

Design of Low Power Ray Triangle Intersection Accelerators

Krishna Rajan

Submitted on: 4-30-2019

Submitted in partial fulfillment of the requirements of the degree of Bachelor of Science with Honors in
Electrical Engineering

School of Engineering, Brown University

Prepared under the direction of

Prof. Sherief Reda, Advisor

Prof. Jacob Rosenstein, Reader

By signing below, I attest that the undergraduate thesis listed above meets the criteria for Honors, and
has been successfully presented to the faculty at the Undergraduate Research Symposium.

Advisor’s Signature

Reader’s Signature

Honors Chair’s Signature

2

Contents
1. Abstract: ... 3

2. Introduction: .. 4

3. Previous Works: .. 7

4. Methodology ... 9

4.1 Precision Design Exploration ... 9

4.2 Duel Precision Methodology ... 12

4.3 Hardware Design ... 15

5. Results ... 17

5.1 Experimental Setup ... 17

5.2 Impact of Precision Scaling on Hardware Metrics ... 18

5.3 Evaluation of Duel-Precision Methodology ... 19

5.4 Hardware Cost Evaluation ... 22

6. Conclusions ... 24

7. Appendix ... 25

7.1 Sponza Scene Images at Fixed Point: Bit Precisions 28-40 .. 25

References ... 29

3

1. Abstract:

Ray-Triangle intersection is a fundamental computation in most ray tracing algorithms.

The prohibitive cost of the ray-triangle test algorithms, however, limits the utilization of these

algorithms in settings with low power budgets, such as mobile systems. In this thesis, we analyze

the precision requirements for ray-triangle intersection. We observe that for most rays, a low

precision algorithm is sufficient, and only a small fraction of rays require higher precision

computations. Accordingly, we propose a dual-precision hardware accelerator for ray-triangle

intersection, targeting low-power systems. In this architecture, the higher resolution is activated

only for tests deemed critical by our algorithm. Towards this goal, we develop a thresholding

technique that autonomously switches between the lower and higher precisions. The lower

precision unit is used for the majority of the tests, resulting in significant benefits in power

consumption. We evaluate our methodology on a representative set of scenes, and implement our

proposed methodology in hardware. The proposed methodology offers benefits of up to 86% in

energy consumption compared to a baseline full-precision (floating-point) design.

4

2. Introduction:

Ray tracing is the basic algorithm with which movie special effects are created (Fascione,

2018), and is approaching the general consumer market with the recent advent of NVIDIA's RTX

GPUs (NVIDIA, 2018), providing advanced effects for real-time games. It has also been shown

to enable efficient algorithms for lens distortion, wide field of view, foveation, and depth of field

for use in virtual and augmented reality (Hunt, July 2018). Making real-time ray tracing available

for low power hardware will bring the richness of physically based rendering and efficient

algorithms to mobile devices. The cost for providing higher accuracy and realism, however, is

that ray-tracing algorithms require significantly higher computational costs, which limit their

application under both tight power budgets and real-time applications. Such scenarios are

increasingly abundant in both mobile and virtual/augmented reality platforms, which include

wearable devices, with no external computation platform. A high-performance ray tracer requires

optimization of several components, including ray traversal through acceleration structures to find

intersections, and computation of intersection coordinates. There exists a long history of research

into these real-time algorithms for software systems (Tomas Akenine-Möller, 2018) and research

into potential dedicated hardware systems (Hanika & Keller, 2007) (Keely & Fussell, 2018)

(Vaidyanathan, 2016). In real-time systems, triangles are the dominant surface primitive, and ray

triangle intersection is the core operation that benefits most from custom hardware design

(NVIDIA, 2018). In this thesis, we focus on reducing the power usage of the ray-triangle

intersection computations, moving towards the goal of making ray tracing possible on low-power

systems.

To enable the use of ray tracing algorithms under tight power constraints, we propose a

dual-precision mechanism where an intersection test can be performed in either low or high

5

precision. This is dependent on the criticality of the intersection, which is classified using a

thresholding scheme. Overall, the contributions of our work are as follows.

First, we perform a detailed and thorough evaluation of the precision requirements of ray

triangle intersect algorithms. Using an industrial ray tracing package, we evaluate a large range of

fixed-point arithmetic precisions, and compare the accuracy against the gold standard floating-

point precision. From our evaluation, we observe that the majority of the ray-triangle tests can be

properly classified with a reduced number of fixed-point bits. Only a minority of critical ray

intersections require higher precision to resolve correctly. To provide realistic results compatible

with the requirements of current applications, we modify HVVR (Hierarchical Visibility for

Virtual Research), an open source industrial strength ray-tracing implementation, produced by

Facebook (Facebook, 2017). HVVR by default performs its computations on a GPU in single-

precision floating point; we modify it to utilize fixed-point computations, allowing for profiling

and precision analysis. We also investigate the impact of reduced precision on hardware metrics.

Enabled by our evaluation analysis, we devise an analytical formulation that can identify the

optimal low precision and high precision requirements to minimize total power consumption.

Accordingly, we designs and implement a dual-precision ray triangle intersection accelerator,

where the majority of intersections are performed in low precision and the higher precision is only

activated when necessitated for accuracy.

To enable switching between low precision and high precision accelerator units during

runtime, we formulate a thresholding methodology where the criticality of a test is assessed and

the higher-precision unit is activated if necessary. Our methodology detects thresholds in which a

delicate balance between accuracy and computation is struck.

6

We fully implement our proposed dual-precision architecture as a hardware accelerator using

a full industrial design tool chain using 7 nm technology, and report the improvements in power

consumption and other design metrics using our methodology.

The rest of the thesis is organized as follows: First in Previous Work, we briefly overview the

recent work relevant to our study. Next, Methodology describes the precisions studied and the

detailed discussion of the dual-precision methodology. Results summarizes our experimental

results and highlights the benefits that this methodology provides. Here, we also provide the

results obtained from the hardware accelerator. Finally, Conclusions concludes the thesis by

summarizing the main components of the thesis.

7

3. Previous Works:

In recent years, many works have studied efficient realizations for ray-tracing algorithms

on custom as well as traditional hardware (Keely S. , 2014) (Keely & Fussell, 2018) (Lee, 2013)

(Keller, 2013) (Vaidyanathan, 2016). In these work, the underlying principle is either relying on

software for performing the intersection tests (Keely S. , 2014), or on adding extra full-precision

floating-point units (FPUs) (Lee, 2013) (Hwang, 2015).

Many studies have also investigated different approaches to reduce the power and

computation demands of ray-tracing algorithms. Methodologies based on compression of triangle

data structures (Cline, 2006) (Kim, Moon, Kim, & Yoon, 2009) (Mahovsky, 2006) (Segovia,

2010), reducing memory footprint using implicit indexing (Bauszat, 2010), reducing the number

of stored planes per node (Eisemann, 2008) (Fabianowski, 2009), or transformations aiming at

increasing floating-point precision (Kim, Nah, & Park, 2016) have been explored. Studies of

reduced precision hardware accelerators have also been proposed (Hanika & Keller, 2007)

(Heinly, 2009) (Vaidyanathan, 2016). While utilization of lower bit-width fixed-point arithmetic

can significantly reduce the complexity as well as memory and computation footprint of the ray-

tracing algorithm, careful consideration is required to minimize the accuracy impact. In contrast

to these work, we propose a dual-precision methodology, where two different precisions are

utilized within the same hardware accelerator. Enabled by the principal observation that the

majority of the ray-triangle tests are correctly classified using reduced precision and lowering the

precision only results in intersection error in critical cases. This key observation enables a scheme,

in which the higher resolution circuitry is only enabled if the test is deemed critical by our

thresholding methodology.

8

A hybrid approach has recently been proposed by Hwang et al. (Hwang, 2015) where both

fixed-point and floating-point representations are utilized. Our proposed hardware differs from

theirs as we utilize two lower-cost fixed-point precision instead of a fixed-point component along

with a full-precision floating-point component. Furthermore, in our methodology the higher

precision is only activated when required for accuracy. Next, in Methodology, we describe our

methodology and hardware implementation in detail.

9

4. Methodology

4.1 Precision Design Exploration

While floating-point arithmetic is typically restricted to follow specific precision, namely,

half-precision (16 bits), full-precision (32 bits), or double-precision (64 bits), fixed-point

arithmetic offers the flexibility to customize the bit-width as required by the application.

Furthermore, fixed-point computations are inherently less complex than their floating-point

counterparts are. As such, fixed-point arithmetic provides a more fine-grain and efficient approach

to computations as long as the operands do not exhibit a large dynamic range. Due to the larger

design space of possible fixed-point precision, an effective exploration of the possible precision

space is required to quantify, both the resulting accuracy and hardware metrics, as the precision is

changed. In this work, we first examine the impact of precision scaling in ray-triangle intersection

applications. This thesis both inspires the proposed dual-precision methodology and guides the

choice of the higher precision (HP) and lower precision (LP) computing units.

To evaluate the impact of precision scaling in a realistic setting, we modify the well-

established HVVR tool from Facebook Reality Labs (Facebook, 2017) to use fixed-point

computations. The tool uses the Kensler (Kensler, 2006) approach to determining ray-triangle

intersections. Through modification of the HVVR code, we explore the impact of reduced fixed-

point precision on three scenes.

To decide the range of bit-widths required for our evaluations, through modification of the

HVVR code, we perform a study of the numerical range of coordinates on a variety of 3D scenes.

Here, first, we aim to quantify the minimum number of integer bits required to fully capture the

scenes. We then fix the required number of integer bits for all the evaluated precision values, as

10

larger values do not result in improvements in accuracy, while lower values degrade the accuracy

significantly. While there exists scenes, which span a larger numerical range, such scenes can be

scale down to fit within a smaller range.

Similarly, in order to determine the upper bound of the precision design space, in our

evaluations, we increase the number of fraction bits as long as such higher bit-widths result in

higher test accuracy.

Table 1: The impact of precision scaling on the accuracy of the Crytek Sponza scene.

Table 1 summarizes the results from our evaluations. Here, we report the results for the

Crytek Sponza scene. We will provide more details about the scenes in Setup. In this table, (w,f)

indicate the fixed-point bit width, and the number of fraction bits, respectively. In addition, we

11

report the number of correct test classifications, missed hits (hits that where misclassified as a miss

due to reduced precision), and false hits (defined as the number of hits classified as a hit by mistake

due to lower precision). Lastly, we also report error, which quantifies the percentage of wrong

classifications in reference to a 32-bit floating-point design.

In our experiments, we observed that 16 integer bits, provides enough range to correctly

capture the entire scene. Therefore, we fix the integer bits to equal 16, and explore the design space

by increasing the number of fraction bits.

For fraction bits, we cover a large range starting from only four, and stopping when

increasing the number of fraction does not increase the accuracy. In our evaluations, 26 fraction

bits failed to increase the accuracy beyond what 24 fraction bits offered. As a result, in our design

space exploration, we evaluate a range of bit-widths from 20 (16+4) and up to 40 (16+24) bits.

Having a large number of fractional bits is essential in order to preserve depths accurately. If a

triangle is directly behind another, such as a rug on a floor, then precision errors can make the

underlying triangle appear on top otherwise.

The hit classification accuracy for these precision values range from an error rate of 88%

for 20-bit fixed point to a negligible 0.003% for the highest precision. These results highlight the

significance of fraction bits in rendering quality. Such a large range enables the dual-precision

methodology described in the next section.

12

4.2 Duel Precision Methodology

From Table 1, we derive one of the main observation of this work, where we find that the

majority of the ray-triangle tests can be correctly classified with reduced precision, whereas a

minor subset of the tests here referred to as critical tests will be misclassified with reductions in

precision.

For determining the criticality of a ray-triangle intersection test, we observe that the

overwhelming majority of the misclassifications occur in cases where (1) the barycentric

coordinates of the ray-plane hit is in proximity to one of the edges, or (2) when comparing the

depths between two closely stacked triangles. The latter case is a result of the limited precision of

the reciprocal operation required to compute depth, which amplifies precision errors in preceding

computations. We observed that attempting to reduce the precision of depth calculations left too

many rays misclassified, and made thresholding to determine their critically unfeasible. However,

we observed that computation of the barycentric coordinates could be successfully thresholded

and reran.

The most damaging barycentric coordinate errors are rays that hit triangles in full-precision

implementation but miss with reduced precision. These errors can cause gaps between

neighboring triangles and at corners. Algorithms that guarantee that this does not happen along

shared edges/corners are known as watertight. To maximize the effectiveness of our threshold,

we only classify rays as critical if a barycentric coordinate is both near zero and is negative. We

do this rather than a symmetric threshold around zero to keep with the ultra-low power design

principles. This thresholding scheme does not consider recomputing rays that could be potential

false positives, as these generally are less damaging to the overall scene.

13

(1)

(2)

(3)

In this light, we propose a dual-precision architecture where for the dominant non-critical

tests the low-precision computing units are utilized whereas the high-precision component is

activated if a test is deemed critical. Here, we base the choice of the two precisions on the study

performed as described in the previous section.

Specifically, after the computation of the intersection's barycentric coordinates (U, V, and

W), we can threshold against value theta:

𝑈 + 𝜃 > 0	𝑎𝑛𝑑	𝑉 + 	𝜃 > 0	𝑎𝑛𝑑	𝑊 + 	𝜃 > 0	

𝑈 < 0	𝑎𝑛𝑑	𝑉 < 0	𝑎𝑛𝑑	𝑊 < 0

If both of these conditions are met, then the ray is determined to be critical. We determine

theta empirically from scene characterization.

In our proposed thresholding scheme, the low precision unit will simultaneously compute

the depths at the high fixed-point precision, while computing the barycentric coordinates using a

lower precision. After computation, if the ray is determined to be critical, we rerun the barycentric

coordinates at high precision at a cost of EHigh. Thus, the effective energy cost per ray is:

𝐸(𝑝) = 𝐸!"# + 𝑒𝑟𝑟𝑜𝑟(𝑝)𝐸$%&'

Where p is the low precision, ELow and EHigh are the energy costs of the low and high

precision intersector units respectively, and error(p) is the error rate of the low precision unit. One

hand, the lower the precision p, the higher the error, and as a result more rays will need to be

executed on the high precision unit to maintain image integrity, increasing energy costs. On the

other hand, the higher the precision p, the lower will be the error rate; however, the baseline low

precision unit will use more energy as it will be larger. This yields an optimization problem, where

we search for pMin the saves the total energy.

14

In our test cases, we evaluated our threshold choice through observation of the absolute

number of rays still misclassified, as well as the SSIM (Structural Similarity Index) of the image

compared to full precision. For our best design (32-16), a threshold of ~0.07 provided a good

balance between striving for the greatest accuracy and hardware costs.

15

4.3 Hardware Design

Figure 1: The architecture of the proposed hardware accelerator

We also fully design and implement our proposed methodology in hardware and evaluates

the hardware metrics. Figure 1 illustrates the main components of the proposed hardware

accelerator and their relationship to each other. As illustrated in the figure, we implement two data

path pipelines, a low precision pipeline path and a high precision pipeline path, in conjugation with

each other, where at any given time only one of the two precision paths is enabled, while the other

is clock gated to reduce its power consumption. In this work, we implement a coarse-grain

approach to clock gating, where the entire modules are clock gated, whereas alternatively, one can

16

implement a fine-grain clock gating scheme where the higher bits of a single computing unit are

clock gated to achieve the same dual-precision effect.

Furthermore, each computing pipeline consists of three staged units, mimicking the

architecture of the HVVR CUDA Implementation (Facebook, 2017). These three modules are: tile

setup unit, where the triangles are first loaded, ray setup unit, where pre-computation is performed

to determine the depth of the triangle compared to the ray origin, and ray-triangle test unit, where

the actual intersection test in performed. Within our hardware implementation, it is assumed that

for a given frame, the intersection accelerator will be computing sets of rays with a shared and

known origin as is the case in augmented and virtual reality applications.

Given the triangle setup unit's computations all contribute directly towards the depth

calculations, we perform all of its computations at high precision. Based on our profiling analysis

of system calls (quantified in Results Section), we see that tile computations are between 5-10%

as frequent as ray tests, so running these computations exclusively at high precision does not

contribute significantly to the total power cost.

In our current implementation, the hardware computes the intersection using low-precision

unit and returns the results back to software, where in accordance to the thresholding methodology

previously described, the software activates the accelerator using the high-precision computing

pipeline as required.

Finally, we note that we base our hardware design on the HVVR intersector, which

inherently is not a watertight algorithm. We chose to avoid implementing a watertight algorithm

as we are aiming for a design that operates within ultra-low-power budgets. We leave

investigations into adding water-tightness to future work.

17

5. Results

5.1 Experimental Setup

We evaluate our methodology in terms of scene, accuracy, and hardware metrics (i.e.

power, energy, design area). To measure accuracy we use hit accuracy, where we quantify the

percentage of rays that have been misclassified. Furthermore, as a more perception-based metric,

we also report the structural similarity index (SSIM) for all our experiments. We implement the

proposed hardware designs in Verilog, and synthesize using Synopsys Design Compiler using the

7nm Arizona State Predictive PDK (ASAP7) in nominal processing corner.

For our tests, we use three well-recognized open-source scenes commonly used in the field,

namely, Crytek Sponza, Conference Room, and Stanford Bunny (McGuire, 2017). Table 2 gives

the number of objects and vertices, for each of our three test cases.

Table 2: The characteristics of the three evaluated scenes

 along with a representative image capture

18

5.2 Impact of Precision Scaling on Hardware Metrics

We implement and evaluate the hardware metrics for the precisions considered in the

previous section. Since reducing the precision to 26-bits or below that significantly reduced the

scene accuracy, moving forward, we only consider fixed-point precisions with more than 26-bits.

Here we evaluate each of these hardware designs separately, and leave the evaluation as part of

the dual-precision accelerator to a later section. Table 3 summarizes the hardware metrics obtained

from our hardware accelerator.

As shown in the table, reducing the precision significantly reduces the hardware footprint

and energy consumption. However, as discussed in the previous subsection, such reductions also

result in depredations in quality of results. Therefore, the proposed dual-precision design can strike

a balance between the two scenarios. In our work, as suggested by our experiments, we choose

(40,24) for high precision unit (HPU) and (32,16) for the low precision unit (LPU). Next, we

demonstrate, empirically, how the proposed thresholding scheme can be utilized to enable our

methodology.

19

5.3 Evaluation of Duel-Precision Methodology

Table 3: The impact of precision scaling on the hardware cost

Table 4: The number of flagged tests, and misclassifications caught

for different precision of LPU (HPU is fixed to (40,24)).

20

As described in Methodology, in order to find a balance between the number of flagged

ray-triangle tests and the number of flagged misclassifications, we perform a study based on the

distribution of the error for different precision. Table 4 shows the effect of changing threshold on

the percentage of rays flagged for re-examination, as well as the percentage of misclassified tests

corrected with the higher precision.

As indicated in the figure, more conservative thresholds result in a higher number of tests

flagged for reevaluation, while also correcting a higher percentage of the low-precision errors. As

evident from the table, the dual-precision methodology can effectively flag the significant portion

of the tests misclassified in lower precision to be re-evaluated using the HPU. Next, we explore

the hardware cost of such re-evaluations and justify the use of such methodology.

Figure 2 visualizes the restoration of the scene accuracy using the dual-precision methodology

proposed in this work. Here, as demonstrated, a rendering significantly degraded by lower

precision can be recovered to acceptable scene quality. We observe that most of the inaccuracies

at that low precision are due to issues in depth computation rather than barycentric coordinate

error. By running all depth computations at a high precision, we can correct the remaining errors

through flagging rays closely outside of the edges of the triangles.

21

Figure 2: Low Precision (28 Bit) Figures from scenes,

without (left) and with (right) correction.

22

5.4 Hardware Cost Evaluation

Table 5: The profiled numbers of accelerator calls for different scenes.

In order to examine the number of computation required, we profile the HVVR CUDA

implementation, therefore extracting the number of calls to each of hardware unit accelerators.

Table 5 summarizes our results. As discussed in previous sections, millions of calls to each of the

accelerators in required for the rendering of a single scene. Such significant numbers, results in

consequential benefits when lower precision is utilized.

Figure 3: Energy per test for the proposed dual-precision design.

Floating Point Energy is 82.5pJ

23

Finally, Figure 3 plots the energy per ray as a function of the number of low precision bits

as given by Equation 3. The Energy per Ray calculation assumes the percentages of rays flagged

though thresholding determined in Table 4. The benefits demonstrated in this figure clearly

highlight the significant benefits achieved using our dual precision methodology.

24

6. Conclusions

In this work, we proposed a dual-precision fixed-point ray-triangle intersection accelerator,

where the majority of tests are performed on the lower precision, whereas only tests that are

deemed critical utilize higher precision. To enable such a framework, we investigated a broad

range of fixed-point arithmetic precision, and identify the optimal low precision that minimize

total power consumption. We also developed a thresholding scheme where the criticality of the

tests is determined. We fully implemented our proposed design in hardware using industrial tool

flows and libraries and evaluated the accuracy and the hardware metrics offered by our

methodology. As discussed, our methodology enables energy benefits of up to 86% with a minimal

scene accuracy degradation of 0.1%, translating to an SSIM difference of 0.0001.

25

7. Appendix

7.1 Sponza Scene Images at Fixed Point: Bit Precisions 28-40

Figure 4: Sponza Scene: Fixed point (28,12) Bits

Figure 5: Sponza Scene: Fixed point (30,14) Bits

26

Figure 6: Sponza Scene: Fixed point (32,16) Bits

Figure 7: Sponza Scene: Fixed point (34,18) Bits

27

Figure 8: Sponza Scene: Fixed point (36,20) Bits

Figure 9: Sponza Scene: Fixed point (38,22) Bits

28

Figure 10: Sponza Scene: Fixed point (40,24) Bits

29

References

Bauszat, P. a. (2010). The Minimal Bounding Volume Hierarchy. VMV, (pp. 227--234).

Cline, D. a. (2006). Lightweight bounding volumes for ray tracing. Journal of Graphics Tools, 61-

-71.

Eisemann, M. a. (2008). Ray Tracing with the Single Slab Hierarchy. VMV, (pp. 373--381).

Fabianowski, B. a. (2009). Compact BVH storage for ray tracing and photon mapping. Proc. of

Eurographics Ireland Workshop, (pp. 1--8).

Facebook. (2017). HVVR: Hierarchical Visibility for Virtual Reality. GitHub. Retrieved from

https://github.com/facebookresearch/HVVR

Fascione, L. a. (2018). Path Tracing in Production. ACM SIGGRAPH 2018 Courses (pp. 15:1--

15:79). Vancouver, British Columbia, Canada: SIGGRAPH.

Hanika, J., & Keller, A. (2007). Towards Hardware Ray Tracing using Fixed Point Arithmetic.

2007 IEEE Symposium on Interactive Ray Tracing, (pp. 119-128).

Heinly, J. a. (2009). Integer Ray Tracing. J. Graphics, GPU, and Game Tools, (pp. 31-56).

Hunt, W. a. (July 2018). Hierarchical Visibility for Virtual Reality. Proc. ACM Comput. Graph.

Interact. Tech., 8:1--8:18.

Hwang, S. J.-J. (2015). A mobile ray tracing engine with hybrid number representations. (p. 3).

ACM.

30

Keely, S. (2014). Reduced Precision for Hardware Ray Tracing in GPUs. Proceedings of High

Performance Graphics (pp. 29--40). Goslar Germany, Germany: Eurographics

Association.

Keely, S., & Fussell, D. (2018). Reduced Precision Ray-Triangle Intersection Filtering.

Keller, A. a.-J. (2013). Ray Tracing is the Future and Ever Will Be... ACM SIGGRAPH 2013

Courses (pp. 9:1--9:7). New York, NY, USA: ACM.

Kensler, A. a. (2006). Optimizing Ray-Triangle Intersection via Automated Search. Symposium

on Interactive Ray Tracing, 33-38.

Kim, D., Nah, J.-H., & Park, W.-C. (2016). Geometry Transition Method to Improve Ray-tracing

Precision},. Multimedia Tools Appl., 5689--5700.

Kim, T.-J., Moon, B., Kim, D., & Yoon, S.-E. (2009). RACBVHs: Random-accessible

Compressed Bounding Volume Hierarchies. SIGGRAPH 2009: Talks (pp. 46:1--46:1).

New York, NY, USA: ACM.

Lee, W.-J. a.-W.-H.-S.-D. (2013). SGRT: A Mobile GPU Architecture for Real-time Ray Tracing.

Proceedings of the 5th High-Performance Graphics Conference (pp. 109--119). New

York, NY, USA: ACM.

Mahovsky, J. a. (2006). Memory-conserving bounding volume hierarchies with coherent

raytracing. Computer Graphics Forum (pp. 173--182). Wiley Online Library.

McGuire, M. (2017, July). Computer Graphics Archive. Retrieved from https://casual-

effects.com/data

31

NVIDIA. (2018). NVIDIA TURING GPU ARCHITECTURE, Graphics Reinvented. Retrieved

from https://www.nvidia.com/content/dam/en-zz/Solutions/design-

visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-

Whitepaper.pdf

Segovia, B. a. (2010). Memory Efficient Ray Tracing with Hierarchical Mesh Quantization.

Proceedings of Graphics Interface 2010 (pp. 153--160). Toronto, Ont., Canada, Canada:

Canadian Information Processing Society.

Tomas Akenine-Möller, E. H. (2018). Real-Time Rendering 4th Edition. Florida: A K Peters/CRC

Press.

Vaidyanathan, K. a.-M. (2016). Watertight Ray Traversal with Reduced Precision. Proceedings of

High Performance Graphics (pp. 33--40). Goslar Germany, Germany: Eurographics

Association.

