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1. Abstract: 

Ray-Triangle intersection is a fundamental computation in most ray tracing algorithms. 

The prohibitive cost of the ray-triangle test algorithms, however, limits the utilization of these 

algorithms in settings with low power budgets, such as mobile systems. In this thesis, we analyze 

the precision requirements for ray-triangle intersection.  We observe that for most rays, a low 

precision algorithm is sufficient, and only a small fraction of rays require higher precision 

computations. Accordingly, we propose a dual-precision hardware accelerator for ray-triangle 

intersection, targeting low-power systems.  In this architecture, the higher resolution is activated 

only for tests deemed critical by our algorithm. Towards this goal, we develop a thresholding 

technique that autonomously switches between the lower and higher precisions. The lower 

precision unit is used for the majority of the tests, resulting in significant benefits in power 

consumption. We evaluate our methodology on a representative set of scenes, and implement our 

proposed methodology in hardware. The proposed methodology offers benefits of up to 86% in 

energy consumption compared to a baseline full-precision (floating-point) design. 
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2. Introduction: 

Ray tracing is the basic algorithm with which movie special effects are created (Fascione, 

2018), and is approaching the general consumer market with the recent advent of NVIDIA's RTX 

GPUs (NVIDIA, 2018), providing advanced effects for real-time games.  It has also been shown 

to enable efficient algorithms for lens distortion, wide field of view, foveation, and depth of field 

for use in virtual and augmented reality (Hunt, July 2018).  Making real-time ray tracing available 

for low power hardware will bring the richness of physically based rendering and efficient 

algorithms to mobile devices.  The cost for providing higher accuracy and realism, however, is 

that ray-tracing algorithms require significantly higher computational costs, which limit their 

application under both tight power budgets and real-time applications.  Such scenarios are 

increasingly abundant in both mobile and virtual/augmented reality platforms, which include 

wearable devices, with no external computation platform.  A high-performance ray tracer requires 

optimization of several components, including ray traversal through acceleration structures to find 

intersections, and computation of intersection coordinates. There exists a long history of research 

into these real-time algorithms for software systems (Tomas Akenine-Möller, 2018) and research 

into potential dedicated hardware systems (Hanika & Keller, 2007) (Keely & Fussell, 2018) 

(Vaidyanathan, 2016).  In real-time systems, triangles are the dominant surface primitive, and ray 

triangle intersection is the core operation that benefits most from custom hardware design 

(NVIDIA, 2018).  In this thesis, we focus on reducing the power usage of the ray-triangle 

intersection computations, moving towards the goal of making ray tracing possible on low-power 

systems. 

To enable the use of ray tracing algorithms under tight power constraints, we propose a 

dual-precision mechanism where an intersection test can be performed in either low or high 
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precision.  This is dependent on the criticality of the intersection, which is classified using a 

thresholding scheme. Overall, the contributions of our work are as follows. 

First, we perform a detailed and thorough evaluation of the precision requirements of ray 

triangle intersect algorithms. Using an industrial ray tracing package, we evaluate a large range of 

fixed-point arithmetic precisions, and compare the accuracy against the gold standard floating-

point precision. From our evaluation, we observe that the majority of the ray-triangle tests can be 

properly classified with a reduced number of fixed-point bits.  Only a minority of critical ray 

intersections require higher precision to resolve correctly.  To provide realistic results compatible 

with the requirements of current applications, we modify HVVR (Hierarchical Visibility for 

Virtual Research), an open source industrial strength ray-tracing implementation, produced by 

Facebook (Facebook, 2017).  HVVR by default performs its computations on a GPU in single-

precision floating point; we modify it to utilize fixed-point computations, allowing for profiling 

and precision analysis.  We also investigate the impact of reduced precision on hardware metrics.  

Enabled by our evaluation analysis, we devise an analytical formulation that can identify the 

optimal low precision  and high precision requirements  to minimize total power consumption. 

Accordingly, we designs and implement a dual-precision ray triangle intersection accelerator, 

where the majority of intersections are performed in low precision and the higher precision is only 

activated when necessitated for accuracy.  

To enable switching between low precision and high precision accelerator units during 

runtime, we formulate a thresholding methodology where the criticality of a test is assessed and 

the higher-precision unit is activated if necessary. Our methodology detects thresholds in which a 

delicate balance between accuracy and computation is struck. 
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We fully implement our proposed dual-precision architecture as a hardware accelerator using 

a full industrial design tool chain using 7 nm technology, and report the improvements in power 

consumption and other design metrics using our methodology. 

The rest of the thesis is organized as follows: First in Previous Work, we briefly overview the 

recent work relevant to our study. Next, Methodology describes the precisions studied and the 

detailed discussion of the dual-precision methodology.  Results summarizes our experimental 

results and highlights the benefits that this methodology provides.  Here, we also provide the 

results obtained from the hardware accelerator. Finally, Conclusions concludes the thesis by 

summarizing the main components of the thesis. 
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3. Previous Works: 

In recent years, many works have studied efficient realizations for ray-tracing algorithms 

on custom as well as traditional hardware (Keely S. , 2014) (Keely & Fussell, 2018) (Lee, 2013) 

(Keller, 2013) (Vaidyanathan, 2016). In these work, the underlying principle is either relying on 

software for performing the intersection tests (Keely S. , 2014), or on adding extra full-precision 

floating-point units (FPUs) (Lee, 2013) (Hwang, 2015). 

Many studies have also investigated different approaches to reduce the power and 

computation demands of ray-tracing algorithms. Methodologies based on compression of triangle 

data structures (Cline, 2006) (Kim, Moon, Kim, & Yoon, 2009) (Mahovsky, 2006) (Segovia, 

2010), reducing memory footprint using implicit indexing (Bauszat, 2010), reducing the number 

of stored planes per node (Eisemann, 2008) (Fabianowski, 2009), or transformations aiming at 

increasing floating-point precision (Kim, Nah, & Park, 2016) have been explored. Studies of 

reduced precision hardware accelerators have also been proposed (Hanika & Keller, 2007) 

(Heinly, 2009) (Vaidyanathan, 2016). While utilization of lower bit-width fixed-point arithmetic 

can significantly reduce the complexity as well as memory and computation footprint of the ray-

tracing algorithm, careful consideration is required to minimize the accuracy impact. In contrast 

to these work, we propose a dual-precision methodology, where two different precisions are 

utilized within the same hardware accelerator. Enabled by the principal observation that the 

majority of the ray-triangle tests are correctly classified using reduced precision and lowering the 

precision only results in intersection error in critical cases. This key observation enables a scheme, 

in which the higher resolution circuitry is only enabled if the test is deemed critical by our 

thresholding methodology. 
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A  hybrid approach has recently been proposed by Hwang et al. (Hwang, 2015) where both 

fixed-point and floating-point representations are utilized. Our proposed hardware differs from 

theirs as we utilize two lower-cost fixed-point precision instead of a fixed-point component along 

with a full-precision floating-point component. Furthermore, in our methodology the higher 

precision is only activated when required for accuracy. Next, in Methodology, we describe our 

methodology and hardware implementation in detail. 
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4. Methodology 

4.1 Precision Design Exploration 

While floating-point arithmetic is typically restricted to follow specific precision, namely, 

half-precision (16 bits), full-precision (32 bits), or double-precision (64 bits), fixed-point 

arithmetic offers the flexibility to customize the bit-width as required by the application. 

Furthermore, fixed-point computations are inherently less complex than their floating-point 

counterparts are. As such, fixed-point arithmetic provides a more fine-grain and efficient approach 

to computations as long as the operands do not exhibit a large dynamic range. Due to the larger 

design space of possible fixed-point precision, an effective exploration of the possible precision 

space is required to quantify, both the resulting accuracy and hardware metrics, as the precision is 

changed. In this work, we first examine the impact of precision scaling in ray-triangle intersection 

applications. This thesis both inspires the proposed dual-precision methodology and guides the 

choice of the higher precision (HP) and lower precision (LP) computing units.  

To evaluate the impact of precision scaling in a realistic setting, we modify the well-

established HVVR tool from Facebook Reality Labs (Facebook, 2017) to use fixed-point 

computations. The tool uses the Kensler (Kensler, 2006) approach to determining ray-triangle 

intersections. Through modification of the HVVR code, we explore the impact of reduced fixed-

point precision on three scenes.  

To decide the range of bit-widths required for our evaluations, through modification of the 

HVVR code, we perform a study of the numerical range of coordinates on a variety of 3D scenes. 

Here, first, we aim to quantify the minimum number of integer bits required to fully capture the 

scenes. We then fix the required number of integer bits for all the evaluated precision values, as 
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larger values do not result in improvements in accuracy, while lower values degrade the accuracy 

significantly. While there exists scenes, which span a larger numerical range, such scenes can be 

scale down to fit within a smaller range.  

Similarly, in order to determine the upper bound of the precision design space, in our 

evaluations, we increase the number of fraction bits as long as such higher bit-widths result in 

higher test accuracy. 

 

Table 1: The impact of precision scaling on the accuracy of the Crytek Sponza scene. 

Table 1 summarizes the results from our evaluations. Here, we report the results for the 

Crytek Sponza scene. We will provide more details about the scenes in Setup. In this table, (w,f) 

indicate the fixed-point bit width, and the number of fraction bits, respectively. In addition, we 
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report the number of correct test classifications, missed hits (hits that where misclassified as a miss 

due to reduced precision), and false hits (defined as the number of hits classified as a hit by mistake 

due to lower precision). Lastly, we also report error, which quantifies the percentage of wrong 

classifications in reference to a 32-bit floating-point design. 

In our experiments, we observed that 16 integer bits, provides enough range to correctly 

capture the entire scene. Therefore, we fix the integer bits to equal 16, and explore the design space 

by increasing the number of fraction bits. 

For fraction bits, we cover a large range starting from only four, and stopping when 

increasing the number of fraction does not increase the accuracy. In our evaluations, 26 fraction 

bits failed to increase the accuracy beyond what 24 fraction bits offered. As a result, in our design 

space exploration, we evaluate a range of bit-widths from 20 (16+4) and up to 40 (16+24) bits.  

Having a large number of fractional bits is essential in order to preserve depths accurately. If a 

triangle is directly behind another, such as a rug on a floor, then precision errors can make the 

underlying triangle appear on top otherwise.   

The hit classification accuracy for these precision values range from an error rate of 88% 

for 20-bit fixed point to a negligible 0.003% for the highest precision. These results highlight the 

significance of fraction bits in rendering quality. Such a large range enables the dual-precision 

methodology described in the next section. 
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4.2 Duel Precision Methodology 

From Table 1, we derive one of the main observation of this work, where we find that the 

majority of the ray-triangle tests can be correctly classified with reduced precision, whereas a 

minor subset of the tests here referred to as critical tests will be misclassified with reductions in 

precision. 

For determining the criticality of a ray-triangle intersection test, we observe that the 

overwhelming majority of the misclassifications occur in cases where (1) the barycentric 

coordinates of the ray-plane hit is in proximity to one of the edges, or (2) when comparing the 

depths between two closely stacked triangles.  The latter case is a result of the limited precision of 

the reciprocal operation required to compute depth, which amplifies precision errors in preceding 

computations.  We observed that attempting to reduce the precision of depth calculations left too 

many rays misclassified, and made thresholding to determine their critically unfeasible.  However, 

we observed that computation of the barycentric coordinates could be successfully thresholded 

and reran. 

The most damaging barycentric coordinate errors are rays that hit triangles in full-precision 

implementation but miss with reduced precision.  These errors can cause gaps between 

neighboring triangles and at corners.  Algorithms that guarantee that this does not happen along 

shared edges/corners are known as watertight.  To maximize the effectiveness of our threshold, 

we only classify rays as critical if a barycentric coordinate is both near zero and is negative.  We 

do this rather than a symmetric threshold around zero to keep with the ultra-low power design 

principles.  This thresholding scheme does not consider recomputing rays that could be potential 

false positives, as these generally are less damaging to the overall scene. 
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(1) 

(2) 

(3) 

In this light, we propose a dual-precision architecture where for the dominant non-critical 

tests the low-precision computing units are utilized whereas the high-precision component is 

activated if a test is deemed critical. Here, we base the choice of the two precisions on the study 

performed as described in the previous section. 

Specifically, after the computation of the intersection's barycentric coordinates (U, V, and 

W), we can threshold against value theta: 

𝑈 + 𝜃 > 0	𝑎𝑛𝑑	𝑉 + 	𝜃 > 0	𝑎𝑛𝑑	𝑊 + 	𝜃 > 0	

𝑈 < 0	𝑎𝑛𝑑	𝑉 < 0	𝑎𝑛𝑑	𝑊 < 0 

If both of these conditions are met, then the ray is determined to be critical. We determine 

theta empirically from scene characterization.  

In our proposed thresholding scheme, the low precision unit will simultaneously compute 

the depths at the high fixed-point precision, while computing the barycentric coordinates using a 

lower precision.  After computation, if the ray is determined to be critical, we rerun the barycentric 

coordinates at high precision at a cost of EHigh. Thus, the effective energy cost per ray is: 

𝐸(𝑝) = 𝐸!"# + 𝑒𝑟𝑟𝑜𝑟(𝑝)𝐸$%&' 

Where p is the low precision, ELow and EHigh are the energy costs of the low and high 

precision intersector units respectively, and error(p) is the error rate of the low precision unit.   One 

hand, the lower the precision p, the  higher the error, and as a result more rays will need to be 

executed on the high precision unit to maintain image integrity, increasing energy costs. On the 

other hand, the higher the precision p, the lower will be the error rate; however, the baseline low 

precision unit will use more energy as it will be larger. This yields an optimization problem, where 

we search for pMin the saves the total energy. 
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In our test cases, we evaluated our threshold choice through observation of the absolute 

number of rays still misclassified, as well as the SSIM (Structural Similarity Index) of the image 

compared to full precision.  For our best design (32-16), a threshold of ~0.07 provided a good 

balance between striving for the greatest accuracy and hardware costs.  
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4.3 Hardware Design 

 

Figure 1: The architecture of the proposed hardware accelerator 

We also fully design and implement our proposed methodology in hardware and evaluates 

the hardware metrics. Figure 1 illustrates the main components of the proposed hardware 

accelerator and their relationship to each other.  As illustrated in the figure, we implement two data 

path pipelines, a low precision pipeline path and a high precision pipeline path, in conjugation with 

each other, where at any given time only one of the two precision paths is enabled, while the other 

is clock gated to reduce its power consumption. In this work, we implement a coarse-grain 

approach to clock gating, where the entire modules are clock gated, whereas alternatively, one can 
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implement a fine-grain clock gating scheme where the higher bits of a single computing unit are 

clock gated to achieve the same dual-precision effect. 

Furthermore, each computing pipeline consists of three staged units, mimicking the 

architecture of the HVVR CUDA Implementation (Facebook, 2017). These three modules are: tile 

setup unit, where the triangles are first loaded, ray setup unit, where pre-computation is performed 

to determine the depth of the triangle compared to the ray origin, and ray-triangle test unit, where 

the actual intersection test in performed. Within our hardware implementation, it is assumed that 

for a given frame, the intersection accelerator will be computing sets of rays with a shared and 

known origin as is the case in augmented and virtual reality applications. 

Given the triangle setup unit's computations all contribute directly towards the depth 

calculations, we perform all of its computations at high precision.  Based on our profiling analysis 

of system calls (quantified in Results Section), we see that tile computations are between 5-10% 

as frequent as ray tests, so running these computations exclusively at high precision does not 

contribute significantly to the total power cost. 

In our current implementation, the hardware computes the intersection using low-precision 

unit and returns the results back to software, where in accordance to the thresholding methodology 

previously described, the software activates the accelerator using the high-precision computing 

pipeline as required. 

Finally, we note that we base our hardware design on the HVVR intersector, which 

inherently is not a watertight algorithm. We chose to avoid implementing a watertight algorithm 

as we are aiming for a design that operates within ultra-low-power budgets. We leave 

investigations into adding water-tightness to future work.  
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5. Results 

5.1 Experimental Setup 

We evaluate our methodology in terms of scene, accuracy, and hardware metrics (i.e. 

power, energy, design area).  To measure accuracy we use hit accuracy, where we quantify the 

percentage of rays that have been misclassified.  Furthermore, as a more perception-based metric, 

we also report the structural similarity index (SSIM) for all our experiments.  We implement the 

proposed hardware designs in Verilog, and synthesize using Synopsys Design Compiler using the 

7nm Arizona State Predictive PDK (ASAP7) in nominal processing corner. 

For our tests, we use three well-recognized open-source scenes commonly used in the field, 

namely, Crytek Sponza, Conference Room, and Stanford Bunny (McGuire, 2017). Table 2 gives 

the number of objects and vertices, for each of our three test cases. 

 

Table 2: The characteristics of the three evaluated scenes 

 along with a representative image capture 
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5.2 Impact of Precision Scaling on Hardware Metrics 

We implement and evaluate the hardware metrics for the precisions considered in the 

previous section. Since reducing the precision to 26-bits or below that significantly reduced the 

scene accuracy, moving forward, we only consider fixed-point precisions with more than 26-bits. 

Here we evaluate each of these hardware designs separately, and leave the evaluation as part of 

the dual-precision accelerator to a later section.  Table 3 summarizes the hardware metrics obtained 

from our hardware accelerator. 

As shown in the table, reducing the precision significantly reduces the hardware footprint 

and energy consumption. However, as discussed in the previous subsection, such reductions also 

result in depredations in quality of results. Therefore, the proposed dual-precision design can strike 

a balance between the two scenarios. In our work, as suggested by our experiments, we choose 

(40,24) for high precision unit (HPU) and (32,16) for the low precision unit (LPU). Next, we 

demonstrate, empirically, how the proposed thresholding scheme can be utilized to enable our 

methodology. 
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5.3 Evaluation of Duel-Precision Methodology 

 

Table 3: The impact of precision scaling on the hardware cost 

 

Table 4: The number of flagged tests, and misclassifications caught 

for different precision of LPU (HPU is fixed to (40,24)). 
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As described in Methodology, in order to find a balance between the number of flagged 

ray-triangle tests and the number of flagged misclassifications, we perform a study based on the 

distribution of the error for different precision. Table 4 shows the effect of changing threshold on 

the percentage of rays flagged for re-examination, as well as the percentage of misclassified tests 

corrected with the higher precision. 

As indicated in the figure, more conservative thresholds result in a higher number of tests 

flagged for reevaluation, while also correcting a higher percentage of the low-precision errors. As 

evident from the table, the dual-precision methodology can effectively flag the significant portion 

of the tests misclassified in lower precision to be re-evaluated using the HPU. Next, we explore 

the hardware cost of such re-evaluations and justify the use of such methodology. 

Figure 2 visualizes the restoration of the scene accuracy using the dual-precision methodology 

proposed in this work. Here, as demonstrated, a rendering significantly degraded by lower 

precision can be recovered to acceptable scene quality. We observe that most of the inaccuracies 

at that low precision are due to issues in depth computation rather than barycentric coordinate 

error. By running all depth computations at a high precision, we can correct the remaining errors 

through flagging rays closely outside of the edges of the triangles. 
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Figure 2: Low Precision (28 Bit) Figures from scenes,  

without (left) and with (right) correction. 
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5.4 Hardware Cost Evaluation 

 

Table 5: The profiled numbers of accelerator calls for different scenes. 

In order to examine the number of computation required, we profile the HVVR CUDA 

implementation, therefore extracting the number of calls to each of hardware unit accelerators. 

Table 5 summarizes our results. As discussed in previous sections, millions of calls to each of the 

accelerators in required for the rendering of a single scene. Such significant numbers, results in 

consequential benefits when lower precision is utilized. 

 

Figure 3: Energy per test for the proposed dual-precision design. 

Floating Point Energy is 82.5pJ 
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Finally, Figure 3 plots the energy per ray as a function of the number of low precision bits 

as given by Equation 3.  The Energy per Ray calculation assumes the percentages of rays flagged 

though thresholding determined in Table 4. The benefits demonstrated in this figure clearly 

highlight the significant benefits achieved using our dual precision methodology.  
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6. Conclusions 

In this work, we proposed a dual-precision fixed-point ray-triangle intersection accelerator, 

where the majority of tests are performed on the lower precision, whereas only tests that are 

deemed critical utilize higher precision. To enable such a framework, we investigated a broad 

range of fixed-point arithmetic precision, and identify the optimal low precision that minimize 

total power consumption. We also developed a thresholding scheme where the criticality of the 

tests is determined. We fully implemented our proposed design in hardware using industrial tool 

flows and libraries and evaluated the accuracy and the hardware metrics offered by our 

methodology. As discussed, our methodology enables energy benefits of up to 86% with a minimal 

scene accuracy degradation of 0.1%, translating to an SSIM difference of 0.0001.  
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7. Appendix 

7.1 Sponza Scene Images at Fixed Point: Bit Precisions 28-40 

 

Figure 4: Sponza Scene: Fixed point (28,12) Bits 

 

Figure 5: Sponza Scene: Fixed point (30,14) Bits 
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Figure 6: Sponza Scene: Fixed point (32,16) Bits 

 

Figure 7: Sponza Scene: Fixed point (34,18) Bits 
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Figure 8: Sponza Scene: Fixed point (36,20) Bits 

 

Figure 9: Sponza Scene: Fixed point (38,22) Bits 
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Figure 10: Sponza Scene: Fixed point (40,24) Bits 
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