin-T

-34.53 0.24×
Random+ -8.64 0.24×

Task-Agnostic -5.68 0.24×
Task-Aware -3.86 0.26×
Random

Swin-B

-34.86 0.82×
Random+ -8.57 0.82×

Task-Agnostic +0.77 0.84×
Task-Aware +1.12 0.83×

Table 7.7: The contribution of different adaptive dimensions to AdaMTL. ∆ m is measured
relative to the static MTL model.

Adaptive Adaptive ∆ m FLOPS
Blocks Tokens % (G)

× × -0.00 5.8
✓ × -1.66 5.23
× ✓ -1.46 5.08
✓ ✓ -0.85 5.37

7.4.6 Ablation Study

Quality of the learnt inference policies: To analyze the quality of the learned inference

policies by our task-aware policy network. Table 7.6 compares the accuracy-efficiency

trade-off achieved by our task-aware policy network (i.e., referred to as Task-Aware) to

three other baselines: (1) Random where we activate random blocks and tokens from

the static MTL model, (2) Random+ where we again activate random blocks and tokens

from the static MTL model but after performing our adaptive training pipeline, and (3)

Task-Agnostic policy network explained in Subsection 7.3.2. The results in Table 7.6

show that the policies learned by our task-aware policy network outperform the other

baselines. We can also notice that performing adaptive training gives the MTL model

robustness towards sparsification (i.e., Using a random policy on the static model reduced

the accuracy by 34%, while it only reduced the accuracy by 8% when applied to the

adaptively trained MTL model).

115

(a) Without weighted tokens (b) With weighted tokens

Figure 7.5: Loss function ablation: The figure illustrates the average percentage of
activated tokens over the 12 blocks in Swin-T using (a) non-weighted tokens loss and (b)
weighted tokens loss.

Analysis of the adaptation along each component of our policy network To

understand the contribution of both components of our policy network (i.e., blocks policy

network and tokens policy network) to the accuracy-efficiency trade-off of AdaMTL,

we compare the results from four different settings: (1) the static model where neither

component of the policy network is activated, (2) AdaMTL while activating the block

policy network only, (3) AdaMTL while activating the tokens policy network only, and (4)

AdaMTL where both policy networks are activated. Table 7.7 shows that enabling both

components enhances the accuracy-efficiency trade-off of AdaMTL.

Analysis of the behavior of our loss function To analyze the importance of the

weight factor ωd in Equation 7.6 of our loss function, we visualize the average percentage

of activated tokens across the blocks of Swin-T encoder with and without ωd in Figure 7.5.

We can notice that adding the ωd factor to the loss function leads to a more distributed

FLOPS reduction across different blocks, which is essential for the effectiveness of our

adaptive MTL framework.

116

7.5 Conclusion

In this chapter, we propose AdaMTL - an adaptive framework that learns task-aware

inference policies for the MTL models in an input-dependent manner. We achieve this

by co-training a lightweight policy network along with our MTL model. During runtime,

our policy network recognizes the unnecessary computations and dynamically chooses

an execution strategy depending on the input complexity and the target computational

budget. Our experiments on PASCAL dataset demonstrate that AdaMTL reduces the

computational complexity by 43% while improving the accuracy by 1.32% compared to

the single task models. Combined with SOTA MTL components, AdaMTL boosts the

accuracy by 7.8% while improving the SOTA MTL model efficiency by 3.1×. Finally, we

deployed AdaMTL on Vuzix M4000 AR glasses showing up to 21.8% and 37.5% reduction

in inference latency and energy consumption, respectively, compared to the static MTL

model.

117

CHAPTER 8

Summary and Possible Extensions

8.1 Summary of the Dissertation

In Chapter 3, we focused on exploring compression techniques such as quantization,

particularly low-precision quantization, known for enhancing neural network efficiency. Our

analysis identified that non-quantized elementwise operations, prevalent in certain layers

like parameterized activation functions, batch normalization, and quantization scaling,

significantly contribute to the inference cost in low-precision models, an aspect often

missed by current state-of-the-art (SOTA) efficiency metrics like Arithmetic Computation

Effort (ACE). To address this discrepancy, the chapter introduced an improved metric,

ACEv2, designed to more accurately reflect the inference costs and energy consumption

of quantized models on machine learning hardware. Additionally, the chapter presented

PikeLPN, a model innovating in efficiency by applying quantization to both elementwise

and multiply-accumulate operations. PikeLPN was shown to achieve Pareto-optimality

in the efficiency-accuracy trade-off, marking up to a 3.5× improvement in efficiency over

existing SOTA low-precision models.

In Chapter 4, we delved into the practicality of training deep learning models on

edge devices, highlighting the opportunity for neural networks to adaptively learn from

118

new data post-deployment, despite the memory constraints typical of such devices. Our

investigation pinpointed the memory footprint, particularly from activations, as the

principal challenge for on-edge training. Traditional incremental training strategies, which

typically fine-tune only the latter layers, compromise on the potential accuracy benefits

of full-model retraining. To address this, we introduced BitTrain, a methodology that

leverages activation sparsity through a novel bitmap compression technique, significantly

reducing memory requirements during training. This approach involved saving activations

in a compressed format during the forward pass and reconstructing them for use in the

backward pass, ensuring seamless integration with existing deep learning frameworks

without compromising training accuracy. Our experimental findings demonstrated that

BitTrain can achieve up to a 34% reduction in memory usage with 50% sparsity, and

further pruning can lead to over 70% sparsity, resulting in up to a 56% decrease in memory

footprint. This innovation represented a significant step towards enhancing machine

learning capabilities on edge devices.

In Chapter 5, we investigated how extracting context from historical data patterns

can significantly improve a machine learning (ML) framework, particularly focusing on

optimizing compute resource allocation during runtime. This concept was applied to a

human activity recognition framework for wearable technology, addressing the crucial

balance between minimizing power consumption and maintaining accuracy due to the

stringent power and memory constraints of wearable devices. We introduced AdaSense, a

co-optimized framework for sensing, feature extraction, and classification tailored to Human

Activity Recognition. AdaSense achieved energy efficiency by dynamically adapting sensor

configurations based on user activity patterns over time, ensuring the selection of options

that best balance accuracy and energy consumption. Utilizing low-overhead methodologies

for processing and classification, the approach resulted in a significant 69% reduction in

sensor power consumption with a minimal impact on activity recognition accuracy of less

than 1.5%.

119

In Chapter 6, we delved into the enhancement of model efficiency through the integration

of spatial context awareness into the architectural design of models. The approach

employed a hierarchical decision-making process that starts with a preliminary, efficient

evaluation of the input’s spatial characteristics to find the optimal specialized processing

pathway. This utilization of spatial context aimed to dynamically improve the model’s

efficiency. To assess the effectiveness of this approach, we applied it within an object

detection framework, widely used in surveillance and augmented reality applications, where

the computational and energy demands often pose challenges for deployment on resource-

constrained edge devices. Object detection models process images to identify and locate

various object classes present within. In this chapter, we introduced AdaCon, a method

that enhances the efficiency of object detection models by exploiting the likelihood of

different object categories occurring together within the same spatial context. Specifically,

AdaCon categorizes objects based on the probability of their spatial co-occurrence and

designs an adaptive network around these clusters. A branch controller dynamically selects

network segments to activate during runtime based on the spatial context of the incoming

frame. Our evaluation on the COCO dataset demonstrated that this adaptive object

detection approach significantly reduces energy consumption by up to 45% and latency

by up to 27%, with a marginal decrease in average precision (AP) for object detection.

In Chapter 7, we delved into the development of a complexity-aware machine learning

(ML) model, specifically designed to autonomously learn and adapt its inference process

based on complexity of the input, eliminating the need for manually defining the adap-

tivity criteria. Our exploration was applied to a vision transformer model capable of

executing multiple tasks concurrently, which is particularly beneficial for applications

such as augmented reality that require extensive information extraction from input. We

highlighted the challenges associated with multi-task learning (MTL) models, notably the

requirement for a shared encoder with substantial representational capacity to generalize

across tasks and inputs, which adversely impacts inference latency. To address these chal-

120

lenges, we proposed AdaMTL, an adaptive framework designed to optimize task-specific

inference within MTL models based on the input. AdaMTL incorporated a lightweight

policy network, co-trained with the MTL model, to identify and eliminate unnecessary

computations for each task based on the current input frame. This input-dependent, task-

aware policy enabled selective activation of model components, significantly enhancing

computational efficiency. Our experimental results on the PASCAL dataset showed that

AdaMTL not only reduced computational complexity by 43% but also increased accuracy

by 1.32% over single-task models. Furthermore, when integrated with state-of-the-art

MTL strategies, AdaMTL achieved a 7.8% accuracy improvement and a 3.1× efficiency

gain. Deployment on Vuzix M4000 smart glasses demonstrated up to a 21.8% reduction

in inference latency and a 37.5% decrease in energy consumption, showcasing AdaMTL’s

potential to significantly improve both the performance and efficiency of MTL models in

practical applications.

8.2 Possible Research Extensions

Expanding on the foundations laid by this dissertation, numerous promising avenues

for future research emerge. These include enhancements at both the architectural level of

machine learning (ML) models and the level of ML accelerators. Such research directions

aim to fully leverage the benefits of these optimizations at the architectural level of model

design.

8.2.1 Heterogeneous Quantization for Multi-task Models

Future research focusing on heterogeneous quantization for multi-task learning (MTL)

models presents an intriguing avenue for optimizing performance across diverse tasks

while maintaining computational efficiency. Heterogeneous quantization, by applying

variable quantization levels to different parts of the MTL model based on the task-specific

requirements and sensitivity, could significantly enhance the balance between accuracy

121

and computational resource usage. This approach acknowledges that not all tasks within

an MTL framework demand the same level of precision, allowing for strategic allocation

of computational resources where they are most needed. Investigating the application

of heterogeneous quantization in MTL models involves not only developing adaptive

quantization techniques but also devising intelligent mechanisms for determining the

optimal quantization strategy for each task dynamically. This research could lead to

more efficient MTL models capable of performing a wide array of tasks simultaneously on

resource-constrained devices, pushing the boundaries of what’s possible on edge devices.

8.2.2 Generalizing Power-of-two Quantization for LLMs

Future research into logarithmic quantization for large language models (LLMs) is

poised to significantly address the challenges of computational efficiency and model scalabil-

ity. A key advantage of logarithmic quantization lies in its ability to replace multiplication

operations—typically resource-intensive in hardware—with simpler shift operations, which

are considerably cheaper in terms of computational cost. This substitution is especially

critical in the context of LLMs, where the sheer volume of multiplications during model

training and inference can be overwhelming. By adopting a power-of-two or logarith-

mic scale for quantization, the process aligns more naturally with the binary nature of

hardware computation, facilitating a more efficient execution path. This shift not only

promises reductions in the energy consumption and hardware requirements for running

LLMs but also enhances the feasibility of deploying advanced AI models on a wider

range of devices, including those at the edge. Investigating and optimizing logarithmic

quantization methods could lead to a new paradigm in the design and operation of LLMs,

where efficiency and performance are balanced more effectively, opening the door to more

sustainable and accessible AI technologies.

122

8.2.3 Low-Level Support for Dynamic Sparsification

Investigating low-level support for dynamic sparsification at both the hardware accel-

erator and compilation levels constitutes a promising avenue for future research. Dynamic

sparsification, which intelligently zeroes out certain data elements or computations that

have minimal impact on the overall outcome, can dramatically increase computational

efficiency and reduce energy consumption in machine learning models. Future work could

focus on developing hardware accelerators specifically designed to recognize and leverage

sparsity in data and computations in real-time. Additionally, advancements in compiler

technologies that can dynamically identify opportunities for sparsification and optimize

code execution paths accordingly would further amplify these benefits. This dual approach,

enhancing both hardware and software capabilities for dynamic sparsification, has the

potential to significantly advance the field of efficient computing, making it possible to

deploy more sophisticated machine learning algorithms on power and resource-constrained

devices, opening new horizons for edge computing and beyond.

8.2.4 Accelerators Support for Heterogeneous Quantization

Exploring the development of machine learning accelerators that offer native support for

heterogeneous quantization presents a compelling direction for future work. Heterogeneous

quantization, which entails applying varied quantization strategies and bit-widths to

different segments of a neural network, optimizes the balance between computational

efficiency and model accuracy tailored to the unique requirements of each part of the

network. Future advancements in accelerators capable of supporting this nuanced approach

could significantly enhance the deployment of complex machine learning models in resource-

constrained settings, such as edge computing devices. The ability to dynamically adjust

computational precision, thereby optimizing processing efficiency and reducing power

consumption, without markedly affecting performance, would mark a significant leap

forward. Such research endeavors could pave the way for the widespread adoption of

123

advanced AI applications, optimizing their performance within the stringent energy and

computational limits of next-generation technology environments.

124

Appendix A

Detailed ACEv2 Derivations

A.1 Elementwise Multiplications

For simplicity, we assume both operands have the same number of bits (i.e., i = j)

in this derivation. Elementwise multiplications requires a multiplier as well as an adder

to account for the dot pattern at the completion of the multiplication [24]. We base our

derivation on the established implementation of Dadda multiplier [24] and Ripple-Carry

Adder (RCA) [6] to estimate the cost of elementwise multiplications.

To multiply two i-bit numbers, the Dadda multiplier requires i2−3i+2 adders [24], while

the RCA adds another 2i−2 adders. This leads to a total number of adders equal to i2− i.

To generalize to operands with different precisions, the cost for elementwise multiplications

between an i-bit number and a j-bit number can be derived as i · j − max(i, j), with

i · j reflecting the cost of the multiplier and max(i, j) representing the final addition.

Independently, we performed an empirical verification for 1 ≤ i, j ≤ 64 which confirmed the

correctness of this formula, showing zero error in predicted adder counts. This refinement

in ACEv2 cost calculation enhances our understanding of multiplier complexity.

125

A.2 Floating Point Elementwise Additions

We improve ACE by extending it to include the cost of floating-point elementwise

addition. We derive the cost of adding an i-bit and a j-bit floating point numbers, using

the formula

ACEfp−add = ca ·max(i, j) (A.1)

For simplicity, we assume both operands have the same number of bits (i.e., i = j) in

this derivation. ca reflects the added complexity of floating point operations compared to

fixed-point addition. To derive ca, we look into the components of floating-point adders

[134] and analyze the ACEv2 cost for each component. Assuming e bits for the exponent

and m bits for the mantissa, the main components of the floating-point adder and their

corresponding ACEv2 costs are as follows:

1. Exponent Subtraction: Involves subtracting the exponent bits resulting in an ACEv2

cost of e.

2. Operand Swapping : Requires a single multiplexer with negligible ACEv2 cost.

3. Limitation of Alignment Shift Amount : Involves adding the mantissa bits resulting

in an ACEv2 cost of m.

4. Alignment Shift : Involves shifting by the mantissa bits adding an ACEv2 cost of

m · log2(m)/51.

5. Significand Negation: Involves one bit subtraction resulting in an ACEv2 cost of 1.

6. Significand Addition: Requires mantissa bits addition resulting in an ACEv2 cost of

m.

7. Significand Conversion: Requires two additions adding an ACEv2 cost of 2m.

8. Normalization: Requires shifting e bits resulting in an ACEv2 cost of e · log2(e)/5.

1ACEv2 cost for shift operation is derived as i · log2(j)/5 in Subsection 3.2

126

9. Rounding and Post-normalization: Requires adding m bits with an ACEv2 cost of

m.

Summing the costs for all the components, we get a total cost of m(5+ log2(m)/5)+e+

e · log2(e)/5 + 1. Considering the dominant role of mantissa operations, we approximate

the total cost to i(5 + log2(i)/5) where i is the number of bits of the added floating point

number. The upper bound for log2(i)/5 is 1 when m is 32. Therefore, we can derive the

cost as 6i̇ resulting in ca = 6 in Equation A.1. This approximation streamlines ACEv2

calculation for floating-point additions.

127

Bibliography

[1] Martın Abadi et al. “Tensorflow: A system for large-scale machine learning”.

In: 12th {USENIX} symposium on operating systems design and implementation

({OSDI} 16). 2016, pp. 265–283.

[2] AmirAli Abdolrashidi et al. “Pareto-optimal quantized resnet is mostly 4-bit”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2021, pp. 3091–3099.

[3] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In:

(Mar. 2018).

[4] S. Ananthanarayan et al. “Pt Viz: towards a wearable device for visualizing knee

rehabilitation exercises”. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM. 2013, pp. 1247–1250.

[5] Sajid Anwar and Wonyong Sung. “Compact deep convolutional neural networks

with coarse pruning”. In: arXiv preprint arXiv:1610.09639 (2016).

[6] S. Archana and G. Durga. “Design of low power and high speed ripple carry adder”.

In: 2014 International Conference on Communication and Signal Processing. 2014,

pp. 939–943. doi: 10.1109/ICCSP.2014.6949982.

[7] ARM. Cortex M4 Technical Reference Manual. 2010. url: https://developer.

arm.com/documentation/ddi0439/b/Floating-Point-Unit/FPU-Functional-

Description/FPU-instruction-set (visited on 05/17/2021).

[8] K. Bark et al. “A wearable skin stretch device for haptic feedback”. In: World

Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic

128

https://doi.org/10.1109/ICCSP.2014.6949982
https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit/FPU-Functional-Description/FPU-instruction-set
https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit/FPU-Functional-Description/FPU-instruction-set
https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit/FPU-Functional-Description/FPU-instruction-set

Interfaces for Virtual Environment and Teleoperator Systems. Mar. 2009, pp. 464–

469.

[9] R Bellman. “Dynamic programming princeton university press princeton”. In: New

Jersey Google Scholar (1957).

[10] Joseph Bethge et al. “Meliusnet: Can binary neural networks achieve mobilenet-level

accuracy?” In: arXiv preprint arXiv:2001.05936 (2020).

[11] G. Bhat et al. “Online human activity recognition using low-power wearable

devices”. In: Proceedings of the International Conference on Computer-Aided

Design. ACM. 2018, p. 72.

[12] G. Bhat et al. “Reap: Runtime energy-accuracy optimization for energy harvesting

iot devices”. In: arXiv preprint arXiv:1902.02639 (2019).

[13] Deblina Bhattacharjee et al. “Mult: an end-to-end multitask learning transformer”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2022, pp. 12031–12041.

[14] Davis Blalock et al. “What is the state of neural network pruning?” In: arXiv

preprint arXiv:2003.03033 (2020).

[15] Tolga Bolukbasi et al. “Adaptive neural networks for efficient inference”. In: arXiv

preprint arXiv:1702.07811 (2017).

[16] Bosch Sensortec BMI160. 2019. url: https://www.bosch-sensortec.com/bst/

products/all_products/bmi160/.

[17] Han Cai et al. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device

Learning. 2021. arXiv: 2007.11622 [cs.CV].

[18] Nicolas Carion et al. “End-to-end object detection with transformers”. In: Computer

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part I 16. Springer. 2020, pp. 213–229.

[19] Arnav Chavan et al. “One-for-All: Generalized LoRA for Parameter-Efficient Fine-

tuning”. In: arXiv preprint arXiv:2306.07967 (2023).

129

https://www.bosch-sensortec.com/bst/products/all_products/bmi160/
https://www.bosch-sensortec.com/bst/products/all_products/bmi160/
https://arxiv.org/abs/2007.11622

[20] Jiasi Chen and Xukan Ran. “Deep Learning With Edge Computing: A Review.”

In: Proceedings of the IEEE 107.8 (2019), pp. 1655–1674.

[21] Tianqi Chen et al. Training Deep Nets with Sublinear Memory Cost. 2016. arXiv:

1604.06174 [cs.LG].

[22] Yukang Chen et al. “Longlora: Efficient fine-tuning of long-context large language

models”. In: arXiv preprint arXiv:2309.12307 (2023).

[23] Yoni Choukroun et al. “Low-bit quantization of neural networks for efficient

inference”. In: 2019 IEEE/CVF International Conference on Computer Vision

Workshop (ICCVW). IEEE. 2019, pp. 3009–3018.

[24] Wesley Donald Chu. “Wallace and Dadda Multipliers Implemented Using Carry

Lookahead Adders”. In: 2013. url: https://repositories.lib.utexas.edu/

server/api/core/bitstreams/db07a4ef-e75d-4b69-8645-0ea6f30ccd56/

content.

[25] Claudionor N Coelho Jr et al. “Automatic heterogeneous quantization of deep

neural networks for low-latency inference on the edge for particle detectors”. In:

Nature Machine Intelligence 3.8 (2021), pp. 675–686.

[26] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Training deep neu-

ral networks with low precision multiplications”. In: arXiv preprint arXiv:1412.7024

(2014).

[27] Luigi Dadda. “Some schemes for fast serial input multipliers”. In: 1983 IEEE 6th

Symposium on Computer Arithmetic (ARITH). 1983, pp. 52–59. doi: 10.1109/

ARITH.1983.6158074.

[28] Steve Dai et al. “Vs-quant: Per-vector scaled quantization for accurate low-precision

neural network inference”. In: Proceedings of Machine Learning and Systems 3

(2021), pp. 873–884.

[29] Dipankar Das et al. “Mixed precision training of convolutional neural networks

using integer operations”. In: arXiv preprint arXiv:1802.00930 (2018).

130

https://arxiv.org/abs/1604.06174
https://repositories.lib.utexas.edu/server/api/core/bitstreams/db07a4ef-e75d-4b69-8645-0ea6f30ccd56/content
https://repositories.lib.utexas.edu/server/api/core/bitstreams/db07a4ef-e75d-4b69-8645-0ea6f30ccd56/content
https://repositories.lib.utexas.edu/server/api/core/bitstreams/db07a4ef-e75d-4b69-8645-0ea6f30ccd56/content
https://doi.org/10.1109/ARITH.1983.6158074
https://doi.org/10.1109/ARITH.1983.6158074

[30] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009

IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.

doi: 10.1109/CVPR.2009.5206848.

[31] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009

IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–

255.

[32] Tim Dettmers et al. “Qlora: Efficient finetuning of quantized llms”. In: arXiv

preprint arXiv:2305.14314 (2023).

[33] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for

language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[34] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image

recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[35] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) challenge”.

In: International Journal of Computer Vision 88 (June 2010), pp. 303–338. doi:

10.1007/s11263-009-0275-4.

[36] Yuan Fang et al. “Object detection meets knowledge graphs”. In: (2017).

[37] Igor Fedorov et al. “Sparse: Sparse architecture search for cnns on resource-

constrained microcontrollers”. In: Advances in Neural Information Processing

Systems. 2019.

[38] Thomas MJ Fruchterman and Edward M Reingold. “Graph drawing by force-

directed placement”. In: Software: Practice and experience 21.11 (1991), pp. 1129–

1164.

[39] I. Galiana et al. “Wearable soft robotic device for post-stroke shoulder rehabilita-

tion: Identifying misalignments”. In: 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Oct. 2012, pp. 317–322.

[40] Peng Gao et al. “Llama-adapter v2: Parameter-efficient visual instruction model”.

In: arXiv preprint arXiv:2304.15010 (2023).

131

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/s11263-009-0275-4

[41] Amir Gholami et al. “A survey of quantization methods for efficient neural net-

work inference”. In: Low-Power Computer Vision. Chapman and Hall/CRC, 2022,

pp. 291–326.

[42] S. Ghosh et al. “Deep Network Pruning for Object Detection”. In: 2019 IEEE

International Conference on Image Processing (ICIP). 2019, pp. 3915–3919. doi:

10.1109/ICIP.2019.8803505.

[43] A. Godfrey et al. “Inertial wearables as pragmatic tools in dementia”. In: Maturitas

127 (2019), pp. 12–17.

[44] Abhinav Goel et al. “Low-power object counting with hierarchical neural net-

works”. In: Proceedings of the ACM/IEEE International Symposium on Low Power

Electronics and Design. 2020, pp. 163–168.

[45] Benjamin Graham et al. “Levit: a vision transformer in convnet’s clothing for

faster inference”. In: Proceedings of the IEEE/CVF international conference on

computer vision. 2021, pp. 12259–12269.

[46] Audrunas Gruslys et al. “Memory-Efficient Backpropagation Through Time”. In:

CoRR abs/1606.03401 (2016). arXiv: 1606.03401. url: http://arxiv.org/abs/

1606.03401.

[47] Anmol Gulati et al. “Conformer: Convolution-augmented transformer for speech

recognition”. In: arXiv preprint arXiv:2005.08100 (2020).

[48] Yiwen Guo, Anbang Yao, and Yurong Chen. “Dynamic network surgery for efficient

dnns”. In: Advances in neural information processing systems 29 (2016).

[49] C. Gupta et al. “ProtoNN: compressed and accurate kNN for resource-scarce

devices”. In: Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR. org. 2017, pp. 1331–1340.

[50] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding”. In: arXiv

preprint arXiv:1510.00149 (2015).

132

https://doi.org/10.1109/ICIP.2019.8803505
https://arxiv.org/abs/1606.03401
http://arxiv.org/abs/1606.03401
http://arxiv.org/abs/1606.03401

[51] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding. 2016.

arXiv: 1510.00149 [cs.CV].

[52] S. Hashemi, R. Bahar, and S Reda. “DRUM: A Dynamic Range Unbiased Multiplier

for Approximate Applications”. In: Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design. ICCAD ’15. Austin, TX, USA: IEEE Press,

pp. 418–425. isbn: 9781467383899.

[53] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. “A Low-Power Dynamic Divider for

Approximate Applications”. In: Proceedings of the 53rd Annual Design Automation

Conference. DAC ’16. Austin, Texas: Association for Computing Machinery. isbn:

9781450342360.

[54] Soheil Hashemi et al. “Understanding the impact of precision quantization on the

accuracy and energy of neural networks”. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017. IEEE. 2017, pp. 1474–1479.

[55] Irina Hashmi and Hafiz Md. Hasan Babu. “An Efficient Design of a Reversible

Barrel Shifter”. In: 2010 23rd International Conference on VLSI Design. 2010,

pp. 93–98. doi: 10.1109/VLSI.Design.2010.35.

[56] Hussein Hazimeh et al. “Dselect-k: Differentiable selection in the mixture of experts

with applications to multi-task learning”. In: Advances in Neural Information

Processing Systems 34 (2021), pp. 29335–29347.

[57] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[58] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[59] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance

on imagenet classification”. In: Proceedings of the IEEE international conference

on computer vision. 2015, pp. 1026–1034.

133

https://arxiv.org/abs/1510.00149
https://doi.org/10.1109/VLSI.Design.2010.35

[60] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international confer-

ence on computer vision. 2017, pp. 2961–2969.

[61] Xuehai He et al. “Parameter-efficient model adaptation for vision transformers”.

In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 1. 2023,

pp. 817–825.

[62] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural

network”. In: arXiv preprint arXiv:1503.02531 (2015).

[63] Battery Historian. https://github.com/google/battery- historian. Aug.

2016. url: https://github.com/google/battery-historian.

[64] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”.

In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical

Papers (ISSCC). 2014, pp. 10–14. doi: 10.1109/ISSCC.2014.6757323.

[65] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for

mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[66] Edward J Hu et al. “Lora: Low-rank adaptation of large language models”. In:

arXiv preprint arXiv:2106.09685 (2021).

[67] Zhiqiang Hu et al. “LLM-Adapters: An Adapter Family for Parameter-Efficient

Fine-Tuning of Large Language Models”. In: arXiv preprint arXiv:2304.01933

(2023).

[68] Gao Huang et al. “Densely connected convolutional networks”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–

4708.

[69] Gao Huang et al. “Multi-scale dense networks for resource efficient image classifi-

cation”. In: arXiv preprint arXiv:1703.09844 (2017).

[70] Yanping Huang et al. GPipe: Efficient Training of Giant Neural Networks using

Pipeline Parallelism. 2019. arXiv: 1811.06965 [cs.CV].

[71] Forrest N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer param-

eters and ¡0.5MB model size. 2016. arXiv: 1602.07360 [cs.CV].

134

https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://doi.org/10.1109/ISSCC.2014.6757323
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1602.07360

[72] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift”. In: 2015, pp. 448–456.

url: http://jmlr.org/proceedings/papers/v37/ioffe15.pdf.

[73] Keishi Ishihara et al. “Multi-task learning with attention for end-to-end autonomous

driving”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2021, pp. 2902–2911.

[74] Benoit Jacob et al. “Quantization and training of neural networks for efficient

integer-arithmetic-only inference”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018, pp. 2704–2713.

[75] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with

gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[76] Steven A Janowsky. “Pruning versus clipping in neural networks”. In: Physical

Review A 39.12 (1989), p. 6600.

[77] Jetson Nano Developer Kit. Apr. 2021. url: https://developer.nvidia.com/

embedded/jetson-nano-developer-kit.

[78] Nandan Kumar Jha and Sparsh Mittal. “Modeling data reuse in deep neural net-

works by taking data-types into cognizance”. In: IEEE Transactions on Computers

70.9 (2020), pp. 1526–1538.

[79] Xianyan Jia et al. “Highly scalable deep learning training system with mixed-

precision: Training imagenet in four minutes”. In: arXiv preprint arXiv:1807.11205

(2018).

[80] Shenwang Jiang et al. “Tree-CNN: from generalization to specialization”. In:

EURASIP Journal on Wireless Communications and Networking 2018 (Dec. 2018).

doi: 10.1186/s13638-018-1197-z.

[81] Jing Jin, Shaolong Shu, and Feng Lin. “Personalized Control of Indoor Air Temper-

ature Based on Deep Learning”. In: 2019 Chinese Control And Decision Conference

(CCDC). IEEE. 2019, pp. 1354–1359.

135

http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://doi.org/10.1186/s13638-018-1197-z

[82] Iosr Journals et al. “Power Optimized Multiplexer Based 1 Bit Full Adder Cell

Using .18 µm CMOS Technology”. In: 2015. url: https://api.semanticscholar.

org/CorpusID:149453517.

[83] Sangil Jung et al. “Learning to quantize deep networks by optimizing quantization

intervals with task loss”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2019, pp. 4350–4359.

[84] I. Koryakovskiy et al. “One-Shot Model for Mixed-Precision Quantization”. In:

2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Los Alamitos, CA, USA: IEEE Computer Society, June 2023, pp. 7939–7949. doi:

10.1109/CVPR52729.2023.00767. url: https://doi.ieeecomputersociety.

org/10.1109/CVPR52729.2023.00767.

[85] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient

inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[86] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. “The cifar-10 dataset”. In:

online: http://www. cs. toronto. edu/kriz/cifar. html 55 (2014), p. 5.

[87] A. Kumar, S. Goyal, and M. Varma. “Resource-efficient machine learning in 2

KB RAM for the internet of things”. In: Proceedings of the 34th International

Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1935–1944.

[88] A. Kusupati et al. “Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated

recurrent neural network”. In: Advances in Neural Information Processing Systems.

2018, pp. 9017–9028.

[89] Seulki Lee and Shahriar Nirjon. “Learning in the Wild: When, How, and What to

Learn for On-Device Dataset Adaptation”. In: Proceedings of the 2nd International

Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet

of Things. AIChallengeIoT ’20. Virtual Event, Japan: Association for Computing

Machinery, 2020, pp. 34–40. isbn: 9781450381345. doi: 10.1145/3417313.3429382.

url: https://doi.org/10.1145/3417313.3429382.

136

https://api.semanticscholar.org/CorpusID:149453517
https://api.semanticscholar.org/CorpusID:149453517
https://doi.org/10.1109/CVPR52729.2023.00767
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.00767
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.00767
https://doi.org/10.1145/3417313.3429382
https://doi.org/10.1145/3417313.3429382

[90] He Li, Kaoru Ota, and Mianxiong Dong. “Learning IoT in Edge: Deep Learning

for the Internet of Things with Edge Computing”. In: IEEE Network 32.1 (2018),

pp. 96–101. doi: 10.1109/MNET.2018.1700202.

[91] Yuhang Li, Xin Dong, and Wei Wang. “Additive powers-of-two quantization:

An efficient non-uniform discretization for neural networks”. In: arXiv preprint

arXiv:1909.13144 (2019).

[92] Hanxue Liang et al. “M3ViT: Mixture-of-Experts Vision Transformer for Effi-

cient Multi-task Learning with Model-Accelerator Co-design”. In: arXiv preprint

arXiv:2210.14793 (2022).

[93] Tailin Liang et al. “Pruning and quantization for deep neural network acceleration:

A survey”. In: Neurocomputing 461 (2021), pp. 370–403.

[94] Ching-Yi Lin and Radu Marculescu. “Model personalization for human activity

recognition”. In: 2020 IEEE International Conference on Pervasive Computing

and Communications Workshops (PerCom Workshops). IEEE. 2020, pp. 1–7.

[95] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002

[cs.CV].

[96] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European

conference on computer vision. Springer. 2014, pp. 740–755.

[97] Liu Liu et al. Dynamic Sparse Graph for Efficient Deep Learning. 2019. arXiv:

1810.00859 [cs.LG].

[98] Shikun Liu, Edward Johns, and Andrew J Davison. “End-to-end multi-task learning

with attention”. In: Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2019, pp. 1871–1880.

[99] Shikun Liu, Edward Johns, and Andrew J Davison. “End-to-end multi-task learning

with attention”. In: Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2019, pp. 1871–1880.

137

https://doi.org/10.1109/MNET.2018.1700202
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1810.00859

[100] Yen-Cheng Liu et al. “Polyhistor: Parameter-efficient multi-task adaptation for

dense vision tasks”. In: Advances in Neural Information Processing Systems 35

(2022), pp. 36889–36901.

[101] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted

windows”. In: Proceedings of the IEEE/CVF international conference on computer

vision. 2021, pp. 10012–10022.

[102] Zechun Liu et al. “Bi-real net: Enhancing the performance of 1-bit cnns with

improved representational capability and advanced training algorithm”. In: Pro-

ceedings of the European conference on computer vision (ECCV). 2018, pp. 722–

737.

[103] Zechun Liu et al. “How do adam and training strategies help bnns optimization”.

In: International conference on machine learning. PMLR. 2021, pp. 6936–6946.

[104] Zechun Liu et al. “Reactnet: Towards precise binary neural network with generalized

activation functions”. In: Computer Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer. 2020,

pp. 143–159.

[105] Q. Liu et al. “Gazelle: Energy-Efficient Wearable Analysis for Running”. In: IEEE

Transactions on Mobile Computing 16.9 (Sept. 2017), pp. 2531–2544. issn: 2161-

9875.

[106] Mark Harris Luke Durant Olivier Giroux and Nick Stam. NVIDIA Tesla V100 GPU

architecture. 2017. url: https://developer.nvidia.com/blog/inside-volta/.

[107] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn architecture

design”. In: Proceedings of the European conference on computer vision (ECCV).

2018, pp. 116–131.

[108] Rabeeh Karimi Mahabadi et al. “Parameter-efficient multi-task fine-tuning for

transformers via shared hypernetworks”. In: arXiv preprint arXiv:2106.04489

(2021).

138

https://developer.nvidia.com/blog/inside-volta/

[109] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. “Attentive single-

tasking of multiple tasks”. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2019, pp. 1851–1860.

[110] Brais Martinez et al. “Training binary neural networks with real-to-binary convo-

lutions”. In: arXiv preprint arXiv:2003.11535 (2020).

[111] R. McGinnis et al. “Rapid detection of internalizing diagnosis in young children

enabled by wearable sensors and machine learning”. In: PloS one 14.1 (2019),

e0210267.

[112] Lingchen Meng et al. “Adavit: Adaptive vision transformers for efficient image

recognition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2022, pp. 12309–12318.

[113] Paulius Micikevicius et al. Mixed Precision Training. 2018. arXiv: 1710.03740

[cs.AI].

[114] Ishan Misra et al. “Cross-stitch networks for multi-task learning”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016, pp. 3994–

4003.

[115] Daisuke Miyashita, Edward H Lee, and Boris Murmann. “Convolutional neural net-

works using logarithmic data representation”. In: arXiv preprint arXiv:1603.01025

(2016).

[116] Eslam Mohamed and Ahmad El Sallab. “Spatio-temporal multi-task learning

transformer for joint moving object detection and segmentation”. In: 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC). IEEE. 2021,

pp. 1470–1475.

[117] Pavlo Molchanov et al. “Pruning convolutional neural networks for resource efficient

inference”. In: arXiv preprint arXiv:1611.06440 (2016).

[118] Hesham Mostafa and Xin Wang. Parameter Efficient Training of Deep Convo-

lutional Neural Networks by Dynamic Sparse Reparameterization. 2019. arXiv:

1902.05967 [cs.LG].

139

https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1902.05967

[119] A. N.K. et al. “Sensor-Classifier Co-Optimization for Wearable Human Activ-

ity Recognition Applications”. In: IEEE International Conference on Embedded

Software and Systems (ICESS). June 2019, pp. 1–4.

[120] Sharan Narang et al. “Exploring sparsity in recurrent neural networks”. In: arXiv

preprint arXiv:1704.05119 (2017).

[121] Marina Neseem and Sherief Reda. “AdaCon: Adaptive Context-Aware Object

Detection for Resource-Constrained Embedded Devices”. In: 2021 IEEE/ACM

International Conference On Computer Aided Design (ICCAD). IEEE. 2021, pp. 1–

9.

[122] Yu-Ting Pai and Yu-Kumg Chen. “The fastest carry lookahead adder”. In: Proceed-

ings. DELTA 2004. Second IEEE International Workshop on Electronic Design,

Test and Applications. 2004, pp. 434–436. doi: 10.1109/DELTA.2004.10071.

[123] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE

Transactions on knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[124] Eunhyeok Park and Sungjoo Yoo. “Profit: A novel training method for sub-4-bit

mobilenet models”. In: Computer Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16. Springer. 2020, pp. 430–

446.

[125] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[126] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning

library”. In: arXiv preprint arXiv:1912.01703 (2019).

[127] Hai Phan et al. “Binarizing MobileNet via Evolution-Based Searching”. In: 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2020, pp. 13417–13426. doi: 10.1109/CVPR42600.2020.01343.

[128] Hai Phan et al. “Mobinet: A mobile binary network for image classification”. In:

Proceedings of the IEEE/CVF winter conference on applications of computer vision.

2020, pp. 3453–3462.

140

https://doi.org/10.1109/DELTA.2004.10071
https://doi.org/10.1109/CVPR42600.2020.01343

[129] Pytorch Mobile: End-to-end workflow from Training to Deployment for iOS and

Android mobile devices. https://pytorch.org/mobile/android. Mar. 2023. url:

https://pytorch.org/mobile/android.

[130] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using binary convo-

lutional neural networks”. In: European conference on computer vision. Springer.

2016, pp. 525–542.

[131] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv

preprint arXiv:1804.02767 (2018).

[132] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region

proposal networks”. In: Advances in neural information processing systems. 2015,

pp. 91–99.

[133] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. “Analytical guarantees on

numerical precision of deep neural networks”. In: International Conference on

Machine Learning. PMLR. 2017, pp. 3007–3016.

[134] P.-M. Seidel and G. Even. “On the design of fast IEEE floating-point adders”.

In: Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

2001, pp. 184–194. doi: 10.1109/ARITH.2001.930118.

[135] Samuel L Smith et al. “Don’t decay the learning rate, increase the batch size”. In:

arXiv preprint arXiv:1711.00489 (2017).

[136] Nimit Sharad Sohoni et al. Low-Memory Neural Network Training: A Technical

Report. 2019. arXiv: 1904.10631 [cs.LG].

[137] Steven W Squyres et al. “Athena Mars rover science investigation”. In: Journal of

Geophysical Research: Planets 108.E12 (2003).

[138] Trevor Standley et al. “Which tasks should be learned together in multi-task learn-

ing?” In: International Conference on Machine Learning. PMLR. 2020, pp. 9120–

9132.

141

https://pytorch.org/mobile/android
https://pytorch.org/mobile/android
https://doi.org/10.1109/ARITH.2001.930118
https://arxiv.org/abs/1904.10631

[139] Robin Strudel et al. “Segmenter: Transformer for semantic segmentation”. In:

Proceedings of the IEEE/CVF international conference on computer vision. 2021,

pp. 7262–7272.

[140] Ximeng Sun et al. “Adashare: Learning what to share for efficient deep multi-

task learning”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 8728–8740.

[141] Qiuling Suo et al. “Deep patient similarity learning for personalized healthcare”.

In: IEEE transactions on nanobioscience 17.3 (2018), pp. 219–227.

[142] Ahmet Ali Süzen, Burhan Duman, and Betül Şen. “Benchmark Analysis of Jetson

TX2, Jetson Nano and Raspberry PI using Deep-CNN”. In: 2020 International

Congress on Human-Computer Interaction, Optimization and Robotic Applications

(HORA). IEEE. 2020, pp. 1–5.

[143] Taiji Suzuki et al. “Spectral pruning: Compressing deep neural networks via spectral

analysis and its generalization error”. In: arXiv preprint arXiv:1808.08558 (2018).

[144] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolu-

tional neural networks”. In: International conference on machine learning. PMLR.

2019, pp. 6105–6114.

[145] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient

Object Detection. 2020. arXiv: 1911.09070 [cs.CV].

[146] H. Tann, S. Hashemi, and S. Reda. “Flexible Deep Neural Network Processing”.

In: ArXiv abs/1801.07353 (2018).

[147] Hokchhay Tann et al. “Hardware-software codesign of accurate, multiplier-free

Deep Neural Networks”. In: 2017 54th ACM/EDAC/IEEE Design Automation

Conference (DAC). 2017, pp. 1–6. doi: 10.1145/3061639.3062259.

[148] Hokchhay Tann et al. “Runtime Configurable Deep Neural Networks for Energy-

Accuracy Trade-Off”. In: New York, NY, USA: Association for Computing Ma-

chinery, 2016. isbn: 9781450344838. doi: 10.1145/2968456.2968458.

142

https://arxiv.org/abs/1911.09070
https://doi.org/10.1145/3061639.3062259
https://doi.org/10.1145/2968456.2968458

[149] TI CC2640R2F SimpleLink MCU. 2019. url: https://www.ti.com/product/

CC2640R2F.

[150] Hugo Touvron et al. “Training data-efficient image transformers & distillation

through attention”. In: International conference on machine learning. PMLR. 2021,

pp. 10347–10357.

[151] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor

Wiskunde en Informatica Amsterdam, 1995.

[152] Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. “Mti-net: Multi-

scale task interaction networks for multi-task learning”. In: Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part IV 16. Springer. 2020, pp. 527–543.

[153] Simon Vandenhende et al. “Multi-Task Learning for Dense Prediction Tasks: A

Survey”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.7

(2022), pp. 3614–3633. doi: 10.1109/TPAMI.2021.3054719.

[154] Pavan Kumar Anasosalu Vasu et al. “MobileOne: An Improved One Millisecond

Mobile Backbone”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2023, pp. 7907–7917.

[155] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems 30 (2017).

[156] Praneeth Vepakomma et al. “Split learning for health: Distributed deep learning

without sharing raw patient data”. In: arXiv preprint arXiv:1812.00564 (2018).

[157] Richard Volpe et al. “Rocky 7: A next generation mars rover prototype”. In:

Advanced Robotics 11.4 (1996), pp. 341–358.

[158] VUZIX M4000 SMART GLASSES. https://www.vuzix.com/products/m4000-

smart-glasses. Mar. 2023. url: https://www.vuzix.com/products/m4000-

smart-glasses.

143

https://www.ti.com/product/CC2640R2F
https://www.ti.com/product/CC2640R2F
https://doi.org/10.1109/TPAMI.2021.3054719
https://www.vuzix.com/products/m4000-smart-glasses
https://www.vuzix.com/products/m4000-smart-glasses
https://www.vuzix.com/products/m4000-smart-glasses
https://www.vuzix.com/products/m4000-smart-glasses

[159] C. S. Wallace. “A Suggestion for a Fast Multiplier”. In: IEEE Transactions on

Electronic Computers EC-13.1 (1964), pp. 14–17. doi: 10.1109/PGEC.1964.

263830.

[160] Xin Wang et al. “Skipnet: Learning dynamic routing in convolutional networks”.

In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,

pp. 409–424.

[161] J. Williamson et al. “Data sensing and analysis: Challenges for wearables”. In: The

20th Asia and South Pacific Design Automation Conference. Jan. 2015, pp. 136–

141.

[162] Bichen Wu et al. “Squeezedet: Unified, small, low power fully convolutional neural

networks for real-time object detection for autonomous driving”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

2017, pp. 129–137.

[163] Dan Xu et al. “Pad-net: Multi-tasks guided prediction-and-distillation network for

simultaneous depth estimation and scene parsing”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2018, pp. 675–684.

[164] Hang Xu et al. “Spatial-aware graph relation network for large-scale object detec-

tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2019, pp. 9298–9307.

[165] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. “Designing energy-efficient convo-

lutional neural networks using energy-aware pruning”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 5687–5695.

[166] Hanrong Ye and Dan Xu. “Inverted pyramid multi-task transformer for dense scene

understanding”. In: Computer Vision–ECCV 2022: 17th European Conference,

Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII. Springer. 2022,

pp. 514–530.

[167] Joseph Yiu. Beginner guide on interrupt latency and Arm Cortex-M processors. 2016.

url: https://community.arm.com/developer/ip-products/processors/b/

144

https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors

processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-

interrupt-latency-of-the-arm-cortex-m-processors.

[168] Haoran You, Huihong Shi, Yipin Guo, et al. “ShiftAddViT: Mixture of Multi-

plication Primitives Towards Efficient Vision Transformer”. In: arXiv preprint

arXiv:2306.06446 (2023).

[169] Haoran You et al. “Shiftaddnet: A hardware-inspired deep network”. In: Advances

in Neural Information Processing Systems 33 (2020), pp. 2771–2783.

[170] Jiahui Yu et al. “Slimmable neural networks”. In: arXiv preprint arXiv:1812.08928

(2018).

[171] Ruichi Yu et al. “Nisp: Pruning networks using neuron importance score propaga-

tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 9194–9203.

[172] Zhongzhi Yu et al. “Mia-former: efficient and robust vision transformers via multi-

grained input-adaptation”. In: Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 36. 2022, pp. 8962–8970.

[173] Amir R Zamir et al. “Taskonomy: Disentangling task transfer learning”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2018,

pp. 3712–3722.

[174] Q. Zhang et al. “Determination of Activities of Daily Living of independent living

older people using environmentally placed sensors”. In: Annual International

Conference of the IEEE Engineering in Medicine and Biology Society Conference

(July 2013), pp. 7044–7047.

[175] Renrui Zhang et al. “Llama-adapter: Efficient fine-tuning of language models with

zero-init attention”. In: arXiv preprint arXiv:2303.16199 (2023).

[176] Tianyuan Zhang et al. “Domain-Aware Dynamic Networks”. In: arXiv preprint

arXiv:1911.13237 (2019).

145

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors

[177] Yichi Zhang, Zhiru Zhang, and Lukasz Lew. “Pokebnn: A binary pursuit of

lightweight accuracy”. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2022, pp. 12475–12485.

[178] Yichi Zhang et al. “FracBNN: Accurate and FPGA-efficient binary neural networks

with fractional activations”. In: The 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. 2021, pp. 171–182.

[179] Wangchunshu Zhou et al. “Bert loses patience: Fast and robust inference with

early exit”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 18330–18341.

[180] J. Zhu, R. San-Segundo, and J.M. Pardo. “Feature extraction for robust physical

activity recognition.” In: Human-centric Computing and Information Sciences 16.7

(2017).

[181] Reto Zimmermann. “Computer arithmetic: Principles, architectures, and VLSI

design”. In: Personal publication (Available at http://www. iis. ee. ethz. ch/ zimmi/-

publications/comp arith notes. ps. gz) (1999).

146

	Vitae
	Acknowledgments
	Introduction
	Why AI on the Edge?
	Stages for Deploying AI on the Edge
	Thesis Contributions

	Background
	Efficient Training for Deep Learning Models
	Efficient Inference for Deep Learning Models

	Efficient Model Design
	Introduction
	Related Work
	Designing Highly Efficient Low-Precision Models
	Cost Metrics for Low Precision Models
	Introducing ACEv2
	Overlooked Efficiency Bottlenecks
	PikeLPN Architecture

	Experiments
	Implementation and Training
	Results

	Conclusion

	Efficient Training
	Introduction
	Background
	Leveraging Sparsity for Memory-Efficient Training
	Activation Sparsity in Neural Networks
	Sparse Bitmap Format
	Sparse Bitmap Compression Algorithm

	Experiments
	Conclusion

	Efficient Inference with Temporal Awareness
	Introduction
	Related Work
	Adaptive Human Activity Recognition Framework
	Main Components
	Feature Extraction
	Human Activity Classifier

	Low-Power Sensing
	Sensor operation Modes
	Sensor configurations Design Space Exploration
	Adaptive Low-Power Sensing Technique
	The State Prediction Optimization Technique (SPOT)
	The SPOT technique with confidence

	Experiments and Results
	Experimental Setup
	AdaSense Behavioural Analysis
	Power & Accuracy Analysis
	Comparison to the previous work

	Conclusion

	Efficient Inference with Spatial Awareness
	Motivation
	Related Work
	Method
	Spatial-Context based Clustering
	Detection Head Architecture
	Training the Adaptive Object Detection Model

	Results
	Experimental Setup
	Spatial-Context-Based Clustering Evaluation
	Branch Controller Accuracy Evaluation
	AdaCon Performance and Efficiency Evaluation
	AdaCon Evaluation for the Branch Controller Execution Modes
	Pareto-Frontier analysis for AdaCon

	Conclusion

	Efficient Inference with Sample Awareness
	Introduction
	Related Work
	Method
	Architecture Overview
	AdaMTL Policy Network
	AdaMTL Training Recipe

	Experiments
	Setup
	Quantitative Analysis
	Combining with SOTA MTL components
	Qualitative Analysis
	Deployment on Vuzix M4000 AR glasses
	Ablation Study

	Conclusion

	Summary and Possible Extensions
	Summary of the Dissertation
	Possible Research Extensions
	Heterogeneous Quantization for Multi-task Models
	Generalizing Power-of-two Quantization for LLMs
	Low-Level Support for Dynamic Sparsification
	Accelerators Support for Heterogeneous Quantization

	Detailed ACEv2 Derivations
	Elementwise Multiplications
	Floating Point Elementwise Additions

