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Abstract of “New Techniques for Power-Efficient CPU-GPU Processors” by Kapil Dev,
Ph.D., Brown University, May 2017

Power is one of the key challenges for improving the performance of modern CPU-GPU

processors. Research efforts are needed at both design-time and run-time of processor to

improve its power efficiency (Performance/Watt). To improve the run-time power man-

agement, accurate measurement based power models are needed. Further, the power ef-

ficiency of CPU-GPU processors for different workloads depends on the type of device

they run on and the run-time conditions of the system [e.g., thermal design power (TDP)

and existence of other workloads]. So, an online workload characterization and mapping

method is needed. Furthermore, for future massively parallel processors, the low power

techniques, like power gating (PG) should be evaluated for their potential benefits before

going through the cost of implementing them.

This thesis makes the following contributions towards improving the performance and

power efficiency of CPU-GPU processors. First, we propose new techniques for post-

silicon power mapping and modeling of multi-core processors using infrared imaging

and performance counter measurements. Using detailed thermal and power maps, we

demonstrate that in contrast to traditional multi-core CPUs heterogeneous processors ex-

hibit higher intertwined behavior for dynamic voltage and frequency scaling (DVFS) and

workload scheduling, in terms of their effect on performance, power and temperature.

Second, we propose a framework to map workloads on appropriate device of CPU-GPU

processors under different static and time-varying workload/system conditions. We im-

plement the scheduler on a real CPU-GPU processor, and using OpenCL benchmarks, we

demonstrate up to 24% runtime improvement and 10% energy savings compared to the

state-of-the-art scheduling techniques. Third, to improve the performance and power ef-

ficiency of future massively parallel GPUs, we provide an integrated solution to manage

leakage power by incorporating workload/run-time-awareness into the PG design method-

ology. On a hypothetical future GPU with 192 compute units, our results show that a PG

viii



granularity of 16 CU per cluster achieves 99% peak run-time performance without the

excessive 53% design-time area overhead of per-CU PG. Further, we demonstrate that the

incorporation of design-awareness into the run-time power management can maximize the

benefits of power gating, and improve the overall power efficiency of future processors by

additional 5%.
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Chapter 1

Introduction

1.1 Problem Characterization

Historically, device and technology scaling have helped in improving the performance and

power efficiency (performance per Watt) of computing devices. In 1965, based on the in-

dustry scaling trend at that time, Gordon Moore observed that the number of transistors in

an integrated circuits were approximately doubling every 18 months; this empirical trend

has remained valid so far and is widely known as Moore’s Law [69]. As the transistor gets

smaller, it can switch faster while consuming less power. In 1974, to supplement Moore’s

Law, Dennard et al. provided ideal scaling conditions for metal-oxide-semiconductor

field-effect transistors (MOSFETs) for achieving simultaneous improvement in transistor

density, switching speed and power density [24]. According to the ideal scaling, with the

decrease in transistor size, both voltage and current were also decreased in proportion to

the length of transistor. Since the power requirement of the chip remained proportional

to area, keeping the power density more or less constant. In other words, combined with
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Moore’s Law, Dennard’s scaling implied that power efficiency of circuits would increase

at roughly the same rate as transistor density. Hence, the systematic and predictable tran-

sistor scaling principles setup a roadmap for semiconductor industry in terms of targets

and expectations for coming generations of process technology.

Continuous advances in lithographic techniques and materials have ensured that both

Moore’s Law and Dennard scaling have been followed by the semiconductor industries for

more than three decades. These efforts have even led to multi-core processors providing

higher parallel compute capability in the same or smaller chip sizes. However, recently,

around 2005 time-frame, voltage scaling has reached its lower limit due to threshold volt-

age limits and its exponential dependence on sub-threshold leakage power. As a result,

reductions in feature size no longer guarantee the performance per watt improvements

(power efficiency) [11]. The steady increase in leakage current has not only hurt the power

efficiency, but also increased the power density and risk of thermal run-away conditions,

beyond the capability of current cooling solutions. As a result, new transistor technolo-

gies such as high-dielectrics, metal gates and multiple-gate devices (e.g., FinFETs) have

been introduced to keep improving the power efficiency [11]. FinFETs are shown to de-

crease the leakage power up to 10×, however, they also suffer from internal self-heating

and thermal issues. Due to device physics, the leakage power could be dominant even in

FinFETs because of its exponential dependence on temperature [57, 17, 106]. So, it is

essential to manage the leakage power using improved design-time (e.g., power gating)

and run-time power management algorithms for improving the power efficiency of highly

parallel future processors.

Figure 1.1 shows the evolution of processor architecture over time [94]. In the single-

core era, the performance of processors was improved by device scaling and frequency

scaling. The dynamic power and complexity of logic were the main bottlenecks in this

era. In the post-Dennard era, the clock speed has more or less saturated, so the perfor-

2
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Figure 1.1: Evolution of processor design over time [94].

mance scaling is achieved by improving the power efficiency and energy usage through

other techniques, for example use of multi-core CPU-GPU heterogeneous systems. Ap-

plications are being parallelized to make effective use of multi-core processors. Typically,

different applications and different phases within an application have varying characteris-

tics in terms of amount of parallelism, memory requirement, etc. So, to better meet the

varying needs of applications, modern processors are equipped with heterogeneous com-

pute units (e.g., CPUs and GPUs) integrated on the same die. CPU provides better per-

formance for single threaded and highly branch divergent applications, on the other hand,

GPU provides better performance and power efficiency for data-parallel applications.

GPUs are available in two forms: discrete cards and integration with CPU cores. While

systems with discrete (high-performance and high-power) GPUs are used for getting max-

imum performance for highly parallel applications, integrated heterogeneous processors

offer great balance between performance and power efficiency for a wide range of ap-

plications. Both integrated and discrete GPUs have their unique challenges in terms of

power efficiency. While integrated GPUs have to share power and thermal budget with

the on-die CPU cores, the performance of massively parallel discrete GPUs is limited by

leakage power, thermal design power (TDP), and cooling solutions. As emphasized by

3



Dally, performance scaling depends on how efficiently the TDP is used to perform com-

putations [23]. So, the performance of computing devices in the current heterogeneous era

could be defined as follows:

Performance(ops/s) = Power(W )× Efficiency(ops/Joule). (1.1)

In other words, power-efficiency (Perf/W) is inversely proportional to energy con-

sumption. Minimizing energy is crucial for both low- and high-TDP devices, so it has

become an important metric for across the devices. In this thesis, we come up with tech-

niques that advance the state-of-the-art methods in both experimental and run-time fronts

which could improve the power efficiency of current and future processors.

First, to improve the power efficiency of existing processors, one needs to have a setup

to make reliable measurements of power and performance when it is running real work-

loads. The performance could be measured by either in the form of instructions executed

per second or by direct measurement of total runtime of applications. On the other hand,

measuring power is somewhat challenging. One could use external power meter to mea-

sure the total power being used by the processor, but it does not provide information about

how much power is being dissipated in different blocks of the processor which is essen-

tial for effective power management. For example, in a multi-core processor, one or more

cores might be actively running workloads at a time and other cores might be idle, dissipat-

ing un-necessary leakage power. Depending on the spatial temperature profile of the chip,

leakage power would be different. It is worth mentioning that leakage power does not con-

tribute towards performance, so any technique that reduces leakage power would improve

the overall power efficiency of the processor. Post-silicon thermal measurement based

power mapping techniques have been proposed to analyze the fine-grained power distri-

bution of the chips [42, 67, 91, 21]. The current techniques typically ignore the thermal

profile based leakage power modeling. Also, it is equally important to build block-wise
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reliable power models based on real measurements so that power could be estimated in

real time for runtime power measurement. Overall, we need a framework that could be

used to make measurements on real systems and build reliable power models for different

IP blocks of the processor. The prior work does not provide such complete framework.

As one of the contributions of this thesis, we address some of the challenges of the exist-

ing techniques and provide a complete framework for post-silicon power mapping of both

homogeneous and heterogeneous processors. The specific contributions of the thesis are

listed in section 1.2 of this chapter.

Second, to improve the power efficiency of a heterogeneous system with integrated

CPU-GPU devices, it is important that workloads are launched on the appropriate device.

Different devices provide different performance and energy for a given workload. Fur-

ther, as discussed in this thesis, the runtime and energy of workload not only depend on

the device but also depend on the runtime conditions of the system. For example, if the

processor is running on battery and is in energy saving mode, then a workload can have

its best performance on certain device (e.g., GPU), but if the processor is allowed to dis-

sipate higher power (i.e., higher TDP), then the other device (e.g., CPU) could provide

higher performance at the cost of higher energy. Similarly, the device that minimizes the

performance or energy also depends on the available resources, e.g. number of CPU cores

available for scheduling the workload. If some of the cores are being used by other work-

loads, then the scheduling decision should take that information into account while mak-

ing appropriate scheduling decisions. Existing techniques either make the device decision

statically or do not take dynamically changing system conditions in to account. Therefore,

there is a potential of improving power efficiency of heterogeneous processors by schedul-

ing workloads on appropriate device under time-varying TDP and resource conditions.

In this thesis, we present a framework that provides kernel-level, hardware status-aware

runtime/energy minimization scheduling for CPU-GPU processors during run-time.
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Third, future systems are likely to incorporate GPUs with hundreds of compute units

(CUs) [73]. Emerging trends show that these CUs have to operate under tight power

budgets for safe operating temperatures and avoid excessive leakage power or thermal

runaway. As a result, not all CUs can always be powered on across all applications due

to thermal and power constraints [32]. Further, high-performance computing (HPC) and

other workloads show various amounts of parallelism and scalability trends as a function

of the number of active CUs. As a result, keeping all CUs active at all times will lead to in-

creased power consumption without necessarily providing performance benefits. Thus, it

is necessary to dynamically adjust the number of active CUs, ideally at per-CU granularity,

through power gating (PG) mechanisms based on the run-time requirements of workloads.

Power gating is a technique in integrated circuit design that significantly reduces leakage

power by powering off inactive GPU CUs. However, power gating introduces signifi-

cant design and verification complexity, and area overheads due to the introduction of

header/footer transistors, which if applied liberally in a per-CU manner can either provide

no additional value or negate its benefits. Hence, there is a tradeoff between power gating

design overheads and its run-time performance and power efficiency benefits. We argue

that it is important that design-time power gating granularity decisions need to be aware

of the run-time behavior of the workloads and vice-versa to provide sufficient return on

investment (ROI). In this thesis, we develop an integrated approach towards addressing

power gating challenges in future GPUs.

1.2 Major Contributions of This Thesis

1. New Techniques for Post-silicon Power Mapping and Modeling of Processors:

In this thesis (chapter 3), we propose new techniques for post-silicon power map-

ping and modeling of multi-core processors using infrared imaging and performance
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counter measurements [25]. We devise a novel, accurate finite-element modeling

(FEM) framework to capture the relationship between temperature and power, while

compensating for the artifacts introduced from substituting traditional heat removal

mechanisms with oil-based infrared-transparent cooling mechanisms. Furthermore,

we decompose the per-block power consumption into leakage and dynamic using

a novel thermal conditioning method. Using the leakage power models, we de-

velop a method to analyze within-die leakage spatial variations. We also relate

the actual power consumption of different blocks to the performance monitoring

counter (PMC) measurements using empirical models. Our total estimated power

through infrared-based mapping on a quad-core processor achieve very close re-

sults with an average absolute error of 1.07 W of the measured power. Further,

we use infrared imaging to obtain detailed thermal and power maps of a heteroge-

neous processor. First, we show that the new parallel programming paradigms (e.g.

OpenCL) for CPU-GPU processors create a tighter coupling between the workload

and thermal/power management unit or the operating system. We demonstrate that

in contrast to traditional multi-core CPUs heterogeneous processors exhibit higher

intertwined behavior for dynamic voltage and frequency scaling (DVFS) and work-

load scheduling, in terms of their effect on performance, power and temperature.

Further, by using the floorplan information of the processor to launch a workload on

GPU from an appropriate CPU-core, one can reduce both, the peak temperature (by

11 °C) and the leakage power (by 4 W) of the chip. The findings presented in the

thesis can be used to improve performance and power efficiency of both multi-core

CPU and CPU-GPU heterogenous processors.

2. New Techniques for Online Characterization and Mapping of Workloads on

CPU-GPU Processors: Modern CPU-GPU processors allow us to run workloads

on both CPU and GPU devices simultaneously. In this thesis (chapter 4), we demon-

strate that the runtime and energy of a workload not only depend on the type of
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device we run it on, but also depend on the run-time conditions, e.g. thermal design

power (TDP) budget of the processor and the number of cores available to the work-

load [29]. Furthermore, even under a static system environment, different parallel

kernels within an application can differ in their appropriate scheduling decisions. To

exploit these observations, we propose techniques to map workloads on appropri-

ate device under following static and time-varying workload/system conditions: 1)

considering each kernel of an application separately, 2) modeling the effect of TDP

on workload scheduling, 3) considering the effect of available resources, in partic-

ular number of CPU cores on scheduling. To achieve performance and/or energy-

efficient scheduling in a dynamic system environment, we characterize each kernel

workload online to consider the run-time resource conditions. Further, using learn-

ing models that are trained off-line from carefully selected performance counter

data, our framework uses a computationally light-weight support vector machine

(SVM) to dynamically map individual kernels during run-time on CPU or GPU to

minimize total runtime or energy of the system. The scheduler takes into account

the time-varying TDP budget and use of one or more CPU-cores by other workloads

in to account while making the scheduling decisions. We implement the scheduler

on a real CPU-GPU processor, and using OpenCL benchmarks, we demonstrate up

to 24% runtime improvement and 10% energy savings compared to the state-of-

the-art scheduling techniques.

3. New Techniques for Implementing Power Gating on Massively Parallel Future

GPUs: Future graphics processing units (GPUs) will likely feature hundreds of

compute units (CUs) and be power constrained, which leads to serious challenges

to existing power gating methodologies. In this thesis (chapter 5), we propose

design-time and run-time techniques to effectively implement power gating in future

GPUs [27, 26]. Based on industrial models and measurement facilities, we show

that designers must consider run-time parallelism within potential target workloads
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while implementing power gating designs. This will lead to improvements in per-

formance and power efficiency while minimizing design overheads. Furthermore,

we show that design awareness during run-time power management can optimally

leverage power gating with frequency boosting. By scaling measurements from a re-

cent AMD GPU to a potential future 10 nm technology node, we analyze the impact

of PG granularity on performance and power efficiency of a broad and representative

set of HPC/GPU applications. Our results show that a PG granularity of 16 CU per

cluster achieves 99% peak run-time performance without the excessive 53% design-

time area overhead of per-CU power gating. We also demonstrate that a run-time

power management algorithm that is aware of the PG design granularity leads to up

to 18% additional performance under thermal-design power constraints. Moreover,

the analysis presented in the paper is applicable to other massively parallel system

architectures as well.

The remainder of this thesis is organized as follows. Chapter 2 presents the required

background for power modeling in ICs, challenges in both pre-silicon and post-silicon

power modeling, and related works on power mapping, workload scheduling and low-

power design techniques for CPU-GPU processors. Chapter 3 presents our framework

for post-silicon power mapping of both homogeneous multi-core CPU and heterogeneous

CPU-GPU processors using infrared emissions. In Chapter 4, we provide the detailed

description of proposed online workload characterization and mapping on CPU-GPU pro-

cessors. The benefits of workload-aware power gating design and design-aware run-time

power management algorithm for future massively parallel GPUs are described in chap-

ter 5. Finally, in Chapter 6, we summarize our findings and outline directions for possible

research extensions based on this thesis.
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Chapter 2

Background

2.1 Basics of Power Consumption

Power consumption of a chip could be broken down in to two components: dynamic and

leakage power dissipation. The dynamic power is consumed due to switching activity of

transistors and interconnects. It increases with increase in frequency and operating voltage

of the circuit. Further, it also depends on the effective load capacitance of logic circuits.

Formally, the dynamic power of a circuit is given by

Pdyn =
1

2
αCeffV

2
ddf, (2.1)

where Vdd is the power supply voltage, f is the operating frequency, α is the switching ac-

tivity factor, and Ceff denotes the effective load capacitance of the switching transistors.

Typically, any increase in operating frequency of a logic circuit requires corresponding

increasing in voltage for faster switching of transistors. So, voltage V and frequency f are

the two dominant factors of dynamic power. For the same reason, all modern processors
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have built-in dynamic voltage and frequency scaling (DVFS) features in them that control

the frequency and voltage of the processor based on different workload conditions. When

the workload activity is high, the processor increases the frequency; otherwise, it keeps

the frequency and voltage low to save power. The processor also keeps the voltage and fre-

quency below the maximum operating limits so that the power density and the temperature

of the chip do not exceed the safe limits for a given cooling solution.

The other component of power consumption in processor is static leakage power. The

leakage power is dissipated when the processor is idle and when there is no switching ac-

tivity in the circuit. The dominant component of leakage power (also called sub-threshold

leakage) has exponential dependence on threshold voltage and the temperature. In partic-

ular, the sub-threshold leakage current is given by:

Ilkg = I0e
−qVth
nkT , (2.2)

where, I0 is a constant that depends on the transistor’s geometrical dimensions and pro-

cess technology, n is a number greater than one, q is the electrical carrier charge, k is

the Boltzmann constant, and T is the junction temperature of the transistor. The leakage

power (Vdd×Ilkg) is sensitive to variations in supply voltage, threshold voltage and temper-

ature induced variabilities. Furthermore, the inherent statistical fluctuations in nanoscale

manufacturing have increased within-die process variability, which impacts the leakage

profile of the die. Aggressive device scaling in sub-100 nm technologies has increased

the contribution of leakage power to the total processor power. New transistor technolo-

gies (e.g., FinFETs) have been introduced in below 20 nm process node to mitigate the

sub-threshold leakage power. However, FinFET devices suffer from self-heating and are

prone to thermal runaway due to confinement of the channel, surrounded by silicon diox-

ide, which happens to have lower thermal conductivity compared to bulk silicon [17].

Further, the International Technology Roadmap for Semiconductors (ITRS) predicted that

11



the sub threshold leakage ceiling for FinFET will be comparable to planar bulk MOS-

FETs [57, 106]. Hence, in future massively parallel processors (e.g., GPUs), leakage

power can still be a significant contributor if all compute units are left powered on and

idle at high temperatures. In summary, it is essential to reduce the leakage power and use

the power effectively to maximize the performance and power efficiency of processors.

2.2 Heterogeneous Computing and OpenCL Paradigm

Heterogeneous computing involves the use of different types of processing units for com-

putation. A computation unit can be a general-purpose processing unit (CPU), a graphics

processing unit (GPU), or a special-purpose processing unit [e.g., digital signal processor

(DSP), field programmable gate array (FPGA), etc.]. In the past, CPUs were used for gen-

eral purpose applications and GPUs were mainly used for graphics applications. Recently,

increasing number of applications are being parallelized to leverage the parallel compute

power of GPUs. GPUs are optimized for highly parallel applications. As a result, they are

becoming increasingly popular for general purpose applications. Further, with modern ap-

plications requiring interactions with various types of sensors and systems (e.g., networks,

audios, videos, etc.), applications have different phases optimized for different systems.

Thus integration of CPU with other devices, viz. GPU, FPGA, and DSP, has become a

reality and hence, we have entered in the heterogeneous computing era.

Programming different devices in a heterogeneous system typically involved using

vendor-specific APIs and languages and vice-versa. For example, NVIDIA’s CUDA (short

for Compute Unified Device Architecture) platform was compatible with GPUs from only

NVIDIA [79]. In an effort to establish an open, royalty-free standard for cross-platform,

parallel programming of heterogeneous systems, in June 2008, different industries (Apple,
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AMD, Intel, NVIDIA, IBM, to name a few) came together to form the Khronos Compute

Working Group [75]. Apple submitted the initial proposal to the Khronos Group of its

internally developed OpenCL (Open Computing Language) to the Khronos Group. Af-

ter reviews and approvals from different CPU, GPU, embedded processors, and software

companies, the first revision of OpenCL 1.0 was released in December 2008. Since then

OpenCL has been maintained and refined by the Khronos Group.

The main benefits of OpenCL framework are two folds. First, it allows users to con-

sider all computational resources, such as multi-core CPUs, GPUs, FPGAs, etc. as peer

computational units and correspondingly allocate different levels of memory, taking ad-

vantage of the resources available in the system. Hence, it provides a substantial accelera-

tion in parallel processing. Second, OpenCL provides software portability across different

vendors. It allows the developers to divide the computing problems into mix of concurrent

subsets to run on devices from different vendors without having to rewrite the application.

Recently, NVIDIA has also extended its CUDA to support OpenCL. In this thesis, we use

benchmarks written in OpenCL to run on CPU-GPU processors.

OpenCL Platform and Execution Models. The OpenCL programming language is

based on the ISO C99 specification with some extensions and restrictions. In its plat-

form model, it is assumed that a host is connected to one or more OpenCL devices [3].

Host is typically a CPU and the devices could be GPU, FPGA, DSP, or the CPU itself.

Each device may have multiple compute units, each of which have multiple processing

elements (PEs). Figure 2.1 depicts the OpenCL platform model pictorially. Further, the

execution model of OpenCL comprises two components: kernels and host applications.

Functions executed on an OpenCL devices are called “kernels”. They are the basic unit of

executable code which can run on one or more PEs of the device depending on the amount

of parallel work assigned by the the host application.
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Figure 2.1: OpenCL platform model.

Figure 2.2 shows the execution of an OpenCL application on the OpenCL platform

model. The host application is divided into two parts: serial code, which runs only on

the host (CPU) and the parallel code corresponding to one or more kernels, which can

run on CPU, GPU, or any other OpenCL device. The sequential part of the host program

defines devices’ context and queues kernel execution instances using command queues.

For devices from the same vendor, all devices could be grouped in to single context, but

there has to be a separate command queue for each device to launch kernel on a device.

Figure 2.2 (b) shows the typical OpenCL execution model with two command queues

(one for CPU and other for GPU) in a single context.

Typically, the programmer decides the device for a kernel statically at application de-

velopment time. There have been few previous works [36, 16, 110, 6] that proposed

dynamic scheduling schemes to decide the device during run-time. Both application-level

(i.e., same device for all kernels in an application) and kernel-level (based on each kernel’s

characteristics) scheduling schemes have been proposed. However, none of the previous

work considered system physical condition (e.g., TDP) and run-time conditions (e.g., ex-

istence of other workloads on CPU) during scheduling decisions. In this thesis (chapter 4),
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Figure 2.2: A typical OpenCL application launch on devices: a) platform model with an
openCL application, b) OpenCL execution model with two command queues (one for each
device) in single context.

we propose better scheduling techniques that not only consider the kernels’ characteristics,

but also take physical and run-time conditions of the system in to account while making

scheduling decisions. We demonstrate that our proposed scheduling scheme performs

better than both the static and the state-of-the-art scheduling schemes.

Next, we provide the background and related work for post-silicon power mapping of

processors, workload scheduling on CPU-GPU processors and low power design of future

massively parallel systems.

2.3 Post-Silicon Power Mapping and Modeling

Typically, computer-aided power analysis tools and simulators are used to estimate the

power consumption of processors. While these tools are essential to analyze different

design tradeoffs, the estimates made by these tools at the design time could deviate sig-

nificantly from the actual power dissipation of working processors due to number of rea-
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sons [38, 70]. Some of the reasons behind this discrepancy are as follows. First, the real

processor design have billions of transistors and large input vector space. Since the power

dissipation depends on the input pattern being applied, it becomes difficult for the simula-

tors to estimate power for all possible input vector space in current processors. Probabilis-

tic approaches can be used to reduce the size of input vector space, but it could add errors

in power estimation due to lack of proper models for spatiotemporal correlation between

different signals and internal nodes of the circuit [38]. Similarly, design tools could intro-

duce errors in dynamic power estimation due to errors in coupling capacitance estimation

between neighboring wires. Finally, process variations (both intra-die and inter-die) and

dynamic thermal profile of chip impact the leakage power of the chip [43]. The pre-silicon

tools rely on statistical models to models such variations, which could lead to inaccuracies

in power estimates at design time.

In recent years, post-silicon power mapping has emerged as a technique to mitigate the

uncertainties in design-time power models and enable effective post-silicon power char-

acterization [42, 67, 91, 21, 92, 71, 93]. Many of these techniques rely on inverting the

thermal emissions captured from an operational chip into a power profile. However, this

approach faces numerous challenges, such as the need for accurate thermal to power mod-

eling, the need to remove artifacts introduced by the experimental setup, where infrared

transparent oil-based heat removal system can lead to incorrect thermal profiles, and leak-

age variabilities. One of the most important factor in estimating post-silicon power is to

have an accurate modeling matrix R which relates temperature to power. Hamann et al.

[42] constructed the modeling matrix by using a laser measurements setup that injects in-

dividual powers pulses on the actual chip and measures the resultant response. Cochran

et al. [21] and Nowroz et al. [71] used controlled test chips to experimentally find the

R-matrix by enabling each block in the test circuits. Both these methods need extensive

experimental setup or special circuit design needs. Previous approaches to model R in
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simulation (e.g., [51]) were only done for copper (Cu) spreader with the only objective

of speeding thermal simulation runtime, where the model matrix R is used to substitute

lengthy finite-element method (FEM)-based thermal simulations. In contrast to previous

methods, we use finite-element method to accurately estimate the modeling matrix which

encompasses all physical factors such as, cooling fluid temperature, fluid flow rate, heat

transfer coefficients, chip geometry, etc.

Post-silicon infrared imaging requires oil-based cooling system [42, 67]. The ther-

mal analysis based on oil-based system differ from widely used Cu-based heat sink [44].

Attempts to modify the oil-based system to match the Cu-based characteristics were not

completely verified as they relied on the measurement of a single thermal sensor [66]. Our

method translates the full oil-based thermal map to Cu-based thermal map, which is then

used for all of our power analysis. Hence, our approach provides more accurate leakage

power modeling. Recent works to estimate within-die leakage variability include analyti-

cal methods, empirical models, statistical method [60, 62, 104]. Actual chip leakage trend

and values can deviate from these models significantly. Our leakage method accurately

estimates leakage variabilities introduced by process variability without the need for any

embedded leakage sensors that occupy silicon real estate.

In recent years, there has been a significant work using performance monitoring coun-

ters (PMCs) to model power consumption of processors [45, 88, 8, 98, 61, 41]. Perfor-

mance counters are embedded in the processor to track the usage of different processor

blocks. Examples of such events include the number of retired instructions, the number

of cache hits, and the number of correctly predicted branches. The general approach of

existing techniques is to choose a set of plausible performance counters to model the ac-

tivity of each structure in the processor and then create empirical models that utilize the

activities to estimate the power of each structure and the total power. In almost all exist-

ing techniques, the main way to verify the correctness is through the observation of the

17



total power at chip level. In contrast to previous works, where the PMCs are related and

modeled to total chip power or simulated power, we relate actual power of each circuit

block as estimated through infrared-based mapping to the runtime PMCs. This gives ac-

curate per-block PMC models and enable us to isolate directly the PMCs responsible for

power consumption of each block. The models could be used for effective run-time power

management of processors.

Heterogeneous processors with architecturally different devices (CPU and GPU) inte-

grated on the same die have introduced new challenges and opportunities for thermal and

power management techniques because of shared thermal/power budgets between these

devices. Using detailed thermal and power maps from infra-red imaging, we show that

the new parallel programming paradigms (e.g., OpenCL) for CPU-GPU processors create

a tighter coupling between the workload and thermal/power management unit or the oper-

ating system. Further, in this thesis, we demonstrate that the DVFS and spatial scheduling

power management decisions are highly intertwined in terms of performance and power

efficiency tradeoffs on a heterogeneous processor.

2.4 Workload Scheduling on Heterogeneous Processors

Heterogeneous systems with integrated CPU and GPU devices are becoming attractive as

they provide cost-effective energy-efficient computing. OpenCL has emerged as a widely

accepted standard for running the programs across multiple devices which differ in their

architecture. For example, the OpenCL programming paradigm allows arbitrary work-

distribution between CPU and GPU devices, where the programmer controls the distri-

bution at the application development time. The operating system (OS) together with

OpenCL Runtime (also called OpenCL driver) could schedule the application on the cho-
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sen device. However, such a static scheme may not lead to an appropriate device selection

for all kernels because different kernels may have different preferred devices based on

the data size and kernel characteristics [110]. Furthermore, this scheduling decision sel-

dom considers the run-time physical conditions [e.g., thermal design power (TDP), CPU

workload conditions], which, as shown in this thesis, could affect the device decision.

Recent years have witnessed multiple research efforts devoted to efficient scheduling

schemes for heterogeneous systems [68, 87, 30, 5, 110, 82, 90, 107]. The survey paper

by Mittal et. al. provides an excellent overview of the state-of-the-art techniques for such

systems [68]. We notice that most of the recent works have focused on discrete GPUs. In

this thesis (chapter 4), we focus on the integrated GPU systems, where the performance

of GPU and CPU could be comparable for many kernels. Prakash et al. [90] and Pandit

et al. [82] proposed dividing each kernel between CPU and GPU devices, which requires

careful consideration of data synchronization between the two partitions. In contrast, we

focus on scheduling the entire kernel on either CPU or GPU device; so, these works are

orthogonal to our work. Diamos et al. [30], Augonnet et al. [5], and Lee et al. [55] propose

performance-aware dynamics scheduling solutions for single application cases running on

discrete GPU systems. Pienaar et al. propose a model-driven runtime solution similar to

OpenCL, but their approach requires writing programs using nonstandard constructs for

implementing directed acyclic graphs [87]. SnuCL [52] provides an OpenCL framework

for heterogeneous clusters, where the scheduling decision is made by the programmer at

development time. Aji et al. use SnuCL to extend OpenCL APIs (also called MultiCL)

with the scheduling related hints [2]. All these efforts are directed towards better schedul-

ing under static system conditions, while our work makes appropriate scheduling decisions

under both static and dynamically changing system conditions.

Application-level device contention-aware scheduling schemes based on average his-

torical runtime have also been proposed [37, 36, 16]. However, our scheduler makes the
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scheduling decisions at kernel-level leading to higher performance and energy savings

than application-level scheduling. In Maestro, data orchestration and tuning is proposed

for OpenCL devices using an additional abstraction layer over the existing OpenCL Run-

time [100]. In Qilin, adaptive mapping of computations on CPU and GPU devices is

implemented to minimize both runtime and energy of system [63]; however, unlike our

approach, they require the complete application to be rewritten using custom APIs.

Yuan et al. use offline support vector machine based method to classify the kernels

for CPU and GPU [110] based on static code structure; this work is similar to ours, but

is limited in following ways. First, they use only the workload characteristics obtained at

compile-time (except the work-group sizes) as features in their classifier without taking

the run-time system conditions (TDP and other workloads on CPU cores) in to consid-

eration. Therefore, their approach could potentially lead to wrong scheduling decisions.

Second, their work focuses mainly on performance, however our work takes both perfor-

mance or energy as an optimization goal and makes the scheduling decisions accordingly.

Bailey et al. consider scheduling under different TDPs [6]; however, their approach is

only applied in an off-line mode as it lacked the capability to switch from CPU to GPU

or vice versa during run-time. Hence, in contrast to previous works, our approach decides

the appropriate device for each kernel under time-varying TDPs and run-time CPU-load

conditions, leading to higher runtime improvements and energy savings compared to the

state-of-the-art scheduling techniques.

2.5 Workload-Aware Low-Power Design of Future GPUs

GPUs are being used to improve performance and energy efficiency of many classes of

high-performance computing (HPC) applications [13, 34]. Typically, these applications
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have high parallelism, however, some kernels have limited parallelism and they do not

require all the compute units (CUs) available in a massively parallel GPU. For such ker-

nels, some of the CUs could be power gated to save leakage power without affecting the

performance of the kernel. Dynamic voltage and frequency scaling (DVFS), clock-gating,

and power-gating are common techniques used to manage power and energy in multi-core

and parallel processors [109, 46, 97, 25, 49].

J. Li et al. proposed a run-time voltage/frequency and core-scaling scheduling algo-

rithm that minimizes the power consumption of general-purpose chip multi-processors

within a performance constraint [59]. J. Lee et al. analyzed throughput improvement of

power-constrained multi-core processors by using power gating and DVFS techniques [54].

Wang et al. proposed workload-partitioning mechanisms between the CPU and GPU to

utilize the overall chip power budget to improve throughput [108]. In [84], Paul et al.

characterized thermal coupling effects between CPU and GPU and proposed a solution to

balance thermal and performance-coupling effects dynamically. To minimize the leakage

power dissipation in the idle GPU compute units and improve energy efficiency, differ-

ent architecture-level power gating schemes are proposed in the context of performance

requirements of applications [13, 109]. While Majeed et al. proposed a PG-aware warp

scheduler to improve the benefits of GPU power gating [1], usefulness of core-level power

gating for data center has also been investigated [58]. In order to maximize the bene-

fits of power gating, Xu et al. proposed prioritization in warp scheduling to group the

warps with same divergence behavior together in time to maximize the idleness window

for single instruction multiple thread (SIMT) execution lanes [114].

The existing techniques are useful to improve the power efficiency of GPUs with un-

derutilized resources or improve performance under TDP constraints. However, unlike

our study, most of previous studies investigated PG opportunities statically by assuming

the finest level of power gating at per-CU/core level without considering area overhead
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or they did not consider the impact of design-time choices on the run-time performances.

In contrast to previous works that considered few CUs [58, 50], our methodologies are

geared for hundreds of CUs that will be available at the end of the silicon roadmap.

In the HPC community, there have been studies related to energy-performance-power

trade-offs for HPC applications [85, 95]. Laros et al. performed large-scale analysis of

power and performance requirements for scientific applications based on the static tun-

ing of applications through DVFS, core, and bandwidth scaling [40]. Balaprakash et al.

described exascale workload characteristics and created a statistical model to extrapolate

application characteristics as a function of problem size [7]. Wu et al. also look at sim-

ilar projection approach [112]. They rely on machine-learning classifications to project

performance and power at different configurations, but they do not account for leakage

power, thermal constraints or technology scaling. Further, Huang et al. [41] proposed

power model based on run-time proxies for multi-core processors. These power models

were used to predict power at both core and chip level to design energy saving run-time

polices. All these efforts focused mainly on existing hardware architectures; However,

we focus on massively parallel GPU architecture with hundreds of CUs at different PG

granularities in the exascale timeframe. In contrast to the previous works, we investigate

the effect of design-time power gating granularities coupled with run-time power manage-

ment on the performance and power efficiency of future massively parallel GPUs under

fixed power constraints.
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Chapter 3

Post-Silicon Power Mapping and

Modeling

3.1 Introduction

In this chapter, we describe a novel framework for post-silicon power mapping and mod-

eling for multicore CPU-GPU processors. As described in the previous chapter, power

is a major design challenge for the chip architects due to its limiting nature on the per-

formance of semiconductor-based chips. The design complexity of modern processors

coupled with process variability and runtime workloads characteristics make it harder to

accurately estimate power consumption during design time [12, 88]. In recent years, post-

silicon power mapping based on infrared imaging has emerged as a technique to mitigate

the uncertainties in design-time power models [42, 67, 91, 21]. Many of these techniques

rely on inverting the thermal emissions captured from an operational chip into a power

profile. However, this approach faces numerous challenges, such as the need for accurate
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thermal to power modeling, the need to remove artifacts introduced by the experimen-

tal setup, where infrared transparent oil-based heat removal system can lead to incorrect

thermal profiles, and leakage variabilities. Our proposed framework solves many of the

open challenges in this area. In particular, our framework is capable of identifying the

dynamic and leakage power consumption of the main blocks of multi-core processors un-

der different workloads, while simultaneously analyzing the impact of process variability

on leakage and capturing the relationship between the performance monitoring counters

(PMCs) and per-block power consumption.

Further, heterogeneous CPU-GPU processors are becoming mainstream these days

due to their good power efficiency for wide range of applications. The new programming

paradigms (e.g., OpenCL) for these processors allow arbitrary work-distribution between

CPU and GPU devices, where the programmer controls the distribution at the application

development time [75]. Due to the shared nature of thermal and power resources and due

to application-dependent work distribution between two devices, there are new challenges

and opportunities to optimize performance and power efficiency of the CPU-GPU proces-

sors [84, 85]. We perform experiments on both CPU-only and CPU-GPU processors.

Modern processors have two main knobs of thermal and power management: dynamic

voltage and frequency scaling (DVFS), and scheduling of workloads on different compute

units of the chip [33, 31, 89, 19, 20]. DVFS is used to trade performance for keeping

temperature and power below their safe limits; similarly, thermal-aware scheduling helps

in distributing thermal hot spots across the die. In a traditional multi-core CPU, all cores

have the same micro-architecture. Therefore, at a fixed DVFS setting scheduling has little

or negligible effect on the performance and power of a workload, especially for a single-

threaded workload. On the other hand, as we demonstrate in this chapter, DVFS and

spatial scheduling-based power management decisions are highly intertwined in terms of

performance and power efficiency tradeoffs on a heterogeneous processor. In addition to
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confirming many largely believed behavior in simulation, our experiments highlight mul-

tiple implications of CPU-GPU processors on thermal and power management techniques.

The major contribution of this chapter are as follows.

1. We propose a numerical technique that uses accurate finite-element modeling (FEM)

to translate the measured thermal maps captured from infrared-transparent heat sink

systems to corresponding thermal maps of traditional metal and fan sinks, and then

inverts the translated thermal maps to power maps. The proposed technique com-

pensates for the thermal artifacts introduced by oil-based setup and can substitute

for experimental techniques to match thermal behavior of different sinks [66].

2. We use thermal conditioning to devise spatial leakage variability models. The leak-

age models enable us to decompose the per-block power consumption into its dy-

namic and leakage components. Once estimated for a given chip, these leakage

models can be used to compute leakage power map for any workload readily from

its thermal-map alone, hence simplifying the overall power-mapping process.

3. We collect PMC values while simultaneously performing infrared-based power map-

ping. The PMC values are correlated with the power maps to identify the PMCs that

are directly responsible for the power consumption of each block. Unlike previous

works, [88, 9, 8] which had no access to the actual per-block power consumption,

we develop per-block mathematical models by relating the measured PMCs to the

per-block power consumption as calculated by the infrared power mapping frame-

work. We use the PMC-based models to analyze the transient power consumption

of each processor block.

4. We apply our proposed framework on a real quad-core processor to get detailed

dynamic and leakage powers for different blocks (e.g., cores, L2-caches, etc.) while

executing workloads using multiple SPEC CPU 2006 benchmarks. Proposed PMC-
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based models are used to estimate power dissipation in each block of the processor

over time. Our power mapping results provide useful insights into the distribution

of power in multi-core processors.

5. We also use the framework to obtain detailed thermal and power breakdown of a real

CPU-GPU chip as a function of hardware module and workload characteristics. We

characterize the effects of task scheduling and DVFS on a heterogeneous processor

using the total power consumption of different blocks.

6. We study interactions between workload characteristics, scheduling decisions, and

DVFS settings for OpenCL workloads. We observe that the effects of DVFS and

scheduling on performance, power, and temperature for OpenCL workloads are

highly intertwined. Therefore, DVFS and scheduling must be considered simul-

taneously to achieve the optimal runtime and energy on CPU-GPU processors.

7. We show that the CPU and GPU devices have different power densities and thermal

profiles, which could have multiple implications on the thermal and power manage-

ment solutions for such processors.

The organization of the chapter is as follows. Section 3.2 describes the proposed

framework for post-silicon power mapping and modeling. In Section 3.3, we present our

power mapping and modeling results for a quad-core CPU processor. Next, in Section 3.4,

we highlight the implications of integrating two architecturally different devices (CPU

and GPU) on a single die on their thermal and power management using detailed power

mapping experiments. Finally, we summarize the chapter in Section 3.5.
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3.2 Proposed Power Mapping and Modeling Framework

Post-silicon power mapping for multi-core processors is the process of reconstructing

power dissipation in different hardware blocks from the thermal infrared emissions of

the processor during operation and under realistic loading conditions. When a processor

runs a workload, it consumes power, which dissipates heat and changes the temperature

of the chip. The thermal emissions from the chip can be captured by an infrared imaging

system, and processed to reveal the underlying power consumption profile [67, 42].

Post-silicon power mapping involves many challenges at both the experimental and

modeling fronts. At the experimental front, it is required to control the speed and temper-

ature of the oil flow on top of the processor to remove the generated heat, while maintaing

good optical transparency to the infrared imaging systems. Furthermore, it is important to

accurately synchronize all the measurements of the system, including thermal maps, fluid

state measurements, total power consumption, and PMC measurements from within the

processor. At the processing front, challenges include the need to model the relationship

between power consumption and temperature. This process is complicated by the fact that

replacing the fan and copper heat-spreader with an infrared-transparent fluid-based heat

sink system alters the thermal profile of the die [44]. Compromised thermal characteristics

will alter the leakage profile of the processor [62, 104]. Decomposing the total power into

leakage and dynamic is a challenging task due to the dependency of leakage on process

variability and temperature.

Figure 3.1 gives the framework of the proposed power mapping and modeling method.

At the beginning, a one-time design effort per chip-design is conducted to devise accurate

FEMs (Roil and Rcu) that relate power to temperature under two heat removal mechanisms

(oil-based and Copper/fan-based). During run-time, realistic workloads are applied to the
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Figure 3.1: Proposed power mapping and modeling framework.

processor and the steady-state or averaged thermal map (toil) is captured with the infrared

camera. Using the devised FEMs, the captured thermal map is then translated to produce

a thermal map (tcu) that mimics the case when the oil-based heat sink is replaced by a

traditional Copper (Cu) spreader + fan heat removal mechanisms. Thermal conditioning

is one-time modeling process that models the leakage power profile as a function of the

temperature profile and can be further used to estimate the spatial variability trends. For

each measured thermal map tcu, the leakage models are used to estimate the leakage power

per block. The thermal map is then numerically processed to yield the per-block power

maps, where we use leakage power as lower bound constraint. The total power for each

block in the core is separated into dynamic and leakage power. The estimated power for

different blocks of the processor is then modeled with runtime performance monitoring
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counters and sensor measurements. The PMCs models can be then used to model the

transient power consumption or in cases where no infrared imaging system is available.

Below sections describe different components of the proposed framework.

3.2.1 Modeling Relationship Between Temperature and Power

Our goal is to model the relationship between power and temperature for a processor. In

particular, if t is a vector that denotes the steady state or averaged thermal map of the

processor in response to some power map denoted by p, then our goal is to model the

relationship between p and t. We note that the length of p is determined by the number

of the blocks in the processor’s layout and the length of t is determined by the number of

pixels in the thermal image. Our modeling approach consists of the following three steps.

1. We first describe the modeling and simulation of heat transfer in the case of oil-based

heat sink. We show that the underlying physics can be described by a linear operator

Roil that maps p to toil. This operator is determined empirically by simulation using

accurate FEM modeling.

2. We then describe the modeling and simulation of heat transfer with Cu-based heat

sink. Here, the underlying physics can also be described by a linear operator Rcu

that maps p to tcu.

3. Thirdly, we describe how to translate a captured thermal image toil to make it appear

as if it is coming from a Cu-based heat spreader.
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Fluid inlet Fluid outlet 

Figure 3.2: Infrared-transparent oil-based heat removal system.

1. Modeling Oil-Based Heat Sink.

Modeling a heatsink and getting its thermal-power model matrix (Roil) typically con-

sists of three components: a) setting up the simulation model, b) simulating heat-transfer

physics, c) getting model matrix. These steps are described in the following paragraphs.

a) Model Setup. To enable the thermal imaging of the processor while maintaining the

cooling efficiency similar to conventional fan-based heat sink system, we designed a spe-

cial cooling system, as shown in Figure 3.2. The system has a rectangular channel of

height 1 mm through which an infrared-transparent mineral oil is flowing from the inlet

valve to the outlet valve. Two infrared-transparent windows (one at the top and other one

at bottom of channel) are assembled in the system in such a way that they allow midwave

infrared waves to pass through part of the channel. In addition to being infrared transpar-

ent, the bottom window spreads the heat generated in small processor die over a larger

area, which improves heat removal capacity.

When the multi-core processor is switched-on, heat is generated at the active (transis-

tor) layer of the die. The majority of the heat generated inside processor-die flows upwards

and is carried away by the fluid-flow after passing through the bottom window. Small por-

tion of the heat also flows through a secondary path towards the bottom side of the die to

the motherboard and eventually to ambient. Empirically, we found that in our setup about

10% of the heat flows downward through the secondary path and about 90% of the heat
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Figure 3.3: Model for oil-based system: (a) model-geometry with actual aspect-ratio; (b)
model-geometry in perspective view; (c) meshed model

flows upward in our setup; so, we consider these values in our models. The infrared radi-

ations from the silicon-die pass through the bottom window, fluid, and top window before

they could be captured by the infrared camera. To improve the emissivity uniformity of the

die, we apply a thin coating of graphite at the back side of the die; graphite has emissivity

close to that of a perfect black body radiator.

We modeled the system in COMSOL Multiphysics tool, which is widely used to solve

multiple coupled physical phenomena. COMSOL has a finite element analysis (FEM)

based solver as its core computational-engine [22]. The geometry of the simulated model

is shown in Figure 3.3 (a); Figure 3.3 (b) shows the zoomed picture, so it does not neces-

sarily have same scale as actual scale. The model has following domains: the processor’s

die, divided into a number of blocks as dictated by the floorplan, a 25 µm graphite-layer, a

2 µm thermal interface material, an infrared-transparent silicon-window and fluid domain.

material ρ k Cp µ

silicon 2330 148 703 -
graphite 1950 150 710 -
mineral oil 838 0.138 1670 14.246e-3

Table 3.1: Material properties. ρ denotes the density of the material in kg/m3, k represents
the thermal conductivity of the material in W/(m.K), Cp denotes the specific heat capacity
of the material at constant pressure in J/(kg.K), and µ represents the dynamic viscosity of
the fluid in Pa.s.
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We modeled the secondary path of heat removal by specifying a uniform heat removal rate

from the bottom of the die. This uniform heat removal abstracts the impact of heat removal

carried by the motherboard. The properties of different materials used in our simulation

model are reported in Table 3.1.

To solve the modeling problem using finite-element method (FEM), the complete ge-

ometry has to be divided into smaller elements in a process known as meshing. Creating

a proper mesh is important for two reasons: (1) a properly-sized mesh enables accurate

simulation of the required physical phenomena, and (2) it controls the convergence of the

numerical solution. For these two reasons, we refined the mesh to appropriate sizes at

different interfaces and corners by adding boundary-layers and by choosing the mesh-size

individually for each domain. The mesh is refined iteratively until it has significant impact

on the final solution. The meshed model is shown in Figure 3.3 (c).

b) Model Simulation. Essentially, we have to simulate two types of physics: fluid-flow

and conjugate heat transfer, simultaneously to obtain the temperature profile for a given

power dissipation profile of the processor. We describe these two simulations in detail in

the next paragraphs.

In our experimental system, we measured the flow speed, fluid temperature and the

fluid pressure using a Proteus Fluid Vision flow meter. The average fluid speed is main-

tained at 5 m/s using a gear pump, the fluid temperature is maintained at 20 °C using a

thermoelectric cooler with a feedback controller that receives its input from the fluid tem-

perature meter, and the flood pressure at the inlet of heat sink is equal to 24 psi. In order to

decide the the nature of fluid-flow, we compute the ratio of inertial-force to viscous-force,

also called Reynolds number (Re), for the measured flow-speed in our system. For our

channel dimensions and fluid flow characteristics, we computed the Re number for the

flow as 434.48. Since Re<1000, we consider a laminar flow in our model simulations.
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Figure 3.4: Velocity flow profile in the channel of the heat sink.

We assume that fluid-flow is incompressible, which is a reasonable assumption because

the fluid is flowing at such a high speed that there does not exist significant temperature

gradient in the fluid domain which could potentially change the fluid density.

Internally, the FEM tool solves Navier-Stokes conservation of momentum equation

and conservation of mass equation to simulate the laminar flow [96]. We use following

boundary conditions during flow-simulation. Since the flow is laminar, we consider no-

slip boundary condition at all four walls of the fluid-domain, i.e. the fluid has zero velocity

at the boundary. We also consider a uniform normal inflow velocity at the inlet of fluid do-

main. The simulated velocity profile for the measured flow rate in the heat sink’s channel

is shown in Figure 3.4.

We have to simulate the heat transfer in both solid and fluid domains. During all our

experiments, we wait for the steady-state of the processor before we capture its thermal

image. So, we simulate the heat-transfer equation in steady-state, where the heat equation

in solid and fluid domains is given by [96]:

ρCpv.∇T = ∇. (k∇T ) +Q (3.1)

where, T is the temperature in Kelvin, v is the velocity field, and Q denotes the heat

sources in W/m3. For heat-transfer physics, we use following boundary conditions during

33



simulation. It is assumed that all external walls of the system exchange heat with ambience

through natural convection process; the typical heat-transfer coefficient (h) for natural heat

convection is 5 W/(m2.K).

In the simulation model, we assume a standard silicon die of 750 µm and that power

dissipation happens at the bottom of silicon die. Hence, if a particular block i of the

die is dissipating, say, Qi amount of power per unit area, then, in order to compute the

temperature profile, we apply pi = Qi ∗ Block Area Watts of power to that block and

simulate the heat-transfer and fluid-flow equations simultaneously.

c) Model Matrix Operator. While the model setup and simulation under various power

profiles is a time-consuming task, the entire system operation can be represented by a

modeling matrix, denoted by Roil, which is a linear operator that maps the power profile

into a thermal map [51, 42]. If p is a vector that denotes the power map, where the power

of each block, pi, is represented by an element in p, then Roilp = toil. The values of

the matrix Roil are learned through the FEM simulations of the setup, where we apply

unit power pulses at each block location, one at a time, and compute the thermal profile

at the die-surface for each case. The thermal profile resultant from activating block i

corresponds to the i column of Roil. After simulating all blocks, we have the model

matrix (Roil) complete. This thermal matrix can be used to relate any power profile and to

the temperature profile.

To validate that the power to thermal relationship of the complete system can be mod-

eled using a linear operator, we performed the following experiment. First, we simulated

the temperature profile by allocating 1 W of power to the top-left part of a die; the simu-

lated thermal map, t1, is shown in the first column of Figure 3.5. Next, we applied a unit

power to the bottom-right part of the die and obtained the temperature map, t2, shown in

the second column of Figure 3.5. Third, we simulated the temperature profile by assum-
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Figure 3.5: Verifying the linear relation between power and temperature for oil-based
system. Temperatures are shown as ∆T , difference over fluid-temperature.

ing that the top-left is dissipating 2 W and the bottom-right is dissipating 3 W power. The

simulated temperature map, t3 for this case is shown in the third column of Figure 3.5. If

the physics of system can be indeed represented by a linear operator, then the superposi-

tion principle should hold, and the temperature map simulated in the third case, t3, should

be equal to 2t1 + 3t2). The resultant temperature map from superposition is given in the

fourth column of Figure 3.5, perfectly matching the results from simulation, confirm the

validity of the model.

2. Modeling Copper-Based Heat Sink.

In traditional heat removal systems, a heat spreader, made of copper and relatively larger

in size than the processor-die size, is attached on the back-side of the die. In addition, a

fan could be installed directly on the top of the heat spreader to increase the heat removal

capacity. In our simulation, we model the multi-core processor die and the heat-spreader

directly, while heat-removal capabilities of different fans are simulated by varying the

heat-transfer coefficient at the top side of metal heat spreader. The model simulated using

FEM is shown in Figure 3.6 (a); and, the meshed model is shown in Figure 3.6 (b). Unlike

oil-based system, where we had to simulate both flow and heat-transfer physics simul-
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Figure 3.6: Model for Cu/fan-based cooling system (a) Geometry; (b) Meshed model.

taneously, with a metal heat spreader system, we only need to simulate the heat-transfer

with appropriate boundary conditions. The dimensions used for the heat spreader in our

simulation model are the actual dimensions of the heat spreader that came with our ex-

perimental processor. Finally, to compute the modeling matrix (Rcu) for the Cu/fan-based

system, we simulate the thermal response of the system by applying unit power pulses at

each block, one at a time and assemble the column of the model Rcu. This step is similar

to building Roil matrix operator, as discussed above.

3. Heat Sink Thermal Translation.

We replaced the conventional fan-cooled copper heat-spreader heat sink system with a

special fluid-based heat sink system to capture the thermal images of the processor. The

thermal characteristics of the mineral oil and its direction flow changes the temperature

profile of the die [44], which has implications on leakage power. That is, if we run same

workload on the processor, we get different temperature and leakage profiles for two heat

sink systems. Previous work did not model this effect accurately [67, 4] as pointed in the

literature [44]. We propose an accurate technique to compute the temperature profile of

the die for Cu-based heat sink system from the measured temperature profile for oil-based

heat sink system. The proposed technique is as follows. Let’s assume that some power

profile p is imposed in the simulation model on the die, then the temperature profile in

two cases can be expressed as:

36



Roilp = Toil (3.2)

Rcup = Tcu (3.3)

From Equations (3.2) and (3.3), we could write:

R−1
cu Tcu = R−1

oilToil =⇒ Tcu = RcuR
−1
oilToil

It is worth mentioning here that the thermal resistance matrices, Rcu and Roil, need

not to be square matrices as there are typically many more pixels than blocks in the floor

plan. In such cases, we either need to compute pseudoinverse of the matrix or we have to

solve following equation to obtain Tcu from Toil:

Tcu = Rcu

(
RT

oilRoil

)−1
RT

oilToil (3.4)

In order to validate the above technique, we applied a power profile of 40 W to our

die model and simulated the temperature profile for oil-based system in COMSOL. The

simulated profile for the oil-system is shown in Figure 3.7 (a). Next, we computed the

temperature profile for cu-based system in two ways: 1) using the proposed technique,

and 2) using COMSOL for reference. As could be seen from Figure 3.7 (b) and Fig-

(a) (b) (c) 
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Figure 3.7: (a) Thermal map measured for the oil heatsink (HS) system, (b) thermal map
for the Cu heat spreader translated using Equation (3.4), and (c) thermal map simulated
directly for Cu heat spreader.
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Figure 3.8: (a) Measured thermal map from oil-based cooling system (measured); (b)
thermal map of Cu-based cooling system translated using Equation (3.4).

ure 3.7 (c), the two temperature profiles, computed in two ways, for the Cu-system are

exactly the same. This confirms that the simulation framework for two systems is correct.

To further illustrate the usefulness of the proposed technique, we ran standard benchmark

applications on three cores of our experimental quad-core processor (described in details

in Section 3.3). The measured thermal map of the processor is given in Figure 3.8 (a), and

the translated thermal image for the Cu-based system is given in Figure 3.8 (b). It is clear

that the two heat removal mechanisms have different thermal profiles, and our method is

capable of translating between the thermal profiles, compensating for the differences.

3.2.2 Thermal to Power Mapping

a. Leakage Modeling

As described in chapter 2, aggressive scaling in sub-100 nm technologies has increased

the contribution of leakage power to the total processor power. Leakage also has strong

dependency on temperature, and as a result, the thermal profile of the die can vary due to

leakage temperature interaction [15]. In this section, we propose a spatial leakage power

mapping method based on a novel thermal conditioning technique1. The sub threshold

leakage current, which is the dominant component of leakage power [62, 104], is given

by:

1The leakage mapping was performed with the help of Abdullah Nowroz.
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Psub = V A
W

L
v2T (1− e

−VDS
vT )e

(VGS−Vth)

avT , (3.5)

where, Psub is the subthreshold leakage power, V is the supply voltage, A is a technology

dependent constant, Vth is the threshold voltage, W and L are the device effective channel

width and length respectively, vT is the thermal voltage, VDS and VGS are the drain-to-

source voltage and gate-to-source voltage respectively, and a is the subthreshold swing

coefficient for the transistor. Although leakage is exponential on temperature, for a given

voltage and device and range of typical operation (20 °C – 85 °C), we can use Taylor

series expansion to approximate the leakage power near a reference temperature Tref . An

expansion that includes up to quadratic terms is given by:

Psub(T ) = Pref + α1(T − Tref ) + α2(T − Tref )2, (3.6)

where, Psub(T ) is the leakage power at temperature T , Pref is the leakage power at the ref-

erence temperature Tref , and α1 and α2 are constants that depend on the voltage, process

variability, and structure of devices. To model the chip’s spatial leakage profile, we divide

our die area into sufficiently large number of locations, n, such that the leakage power,

Psub(Ti), at location i is given by:

Psub(Ti) = Pref,i + α1,i(Ti − Tref ) + α2,i(Ti − Tref )2 (3.7)

where Ti is the average temperature at location i, and α1,i and α2,i are model coefficients

for location i. The total leakage power is sum of all the n locations in the chip, which can

be written as:

Pleakage =
∑
i

Pref,i +

n∑
i=1

[α1,i(Ti − Tref ) + α2,i(Ti − Tref )2], (3.8)
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which can be re-arranged as:

Pleakage −
∑
i

Pref,i =
n∑

i=1

α1,i∆Ti + α2,i∆T
2
i

∆P =
n∑

i=1

α1,i∆Ti + α2,i∆T
2
i , (3.9)

where, ∆P = Pleakage −
∑

i Pref,i. In order to learn the model coefficients, we pro-

pose a novel thermal conditioning method. The idea is to increase the temperature of the

chip gradually by increasing the temperature of the oil, while simultaneously recording

the thermal images of the die, and measuring the total power consumption of the chip.

Throughout the experiment, an application of stable nature is always executing. The in-

crease in total power consumption would purely be due to changes in leakage. Thus,

each thermal conditioning experiment provides a thermal image and an incremental total

leakage power, which creates an instance of Equation 3.9. For example, the jth thermal

conditioning experiment will provide the following equation:

∆Pj =
n∑

i=1

α1,i∆Tj,i + α2,i∆T
2
j,i. (3.10)

For m thermal conditioning experiments, we can assemble the system of equations as:


∆T1,1 ∆T 2

1,1 · · · ∆T1,n ∆T 2
1,n

...
... . . . ...

...

∆Tm,1 ∆T 2
m,1 · · · ∆Tm,n ∆T 2

m,n





α1,1

α2,1

...

α1,n

α2,n


=


∆P1

...

∆Pm

 (3.11)
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Figure 3.9: Experimental setup for thermal condititioning.

We solve the above system of equations by standard least-square regression technique

to find first-order and second-order model coefficients; hence, we get a total of 2n coeffi-

cients (α1,1 − α1,n and α2,1 − α2,n). To compute the leakage power, Pref , at the reference

temperature, we fit a quadratic model of the power measured to the average temperature

from the thermal maps of the chip, and extrapolate to get the dynamic power. We estimate

the Pref by subtracting the dynamic power from the total power measured at Tref . For a

particular chips, these coefficients need to be computed only once, and then for estimating

leakage of any thermal profile for the chip.

To implement thermal conditioning in our experimental setup, we use a thermoelectric

device and a fluid monitoring device in line with the oil flow as shown in Figure 3.9. By

changing the voltage and current of the thermoelectric device, we can either cool or heat

the fluid to the desired temperature. Thus, we setup a feedback control system to control

the fluid temperature to any desired set temperature point. In the feedback loop, the fluid

temperature is compared to the set point and the error is fed to a PI controller, the output

of which derives the programmable power supply of the thermoelectric device.

b. Reconstructing Dynamic and Total Power

Reconstructing the underlying power map of the processor from the measured thermal im-
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ages is an inverse problem. In the framework used for quad-core processor, we measure the

thermal maps for oil-based cooling system (Toil) and reconstruct the power-dissipation in

different sub-units of the quad-core die for the Cu-based cooling system. We first compute

leakage power in each die-unit from the the equivalent thermal image for the Cu-system

and use the leakage power as the lower bound while reconstructing the total power for

each unit. In particular, we solve the following optimization problem to reconstruct power

map of the die.

p∗ = argp min ‖Rcup−Rcu

(
RoilR

T
oil

)−1
RoilToil‖2, (3.12)

s. t. pleaki ≤ pi.

where, p∗ is the reconstructed power-vector, pleaki denotes the leakage power in the ith

die-block, and pi denotes the power in the ith block of the die. Other terms, Rcu, p, Roil,

and T, are already defined in the text before. By solving the above optimization problem,

we obtain the total power of each block for the die. Finally, we compute the dynamic

power of each block by subtracting the leakage power from the reconstructed total power.

Using pleaki > 0 constraint helps in ensuring that dynamic power for all blocks is always

positive. Hence, we reconstruct all, the dynamic, leakage, and total powers for each block

of the processor from its measured temperature image.

3.2.3 Power Modeling Using PMCs

A popular approach for modeling total power is through the use of performance mon-

itoring counters (PMCs) [48, 45, 10, 113, 86, 88, 9, 47, 61, 8]. Performance counters

are embedded in the processor to track the usage of different processor blocks. Typical

approach is to model the power of different blocks using their switching activity and com-
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Procedure: PMC-based power modeling procedure
Input: Infrared-based power estimates for each block and associated PMC
measurements
Output: Power Models for each block as a function of PMC measurements

For each circuit block i:

a. Identify the PMC measurements that are strongly correlated with power
estimates of i.

b. Use least-square estimation to fit a linear model that estimates the power of i as
a function of the strongly-correlated PMC measurements.

Figure 3.10: Algorithm to compute PMC-based models.

pare the total estimated power against the total measured power. That is there is no reliable

way to verify the estimated block power. In contrast, our infrared-based power mapping

technique directly obtains the power consumption of each circuit block under different

workload conditions. Thus, we propose to simultaneously collect the measurements of

the PMC, while collecting the infrared imaging data. The post-silicon power estimates

are then used to derive fitted empirical models that relate the performance counters to the

power consumption of each of block. For instance, if m1, m2, m3 are three PMCs corre-

lated to the power estimates, pi, of block i, then an empirical model, p̂i, can be described

as p̂i = c0 + c1m1 + c2m2 + c3m3, where c0, c1, c2 and c3 are the model coefficients which

have to be determined by fitting the observed power estimates of each block with the PMC

measurements on a training set of workloads. The fitting is done using least-square esti-

mation, where it is desired to minimize the modeling error, (p̂i − pi)
2 over the training

data. The main steps of our power modeling procedure are summarized in Figure 3.10.

The fitted PMC models can enable us to substitute the post-silicon power mapping

results in situations where infrared imaging is difficult. These cases include, for example,

systems deployed in user environments where access to infrared imaging is not easy, or
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for high-resolution transient power mapping. Infrared-based transient power mapping is

inherently limited because of the low-pass filtering of power variations and the limited

sampling rate of infrared cameras [91]. We illustrate the use of PMC-based models for

transient power modeling in Section 3.3.

Next, we present the power mapping results for two processors using our proposed

framework: 1) a quad-core CPU processor, 2) a heterogeneous CPU-GPU processor. The

results for the quad-core processor shows the usefulness of the framework for modeling

leakage power, dynamic power and PMC based power models. On the other hand, for

CPU-GPU processor, we use the framework mainly for understanding the implications of

integrating two architecturally different devices. So, we focus on reconstructing only the

total power and temperature of different blocks for the heterogeneous processor.

3.3 Power Mapping of a Multi-core CPU Processor

For power mapping of a homogeneous processor, we used a motherboard fitted with a

45 nm AMD Athlon II X4 610e quad-core processor and 4 GB of memory. The moth-

erboard runs Linux OS with 2.6.10.8 kernel. The floorplan of the processor with 11 dif-

ferent blocks is shown in Figure 3.11. We treat each core as one block, as we could not

find public-domain information on the make-up of blocks within each core. The processor

has 4 × 512 KB L2 caches, which are easy to identify in the floorplan. The processor

lacks a shared L3 cache. The area in the center is occupied by the northbridge and other

miscellaneous components such as the main clock trunks, the thermal sensor, and the built-

in thermal throttling and power management circuits. The periphery is composed of the

devices for I/O and DDR3 communication. The processor supports four distinct DVFS

settings. Except for the first experiment, we set the DVFS to 1.7 GHz. We image the
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processor using a mid-wave FLIR 5600 camera with 640× 512 pixel resolution. We also

intercept the 12 V supply lines to the processor and measure the current through a shunt

resistor connected to an external Agilent 34410A digital multimeter, which enables to log

the total power measurements of the processor.
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Figure 3.11: Layout AMD Athlon II X4 processor.

Experiment 1. Verification of Modeling Matrices: Given the processor layout and our

setup, we first constructed the modeling matrices, Roil and Rcu, that map the power con-

sumption to temperatures across the die in case of oil-based heat removal and Cu-based

heat removal respectively. We compute these matrices by using finite-element modeling

and simulation techniques described in Section 3.2.1. We verify the accuracy of the Roil

by comparing its modeling results against the images for the thermal system. To verify the

accuracy of our modeled matrix Roil, a custom cpu-intensive micro-benchmark is utilized.

The quad-core AMD processor has four DVFS settings: 0.8 GHz, 1.7 GHz, 1.9 GHz, and

2.4 GHz. First, we run the custom application on all four cores at 2.4 GHz frequency

and capture the steady-state thermal image of the die and measure the total power of the

processor. Let t1 be the resultant thermal image, and p1 denotes the total measured power.

Then, we change the frequency of just core 1 to 0.8 GHz to ensure that the switching

activity profile changes only in one core. We again capture a steady-state thermal image,

t2 of the processor and measure total power p2. Since the activity change was localized
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Figure 3.12: Thermal-matrix verification through comparison of impulse-responses of the
system (a) simulated; (b) measured.

to only one core, we can expect the difference in power profiles, as denoted by the vector

δp, between the two cases to be mainly zero everywhere, but equal to p1− p2 at the vector

position corresponding to core 1. Thus, we can compare the thermal simulation results of

Roilδp against the actual thermal image difference t1 − t2 to verify the accuracy of the

Roil model. The first column Figure 3.12 contrasts the simulation versus the real thermal

map, showing the accuracy we obtained. We also repeated the same procedure for the

other three cores and include the results in Figure 3.12.

Experiment 2. Demonstration of Power Mapping: The goal of this experiment is to

demonstrate the results of power mapping the processor using different number of work-

loads and different workload characteristics. Our workloads come from widely used SPEC

CPU06 benchmark suite. We selected four benchmark applications, which cover both

integer point and floating point computations and processor-bound and memory-bound

characteristics. These benchmarks are listed in Table 3.2.

memory bound processor bound
Integer point omnetpp hmmer
Floating point soplex gamess

Table 3.2: Selected SPEC CPU06 benchmarks.

a) Evaluation of the total, dynamic and leakage power maps for various workloads: In

order to demonstrate the process of reconstructing power dissipation in different sub-units
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Figure 3.13: Thermal maps, reconstructed total, dynamic, and leakage power maps.

of multi-core processor from the measured thermal images, we ran 30 different cases of

workload sets. For each experiment, we captured the steady-state thermal image using an

infrared-camera and reconstructed the underlying power maps from the translated thermal

maps to the Cu-based spreader. We decomposed the total power maps into dynamic and

leakage power dissipation of each block of the processor and analyzed the spatial leakage

variability. The reconstructed maps for four sample cases are shown in Figure 3.13. For

example, the third-row shows a case, where we ran soplex, gamess, and hmmer bench-

marks on cores 1, 2, and 3 respectively. Second column shows the equivalent temperature

maps for Cu-system for each workload-case. The third column shows the reconstructed

total power dissipation in each block for the four cases. It is clear from the reconstructed

power-maps that they agree the intuitive expectation that cores running processor-bound

applications (i.e., hmmer and gamess) are having higher power consumption than the idle

cores or cores running memory-bound workloads. Similarly, fourth and fifth column show
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core 1 core 2 core 3 core 4 Reconstructed total power (W) for each block Total power (W)
core 1 L2-1 core 2 L2-2 core 3 L2-3 core 4 L2-4 I/O N. B. DDR3 dyn lkg dyn+lkg meas

omnetpp - - - 3.91 0.28 1.06 0.23 1.10 0.15 1.61 0.40 1.40 4.23 1.13 11.52 3.97 15.49 16.82
- omnetpp - - 1.51 0.23 3.49 0.25 1.18 0.15 1.58 0.28 1.52 4.4 1.10 11.70 3.97 15.68 16.85
- - omnetpp - 1.55 0.23 1.18 0.23 3.31 0.15 1.50 0.26 1.67 4.36 1.05 11.52 3.97 15.49 16.97
- - - omnetpp 1.59 0.36 1.14 0.23 0.92 0.15 3.95 0.17 1.56 4.15 1.01 11.26 3.96 15.22 16.81
hmmer - - - 5.68 0.23 0.97 0.23 0.99 0.15 1.55 0.40 1.22 4.34 0.97 12.72 4.02 16.73 18.49
soplex - - - 4.07 0.30 1.02 0.23 1.08 0.15 1.60 0.38 1.29 4.3 1.09 11.54 3.97 15.51 17.11
gamess - - - 5.41 0.23 0.94 0.23 0.89 0.15 1.51 0.42 1.21 4.23 0.90 12.13 3.99 16.12 18.23
omnetpp omnetpp - - 3.81 0.31 3.19 0.23 1.24 0.15 1.78 0.36 1.29 5.19 1.07 14.55 4.10 18.65 19.60
hmmer hmmer - - 5.90 0.25 5.07 0.24 0.96 0.16 1.82 0.41 1.26 5.95 0.97 18.70 4.30 23.00 23.70
soplex soplex - - 3.94 0.34 3.30 0.24 1.30 0.16 1.84 0.37 1.29 5.3 1.13 15.08 4.12 19.20 19.82
gamess gamess - - 5.60 0.26 4.80 0.24 0.84 0.16 1.68 0.45 1.22 5.72 0.87 17.60 4.24 21.84 23.17
omnetpp - soplex - 3.90 0.32 1.11 0.23 3.55 0.16 1.75 0.35 1.28 5.19 1.07 14.80 4.11 18.91 19.86
omnetpp - hmmer - 4.05 0.34 0.99 0.24 5.29 0.16 1.73 0.35 1.28 5.48 0.95 16.67 4.20 20.86 21.64
omnetpp - gamess - 4.16 0.35 1.04 0.24 5.05 0.16 1.70 0.37 1.28 5.48 0.95 16.58 4.19 20.77 21.57
hmmer - soplex - 6.01 0.24 0.98 0.24 3.57 0.16 1.79 0.42 1.24 5.51 1.04 17.00 4.21 21.22 21.72
hmmer - gamess - 6.08 0.25 0.88 0.24 4.98 0.16 1.67 0.42 1.25 5.71 0.84 18.20 4.27 22.47 23.33
soplex - gamess - 4.38 0.38 1.05 0.24 5.16 0.16 1.77 0.36 1.28 5.6 0.96 17.13 4.22 21.35 21.93
soplex soplex soplex - 3.86 0.38 3.17 0.32 3.48 0.16 2.00 0.35 1.35 6.01 1.13 17.96 4.26 22.22 22.34
hmmer hmmer hmmer - 6.28 0.27 5.24 0.26 5.55 0.17 2.09 0.41 1.35 7.53 0.88 25.35 4.68 30.03 28.71
omnetpp omnetpp omnetpp - 3.91 0.37 3.18 0.30 3.48 0.16 1.98 0.37 1.35 6.05 1.12 18.00 4.26 22.26 22.23
gamess - gamess gamess 6.13 0.60 0.76 0.25 4.61 0.17 6.51 0.18 1.32 6.71 0.74 23.41 4.57 27.99 27.99
gamess gamess gamess - 5.98 0.36 5.06 0.36 5.11 0.17 1.87 0.43 1.30 7.22 0.76 24.02 4.60 28.62 28.30
omnetpp soplex gamess - 4.09 0.40 3.46 0.36 5.52 0.17 2.03 0.36 1.38 6.66 1.02 21.02 4.42 25.45 24.87
omnetpp soplex hmmer - 4.02 0.39 3.31 0.31 5.65 0.17 2.06 0.36 1.39 6.56 1.05 20.85 4.42 25.27 24.69
soplex gamess hmmer - 4.33 0.44 5.16 0.35 5.72 0.17 2.11 0.35 1.36 7.16 0.97 23.54 4.57 28.11 27.01
soplex soplex soplex soplex 3.92 0.54 3.10 0.27 3.24 0.16 4.35 0.25 1.40 6.56 1.14 20.53 4.40 24.93 24.40
hmmer hmmer hmmer hmmer 6.37 0.50 5.13 0.28 5.21 0.18 7.34 0.19 1.44 8.88 0.83 31.25 5.10 36.35 33.12
gamess gamess gamess gamess 6.32 0.67 5.16 0.30 4.83 0.18 6.89 0.20 1.39 8.58 0.82 30.32 5.03 35.35 33.21
omnetpp omnetpp omnetpp omnetpp 3.98 0.54 3.17 0.27 3.31 0.16 4.44 0.25 1.41 6.72 1.14 20.97 4.42 25.39 24.61
soplex hmmer gamess omnetpp 4.31 0.60 5.49 0.27 5.49 0.18 4.77 0.25 1.43 8.06 0.91 26.97 4.79 31.77 29.52

Table 3.3: Power-mapping results for 30 test cases. N.B. stands for north bridge block;
dyn stands for dynamic; lkg stands for leakage; dyn+lkg is the total power reconstructed
from post-silicon in infrared imaging; and meas is the total power measured through the
external digital multimeter.

the per-unit reconstructed dynamic power and leakage power for four different workloads.

The figures also show that the L2 cache power is mainly dominated by leakage power with

a small amount of dynamic power.

The per-block power results for all 30 different workload cases are presented in Table

3.3. We also report the total dynamic power, total leakage power, and the sum of leak-

age and dynamic power. The results show that the leakage power comprise about 20%

of the total power. We also report in the last column the total measured power through

the external multimeter after compensating for the total leakage difference between the

oil-based sink and the Cu-based sink. We notice that our total estimated power through

infrared-based mapping achieve very close results, with an average absolute error of only

1.07 W of the measured power. The differences could be either to modeling inaccuracies

or due to the fact that the measured total power also include the power consumed by the

off-chip voltage regulators, and thus, it does not represent the net power consumed by the
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processor. We have also considered including the total measured power as a constraint to

the optimization formulation given in Section 3.2.2; however, the resultant power maps

have displayed some counter-intuitive results.

b) Effect of number of applications: To see the impact of increasing number of applica-

tions on the power consumption of different blocks, such as cores, caches, northbridge,

I/O, DDR3 channels, we run high power application hmmer in four different ways. First,

we run one instance of hmmer on core 1, second, we run two instances of hmmer on

core 1 and core 2, third we run three instances of hmmer on core 1, core 2 and core 3

and last we run four instances of hmmer on all four cores. Figure 3.14 shows the trend of

power consumption of different blocks in the processor as we increase number of appli-

cations. When a core is idle it usually clock gates, and consumes minimum power, but as

we increase the number of applications, the total power of the four cores increases propor-

tionally. In contrary, the power consumption from other blocks such as the northbridge,

I/O, DDR3 do not change as much depending on the number of workloads, because those

blocks do not clock gate and they are always operational.
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Figure 3.14: Increasing number of instances of hmmer in the quad-core processor

c) Total core power consumption over various workloads: To get insight of how the core

power consumption varies across different workloads, we plot in Figure 3.15 the percent-

age of core power to the total power for all 30 test cases. We can see core to total power
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Figure 3.15: Percentage of core power to total power

percentage is high for our higher power test cases, such as, hmmer and gamess . As the

number of workload increases, the percentage of core to total power varies from 50% to

66% depending on applications’ profiles and the number of cores running applications.

Experiment 3. Process Variability and Leakage Power Estimation: To estimate the

leakage profile of the AMD quad-core processor, we use the thermal conditioning tech-

niques described in Section 3.2.2, where we increase the chip temperature from 27 °C to

55 °C by increasing the infrared transparent cooling fluid temperature from 18 °C to 45 °C,

and measuring the associated changes in power consumption and thermal profiles of the

chip using infrared imaging. We divide our chip into small blocks of size about 0.4 mm2

resulting into approximately 418 first-order and 418 second-order coefficients. In order

to maintain the stability of the least square estimation, the maximum number of coeffi-

cients i.e. the leakage power resolution is limited by the available number of instances of

Equation (3.10). We collected approximately 2000 data points to solve our least square

estimation. The total reference leakage power,
∑
pref in Equation (3.9) is estimated by

changing the die ambient temperature and using the procedure described in Section 3.2.2.

To uncover the underlying leakage spatial-variability introduced by process variability,
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Figure 3.16: a) Percentage leakage power per core with its L2 cache b) percentage leakage
power per block type.

we assume constant temperature across the die, and measure the leakage power for each

grid location. Figure 3.16.a shows the percentage of leakage power for each core with

its L2-cache. Core 1 has approximately 5% more leakage than the lowest power core.

This result for instance can be used to bias the operating system scheduler to allocate

applications on the lower-leakage cores before the higher-leakage cores. Figure 3.16.b

gives the total leakage power distribution among different blocks. There is approximately

10.3% within-die variations among all the blocks. Our results on leakage variability and

power-mapping for processors could be used to calibrate design time simulation tools and

hence, could be of great use for the architectural community.

Experiment 4. PMC-Based Power Modeling: In our fourth experiment we seek to

create empirical models that relate the performance monitoring counters (PMC) to the

post-silicon power consumption of each block in the quad-core processor as described

in Section 3.2.3. We collect the measurements of 11 PMCs for our quad-core processor

using pfmon tool. The 11 PMC are listed in Figure 3.17. We compute the correlation

coefficient between the measurements of the performance counters and map the power

consumption of each block, and we report in Figure 3.17 all the PMC that have strong to

good correlation or anti-correlation with power consumption. For example, the number of

retired µops (PMC #3), the data cache access (PMC #4), the retired branch instructions
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#1	   REQUESTS_TO_L2	  

#2	   DISPATCHED_FPU	  

#3	   RETIRED_UOPS	  

#4	   DCACHE_CACHE_ACESSES	  

#5	   L2_CACHE_MISS	  

#6	   MEMORY_REQUESTS	  

#7	   MEMORY_CONTROLLER_REQUESTS	  

#8	   CPU_TO_DRAM_REQUESTS	  

#9	   DRAM_ACCESSES_PAGE	  

#10	   DISPATCH_STALLS	  

#11	   RETIRED_BRANCH_INSTRUCTIONS	  

block	  	  power	   correlates	   an/	  correlates	  

cores	   (3,	  4,	  11,	  2)	   −	  

L2	  caches	   (10,	  1,	  11,	  2,	  7)	  	   −	  

Northbridge	  +	  misc	   (3,	  4,	  11,	  1,	  9,	  8,	  7,	  10,	  2)	   −	  

I/O	  +	  DDR	  channels	   5	   (2,	  11,	  4,	  3)	  

Figure 3.17: Correlation between performance counters and power consumption of pro-
cessor blocks.

(PMC #11), the floating point instructions (PMC #2) all provide strong correlation to the

power consumption of cores. In case of I/O and DDR channels, the L2 cache misses

(PMC #5) provide a strong correlation of power consumption, while PMC #2, #11,#3,

#4 provide strong anti-correlation. Notice that these performance counters are strongly

correlated with the power consumption of the caches and and cores. That is, when the

cores and caches are experiencing high activity, the I/O and DDR channels will experience

low activity and vice versa.

Given the measurements of the PMCs and their correlations with the post-silicon

power mapping results, we empirically fit a power model for each processor block to its

post-silicon estimated power using least-square estimation as described in Section 3.2.3.

The input to the power models are the most correlated PMCs as described in the previous

paragraph. For instance, we report in Figure 3.18 the power consumption of Core 1 and
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Figure 3.18: Power consumption as estimated by the infrared-based system and the fitted
models using the performance counters for the 30 test cases.

the northbridge blocks as estimated by infrared mapping and the fitted PMC models. We

notice that the PMC-based fitted models track the power mapping results closely, with a

mean absolute error of 2.6% in the case of Core 1 and about 9.2% in case of the north

bridge block. To illustrate the use of PMC in transient modeling, we utilize the derived

PMC models to estimate the transient power consumption for the different blocks of the

processor. Figure 3.19 gives the power consumption for case 28 for the first 120 seconds

in execution. We report in blue solid line the sum of power of all cores, the dashed blue

line gives the power consumption of the northbridge, while the brown and dashed green

lines give the power of IO and L2 caches respectively. Finally, the red line gives the to-

tal modeled power and the black line gives the total power form the external multimeter.

We note that the PMC-based modeling is able to track the transient response accurately,

following the changes in total power consumption.
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Figure 3.19: Transient power modeling using PMC measurements.

3.4 Power Mapping of a CPU-GPU Processor

CPU-GPU processors have different thermal and power management mechanisms than

traditional multi-core CPUs because they have two architecturally dissimilar devices in-

tegrated on the same die. In this section, we depict multiple implications of CPU-GPU

processors through detailed thermal and power mapping of a real processor.

3.4.1 Experimental Setup

Motherboard Setup. For experiments on a CPU-GPU processor, we use a motherboard

with FM2+ socket fitted with an AMD A10-5700 Accelerated Processing Unit (APU) and

8 GB DRAM. The floorplan of the APU is shown in Figure 3.20 [72]. The APU has two

x86 modules, containing two CPU cores each and it has 2×2MB L2 caches. The APU has

an integrated GPU with 6 single-instruction-multiple-data (SIMD) compute units. The IP

blocks surrounding the SIMD units are denoted as GPU auxiliary units because they are

active when the SIMD units are active. The area between L2 caches is occupied by unified
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Figure 3.20: Floorplan of the AMD A10-5700 APU.

north bridge (UNB), which acts as an interface between L2 caches and DDR3 controller.

The GPU has an additional memory controller, called graphics memory controller (GMC),

which is optimized for the graphics related memory requests. In this paper we consider two

frequency settings for CPU: 1.4 GHz and 3.0 GHz. The APU and the motherboard used in

this study has limited BIOS-level support for frequency scaling in GPU device (only DFS

without voltage scaling) and hence, limits the usefulness for the power management. So,

we fix the GPU frequency to 800 MHz in our experiments. The latest AMD drivers on

newer versions of APUs may support full DVFS on integrated GPU, thus has even more

potential than what is shown in this work.

While the basic setup and power mapping framework remains the same when we

change the processor and/or the motherboard, the IR-transparent heatsink has to be changed

whenever the physical dimensions of the CPU socket and heatsink assembly changes. The

A10-5700 APU requires FM2+ socket, so, we rebuilt the IR-transparent heatsink for the

CPU-GPU processor. It is worth mentioning that for understanding the implications of

CPU-GPU processors, we mainly focussed on the total power of different blocks. Also,

we did not have full access to the GPU performance counters, so we did not perform PMC

modeling for this processor. In particular, we solve the following constrained least-square-

error minimization problem to reconstruct the power map (p) of the die.
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p∗ = argp min ‖Rp−T‖2, (3.13)

s. t. pi ≥ 0.

where, p∗ is the reconstructed power-vector, pi denotes the power in the ith block of the

die. By solving the above optimization problem, we obtain the total power of each block

for the die. Using, pi > 0 constraint helps in ensuring that reconstructed power for all

blocks is always positive.

Benchmarks. We use the following workloads (mainly OpenCL) to cover a wide range of

characteristics. First, in order to fully control the workload distribution between CPU and

GPU devices, we wrote a simple custom micro-kernel (µKern) in OpenCL that multiplies

two vectors of arbitrary size for a given number of times. We use multiple iterations inside

the kernel so that the die reaches a stable thermal state, which improves the reproducibility

of thermal/power results. The micro-kernel is a homogeneous type of workload because

once it is launched on the GPU, the CPU is completely idle and vice-versa.

As a representation of real-life CPU-GPU workloads, we selected six OpenCL work-

loads from publicly available Rodinia benchmark suite [14]. In particular, we selected

(CFD) solver from computational fluid dynamics, breadth-first search (BFS) from graph al-

gorithms, Needleman-Wunsch (NW) from bioinformatics, Gaussian Elimination (GE) from

linear algebra, stream cluster (SC) from data mining, and particle filter (PF) from the

medical imaging domain. Unlike µKern, these benchmarks have multiple kernels, and

when a particular iteration of these kernels is running on GPU, CPU could be preparing

data for the next kernel launch. Therefore, they are also called as heterogeneous bench-

marks. Among the selected heterogeneous benchmarks, BFS and PF benchmarks have

high branch-divergences, so they perform better on CPU than GPU. Further, when run

on GPU with CPU as host, CFD, GE, and PF have low CPU-boundedness, defined as the
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proportion of total runtime spent on the CPU device, while others spend large portion of

the total runtime on the CPU device.

When an OpenCL benchmark is launched on CPU, it uses all available cores of the

CPU. To contrast the OpenCL workloads against CPU workloads and also to show the

impact of core-level scheduling decisions on a traditional CPU, we use single-threaded

benchmarks from the SPEC’s CPU2006 benchmarks-suite [101]. When a SPEC bench-

mark is launched on CPU, it uses only one out of the four CPU cores.

3.4.2 Results

In this subsection, we present multiple implications of integrated CPU-GPU processors

on thermal and power management techniques through experiments on a real processor.

a. Scheduling on Multi-core CPU versus CPU-GPU Processor

In a traditional multi-core CPU, workload scheduling is done at operating system (OS)

level using system level commands like taskset. However, in CPU-GPU processors, the

OpenCL framework provides application-programming interfaces (APIs) to control the

compute devices; it requires the programmer to distribute the work among different de-

vices. This inherently different nature of scheduling, combined with architecturally dif-

ferent devices, leads to different thermal and power profiles in CPU-GPU processor than

the traditional CPU-only processor.

Figure 3.21 depicts the outcome of these two scheduling choices: termed as purely OS-

based and application-based scheduling here, with the help of thermal maps for a SPEC

CPU benchmark (hmmer) and an OpenCL workload (NW). The floorplan of the processor
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Figure 3.21: Scheduling techniques: OS-based scheduling of a SPEC CPU benchmark
(hmmer) and application-based scheduling of an OpenCL benchmark (NW).

is also overlaid on these thermal maps. The die-shot with floorplan information of the

processor was shown earlier in Figure 3.20. From the Figure 3.21, we observe that with

the help of OS, the hmmer benchmark could be launched on one of the CPU cores as

shown in the thermal maps in first two columns. As expected, the thermal hotspots are

primarily located in the active cores, e.g. on core0 and core3 in these maps. On the other

hand, with the help of OpenCL runtime, the application-based scheduler could launch the

kernels of NW workload on both CPU and GPU devices. The thermal maps from such

scheduling are shown in the 3rd and 4th column in Figure 3.21. We notice that the thermal

profiles of OpenCL workload are different. In particular, when the OpenCL kernels are

launched on CPU, they uses all four cores of the CPU; so, the thermal hotspots in this

case are spread over all cores (as shown in the thermal map in 3rd column). Further, when

the kernels are launched on GPU, the hotspots are spread over both CPU and GPU, with

CPU being hotter than GPU due to its higher power density. This is also because, in

the NW benchmark, when the GPU is running a particular iteration of kernels, the CPU

is preparing work for the future iterations, keeping both CPU and GPU devices active

simultaneously.

Further, from Figure 3.21, we observe that the application-based scheduling on a CPU-
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GPU processor leads to larger range of the peak temperature (84.2 °C and 67.8 °C) and

total runtime (130 s and 70 s) by running workloads on CPU and GPU devices than the

CPU-only scheduling from the OS. Hence, we observe that although both the OS and

application-based scheduling affect the thermal hot spot locations, the application-based

scheduling inherently takes advantage of the heterogeneity in a CPU-GPU system and

achieves a more thermal friendly and power efficient scheduling. In summary, scheduling

on a CPU-GPU processor creates tight interaction between the application and the power

management unit which has a potential implication as follows.

Implication 1: A scheduling scheme could be implemented on CPU-GPU processors

wherein the thermal/power management unit, OS and application can make the scheduling

decisions in cohesion.

b. Interplay of Scheduling and DVFS

To demonstrate the interactions between DVFS and scheduling on CPU-GPU proces-

sors, we analyze the thermal, power and performance characteristics of a heterogeneous

OpenCL workload (CFD) launched on the AMD APU. Figure 3.22 shows thermal maps

and their corresponding power-breakdowns for two scheduling cases (GPU/CPU) and two

DVFS settings (1.4/3.0 GHz) for the CFD benchmark. The power breakdown for different

cases are shown in the pi-charts. As expected, the power in x86 modules is higher when the

kernel is launched on CPU, while the power in GPU units is higher when it is launched

on GPU. The figure also shows the peak temperature, total power and runtime for each

case. We notice that the power, performance, and thermal profiles are different in differ-

ent cases. In particular, among the four options, two DVFS settings and two scheduling

choices, the total power and the peak temperature for the OpenCL CFD benchmark vary

up to 23.4 W and 40.5 °C, while the performance varies by a factor of 10.5×.
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Figure 3.22: Thermal and power maps showing the interplay between DVFS and schedul-
ing for the CFD benchmark. The peak temperature, power and runtime are significantly
different for different DVFS and scheduling choices.

Further, DVFS and scheduling, collectively, have strong effect on the location of ther-

mal hotspots. For example, when the CFD kernels are launched on the CPU, as expected,

CPU DVFS has negligible impact on the location of thermal hotspots on the die (column

3 and 4 in Figure 3.22). However, when the kernels are launched on GPU, the sequential

part of the workload still runs on one of the CPU cores. So, in some cases, for example in

the thermal map shown in column 2 of Figure 3.22, the thermal hotspot could be located in

the x86 module even though the parallel kernels are running on GPU. This is because the

maximum operating frequency of CPU cores is higher than GPU compute unites due to

their deeper pipelines and smaller register files than GPU. Also, power has a super linear

relationship with the operating frequency/voltage (∝ fV 2), therefore, CPU cores typically

have higher power density than GPU at higher frequency. Hence, as shown in the thermal

maps in Figure 3.22, the location of thermal hotspot for the application-based scheduling

on a CPU-GPU processor is dependent on both CPU DVFS and scheduling choices.

The strong intertwined behavior of DVFS and scheduling on performance and power

does not exist in traditional multi-core processors. For example, as was shown earlier in
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Figure 3.21, when the hmmer (SPEC) benchmark is launched on different CPU cores al-

though the location of thermal hot spot shifts (which has ramifications on thermal manage-

ment), the performance, peak temperature and total power does not change significantly

because all four CPU cores have the same micro-architecture. The slight differences in

the total power (28.8 W versus 31.7 W) and die temperature (78 °Cversus 80.2 °C) are

because of differences in leakage power arising from differences in relative proximity of

these cores to the GPU units. We observed similar behavior on other representative SPEC

CPU benchmarks, namely omnetpp (memory-bound integer-point), soplex (memory-

bound floating-point), gamess (compute-bound floating-point) also. In summary, the

power management for regular multi-cores is simpler than heterogeneous processors, be-

cause DVFS and scheduling can be considered independently; however, the behavior of

DVFS and scheduling is intertwined from a thermal perspective. Weak interactions on

power occur because of the thermal coupling on the die. However, DVFS and scheduling

techniques have greater impact on performance and thermal/power profiles of CPU-GPU

processors for OpenCL workloads, which can be fluidly mapped to the CPU or GPU. We

summarize this discussion as the following implication.

Implication 2: DVFS and scheduling must be considered simultaneously for the best

runtime, power, and thermal profiles on CPU-GPU processors.

c. Workload-Dependent Scheduling and DVFS Choices

Different OpenCL workloads have different characteristics, e.g. branch divergences be-

havior and the proportions of work distributed between CPU and GPU devices. Therefore,

the optimal scheduling and DVFS choice for performance and power/temperature varies

across different workloads. Below, we provide the optimal scheduling and DVFS choices

for the selected heterogeneous workloads.
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Figure 3.23: Normalized power breakdown (a), runtime (b), and energy (c) for 6 hetero-
geneous OpenCL benchmarks executed on CPU-GPU and CPU devices at two different
CPU DVFS settings (normalization with respect to ”CPU-GPU at 1.4 GHz” cases).

Power and Temperature Minimization. In Figure 3.23.a, we show the breakdown of the

total power for the selected heterogeneous OpenCL benchmarks under different schedul-

ing and DVFS conditions. The power values are normalized with respect to the total

power in “1.4 GHz CPU-GPU” case for each benchmark. As expected, we notice that for

all benchmarks the average total power is the lowest when they are launched on CPU at

1.4 GHz. Similarly, although not shown in the figure, for all benchmarks the peak die-

temperature is the lowest when they are launched on CPU at 1.4 GHz. This is expected

because for the “1.4 GHz, CPU” case, CPU frequency is the lowest and GPU is idle; so,

both CPU and GPU dissipate the least amount of power. In all other cases, either CPU

will dissipate higher power or both CPU and GPU will dissipate power.

Further, we notice that the irregular benchmarks (e.g., BFS) with better power effi-

ciency on CPU, could dissipate unnecessarily high power if run on CPU-GPU. This is

also because the current GPUs do not have fine grained (SIMD or CU-level) power gating.

So, when a workload with irregular branches is launched on GPU, only a portion of SIMDs

would be doing the useful work and others would be idle, dissipating unnecessary leakage

62



power. The recent ideas related to fine-grained power gating to reduce leakage power in

GPUs would be quite useful in such cases [114]. We summarize these observations as the

following implication.

Implication 3: Running workloads on CPU device at the lowest DVFS setting provides

minimum power and peak temperature because power gating GPU is more power efficient

than keeping both CPU and GPU active at low CPU DVFS.

Runtime and Energy Minimization. Figure 3.23.b and 3.23.c illustrate the performance

and energy results of the selected heterogeneous OpenCL workloads at different schedul-

ing and DVFS settings. The optimal DVFS and scheduling choices for minimizing run-

time, energy, along with power, are summarized in Table 3.4. Among them, the energy or

runtime results are more interesting. We notice that the optimal scheduling for minimizing

energy and runtime are typically the same, but the optimal DVFS settings for minimizing

energy and runtime could be different. In other words, we make following two observa-

tions from the results shown in Table 3.4.

1. If a particular scheduling choice minimizes runtime, it also minimizes the energy.

From the Table 3.4, we observe that running BFS and PF on CPU leads to both

optimal energy and runtime; similarly CFD, NW, GE, and SC lead to lower energy

and runtime when run on GPU with CPU as the host device. This behavior is ob-

Table 3.4: Optimal DVFS and scheduling choices to minimize power, runtime, and energy
for the selected heterogeneous OpenCL workloads.

Workload Minimum Minimum Minimum
Name Power/Temp Runtime Energy
CFD 1.4 GHz, CPU 3.0 GHz, CPU-GPU 1.4 GHz, CPU-GPU
BFS 1.4 GHz, CPU 3.0 GHz, CPU 3.0 GHz, CPU
NW 1.4 GHz, CPU 3.0 GHz, CPU-GPU 3.0 GHz, CPU-GPU
GE 1.4 GHz, CPU 3.0 GHz, CPU-GPU 1.4 GHz, CPU-GPU
SC 1.4 GHz, CPU 3.0 GHz, CPU-GPU 3.0 GHz, CPU-GPU
PF 1.4 GHz, CPU 3.0 GHz, CPU 3.0 GHz, CPU
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served because BFS and PF have high control-divergences, so they are more suited

for the CPU architecture; running them on GPU mean both CPU and GPU would

consume power, with GPU providing less performance. On the other hand, the other

benchmarks have high parallelism, so GPU is more power efficient for them.

2. The energy of CPU-GPU benchmarks with low CPU-boundedness could be mini-

mized by reducing the CPU frequency. We observe that the energy of CFD and GE is

the lowest at low CPU frequency (1.4 GHz). This is because CFD and GE have low

CPU-boundedness, measured by the relative portion of the work executed on CPU

when the workload is launched on GPU. So, the performance improvement from

increasing the CPU frequency does not compensate for the corresponding increase

in power for these benchmarks. On the other hand, NW and SC have the lowest

energy at high CPU-frequency (3.0 GHz). This is because NW and SC have high

CPU-boundedness, so, increasing the CPU frequency improves their performance

significantly. We summarize these results through following implication.

Implication 4: The optimal DVFS and scheduling choices for minimizing runtime and

energy on a CPU-GPU processor are functions of workload characteristics.

d. Asymmetric Power Density of CPU-GPU Processor

Typically, power dissipation in GPU and CPU devices for the same OpenCL kernel is

different due to differences in their architectures and operating frequencies. Further, for

the studied heterogeneous processor, GPU occupies larger die-area than the CPU, and

therefore, it has lower power density than CPU for the same total power. In this section,

we confirm the asymmetric power density of two device experimentally. Although it is

difficult to make a circuit block to dissipate certain amount of power in a real processor,

the homogeneous µKern, which keeps only one device active at a time, is used to analyze
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Figure 3.24: Thermal and power maps demonstrating asymmetric power density of CPU
and GPU devices. µKern is launched on CPU and GPU devices. For the comparable
power on CPU (20.5 W) and GPU (19 W), the peak temperature on CPU is about 26 °C
higher than on GPU.

the power densities of the two device. Figure 3.24 shows the thermal and power maps of

the die when we launch the µKern on CPU and GPU devices at fixed DVFS (3 GHz).

From the pi-charts, we observe that the power consumption of CPU in column-1 (20.5 W)

is comparable to the power consumption of GPU in column-2 (19 W). However, from the

thermal maps, we notice that the peak temperature in two cases are significantly different;

in particular, the peak temperature of CPU is higher than that of GPU by 26 °C . We

computed the power density of CPU and GPU in two cases and found that the power

density of CPU is 2.2× higher than that of the GPU. Therefore, even for the comparable

amount of power, CPU has higher peak temperature than the GPU.

Further, due to higher power density of CPU than GPU, it is possible that the thermal

hotspot could be located on CPU even though the OpenCL kernels are launched on GPU.

This is because when a kernel is launched on GPU, CPU acts as its host device; so, the

CPU could also be active to prepare the work for the next iteration of kernel launch. This
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could be confirmed from the thermal map shown earlier in the column-2 of Figure 3.22.

We notice that, at 3 GHz DVFS, the peak temperature is located on CPU blocks even

though the kernels are launched on GPU. More importantly, we observe that, at higher

DVFS, the likelihood of CPU reaching the thermal limit first is higher than that of GPU.

Although at low DVFS (e.g., 1st column of Figure 3.22), the hotspot may be located on

GPU blocks, but the peak temperature of GPU in that case is lower than the thermal limits.

The higher temperature of GPU in this case would lead to higher leakage power, but the

peak temperature of GPU will still be below the thermal limit. The asymmetric power

density and its effect on thermal profiles of the CPU-GPU processor, as discussed above,

could have multiple implications on the thermal and power management of the system.

Few of them are as follows.

Implication 5: Due to lower peak temperature in GPU, it could have fewer number of

thermal sensors per unit area than the CPU.

Implication 6: The extra thermal slack available on the GPU could be used to improve its

performance through frequency-boosting, provided it meets all architectural timings, like

register file access time.

Implication 7: One could design a localized cooling solution (e.g., thermo electric cooler

based) for separate and efficient cooling of CPU and GPU devices on such processors.

e. Leakage Power-Aware CPU-Side Scheduling

Here, we demonstrate the importance of scheduling the sequential part of an OpenCL

CPU-GPU workload on an appropriate core of the CPU. Typically, a CPU-GPU processor

has multiple cores on the CPU side. So, when a workload is launched on GPU with CPU

as the host device, it could be launched from any of the available CPU cores. Since the
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Figure 3.25: Impact of CPU core-affinity when a benchmark (SC) is launched on GPU
from different CPU cores at fixed DVFS setting.

cores in x86 module-2 (M2) are in close proximity to GPU than the cores in x86 module-1,

the thermal coupling, and therefore, the leakage power is different in each case.

To understand the differences in thermal and power profiles, we launched a heteroge-

neous benchmark (SC) on GPU from 4 different cores of the CPU. Figure 3.25 shows the

thermal maps of the die in all 4 cases. We observe that the thermal and power profiles of

the chip is indeed different for different core-affinities. Specifically, the total power when

the workload is launched from Core0, 1, 2, and 3 are 38.9 W, 39.2 W, 41.9 W, and 43 W,

respectively; while, the corresponding peak die temperature values are 64.6 °C, 65.9 °C,

72.4 °C, and 75.6 °C, respectively. Hence, we notice that the total power and peak temper-

ature of the die is higher (by 4 W and 11 °C, respectively) when the benchmark is launched

from Core3 than when it is launched from Core0. This happens because Core3 is in close

proximity to GPU; so, there is stronger thermal coupling between Core3 and GPU than

between Core0 and GPU. The strong thermal coupling leads to higher temperature and

leakage power in both CPU and GPU. So, it is important to launch the kernels from an

appropriate CPU core. We encapsulate this observation in the following implication.

Implication 8: The OS or the CPU-side scheduler should use the floorplan information

of the processor to launch a workload on GPU from an appropriate CPU-core to reduce

both, the peak temperature and the leakage power of the chip.
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3.5 Summary

In this chapter, we analyzed the power consumption of different blocks of a quad-core

CPU processor and a heterogeneous CPU-GPU processor. Our results reveal a number of

insights into the make-up and scalability of power consumption in modern processors. We

also devised accurate empirical models that estimate the infrared-based per-block power

maps using the PMC measurements. We used the PMC models to accurately estimate the

transient power consumption of different processor blocks of a multi-core CPU processor.

CPU-GPU processors are becoming mainstream due to their versatility in terms of per-

formance and power tradeoffs. In this chapter, we showed that the integration of two archi-

tecturally different devices, along with the OpenCL programming paradigm, create new

challenges and opportunities to achieve the optimal performance and power efficiency for

such processors. With the help of detailed thermal and power breakdown, we highlighted

multiple implications of CPU-GPU processors on their thermal and power management

techniques. For the studied CPU-GPU processor, among different frequencies and two de-

vices, the performance could vary up to 10.5×, while the total power and peak temperature

vary up to 23.4 W and 40.5 °C , respectively. We showed that DVFS and scheduling must

be considered simultaneously for the best runtime, power, and thermal profiles on CPU-

GPU processors. In the next chapter, we discuss the workload scheduling on CPU-GPU

processors in greater detail.

68



Chapter 4

Workload Characterization and

Mapping on CPU-GPU Processors

4.1 Introduction

Heterogeneous processors, with integrated CPU and GPU devices, offer great balance

between performance and power efficiency for a wide range of applications [68]. Further-

more, they eliminate many of the overheads associated with the communication between

discrete CPU and GPU devices. CUDA [79] and OpenCL [75] are two prominent parallel

computing frameworks that allow the programmer to run kernels/workloads on GPU de-

vices. While CUDA only supports GPU devices from NVIDIA, OpenCL could be used

to run kernels on both CPU and GPU devices from multiple vendors. In particular, the

latter provides low-level APIs to choose a device. Currently, the programmer decides

the device for an application statically at the development time based on profiling results,

and the operating system (OS) together with OpenCL Runtime schedules the application
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on the chosen device. However, such a static scheme may not lead to an appropriate

device selection for all kernels because different kernels may have different preferred de-

vices based on the data size and kernel characteristics [87]. Furthermore, this scheduling

decision seldom considers the run-time physical conditions [e.g., thermal design power

(TDP) and CPU workload conditions]. Since the TDP can vary depending on the pro-

cessor model, available battery power, and user preferences for power management, and

similarly, CPU load could vary depending on the number of cores occupied by other work-

loads, the existing schemes may lead to potentially inefficient scheduling under dynamic

system conditions [6, 110, 36, 16].

Modern processors incorporate hardware (HW) mechanisms to dynamically enforce

desired TDP budgets. However, by their own nature, these mechanisms only leverage

“knobs” available to the hardware (e.g., clock gating, cycle skipping and dynamic frequency-

voltage settings), and they are not able to control the scheduling of applications. In this

chapter, we show that the best runtime and energy scheduling choice for a parallel ker-

nel depends on the TDP of the chip and on the individual kernel characteristics. Thus,

when TDP changes during runtime, it can be beneficial to override the static preference

and re-map a parallel kernel to a different device (e.g., from GPU to CPU or vice versa).

Similarly, under a fixed TDP budget, the suitable device for a kernel depends on number of

available cores on CPU; if one or more cores of CPU become busy with other workloads,

then the best device could change from CPU to GPU device. To address these challenges,

we propose a hardware status-aware scheduler to dynamically map parallel kernels to the

best device such that runtime or energy is minimized. Few prior work proposed scheduling

at application-level [36, 16]. Others advocate frameworks that do not take into consider-

ation the time-varying system conditions, such as TDP budget and run-time workload

conditions [87, 30, 5, 110, 6]. This chapter makes the following contributions to address

the issues with existing scheduling methods.
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• We develop a workload scheduling framework for CPU-GPU processors that makes

the scheduling decisions to minimize runtime or energy by taking run-time condi-

tions (e.g., TDP and number of available CPU cores) into account. Unlike previ-

ous works [6, 110], which were either static in nature or mainly used compile-time

workload-characteristics, we profile the workloads online and make appropriate de-

vice decisions under varying system conditions. We show that such scheduling pro-

vides better performance and higher energy savings compared to the state-of-the-art

application scheduling.

• We monitor the run-time physical and existing workload conditions by reading

model specific registers (MSRs) for chip TDP and the performance counter values.

We then use a support-vector machine (SVM) classifier that uses these run-time sys-

tem conditions along with the workload-specific performance monitoring counters

as features to predict the appropriate device on CPU-GPU processors. The SVM

classifier is trained using measurements on the target hardware. While the exist-

ing schedulers focus on runtime minimization, our scheduler could provide efficient

scheduling for both runtime and energy, depending on the user preference.

• We implemented our proposed framework as a computationally light-weight power

management tool that extends HW-based TDP enforcement capabilities to include

CPU/GPU scheduling. We tested our tool on a real state-of-the-art CPU-GPU

processor-based system using OpenCL benchmarks. For the studied benchmarks,

we show that the proposed kernel-level scheduling provides up to 40% and 24%

better performance than the static developer-based scheduling choice and the state-

of-the-art scheduling schemes, respectively. Further, for the studied TDP traces,

our scheduler provides up to 10% higher energy savings than the developer-based

energy minimization scheduling choice..
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The rest of the chapter is organized as follows. We provide the motivation of this work

in section 4.2. In section 4.3, we describe the proposed framework for online workload

characterization and mapping on CPU-GPU processors in detail. The experimental setup

and the runtime and energy improvement results from the proposed scheduling schemes

are presented in section 4.4. Finally, we summarize the chapter in Section 4.6.

4.2 Motivation

In this section, we motivate the need for a run-time physical and workload conditions-

aware (in particular TDP and CPU load-aware) scheduler for optimizing performance or

energy on CPU-GPU processors. First, we demonstrate the impact of TDP on scheduling

decisions. Then, we highlight the interplay between workload characteristics, CPU-load

and TDP on device decisions where the CPU-load denotes the number of CPU-cores busy

running other background workloads. Thirdly, we also show the advantage of kernel-level

scheduling instead of application-level scheduling for improving performance and power

efficiency of CPU-GPU processors.

a. Need for TDP-Aware Scheduling

Here, we discuss the impact of TDP budget on workload scheduling for CPU-GPU pro-

cessors. By definition, TDP denotes the maximum power of the chip that can be handled

by the cooling system. In recent processors from Intel and AMD, a configurable TDP

(cTDP) feature is introduced to handle different usage scenarios, available cooling capac-

ities and desired power consumptions. As the TDP could change dynamically for saving

battery life or adapting to the user behavior, we study the effect of changing chip TDP on

the scheduling decisions.
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Figure 4.1: Energy, power and runtime versus package TDP for two benchmarks: (a)
CUTCP and (b) LBM on GPU and CPU devices of an Intel Haswell processor.

Figure 4.1 shows runtime, power and energy versus TDP trends for two application

kernels (LUD.K2 and LBM.K1) that we observed on a heterogeneous processor. The

total power either follows the TDP or saturates based on the device type and the work-

load characteristics. Runtime and energy trends are more interesting; in particular, we

observe two types of trends in runtime and energy. In one trend the runtime/energy of

the LBM.K1/LUD.K2 kernels are always lower on GPU or CPU devices irrespective of

the TDP, while in the second trend (runtime for the LUD.K2 kernel and energy for the

LBM.K1 kernel) the optimal device is a function of its TDP. These trends arise because

of the kernel characteristics and the differences in maximum operating frequency and ar-

chitectures of CPU and GPU devices in a CPU-GPU processor. More specifically, by the

nature of its design, CPU is more aggressively pipelined than GPU to reduce latency, and

as a result, GPU reaches its maximum frequency before the maximum TDP of the pack-

age, while the CPU can increase its frequency (and thereby dissipates higher power) until

it reaches the maximum TDP, as shown in the power versus TDP plots. At this point,

the CPU consumes large power (due to super-linear relationship between frequency and

power) that it is not the most energy-efficient even though it may deliver lower runtime.
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On the studied processor, the maximum GPU frequency is 1.25 GHz, while the maximum

CPU frequency is 4 GHz. In general, the occurrence of such energy cross-over with re-

spect to TDP is a function of runtime and power behavior of a kernel on two devices. For

example, the optimal device for energy could be different at low and high TDPs when a

kernel runs faster on CPU than GPU with a speedup less than the power ratio between

CPU and GPU devices (e.g, LBM.K1 in Figure 4.1).

b. Need for CPU Load-Aware Scheduling

Here, we demonstrate that the best scheduling choice not only depends on the TDP budget,

but also depends on the run-time conditions on the CPU cores. In particular, we show

in Figure 4.2 the scheduling maps that minimize runtime for two kernels (LUD.K2 and

LBM.K1) when number of CPU cores available to the kernel are varied from 1 to 4. Here,

we vary the number of CPU cores available to the OpenCL kernel to simulate the effect

of different CPU load conditions in the system. Further, in this work, we assume that no

two workloads run on the same core at a time. This is a reasonable assumption because

in a real system a scheduler would always try to run a workload on the free or available

cores. Also, by having the OpenCL and non-OpenCL workload run on different cores of

CPU, the interference between them is minimized, which makes the scheduling problem

tractable. In particular, we demonstrate the following effects through the scheduling maps

shown in Figure 4.2.

First, we show that, at a fixed TDP (say 80 W), as the number of CPU cores available

for the kernel reduces, the best device for runtime could change from CPU to GPU. This is

because the compute throughput of CPU reduces with decrease in number of CPU cores,

which in turn increases the kernel runtime on CPU. This is an expected behavior, but it

has implications on the scheduling decisions. For example, at 80 W TDP, when all cores

of CPU are available, the runtime of LUD.K2 kernel on GPU and CPU are 3.3 s and 2.2 s,
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Figure 4.2: Runtime-optimal devices for two kernels (LUD.K2 and LBM.K1 ) at 3 dif-
ferent TDPs (20, 40, 80 W) and 4 different number of CPU-cores (1C to 4C) for an Intel
Haswell processor.

making CPU a favorable device. However, if 3 out of 4 CPU cores become busy (say

with SPEC workloads), the kernel runtime on GPU remains the same, but the runtime on

CPU becomes 7.7 s, making GPU a favorable device. This example shows that we need a

scheduler that takes in to account the current CPU load while making scheduling decisions

between CPU and GPU devices.

Further, in Figure 4.2, we also show the interplay among kernel-characteristics, TDP,

and the number of CPU cores available to the kernel. From the scheduling maps in Fig-

ure 4.2, we notice that the impact of TDP (also shown earlier in Figure 4.1) and the number

of available CPU cores on performance is higher for the LUD.K2 kernel than for LBM.K1.

Therefore, as the number of the available CPU cores reduce from 4 to 2, the runtime op-

timal device for LBM.K1 is still CPU, while it changes to GPU for the LUD.K2 kernel.

Similarly, as the TDP changes, the performance of LUD.K2 kernel is affected more than

that of LBM.K1 kernel (see Figure 4.1 for exact trends). Hence, we demonstrate that both

TDP and existing workload conditions should be considered simultaneously for making

best scheduling decisions on a CPU-GPU processor. Its worth mentioning that in this

work, we only study the co-location of workloads on CPU cores while keeping the num-

ber of execution units (EUs) on GPU constant; this is because the processor used in our

experiments does not support changing the number of EUs on the GPU device.
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Figure 4.3: Energy of different kernels (K1-K3) of the LUD application on CPU and GPU
at 60 W TDP.

c. Need for Kernel-Level Scheduling

In Figure 4.3, we show the energy of different kernels of a sample OpenCL application

(LUD with 3 kernels) on GPU and CPU devices. Here, we observe that different kernels

consume different energy on the two devices, In particular, we observe that kernel K1

consumes less energy on CPU, while kernels K2-K3 have lower energy on CPU due to

different kernel behaviors. Similar trends could occur in runtime [110]. Therefore, we

need a kernel-level scheduler instead of simple application-level scheduler [36, 16] to

minimize runtime and energy for better energy efficiency.

Motivated by these observations, we present in the next section a framework that

provides kernel-level, hardware status-aware runtime/energy minimization scheduling for

CPU-GPU processors during run-time.

4.3 Proposed Methodology

In this section, we describe the proposed framework and the machine learning-based mod-

els used to achieve kernel-level run-time hardware status-aware scheduling in detail.

Framework Architecture. The high-level organization of our framework is given in Fig-
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Figure 4.4: Block diagram of the proposed scheduler for CPU-GPU processors.

ure 4.4. The figure shows the OS, OpenCL Runtime and the proposed scheduler as a single

unit because they act as an interface between the processor and the application. Custom

APIs, independent of actual application, are implemented in C language to exchange in-

formation between the application and the scheduler using efficient UNIX sockets. These

APIs have negligible overhead on the actual application as demonstrated by our results

later in the paper. To make appropriate decision for all kernels of an application, the sched-

uler keeps track of the current phase for each kernel by exchanging kernel-id (kID), phase

(e.g., kernel-enqueue), and process-id (pid) information with the application. The sched-

uler monitors the hardware performance counters (PMCs) and input these measurements

to an a priori trained SVM classifier to predict the appropriate device (or class) that mini-

mizes energy or runtime for the kernel. These models for the classifier are trained offline

using performance counter measurements collected from different applications executed at

multiple TDP values and under different CPU-load conditions, which could change when

one or more cores are busy running other workloads. In Figure 4.4, the CPU cores busy
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with other workloads are marked as “Busy” and those available for the OpenCL kernel

are marked as “Free”. During run-time, the scheduler uses the SVM model to classify the

kernel in to one of the two classes (GPU or CPU), as described below.

Kernel Classification. In order to make an optimal device-decision, it is sufficient to pre-

dict the relative ratio of energy or runtime of each device (CPU vs GPU) for a kernel and

therefore, building accurate and potentially complex models to estimate runtime and/or

power for the kernel are not needed. Therefore, we use support-vector machine (SVM)

based classifiers to predict the optimal device in our scheduler. We also evaluated k-means

and decision-tree based classifiers in the paper, but SVM provides the most accurate pre-

dictions as demonstrated later in the results. We et al. also used similar classification

approach, based on static code profiling along with work group sizes to make device de-

cisions [110] however, their approach does not include run-time hardware physical (TDP)

and CPU-load (number of free/busy cores) conditions in the scheduling process. So, there

could be performance loss in a dynamic system environment, as shown in the results sec-

tion. Further, their classifier is based on the work group size and the static compiler-level

kernel information, while we use performance counters, measured on the actual hardware,

as the feature vector for the classifier; hence, it captures the kernel behavior more reliably

on the target hardware.

We collect a broad set of PMCs available by running multiple OpenCL applications

on our experimental system to build reliable SVM models. Table 4.1 shows the list of

PMCs we studied as the feature space for the SVM-based classifier. We selected these

performance counters as they not only represent the overall kernel characteristics but also

enable the differentiation of kernels with respect to suitability on CPU or GPU devices. For

example, kernels with higher branch instructions benefit more on CPU, while those with

higher LLC misses and resource stalls performance better on GPU. The trained models

are stored and used by the scheduler to make optimal decision for different kernels. In
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Table 4.1: List of performance counters for the SVM classifier.

INSTR INSTRUCTIONS RETIRED
REFCLK UNHALTED REFERENCE CYCLES
CLK CPU CLK UNHALTED
BR BRANCH INSTRUCTIONS RETIRED
BRMISS BRANCH MISSES
LLC LLC MISSES
L1DL L1 DCACHE LOAD MISSES
L1DS L1 DCACHE STORE MISSES
L2MISS L2 RQSTS:ALL DEMAND MISS
STALL RESOURCE STALLS:ANY

particular, we use the following SVM equation to predict the appropriate device (c < 0

for GPU, and CPU otherwise) during run-time:

c =
n∑
i

αi.li.κ(si, x) + b, (4.1)

where, n denotes the number of support vectors, b denotes the bias of SVM classifier, x is

the test feature, and si and li denote the ith support vector and its class-label, respectively.

Since the feature space is usually not linearly separable, we adopt polynomial kernel func-

tion for SVM. So, both bias and support vectors are obtained by training an SVM classifier

using 3rd order polynomial basis function denoted as κ(x, y) = (1+x.y)3. Although train-

ing an SVM model is computationally expensive, the testing is far less expensive than the

training. Further, it is worth mentioning that these models need to be built only once, so if

the underlying hardware changes, the SVM models could be retrained and the new models

could be used during run-time.

Online Kernel Characterization and Mapping Algorithm. Algorithm 1 shows the pro-

posed online methodology/algorithm to characterize and schedule kernels on appropri-

ate device in our scheduling framework. To keep track of the chip TDP and the perfor-

mance counters (PMCs) values, it is assumed that the scheduler is running continuously

throughtout the application time, say as a linux kernel-task. At each iteration i of a kernel

(k), the scheduler first checks for the free/available CPU cores (Ck
i ) using PMC values of
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Algorithm 1: Online characterization and mapping of kernels/workloads on CPU-
GPU processors.

Result: device (CPU/GPU)
1 Start scheduler(); //Keeps track of chip TDP and PMCs;
2 for Every iteration i of kernel k do
3 Find available CPU cores (Ck

i );
4 if Ck

i == 0 then
5 device = GPU;
6 else
7 Read current chip TDP (P k

i );
8 device = database query(Ck

i , P k
i , k);

9 if ( device == NULL ) then
10 device = SVM model(PMC, TDPi, C

k
i );

11 Collect performance counters (PMC);
12 database add(Ck

i , P k
i , k);

13 end
14 end
15 return device;
16 end
17 Function SVM model(PMC, TDP,C));
18 x = (PMC, TDP,C); // feature-vector;
19 device =

∑n
i αi.li.κ(si, x) + b;

20 return device;

different cores. If all cores are occupied by some other workloads, the scheduler selects

GPU as the default device, otherwise the scheduler reads the current chip TDP and checks

if the same kernel has been profiled before at similar physical and run-time conditions (i.e.

for the same number of CPU cores available). If the kernel is seen for the first time and

is not profiled at the similar conditions before, then the SVM model is invoked to predict

the device with performance counters PMCs, TDPi and CPU load conditions (Ck
i ) as its

input. The current device decision is then added to the database for using in the future

iterations of the kernel.

To create the device database, we discretize the entire TDP range into steps of 10 W

TDP to store the optimal device-map for each kernel at different number of cores and

TDP ranges. We only need to store binary values (e.g., 0 for GPU and 1 for CPU), so

the database size is reasonably small and is proportionals to the number of kernels in the

application. Also, by default, we delete the optimal device-map for all kernels of the
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application when it is finished. However, if the same application is expected to be seen

again, we have an option of keeping the device-maps for all kernels stored across multiple

iterations of the application. Also, its worth mentioning that we build different SVM

models for minimizing runtime or energy goals as the device decision for minimizing one

is typically different than the other.

4.4 Experimental Setup

We perform our experiments on a real system equipped with an Intel Haswell Core i7-

4790K CPU-GPU processor and 16 GB memory. The CPU has 4 cores with 4×256 KB

L2 caches and an 8 MB L3 cache. It has an HD graphics 4600 GPU with 20 execution

units, each with 16 cores, integrated on the same die. The nominal frequency of CPU

cores is 4 GHz, while the GPU cores run up to 1.25 GHz. To show the effectiveness of the

proposed scheduler, we have selected 13 OpenCL benchmarks from 3 popular benchmark

suites to cover wide range of workload characteristics – Rodinia [14], Parboil [102], and

Polybench [35]. The list of benchmark, along with the number of kernels in each bench-

mark are shown in Table 4.2. In total, there are 24 OpenCL benchmarks. Further, to study

Table 4.2: List of OpenCL benchmarks and their kernels.

Benchmarks #Kernels
Streamcluster (SC) 1 (K1)
Particlefilter (PF) 4 (K2-K5)
LU Decomposition (LUD) 3 (K6-K8)
Distance-cutoff Coulombic potential (CUTCP) 1 (K9)
Lattice-Boltzmann method (LBM) 1 (K10)
Hotspot (HS) 1 (K11)
Heartwall (HW) 1 (K12)
Computational fluid-dynamics (CFD) 3 (K13-K15)
Sparse matrix-vector multiplication (SPMV) 1 (K16)
General Matrix Multiply (SGEMM) 1 (K17)
Stencil (STL) 1 (K18)
Finite-difference time-domain method (FDTD) 3 (K19-K21)
Gram-Schmidt Process (GSCHM) 3 (K22-K24)
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the effect of co-runners, we select 4 representative workloads (hmmer, omnetpp,

gamess, and soplex) from SPEC CPU2006 suite [101]. Among them hmmer and

gamess are computationally intensive workloads, while omnetpp and soplex are

memory-bound workloads. In our experiments, we run one or more instances of these

workloads on CPU cores to vary the CPU-load.

Further, to build the SVM models for minimizing energy, we measure the energy of

each kernel using Intel’s running average power limit (RAPL) APIs. We implement the

time-varying TDP by setting hardware model-specific registers (MSR) corresponding to

package power limit. Further, in this work, we focus mainly on those applications which

have at least one of its kernel being launched multiple number of times. This assumption

is typically true for the scientific applications as they involve iterative algorithms, wherein

certain functions are executed multiple times, with potentially different inputs in each

iteration. The runtime/energy of a kernel in its very first iteration could be significantly

different than its runtime/energy in the latter iterations due to unknown hardware state

and cache warm up during the first iteration. Therefore, we use first two iterations to run

on CPU to collect the performance counters and use them in the SVM model to predict

optimal device. Finally, for robust training of SVM models, we ran multiple iterations of

each kernel to obtain reliable energy and runtime measurements.

4.5 Results

In this section, we provide following set of results from our experiments: a) evaluation

of the accuracy of the proposed SVM-based kernel-workload scheduler, b) the impact of

TDP and CPU-load conditions on the scheduling decisions for minimizing runtime and

energy, c) comparison of our proposed scheduler against two state-of-the-art scheduling
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methods, d) demonstration of the effectiveness of our proposed scheduler during run-time

on a real system, e) the runtime overheads of the proposed scheduler.

a. Kernel Classification Accuracy

We evaluated our SVM model at different physical and run-time resource availability con-

ditions for different kernels. In particular, we varied the TDP between 10 W to 80 W (in

steps of 10 W), number of CPU cores available to OpenCL workload from 4 to 1 (in steps

of 1). We evaluated the SVM model under following 4 scenarios based on whether TDP

or the number of available cores or both are allowed to change on the system: 1) fixed

TDP, fixed number of available cores, 2) fixed TDP, variable number of cores, 3) variable

TDP, fixed number of cores 4) both TDP and number of cores variable. We found that our

SVM model performs well in all 4 scenarios. Specifically, the maximum inaccuracy for

different kernels at different possible conditions in the aforementioned four scenarios are

2.08%, 3.12%, 2.43%, and 2.31%, respectively.

b. Impact of TDP and CPU-Load on the Scheduling Decisions

Here, we discuss the interplay of TDP and CPU-load conditions on scheduling decisions

for minimizing runtime and energy of different kernels.

Scheduling for Minimizing Runtime. Figure 4.5 (a) shows device map (blue for GPU

and red for CPU) for all 24 kernels that minimizes the kernels’ runtime under different

TDP and CPU-load conditions. In particular, we show the results for 3 TDPs (20 W,

40 W, and 80 W) and 4 different CPU-load conditions (4CL to 1CL), achieved by pin-

ning the OpenCL workload on different number of CPU cores (4 cores to 1 core). For

the results shown in this figure, we do not run any other workload on the remaining CPU-

cores; so, the device map here provides insights into the relative performance scaling of

different kernels on CPU-cores versus GPU at different TDPs. From the device map in
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Figure 4.5: Device map for minimizing (a) runtime, (b) energy when executed with dif-
ferent number of cores (without co-runners).

Figure 4.5 (a), we observe that the scheduling decision depends on the CPU-load condi-

tions, requiring the scheduler to be aware of run-time workload conditions while making

the scheduling decisions. Specifically, at a fixed TDP, we observe 3 types of trends in

scheduling decisions as the number of CPU cores available to the OpenCL workload are

varied. They are as follows.

1. Always faster on GPU.

2. Always faster on CPU.

3. CPU faster at higher number of CPU cores and GPU faster at lower number of cores.

Kernels in the first category have lower performance on CPU (even at all 4 cores) than

GPU. Ten out of 24 kernels (K1, K2, K5, K9, K11, K14, K16, K19, K20, K21) fall in to

this category. These kernels have enough parallelism and low branch divergences, so they

run faster on GPU. Similarly, six out of 24 kernels (K3, K4, K6, K22, K23, and K24) run

faster on CPU irrespective of number of CPU-cores allocated to them. The GPU compute

throughput is significantly lower than CPU for these kernel due to lack of parallelism or
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large number of synchronization points or the kernel is too short in duration that sending

it to GPU only adds unnecessary overhead in runtime. Among them, kernels K3, K6,

and K23 are relatively short kernels (few micro seconds), while others lack parallelism

and benefit more from higher CPU frequency. The scheduling for these two categories

is relatively simpler because the scheduler does not need to consider the effect of CPU

load-conditions while making decisions. So, the existing schedulers could also perform

well for such kernels [110].

However, scheduling for the kernels falling into third category (8 out of 24 kernels) is

challenging. When given all 4 cores, the performance of these kernels on CPU is either

comparable or only up to 4× better (on our 4-core system) than on GPU. Therefore, at

a fixed TDP, as the number of available cores reduces (e.g., from 4 to 1), the CPU per-

formance could become worse than GPU. For making appropriate scheduling for such

kernels, the scheduler needs to first find the number of available cores at the time of

scheduling and then make the decision accordingly. The SVM model used in the pro-

posed scheduler includes the number of available CPU cores as one of the features, and

hence, makes better decision under varying CPU load-conditions than the state-of-the-art

schedulers, which are typically oblivious of such run-time conditions [110].

Furthermore, for the kernels in third category the change of performance of kernels on

CPU with respect to TDP could also affect the device decisions. Specifically, for the fixed

CPU-load (e.g., 3CL case, where 1 core is busy with other workload), the performance

of a kernel at low TDP (e.g., 20 W) could be lesser on CPU than on GPU, however,

as the TDP is increased (e.g., from 20 W to 80 W), the performance of CPU improves

significantly and therefore, CPU could provide better performance than GPU. Hence, we

conclude that for effective workload scheduling on a real system with varying physical

and run-time conditions, the scheduler should consider system conditions in to account

while making the device decisions. The proposed scheduler makes appropriate device
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decisions by profiling each kernel at different TDPs and run-time CPU load conditions

before making decisions.

Scheduling for Minimizing Energy. In Figure 4.5 (b), we show the device map (blue

for GPU and red for CPU) for all 24 kernels that minimizes the kernels’ energy under 3

different TDPs (20, 40, 80W) and 4 different CPU-load conditions (4CL to 1CL). Similar

to the case for minimizing execution time, as discussed above, the scheduling device that

minimizes energy also depends on both TDP and number of CPU cores available.

Specifically, we make the following scheduling-related insights from the device map

shown in Figure 4.5 (b). First, we observe that for 5 out of 24 kernels (K8, K10, K12, K17,

and K18) the device that minimizes energy is a function of both chip TDP and the number

of available CPU cores. In particular, we notice that for these kernels, at lower TDP

(20 W), CPU consumes lower energy because both CPU and GPU dissipate full 20 W

TDP, but CPU provides better performance than GPU, hence lower energy. However,

as the TDP is increased to 80 W, CPU becomes less energy efficient for these kernels.

This is because as the TDP is increased the GPU power saturates on our system as it

reaches its maximum frequency (1.25 GHz), however the increase in TDP allows CPU to

run at higher frequency (up to 4.4 GHz), leading to significantly higher dynamic power

(∝ V 2f ) without providing proportional increase in performance. So, it is important for

the scheduler to use TDP information in the model while making device decisions for

minimizing energy. The existing scheduler do not use such information in their model and

potentially lead to less energy-efficient scheduling decisions.

Second, for the above-mentioned 5 kernels, the number of available CPU-cores also

affects the scheduling decisions. In particular, we observe that as the number of cores

reduce from 4 to 1, the performance of kernels on CPU reduces more than the decrease

in CPU power (due to leakage power in other cores); so, for these kernels CPU becomes
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less energy-efficient than GPU at small number of cores. Furthermore, we observe that al-

though for most kernels GPU tends to be more energy-efficient device than CPU at higher

TDP, some kernels (e.g. K3, K4, K6, K23, and K24) have lower energy on CPU even at

higher TDP. This happens when kernels are either too short in duration or have signifi-

cantly higher performance (more than 4×) on CPU that GPU at 80W, so they consume

lesser energy on CPU than on GPU at all TDPs. The scheduling for such kernels is less

challenging and therefore, even the existing schedulers, which do not consider all run-time

conditions, could also make correct scheduling decisions for those kernels.

c. Comparison Against the State-of-the-Art

Figure 4.6 shows the comparison of performance for 3 different scheduling methods under

different TDP and workload conditions for selected kernels. It also shows the average

performance gains/loss for all 24 kernels in the last set of bars. For comparison against

the state-of-the-art scheduling methods, we choose to show results on 4 representative

physical and run-time conditions in Figure 4.6(a)-(d): 1) OpenCL workload on all 4 cores

at 80 W, 2) OpenCL workload on 1 core and SPEC workload on 3 cores at 80 W, 3)

OpenCL on all 4 cores at 20 W, and 4) OpenCL on 1 core and SPEC on 3 cores at 20 W.

Furthermore, we compare our proposed method against the following two state-of-the-art

scheduling methods.

1. Application-level-user-based (App-level): It chooses the device

that minimizes the total runtime or energy at application-level, instead of kernel-

level [36, 16]. This case could also represent the user/developer’s static method of

selecting the optimal device. Moreover, this method is both TDP- and CPU load-

oblivious because the user typically profiles the program at only one (default or

maximum) TDP when no other workload is running on the system.
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Figure 4.6: Comparison of runtime for Ours method against state-of-the-art schedulers
(App-level [36, 16] and K-level [110]) at two TDP and two CPU-load conditions:
a) OpenCL on 4 cores at 80W TDP, b) OpenCL on 1 core and SPEC on 3 cores at 80W
TDP, c) OpenCL on 4 cores at 20W TDP, d) OpenCL on 1 core and SPEC on 3 cores at
20W TDP. The normalization is done with respect to the App-level case.

2. Kernel-level-static-conditions-based (K-level): It chooses the

device that minimizes the total runtime at kernel-level assuming fixed TDP and

CPU-load conditions [110]. So, this method performs better than static user method,

but suffers performance/energy loss when system conditions vary over time.

While both App-level and K-level methods are assumed to be profiled at fixed

80 W TDP under no-workload conditions, our proposed method, also called Ours in

Figure 4.6 considers both run-time physical and CPU load-conditions, leading to better

overall performance and energy efficiency.

All the results shown in Figure 4.6 are normalized to the App-level case, which

typically performs worse than both K-level and Ours case under all 4 representative

conditions shown in the figure. This is because different kernels of an application could

have their best performance on different devices, so choosing the same device for all ker-
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nels does not provide the best performance. From Figure 4.6 (a)-(d), we observe that

Ours method provides better or equal performance than the other two scheduling meth-

ods for all benchmarks and under all four system conditions. However, when some of the

CPU-cores are used by other workloads (SPEC benchmarks in our case), our proposed

method (Ours) provides better performance than both App-level and the state-of-the-

art K-level method.

Under no-workload conditions (i.e., 4CL cases), both K-level and Ours methods

provide similar, but better performance than the App-level method. This is because

both K-level and Ours methods make decisions at kernel-level and for some of the

selected kernels (e.g., K3 and K13), the scheduling device has huge impact on their per-

formance. For example, K3 kernel is too short in duration that sending them to GPU

causes un-necessary runtime overhead. The App-level scheduling method wrongly

chooses GPU device for these two kernels because they, along with other three kernels

K2, K4, and K5, belong to the same application (particlefilter); kernels K2 and

K5 are dominant in runtime and their performance is better on GPU, so the (App-level)

method chooses GPU for all four kernels of this application. Further, we notice that when

all four cores are available (i.e., 4CL cases), changing the TDP from 80 W to 20 W does

not affect the scheduling decision for performance for the selected kernels (although, it

does impact the decision for energy); so, both K-level and Ours methods choose the

best device for all kernels.

The performance gains from Ours method increase as the TDP changes from 80 W

to 20 W and the number of available cores change from 4CL to 1CL, as shown in Fig-

ure 4.6 (c)-(d). This is because Oursmethod finds out the current CPU-load on the system

before making a scheduling decision, while the other two methods do not take such system

information into account. In particular, for the 1CL+3S case, wherein 3 out of 4 cores are

running SPEC benchmarks and only 1 CPU-cores is available for the OpenL workload,
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Ours method provides 40% and 31% better average performance than App-level and

K-level methods, respectively.

Further, as seen in Figure 4.6 (c), its possible that the K-level method could lead

to worse scheduling than both App-level and K-level methods because the kernel-

level decision made under fixed TDP (80 W) under no-load conditions (4CL) could be

different than the decision at App-level under the same conditions. Kernels K13 and

K15 are two such examples; they run faster on CPU for 4CL case. However, these two

kernels (along with K14) belong to the same application CFD and, for 4CL case, the entire

application runs faster on GPU due to K14 being the dominant kernel. Further, when 3 of 4

cores are used by SPEC workloads and only 1 core is available for the OpenCL workload,

all 3 kernels perform better on GPU. So, for these 3 kernels, both Ours and App-level

methods make correct scheduling decision at 1CL+3S condition, but K-level method,

unaware of the system-conditions makes wrongs device decisions (CPU) for K13 and K15

kernels. It is worth mentioning that the correct device decisions by App-level method

for these two kernels is purely incidental. On the other hand, the correct-decisions from

Ours method are not incidental because Ours method takes varying system conditions

in to account while making device decisions.

d. Demonstration of the Scheduler’s Behavior on a Real System

Here, we demonstrate the effectiveness of our scheduler in a time-varying TDP environ-

ment under fixed number of cores. To this end, we applied arbitrary time-varying TDP

traces to the hardware by writing to the package power limit MSR. Figure 4.7 shows the

response of the proposed scheduling method for minimizing the energy for the LUD ap-

plication with 3 kernels (k1-k3). Similar scheduling behavior is observed for runtime.

From the 3 subplots in Figure 4.7 (a)-(c), we notice that the lower energy device for
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Figure 4.7: Demonstration of TDP-aware kernel-level dynamic scheduling for LUD ap-
plication with 3 kernels; (a) time-varying TDP and the actual power dissipated under 3
different scheduling schemes: GPU, CPU, and Ours; (b) the execution of one or more
kernels on different devices over time; (c) shows the normalized energy for 3 different
scheduling schemes.

different kernels is different under different TDP values and our scheduler is able to launch

each kernel on the appropriate device. As we can see from the Figure, for kernel k1 the

scheduler selects CPU as the optimal device under all TDPs. This is because each iteration

of k1 is a relatively short (< 0.1 ms) and therefore, the overhead of launching it on GPU

leads to higher energy than if it is run on CPU itself. On the other hand, kernel k2 is

always scheduled on GPU to minimize the energy. Among all kennels, the lower-energy

device for k3 kernel is TDP-dependent. Specifically, for k3 kernel of the LUD application,

CPU is the lower-energy device at lower TDP while GPU minimizes the energy at higher

TDP. Our scheduler accurately predicts the energy-optimal devices for each kernel under

a time-varying TDP.

We compare the total energy dissipation of LUD application in 3 scheduling cases:

GPU, CPU, and Ours method. Here, GPU-case is the same as the App-level method

decision because the developer typically performs the characterization at fixed high TDP
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value and for both these benchmarks, GPU provides lower energy at high TDP value.

Obviously, the energy savings from Ours method will depend on the time-varying TDP-

pattern. The maximum benefit will be seen when the TDP changes from low to high or

high to low only once, say immediately after the kernels start. In that case, our scheduler

will make correct device decision after couple of profiling iterations, however, all other

static or TDP-oblivious schemes would keep the device decision fixed to potentially wrong

device and hence, they will incur energy losses. Nevertheless, for the selected TDP trace,

Ours method provides 10% and 24% lower energy than the App-level CPU device

cases, respectively. Finally, it is worth mentioning that the scheduler keeps the history of

optimal device for each kernel under different TDPs to avoid invoking the SVM predictor

for the previously seen TDP value. This can be observed for the k2 of LUD kernel, wherein

after t > 10 s, when the TDP values are repeated, the kernel keeps running on GPU

without invoking the SVM predictor. Reuse of the past predictions amortizes the overall

overhead of the predictor.

e. Overheads

While the proposed SVM-based classifier provides performance improvements or energy

savings through efficient scheduling during run-time, it is important to understand its over-

head on the overall runtime of the application. We evaluated the runtime overhead of

adding custom APIs and SVM on all applications. The maximum runtime overhead is

about 1.9%. Given high potential of performance improvement and energy savings, we

believe that this overhead is reasonably acceptable.
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4.6 Summary

In this chapter, we presented a scheduling framework that takes in to account the sys-

tem dynamic conditions, along with the workload characteristics to minimize runtime or

energy on CPU-GPU processors. In contrast to previous approaches that either mapped

entire applications or did not consider run-time conditions, our fine-grained approach en-

ables scheduling at the kernel-level while considering system conditions during schedul-

ing decisions to fluidly map the kernels between CPU and GPU devices. In a way, our

approach complements the built-in hardware capabilities to limit TDP by incorporating

the ability to schedule as well. To identify the best mapping for a kernel, we developed

a SVM-based classifier that monitors the measurements of the performance counters to

profile both the current workload and detects the number of available cores online, and

accordingly decides the best device for the kernel to minimize total runtime or energy. We

trained the classifier using off-line analysis that determined the best performance counters

to use. We fully implemented the scheduler and tested it on a real integrated CPU-GPU

system. Our results confirm its superiority as it is able to outperform application-based

scheduling and the state-of-the-art scheduling methods by 40% and 31%, respectively.

Similarly, our scheduling framework provides up to 10% more energy saving for the se-

lected time-varying TDP pattern than the user-based application-level scheduling scheme.
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Chapter 5

Workload-Aware Low Power Design of

Future GPUs

5.1 Introduction

Efficient performance and power management are critical for effective operation of mod-

ern processors in high performance computing (HPC) systems. HPC scientific applica-

tions have strict performance requirements under tight power budgets. Graphics Process-

ing Units (GPUs) are now commonly used in many HPC systems due to their high per-

formance and power efficiency. As of November 2012, four of the top ten and 62 of the

top 500 supercomputers on the Top500 list were powered by accelerators [77, 81]. Future

petascale and exascale systems are likely to incorporate GPUs with hundreds of compute

units (CUs) [73]. Emerging trends show that these CUs have to operate under tight power

budgets for safe operating temperatures and avoid excessive leakage power or thermal

runaway. As a result, not all CUs can always be powered on across all applications due to
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thermal and power constraints [32]. Thus, it is necessary to dynamically adjust the num-

ber of active CUs through power-gating (PG) mechanisms based on the run-time needs

of applications. However, PG introduces serious design and area overheads, which if ap-

plied liberally can negate its benefits. There is a tradeoff between design overheads and

run-time performance and power efficiency.

In this chapter, we develop an integrated approach towards addressing power gating

challenges in future GPUs by analyzing 1) design-time decisions, where the benefits of

fine-grain power gating must be balanced against its overheads, and 2) run-time decisions,

where power gating and frequency boosting need to be applied adaptively to control the

number of active CUs based on the GPU design, the application needs, and the total power

budget. Specifically, the contributions of this chapter are as follows.

• We demonstrate the need for an integrated solution to manage leakage power by in-

corporating workload/run-time-awareness into the PG design methodology that de-

termines the optimal PG granularity, and design-awareness into the run-time power

management algorithm that finds the optimal number of CU to power gate.

• Using realistic industrial scaling models and actual hardware measurements on an

existing GPU, we project run-time parallelism trends of HPC applications to fu-

ture massively parallel GPUs. We use these trends together with the accurate PG

area models to determine the appropriate design choices for PG granularity (i.e.,

PG cluster size) that improve power efficiency without sacrificing performance and

incurring unnecessary design overheads.

• We propose a run-time power management algorithm that utilizes PG design knowl-

edge to shift power from unused CUs towards boosting the frequency of active CUs,

thereby leading to better performance and power efficiency of the system working

under a strict power cap.
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• Compared to per-CU PG, we demonstrate that a workload-aware design of a 16 CU

per cluster achieves 99% peak runtime performance without the excessive 53% de-

sign area overhead. In addition, we demonstrate that a run-time power management

algorithm that is aware of the PG design granularity leads to up to 18% higher per-

formance under thermal-design power (TDP) constraints. Although these results are

based upon AMD’s Graphics Core Next (GCN) architecture and the particular set of

chosen representative applications, the overall methodology can be applied to other

GPU architectures and applications as well.

The rest of the chapter is organized as follows. Section 5.2 discusses the motivation

and goals of our work. Sections 5.3 discusses the proposed models and methodology

at both design-time and run-time. The scaling methodology validation, the run-time al-

gorithm, and the performance and power efficiency results at different PG granularities,

along with the key findings are presented in Section 5.4. Finally, we summarize the main

conclusions of the chapter in Section 5.5.

5.2 Motivation & Goals

In order to achieve extremely high parallel performance that is required to meet future

(e.g. exascale or petascale) computing needs [73], future HPC systems are predicted to

operate massively parallel GPUs under tight power and thermal constraints, which poses

unique power and performance challenges as discussed in the next paragraphs.

a. Leakage Power in Future Massively Parallel GPUs.

Future GPUs would very likely require a large number of CUs to be packed within a sin-

gle processor chip. Further, technologies such as 3D integration may also be required
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to address the challenges of on-chip communication delay and packaging density [28].

All these result in high power consumption, larger power densities, and hence, higher

temperatures across the chip. Although FinFET technology significantly reduces leak-

age power due to higher threshold voltage in the off-state [57], the FinFET devices suffer

from self-heating problems and are prone to thermal runaway due to confinement of the

channel, surrounded by silicon dioxide, which happens to have lower thermal conduc-

tivity compared to bulk silicon [17]. Further, the International Technology Roadmap for

Semiconductors (ITRS) predicted that the sub threshold leakage ceiling for FinFET will

be comparable to planar bulk MOSFETs [106, 17]. Hence, in future massively parallel

GPUs, leakage power can still be a significant contributor, specially if all CUs are left

powered on at high operating temperatures. Therefore, if leakage is not properly dealt

with, the tight power budget will throttle both operating frequency and number of active

CUs, leading to unacceptable performance.

b. Workloads Demonstrate Diverse Scaling Trends.

For this study, we analyze the US Department of Energy “proxy” and other scientific

computing applications for exascale [78, 14] and find out that only a small subset of such

applications are embarrassingly parallel. In fact, there is a wide range of diverse charac-

teristics in their usage of hardware resources, in particular, the number of CUs [50]. There

is a large degree of load imbalance in these applications due to branch divergence and

memory divergence, and therefore opportunities to save power by power gating unused

CUs. Figure 5.1 shows the performance of three example HPC application kernels as a

function of the number of active CUs (Section 5.3 describes the used methodology). The

performance of each kernel is normalized to its own minimum baseline. For example, the

performance of GEMM.sgemmNN kernel scales almost perfectly with the number of CUs,

while the performance of LULESH.CalcHourglass kernel saturates after reaching
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Figure 5.1: Performance scaling of 3 example kernels on a future GPU with 192 CUs.

140 CUs due to saturated memory bandwidth. On the other hand, XSBench.calcSrtd

kernel has a peak performance at 124 CUs, beyond which significant cache thrashing oc-

curs and performance degrades. Thus, we observe that HPC applications display various

parallelism trends due to their diverse compute and memory behavior, requiring a run-

time power management system to adaptively control the number of CUs by power gating

unused CUs under a fixed TDP.

c. PG Ggranularity is Critical to Performance and Power Cconsumption.

If an HPC application can not leverage all CU units, then these units can be power gated

and the power savings from gating can be used to boost frequencies of the remaining

active CUs for higher performance under a given power budget. The amount of power

savings depends on the PG granularity–defined as the minimum number of CUs that

can be power gated at once, usually a design-time decision. A finer PG granularity de-

sign could provide more power savings, and therefore, higher frequency-boosting than a

coarser PG granularity design. However, implementing finer PG granularity would require

larger power gating transistors (to support higher frequency boost) and more number of

buffers, clamp/isolation cells, etc., resulting in large design area overheads. On the other

hand, an overly coarse PG granularity has the advantage of reducing the number of control

signals and routing resources, but it can result in excessive leakage power and runtime per-

98



formance degradation under a fixed TDP, especially for applications that use fewer number

of CUs than the exact multiples of the PG granularity. Thus, there is a design-time trade-

off to be made, and it is important to make the decision in an application-aware manner.

Existing run-time power management systems often have no knowledge of the underlying

PG design leading to sub-optimal decisions.

d. Run-time Power Management in Future Massively Parallel GPUs.

When and how often a CU can be power gated are determined by the run-time power

management controller based on workload characteristics under a given power envelope.

However, the run-time power management controller often has no knowledge of underly-

ing power-gating design and overheads. In fact, to the best of our knowledge, the current

state-of-the-art GPU power management algorithms in AMD and NVidia GPUs only con-

sider frequency scaling [74, 80, 103]. They do not perform techniques such as increasing

the number of active CUs or boosting the frequency through power gating mechanisms

to optimize performance within power constraints. Further, unlike our study, most of the

previous studies investigated PG opportunities by assuming the finest level of power gat-

ing at per-CU/core level without incorporating the design-time decisions in to run-time

power management algorithms [1, 58, 56, 83]. In future massively parallel GPUs, the

run-time power management unit should determine the resource needs (#CUs) of an ap-

plication quickly enough to maximize the performance improvements and energy savings

from power gating unused CUs. We argue that scaling the number of active CUs and/or

boosting the frequency is needed for future GPU architectures, when operating under a

tight power budget, and run-time management needs to be aware of design decisions while

turning on and/or power gating CUs to meet application’s parallelism demands.

In summary, it is important to address power management solution from design-time

to run-time in order to meet the high performance requirements for future GPUs, oper-
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ating under tight power budgets. PG methodologies that do not consider workload char-

acteristics during design and design choices during workload execution can lead to poor

performance and power efficiency with large design and area overheads. So, our goal is

to couple both design-time PG granularity sizing and run-time opportunities to maximize

performance and power efficiency for future GPUs. In the next section, we propose syner-

gistic PG methodologies at design and run-time to evaluate and implement efficient power

management in future GPU systems.

5.3 Proposed Methodology

As has been the recent trend, we assume GPU architecture scaling occurs primarily through

increasing the number of parallel compute units (CU) and memory bandwidth. Figure 5.2

shows a future GPU microarchitecture that is similar to a current 28 nm GPU. The speci-

fications of the existing hardware and the future hardware studied in the paper are shown

in Table 5.1. We evaluate the performance and power efficiency of a future massively par-

allel GPGPU architecture with 192 GPU CUs and 2048 GB/s memory bandwidth (BW)

at 10 nm technology. The number of CUs were selected to provide reasonable approxima-

tions of mainstream GPUs targeted for petascale and exascale systems [73]. However our

methodology can be easily generalized to other future architectures with different peak

compute throughput and memory bandwidth requirements. We also assume the internal

CU architecture (including cache hierarchy) does not change significantly over the period

studied. Naturally, this is an unrealistic assumption from a micro-architectural perspective

as CU architectures will continue to be refined and improved and cache hierarchy will

evolve. However design reuse of the same microarchitecture (with incremental improve-

ments) across multiple generations is a common industry best practice, mainly gaining

performance in particular areas due to engineering advances and learnings, but not chang-
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Figure 5.2: Template GPU architecture. The compute throughput and memory bandwidth
are proportional to n and m, respectively.

ing greatly at the most fundamental level. Our focus here is to understand the high-order

performance, power and energy effects of PG granularity in future architectures.

The overall methodology for power gating of future GPUs is as follows. First, we

propose in Subsection 5.3.1 a methodology to scale power and performance measure-

ments on existing GPU devices to future devices with similar micro-architecture. Some

practical considerations during the modeling and projection process are discussed in Sub-

section 5.3.2. Using these projected measurements, we propose in Subsection 5.3.3 a

methodology to analyze the impact of different PG granularity choices with respect to the

available parallelism in applications and the opportunities for run-time frequency boosting.

Next, we propose a run-time power management technique in Subsection 5.3.4 that uti-

lizes the characteristics of workloads as well as PG granularity to maximize performance

and power efficiency under a fixed TDP.

Table 5.1: Baseline (existing) and future GPU systems.

Parameter name Baseline H/W Future H/W
# CUs (n) 32 192
Nominal compute frequency (f0) 1 GHz 1 GHz
Memory bandwidth (∝ m) 264 GB/s 2048 GB/s
Technology node 28 nm 10 nm
Nominal voltage 1V 0.7V
TDP 250 W 125, 150, 175 W
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5.3.1 Performance and Power Scaling

Here we describe a projection framework for future GPUs. We use a typical 28 nm GPU

architecture as the baseline for hardware measurements and projections using our three-

step methodology: a) hardware measurements from existing hardware; b) power and per-

formance scaling to future architectures at the same technology node; and c) applying

technology scaling including FinFET effects using industrial process models. The overall

projection methodology for power estimation is shown in Figure 5.3.

a. Native Hardware Execution

Our baseline hardware consists of an AMD Radeon HD 7970 system [76], which features

the AMD Graphics Core Next (GCN) architecture and is paired with 3 GB of GDDR5

memory organized as a set of 12 memory channels, as shown in Figure 5.2. The GPU

contains 32 CUs, each has one scalar unit and four 16-wide SIMD vector units, for a total

of 2048 ALUs. Each CU contains a single instruction cache, a scalar data cache, a 16 KB

L1 data cache and a 64 KB local data share (LDS) or software managed scratchpad. All

CUs share a single 768 KB L2 cache. In its highest performing computing configuration,

HD 7970 offers a peak throughout of 1 Teraflop double precision floating point FMAC

operations and 264 GB/s peak memory bandwidth.

We first measure power and performance of different OpenCL application kernels

across a wide range of configurations on the 28 nm HD 7970 system. In particular, we take

measurements of performance and power (both dynamic and leakage) across 25 kernels

in 13 applications from the exascale computing proxy applications [78] and the Rodinia

benchmark suite [14] over 448 hardware configurations. Here, the number of active CUs

is adjusted from 4 to 32 over a range of 8×, and the CU frequency is varied from 300 MHz

to 1 GHz over a range of 3.3×, in steps of 100 MHz. While scaling CU frequency, volt-
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Figure 5.3: The proposed 3-step power projection methodology.

age is also scaled according to the 28 nm GPU voltage-frequency table. Memory BW

is varied from 90 GB/s (at 475 MHz bus frequency) to 264 GB/s (at 1375 MHz bus fre-

quency) across a 2.9× range, in steps of 30 GB/s (150 MHz) by changing the memory

bus frequency. The power measurements out of the baseline are split into dynamic and

leakage power using on-chip real-time hardware power proxies. Power measurements in-

clude those that are dissipated in cores’ logic, SRAM-based caches, memory controller

and interconnect. Using AMD’s CodeXL library, we also gather hardware performance

events for each application kernel at each configuration that capture bus activity, data flow

volume and compute-memory behaviors.

b. Modeling Effects of Scaling the Hardware

The power values gathered from existing GPU must be scaled to estimate the power that

the workloads would require on future systems. The two key components of this are

scaling to account for change in the numbers of CUs and memory bandwidth, and scaling

to future technologies. In this step, we develop analytical scaling models, and hardware

measurements-driven and RTL-driven empirical models to scale dynamic, leakage and
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interconnect power from the baseline to future GPUs at the same technology node. The

technology scaling effects are applied in the last step.

Hardware compute-to-memory (CtoM) ratio driven dynamic power projection: We

project power and performance from measurements on the current GPU on a per-kernel

basis to the future GPU architecture (with different CU count and memory bandwidth)

at the same technology node using the same compute-to-memory ratio for both devices.

We consider a compute throughput that is proportional to the product of number of CUs

and CU frequency, and a memory bandwidth (BW) that is proportional to memory fre-

quency under a fixed number of memory channels. Similar to the Roofline model [111],

we use the idea that for designs with the same micro-architecture, performance scales pro-

portional to the scaling of the compute throughput and bandwidth of a GPU, given the

same compute-to-memory ratio. Figure 5.4 shows an example of a performance scaling

surface for waxpby kernel of miniFE application with respect to the compute through-

put (GFLOPs) and memory BW (GB/s) at a fixed CU frequency. The performance of this

kernel on a future GPGPU device with 192 CUs, 1 GHz CU frequency and 2048 GB/s

bandwidth is projected using measurements with 12, 16, 20, and 24 CUs on the current

GPGPU device. Note that the memory frequency is varied with CUs to keep the compute-

to-memory ratio constant. Similar scaling method is used for dynamic power.

We project power and performance for a potential future GPU at all possible hardware

design configurations from 64 CUs to 192 CUs in steps of 16 CU, CU frequency from

400 MHz to 1000 GHz in steps of 100 MHz, and main memory bandwidth from 1.6 TB/s

to 4 TB/s in steps of 400 GB/s, resulting in a total of 441 distinct hardware configurations.

Further, the proportion of SRAM-based cache power on the baseline hardware is computed

by an industrial RTL-level tool through the Synopsys PrimeTime PX (PTPX) [105]. The

SRAM dynamic power is then scaled as a square-root function of its size (s), as shown

in equation 5.1. This is because the SRAM dynamic power depends on the wordline and
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bitline lengths, not the cache size. Therefore, we have

DynSRAM =
√
s·DynSRAM meas. (5.1)

Area-based leakage power projection: We model the leakage cost for the increased size

of the circuits (e.g., cache size) in future GPUs by scaling the leakage power of different

on-chip components, specifically CUs, SRAM caches, and MCs, separately, based on

the relative increase in their area between the current and future GPUs. Using PTPX

tool and floor-plan area assessment of the different components in existing GPUs, we

empirically derive the leakage power partition ratio in existing hardware between CUs,

caches, MCs, and miscellaneous logic for a power virus application running at worst-case

die temperature. We find that a typical leakage power partition ratios in HD 7970 are 50%,

3%, and 47%, respectively. Note that, at a fixed temperature, the partition ratios need to

be derived only once using PTPX. We use these partition ratios to distribute the measured

leakage power in current hardware among different components and further scale to future

GPU based on their area change. For example, if the SRAM capacity in future GPU is
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Figure 5.4: Performance scaling surface for miniFE.waxpby.
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x times more than that in the current GPU, its cache leakage power is also x times more.

That is

Lkglogic = a·Lkgmeas total

LkgSRAM = b·Lkgmeas total

LkgMC misc = c·Lkgmeas total, (5.2)

where, a, b, and c ratios are obtained from PTPX simulation of the existing GPU, and

a+ b+ c = 1.0. Furthermore, the leakage power in the future GPU is given by:

Lkgfuture = x·Lkglogic + y·LkgSRAM + z·LkgMC misc, (5.3)

where, x, y, and z are all greater than 1; they are the area ratios between future GPU and

the current GPU for CU logic, SRAM cache, and memory controller, respectively. Note

that the area ratios do not include area shrinkage due to technology scaling nor change,

which will be considered in third (c) step, so the area ratios mainly represent an increase in

count and capacity of the component (e.g., x = 6 for projecting from 32 CU to 192 CU).

The leakage power thus derived also assumes fixed voltage (V), frequency (F) and tem-

perature (T) between the existing and future GPUs. The effect of V-F-T changes are

accounted for in the final step.

Interconnect power modeling and projection: Power dissipation in the local and global

interconnects of the GPU contributes to a significant fraction of the total chip power [64].

While the local interconnects are short wires and are used to transfer data within the IP

blocks, global interconnects are relatively long wires and are used for inter tile/IP data

transfers or that between the processor and memory. In our framework, the local intercon-

nect power is accounted for in the on-chip hardware power proxies. To consider global

buses between CUs and L2 cache, L2 and MCs/DDR PHY transceivers, we use PTPX
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power simulation of a power virus application as the reference. We then compute actual

bus activity factors of different application kernels from the performance counters mea-

suring data flow volume, peak BW, and access rates. The interconnect power of a kernel

is then computed by applying a de-rating factor (DF ) proportional to the ratio of bus

activities for the kernel and reference application.

DF = activitykernel/activitypower virus, (5.4)

where, the activity factor (AF ) (e.g., activitykernel), depends on the execution time and

net data transfer (read+write) between the L2 cache and the memory controller. That is:

AF ∝ (FetchSize+WriteSize)/exec time. (5.5)

Finally, we apply an area-based wire-length model to scale the global interconnect

power for each application kernel from the current hardware to future hypothetical GPU

hardware using relative wire distances. The interconnect power of a kernel (Pickernel) on

future GPU is computed as:

Pickernel = Picpower virus ∗DF ∗ SF, (5.6)

where, Picpower virus denotes the interconnect power of a reference power virus applica-

tion on current hardware and SF denotes the wire-length scaling factor to account for

hardware scaling and change in interconnect topology. For example, for a future GPU

with 192 CUs, we multiply the interconnect power of the 32 CU baseline GPU by a scal-

ing factor of 6. This assumes that the global interconnect architecture remains the same

for future GPUs and the wire lengths scale up, which may not be true if other network

topology is used or 3D stacking is deployed. The wire-length scaling model is a function

of the on-chip interconnect topology. Our flexible framework gives us the ability to apply
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different optimization techniques and topologies on the interconnect such as including a

Network on Chip (NoC) power model simply by changing the wire-length scaling models

to reflect changes in the average data movement distance.

c. Technology Scaling and Temperature Impact

Until this step, technology scaling has not been considered. Technology scaling affects

area, voltage, and the relative power contributions between transistors and interconnects,

as well as the split between dynamic power and leakage power. Different commercial

fabs have different technology scaling characteristics such as the voltage-leakage and

temperature-leakage dependency. We model temperature scaling for future node by ac-

counting for worst-case junction temperature. In our case, we set it to 105 °C based on

real silicon data. In addition, new technologies such as FinFET also introduce disruptive

points along the scaling curve. Research-oriented projections from ITRS are not always

representative of industrial designs. In this work, we use proprietary industrial process

models (from AMD) to scale a hypothetical future GPU design from 28 nm to 10 nm in-

cluding introduction of FinFET at 14 nm and beyond. Our parameterized scaling model

accounts for the different scaling trends for gate and metal capacitances as well as leakage

currents with process technologies. To project power at different voltage and frequency

points of interest in the future technology node we scale the dynamic power from nominal

voltage-frequency point at the future process in proportion to (V/Vnom)2 ∗ (f/fnom) [13].

Similarly, we super-linearly scale the leakage power with voltage at the different points of

interest based on leakage versus voltage relationship at that technology.
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5.3.2 Practical Considerations

Here, we list out a few practical considerations we accounted for when developing the

model and projections.

Leakage power. Leakage power on the HD 7970 was measured at a constant temperature

maintained by a thermal head. Temperature is measured from an on-chip thermal diode.

We measured power consumption of a power virus across different frequencies at a fixed

voltage. By linearly extrapolating power measurements at different frequencies back to

zero frequency, we derive the leakage power at the maintained temperature. By repeating

the experiments multiple times at different temperatures, we also extract the relationship

between leakage and temperature. Leakage power at future technology nodes is extracted

from these hardware measurements scaled by models co-developed by silicon fabrication

vendors and AMD for future process technologies. In addition, we observe that runtime

silicon hot spots are mostly located in CUs which consume a significant portion of the

GPU power. Also performance is often limited by the worst case temperature hotspots

in the CUs. Therefore, we make a reasonable assumption of modeling leakage power of

the entire GPU at the worst case silicon junction temperature for the future technology.

This is because it is infeasible to experimentally account for leakage of individual GPU

micro-architectural components due to the lack of very fine-grain temperature monitoring

capability on existing hardware.

Power Gating vs. DVFS. Power gating (PG) and DVFS are orthogonal power manage-

ment techniques. Given the large number of CUs and the increasing portion of leakage

power in future technology nodes, we argue that PG should be considered first as an im-

portant means of reducing power when there are inactive CUs. DVFS is more practical for

adjusting active CU power consumption according to the intensity of the kernel activities.
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Different GPU core architecture. We demonstrate our methodology and results based

upon AMD’s Graphics Core Next (GCN) architecture and assume that future GPU scales

out to more number of CUs with a similar architecture. There may be alternative ways, for

example, keeping number of CUs relatively constant and scale up individual CUs to make

them more complicated. We argue that power gating is still beneficial, as long as there are

applications that cannot utilize all available CUs. Therefore, our proposed methodology

and management schemes are still valuable.

FinFET technology. In our analysis, the impact of FinFET technology on power is au-

tomatically accounted for as FinFET is an integrated part of the underlying process tech-

nology models used for this work. For example, the dynamic and leakage power scaling

factors from 20 nm to 14 nm are noticeably different from those of 28 nm to 20 nm due

to introduction of FinFET at 14 nm. We lumped all technology scaling factors across

different nodes to reach the final scaling factors at 10nm, our technology node of interest.

Application algorithms. We assume same workloads are running on the existing GPU

and the future GPU. This assumption is not realistic as applications will get optimized and

replaced by improved algorithms over time. However, since our focus is to study practical

approaches to power gating, we ignore the effects of any application changes and leave

projecting power and performance for an unknown workload to future work. Instead we

project power and performance of the same workloads with same input sets at different

design points of interest in the future GPU. The proposed methodology is also applicable

to non-HPC workloads such as graphics.

Next, we describe the workload-aware PG design techniques and design-time aware

run-time power management scheme for future GPUs in the following subsections.
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5.3.3 Workload-Aware Design-time Analysis

As shown earlier in Figure 5.1, workloads have varying amount of parallelism trends due

to their compute and memory requirements. Therefore, not all CUs are needed for getting

the best performance of many applications; the unused CUs could be power gated to save

power. Leakage power saved from gating unused CUs can be used towards boosting fre-

quency at run-time in a TDP-constrained design. The finer the PG granularity, the higher is

the boosting potential. However, beyond a certain granularity, if the maximum current and

frequency allowed for a given PG transistor sizing are reached, further frequency boosting

becomes impossible. Similarly, with finer granularity, savings in leakage power become

much smaller leading to relatively smaller performance improvement and a point of dimin-

ishing return. Therefore, we propose a methodology to evaluate leakage power, frequency

boosting factor, and area overhead at different PG granularities as a function of the optimal

number of CUs needed by an application at run-time and its frequency-boosting potential.

Leakage power analysis. First, we model the effects of PG granularity on total leakage

power by considering the optimal number of CUs needed by an application. Let’s assume

that there are N CUs in a GPU device and that the device has a PG granularity of s. If an

application needs n CUs for its optimal performance, and if we denote the average leakage

power of one CU by p1, then the total leakage power, denoted by PL (n, s), of the system

when n CUs are active can be expressed as

PL (n, s) = p1s
⌈n
s

⌉
, n ≤ N and s ≤ N, (5.7)

where, d·e denotes the ceiling operator. The ceiling operator used in the above equa-

tion provides the number of clusters needed to activate the desired number of CUs (n)

for a given PG cluster-size (s). So, even if there is only one CU active in a cluster,
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Figure 5.5: Normalized energy of selected kernels at different power gating granularities.

the whole cluster needs to be enabled, with other CUs dissipating idle leakage power.

We note that for fixed number of active CUs, the leakage will be different for differ-

ent PG granularities. Further, different application kernels have different power gating

opportunities due to differences in their characteristics in terms of compute intensity,

memory intensity, inter-thread conflicts and control divergence. For example, Figure 5.5

shows the normalized energy versus PG granularity for three example kernels, namely,

XSBench.calcSrtd, lulesh.CalcHourglass, and GEMM.sgemmNN, obtained

through our projection models. We sweep the number of CUs per cluster from 192 (i.e.,

g192 with no CU-level power gating) to all the way to 1 (i.e., g1 with per-CU power gat-

ing) and analyze each kernel’s normalized energy with respect to the baseline case of no

CU-level power gating. We observe “knee points”, in terms of energy vs. granularity,

across different kernels. In particular, we see that the energy reduction of these kernels

almost flattens out after a granularity of 16. Thus, we seek an optimal PG design that bal-

ances the benefits of fine-grain granularity (performance and power efficiency) with the

cost (die area overhead) of the system.

Frequency boosting. As shown earlier in the Figure 5.1, some HPC kernels/applications

do not require all available CUs to be active for their best performance. The performance

of these kernels can be potentially improved by turning off unused CUs and using that
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power towards boosting the operating frequency as long as the total power is below the

TDP and the die temperature does not exceed the maximum allowed junction temperature.

However, increasing the operating frequency requires increasing the operating voltage for

the correct functioning of the device, resulting in increases in both the dynamic power and

the leakage power of the chip. The amount of boosting depends on the PG granularity of

the design, the TDP, and the maximum die temperature of the device. For our analysis,

we use the worst-case die temperature to ensure deterministic performance under a fixed

cooling solution irrespective of the process and ambient variation across parts. In addition,

one has to consider a realistic worst-case scenario for the design time analysis. Finer PG

granularity could provide more power savings, and therefore, higher frequency-boosting.

For every kernel, we compute the potential frequency boosting factor and the associ-

ated factor of increase in voltage with respect to the nominal voltage and frequency so that

the total power at the boosted frequency is below TDP. The increase in frequency will be

accompanied by an increase in current in the device. We compute the increase in current as

the ratio of increase in power to the increase in voltage. Finally, an increase in the switch-

ing current would require a proportional increase in the size of the sleep transistor-size to

reduce IR-drop across the transistor. Since larger transistors are needed to support higher

frequency, the kernel with the maximum frequency-boost dictates the size of transistors.

o o o o o o 

(a) 

Power 
Gated 

Power 
Gated 

Active @ 
Freq=f1 

Active @ 
Freq=f1 

Active @ 
Freq=f1 

Active @ 
Freq=f2 

1W 1W 1W 2W 2W 2W

12

12

WW
ff
>⇒

>

DDVDDV

(b) 

    
    

    

Figure 5.6: Sleep transistor sizing for frequency-boosting.
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PG area overhead. Implementing PG requires adding power gates, buffers, clamp cells,

I/O buffers, and control logic to the design [53], which increases its total area. Further,

the area overhead depends on the granularity at which the power gating is implemented in

the design and the amount of frequency boosting that can be allowed under TDP during

run-time. The area overhead, Aov, due to PG can be expressed as

Aov = Agates + Aaon + Acntrl, (5.8)

where,Agates, Aaon andAcntrl denote the area overhead due to power gates/buffers, always-

on (AON) cells, and control logic, respectively. Agates scales with the frequency-boost,

which is different for different PG granularity designs and kernels. That is

Agates = Agates f0

Ifboost max

If0
, (5.9)

where,Agates f0 is the area overhead of power gates at the nominal frequency, f0, of the de-

sign, and Ifboost max denotes the current at the maximum frequency-boosting factor, which

is decided by the kernel with the largest power slack with respect to TDP. We use current

instead of power for circuit area overhead analysis because the power gating transistor

sizes are governed by the current flowing through them, not power. The interplay between

the size of PG transistors and potential frequency-boosting is explained pictorially in Fig-

ure 5.6, where, the chip is assumed to have three power-gating clusters. When all CUs are

active, as shown in Figure 5.6 (a), the maximum operating frequency to keep power below

TDP limit is f1 and corresponding equivalent width of sleep transistors is W1. However,

when only 1/3rd of the CUs are active, the frequency of active CUs could be boosted to

f2 without violating the TDP limit; however, this would require the sleep transistor-width

to be increased from W1 to W2, as shown in Figure 5.6 (b). The silicon area overhead as

well as the switching capacitance overhead are obviously different in these two cases. It
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is worth mentioning that the area overhead due to PG transistors starts saturating as the

maximum frequency is attained.

As the PG cluster-size, s, increases, fewer number of AON cells are needed due to

reduced intra-cluster signals. Thus, Aaon is modeled as a product of the perimeter of the

cluster and the number of PG clusters in the device. For a cluster size s, where its CUs

arranged as sv × sh grid, the perimeter of the cluster will be 2 (sv + sh), and with N CUs,

gated at a granularity of s CUs per cluster, the number of clusters in the chip will be N
s

.

So, Aaon is modeled as

Aaon ∝ (sv + sh)
N

s
, such that s = sv × sh. (5.10)

Hence, as the number of cluster increases, the overall area due to Aaon cells increases.

Finally, the area overhead due to PG control logic and associated sleep/wake signals is

modeled as a linear function of the number of PG clusters; that is

Acntrl ∝
N

s
. (5.11)

Figure 5.7 shows the layout of a compute unit from an industrial GPU design that has

power gates inserted in a checker board pattern [53]. In this figure, the snapshot on the

right shows different power gating components (i.e., power gates, always ON (AON) cells,

and I/O buffers) in the zoomed area marked by a white rectangle on the layout. We use

this layout to compute the area overheads from these components used for implementing

power gating in the design. The area overhead results are presented in Section 5.4.
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Figure 5.7: Layout of a real GPU compute unit showing power gates, always-on (AON)
cells and I/O buffers [53]. The snapshot on the right shows the zoomed area marked by
white rectangle on the layout.

5.3.4 Design and Workload-Aware Run-time Management

Our goal is to devise a run-time power management system that can leverage knowledge

of the PG granularity to maximize the performance and power benefits of the device for all

workloads. To implement an effective run-time system, the first step is to build a predictor

to determine the number of CUs that could be power gated dynamically. Different ker-

nels require different number of active CUs to achieve their best performances, as shown

earlier in Figure 5.1, so the predictor has to be workload-aware. The second step is to en-

capsulate the predictor into a run-time power management algorithm that periodically sets

the optimal number of CUs required for the kernel’s execution. Our goal is to develop a

simple and practical predictor that can be implemented efficiently in a run-time algorithm

with minimal hardware overhead and complexity.

Performance correlation against hardware counters. We studied the correlation be-

tween 20+ hardware performance counters with the performance for all kernels at differ-

ent CU counts on our baseline hardware, and we found that GPU compute utilization,

namely, VALUBusy, has a very strong correlation (>0.99) with the performance of an
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Figure 5.8: Correlation between VALUBusy and performance for 25 kernels.

application across all kernels (as shown in Figure 5.8). VALUBusy, also denoted as V

in Algorithm 2, represents the percentage of GPU-time when vector instructions are be-

ing processed, where higher values indicate higher compute units utilization. Further, we

scale the VALUBusy to the future architecture by using the scaling methodology described

in Section 5.3.1, to obtain performance trends of kernels against the number of active CUs.

Power management algorithm. We propose a run-time power-management algorithm

that searches for the optimal CU count dynamically using application characteristics and

PG granularity information. The algorithm applies a gradient-based analysis towards

power gating idle CUs and adjusting the frequency of active CUs for an application kernel

under a given TDP. This algorithm can be invoked at any sampling interval (per-kernel,

per-application, at fixed intervals within a kernel). In this work, we invoke it at every

kernel boundary at every iteration due to current hardware limitations. The proposed al-

gorithm, given in Algorithm 2, has three main components: 1) initialization, 2) gradient

computation, and 3) configuration prediction.

1. Initialization. During initialization we run the kernel at two different CU configura-

tions and collect VALUBusy values (line 1-2 of Algorithm 2). The convergence time of our
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Algorithm 2: Gradient-based algorithm to find optimal CU count and frequency for
a kernel during run-time.

Data: PG granularity (s), minimum step-size (∆n0), nominal frequency (f0)
Result: Optimal CU count and frequency

1 Initiatlization();
2 k = 2;
3 // Find optimal CU count at nominal frequency (f0)
4 // VALUBusy denoted as V ; Gradient as G
5 while (∆V > tol) OR (G <= 0) do
6 k = k + 1;
7 nk=PredictNumCU(nk−1,∆n0, G);
8 Pk = PredictPower(nk, f0, s);
9 if Pk <= TDP then

10 Run kernel at nk and measure Vk;
11 ∆V = (Vk − Vk−1)/Vk−1;
12 G = (Vk − Vk−1)/(nk − nk−1);
13 else
14 k = k − 1; // TDP exceeded
15 ReduceNumCU();
16 end
17 end
18 // Find optimal operating frequency
19 while Pk < TDP do
20 Boost the operating frequency;
21 //Use PG granularity while varying frequency
22 PG Granularity PredictNumCU();
23 end
24 Optimal CU count = nk at the highest Vk;

iterative algorithm depends on the difference in performance between these initial starting

points and is a function of the actual optimal CU count of the kernel, which depends on the

kernel characteristics. The larger the difference, more iterations are needed to converge.

Empirically, we choose 96 and 100 CUs as the starting configurations to balance the con-

vergence rate of the algorithm against the energy savings and/or performance gains, which

can happen if the starting configurations have too low CU counts or too high CU counts.

2. Gradient computation. Next, we compute the gradient (G) for VALUBusy by taking

the ratio of the change in the value of VALUBusy counter to the change in the active CUs

(line 12 of Algorithm 2). We denote the minimum step-size for change in CU count in the

system as ∆n0; we can increase or decrease the number of active CUs only in the steps of

integer multiple of ∆n0. The algorithm predicts the number of active CUs for the current
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iteration (k) of the kernel from the number of active CUs and the gradient of VALUBusy

(V ) counter with respect to the number of CUs in the previous step (k − 1); this step is

denoted as PredictNumCU(.) function in line 7 of Algorithm 2). That is

nk = nk−1 + ∆n0 ∗ sgn (G) ∗ {1 + round (C ∗ |G|)} , (5.12)

where, sgn(·) denotes the signum function, round(G) rounds the value of G to the clos-

est integer, and the parameter C, found empirically, controls the converges rate of the

algorithm. Further, due to adaptive and quantized step-sizes, it is possible to overshoot

the maxima point in our proposed algorithm. Therefore, unlike standard gradient-ascent

method, we reduce the number of CU count when the gradient is negative. Further, to

avoid the algorithm from getting stuck at a fixed CU count [e.g., when round(G) = 0], we

replace the gradient term in standard gradient-ascent method by {1 + round (C ∗ |G|)}

term in Equation 5.12. The algorithm runs until the relative change in the optimization

function (VALUBusy) is smaller than a specified tolerance value (tol). We set tol to 2%.

3. PG design-aware configuration prediction. In order to simplify the power/performance

scaling models, either CU-count or operating frequency is changed at a time, and not

both of them at the same time. Using the gradient-based technique and PG granularity

information, we predict the optimal configuration based on the following cases.

Case 1: Activating optimal number of CUs under TDP at nominal frequency. Once the

run-time algorithm predicts the optimal CU count for a kernel, it estimates the correspond-

ing power consumption based on the previous power readings using PG granularity size.

The algorithm estimates the total power (both dynamic and leakage) to check it against the

TDP; this step is denoted as PredictPower(.) function in line 8 of Algorithm 2. For a given

PG granularity, the worst-case leakage power of the chip is computed using equation 5.7.

The dynamic power at the predicted HW configuration is estimated using linear extrapo-
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lation/interpolation of the dynamic power values estimated at the past two iterations of the

algorithm. If the predicted power consumption at the optimal CU configuration is more

than the TDP, the algorithm reduces the CU count until the power constraint is met.

Case 2: Adjusting CU count and frequency to save leakage power and utilize available

power headroom. If there is power slack or headroom available after selecting the op-

timal number of CUs for an application/kernel, the remaining power is utilized towards

boosting the frequency. The amount of frequency boosting is derived by computing sim-

ilar gradients for VALUBusy with respect to change in frequency (similar to line 12 of

Algorithm 2). Configuration prediction is done for every kernel at various power gating

granularity designs. In order to achieve the best performance from the available power

slack, the algorithm varies the number of CUs within immediate integer multiples of

the PG granularity and adjusts the frequency to meet the TDP. This step is denoted as

PG Granularity PredictNumCU(.) in line 22 of Algorithm 2. We choose CU scaling be-

fore frequency boosting because for HPC type parallel applications CU scaling provides

better power efficiency than frequency scaling.

The proposed management algorithm can be implemented anywhere in the power man-

agement firmware, GPU device driver, system software run-time APIs or Operating Sys-

tem (OS) of the future GPU. As an example, this can be achieved by exposing CU power

gating control and VALUBusy register to the OS and implementing the predictor algorithm

in the OS policies. In the absence of future hardware, we use offline analysis to analyze

the performance and power efficiency results in this work.
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5.4 Evaluation Results

In this section, we present the following results– a) Methodology validation; b) optimal

PG granularity across different workloads; c) area overheads of implementing power gat-

ing at different granularities; d) evaluation of run-time power management algorithm; e)

additional performance gains through frequency boosting; f) effect of TDP on optimal

power gating granularity. We present our run-time performance and power efficiency re-

sults under different power gating granularity designs using a future massively parallel

GPU, as described in Section 5.3 with 192 CUs, 2 TB/sec memory bandwidth, 1 GHz

nominal frequency and voltage at 10 nm process technology. Table 5.2 shows the list of

all 25 kernels (labelled as K1 to K25), along with their oracle optimal CU count obtained

through the offline-analysis.

a. Methodology Validation

We validate our power and performance projection methodology by using measurements

at configurations with low CU count to predict the runtime and power at configurations

with high CU counts at multiple memory and CU frequencies within the design operat-

Table 5.2: Optimal number of CUs for the studied kernels.

Kernel Opt. Kernel Opt.
Name #CUs Name #CUs
CoMD.EAM.advPos (K1) 124 GEMM.sgemmNN (K14) 192
CoMD.EAM.advVel (K2) 104 GEMM.sgemmNT (K15) 104
miniFE.dotprod (K3) 64 XSBench.bitSort (K16) 124
miniFE.waxpby (K4) 192 XSBench.calcSrtd (K17) 124
minife.matvec (K5) 184 XSBench.uGridSrch (K18) 152
MaxFlops.peak (K6) 192 bprop.adjW (K19) 104
lulesh.cacFBHour (K7) 184 bprop.lfwd (K20) 192
lulesh.integStress (K8) 184 cfd (K21) 184
lulesh.calcHourglass (K9) 140 hotspot (K22) 88
graph500.locRedNext (K10) 192 Device memory (K23) 64
graph500.botUpStep (K11) 124 Nbody (K24) 184
graph500.unionClear (K12) 64 kmeans.swap (K25) 80
kmeans.kernel c (K13) 184

121
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Figure 5.9: Performance model prediction errors (%) for miniFE.waxpby on the base-
line hardware at memory frequencies: 925-1375 MHz, #CUs: 20-32, CU engine frequen-
cies (eClk): 700-1000 MHz.

ing points of today’s GPU. Note that this does not include technology scaling. Figure 5.9

shows the performance prediction errors for waxpby kernel for range of CU count (20-

32), memory clock (925-1375 MHz) and CU engine clock frequencies (700-1000 MHz).

Except for one case (32 CUs, 1375 MHz memory clock and 700 MHz CU frequency)

with the prediction error of 8.8%, the maximum absolute errors in predictions for all

other configurations are below 5%. The large error for one case is because the other-

wise memory-bound waxpby kernel behaves like a compute-bound kernel at lower CU

frequency [65, 111]. Overall, the average performance and power prediction errors for

miniFE.waxpby kernel are 2.1% and 1.6%, respectively, which are quite reasonable

for an early stage study. Prediction outliers are attributed to hardware noise and small

measurement set with the desired compute-to-memory ratio. Further, the average errors

for all 25 kernels in predicted execution time and power against the actual measurements

at a fixed configuration of 32 CUs, 1375 MHz memory clock and 1 GHz CU cock fre-
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Figure 5.10: Predicted vs. measured normalized execution time at the 32 CU, 1 GHz eClk,
and 1375 MHz mClk frequency of HD 7970 for the selected kernels.
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quency are 2.0% and 1.1%, respectively. Figure 5.10 shows the predicted (t pred) and the

measured (t meas) execution times; the results for power and also similar.

b. Optimal PG Granularity

To derive the proper PG granularity, which is a design-time decision, we need to consider

the following tradeoff. On one hand, the granularity needs to be finer so that we do not

miss power saving (hence, performance boosting) opportunities. On the other hand, based

on the area overhead analysis in Section 5.3.3, the granularity needs to be coarser to reduce

silicon area overhead and cost. To reach an optimal tradeoff, we first look at the run-time

performance and power efficiency of a future GPGPU with different PG granularities at a

nominal 1 GHz compute frequency and under a 150 W TDP constraint.

With 150 W TDP constraint and the nominal 1 GHz frequency, Figure 5.11 (a)-(b)

show the execution time and energy for the selected kernels at different PG granularities

using our design-aware run-time management algorithm, normalized to the baseline case

where all CUs power gated together, i.e., g192. Note that power efficiency is inversely

proportional to energy, so lower energy in Figure 5.11.b means higher power efficiency.

Similarly, performance is inversely proportional to execution time. The figure shows re-

sults from selected kernels for seven PG granularities: 1, 8, 16, 32, 64, 96, 192 CUs per

cluster (denoted as g1, g8, g16, g32, g64, g96, and g192 in Figure 5.11) that can be power

gated at the same time. This corresponds to 192, 24, 12, 6, 3, 2, and 1 independent power

gating domains. We choose these granularities mainly because they are divisible to the

total 192 CUs. For other high-performance parallel processor architectures with differ-

ent number of CUs, the cluster size choices may vary. However, the proposed decision

methodology would still hold.

For most kernels, we see improved performance and power efficiency at finer PG gran-
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Figure 5.11: a) Execution time, and b) energy of kernels at different PG granularities with
TDP = 150 W, c) power gating area overheads at different PG granularities.

ularity with diminishing return beyond g16. The improvement comes from the fact that

kernels are TDP limited and the more leakage power saved from finer-grained power gat-

ing can be leveraged to activate more CUs, which in general improves performance and

power efficiency. In fact, the largest performance improvement of 14% is seen between

one PG domain (g192) and two PG domains (g64) for the entire GPU. However, be-

yond a certain PG granularity, the additional leakage power saving becomes smaller, and

hence the diminishing returns in performance and power efficiency with more silicon area

overhead. Specifically, there is no significant performance and power efficiency bene-

fit between 16 CU PG granularity and per-CU PG granularity. Two exceptions are the
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performance of CoMD.EAM.advPos (K1) and hotspot (K22), where we see no per-

formance changes across different PG granularities as compared to the baseline because

the two kernels do not exceed the 150 W TDP even without power gating and can run at

their optimal CUs.

Across 25 kernels we have investigated, we find that 16 CU cluster size (g16) is the

finest granularity that is necessary. At g16, we find an average performance and power

efficiency improvement of 21% and 30%, respectively, compared to the baseline case

g192. The actual cluster size at design time may change as different applications and

kernels may frequently run on the future hardware system. As long as the cluster size is

decided based on the characteristics of a realistic and broad set of applications and kernels,

our methodology is applicable. Hence, we conclude that there is an optimal PG granularity

shared by most workloads.

c. PG Area Overhead

We have seen that finer PG granularity coupled with effective run-time algorithm provides

better performance and power efficiency for a TDP-constrained design. However, the im-

provements come at the cost of design and area overhead incurred from implementing

fine-grain power gating. Previous results in the literature report a PG area overhead from

5% to 40% of total die area [53, 46, 97]. Without loss of generality, we use relative percent-

age values in this paper. For the CU design of Figure 5.7, which represents a granularity

of 1 CU per cluster (g1), the contributions from power gates, AON cells, and control logic

are estimated as 53%, 40%, and 7% respectively based on area estimates from the layout.

Using the proposed analysis in Section 5.3.3, we compute the PG area overhead at other

granularities for all kernels. Among all kernels studied, Graph500.unionClear ker-

nel has the highest frequency boosting potential at run-time and, therefore, determines the

worst-case area overhead. Figure 5.11 (c) gives the area overhead at different PG granular-
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ities normalized to the 192 CU granularity (g192) case. Compared to g192, where all CUs

can be power gated at once, the overhead for g96 and g16 increases to 27% and 54% re-

spectively. The overhead becomes 2.35× for per-CU power gating granularity. Typically,

the kernel with low parallelism and low power has the highest frequency-boost potential.

The optimal number of CU count for Graph500.unionClear kernel is 64, so any

granularity finer than 64 CUs has the same power dissipation and power slack, and hence,

the same frequency-boost potential. So, beyond the 64 CU granularity, the area overhead

due to PG transistors also starts saturating as the maximum frequency is attained. How-

ever, the overheads due to AON cells, control logic and wires keep on increasing. Hence,

as the granularity is varied from the coarsest (g192) to the finest (g1), the overhead due to

clamp cells increases by 13.7×, resulting in an overall area increase of 2.35×.

By comparing the performance and energy gains against the PG design area overhead

at different PG granularities given in Figure 5.11, we observe that per-CU PG provides

only about 1% improvement in performance at the cost of 53% increase in the PG area

overhead compared to the 16 CU granularity design. However, 16 CU granularity provides

21% improvement in performance and 30% improvement in power efficiency at the cost of

only 54% increase in PG area overhead compared to 192 CU (single-cluster) granularity.

So, we conclude that 16 CU PG granularity is an optimal design choice for the studied

massively parallel GPGPU architecture and per-CU power gating is an overkill. Choosing

16 CU PG granularity over per-CU granularity could reduce the die area overhead from

5-40% [46, 97] to 3-28%.

d. Run-time Power Management Algorithm

Our run-time algorithm, as described in Section 5.3.4, first predicts the optimal CU counts

by monitoring VALUBusy at nominal frequency. Figure 5.12 shows the predicted CU

counts for four kernels: CoMD.EAM.advPos (K1), MaxFlops.peak (K6), XSBench.-
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calcSrtd (K17), and XSBench.uGridSrch (K18), together with their correspond-

ing oracle CU counts, derived from off-line execution time estimates. As we can see,

tracking the VALUBusy does lead to very accurate optimal CU count prediction.

Compared to the existing work, which uses static analysis to evaluate the benefits of

per-core PG in existing hardware with fewer number of processing units, the proposed

Algorithm 2 considers PG granularity and performance sensitivity to number of CUs to

change the number of active CUs during run-time for a massively parallel architecture.

Figure 5.13 shows the convergence behavior of the proposed algorithm for the same four

kernels of Figure 5.12. After initialization, the algorithm predicts the number of CUs

based on the percentage change in VALUBusy and the gradient of VALUBusy with respect

to CU-count, as shown in Figure 5.13. The algorithm has three kinds of stopping criteria:

1) when it finds the maxima point of VALUBusy with respect to CU-count, 2) when the

predicted CU-count reaches minimum or maximum number of CUs in the system, and

3) when the relative change in VALUBusy is smaller than the specified tolerance value,

2% in our case. In all cases, the algorithm ensures that the total power at the predicted

configuration is less than or equal to TDP.
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Figure 5.13: Algorithm convergence. (a) % change of VALUBusy in two consecutive
iterations. (b) progress of predicted optimal CU counts across kernel iterations.

We show all three types of convergence behaviors in Figure 5.13. First, for CoMD.EAM-

.advPos (K1) and XSBench.calcSrtd (K17) kernels, the algorithm overshoots the

CU-count prediction and retreats back to the optimal CU-count configuration. For exam-

ple, in CoMD.EAM.advPos (K1), the algorithm predicts 120 CUs in the 6th iteration by

decreasing the CU-count from 128 CUs in the 5th iteration. Since, there is an increase in

VALUBusy at this step, the algorithm reduces the CU-count further to 108 CUs in the 7th

iteration based on the gradient value. However, the VALUBusy at 108 CUs is smaller than

the VALUBusy at 120 CUs, so, the algorithm increases the CU-count back to 120 CUs

and stops. Second, for MaxFlops.peak (K6) kernel, the performance (or VALUBusy)

keeps increasing with respect to number of active CUs, so the algorithm keeps increasing

the CU-count until the maximum number of CUs in the system is reached. Third, for

XSBench.uGridSrch (K18) kernel, the percentage change in performance is lesser

than the tolerance value above 148 CUs, so it stops after 5th iteration. In this case, the

algorithm predicts 148 CUs, although it has 1% lower performance than at 152 CUs (the

oracle CU-count). For all kernels that we have investigated in this paper, the algorithm

finds the optimal CU counts in lesser than 8 iterations. Given the fact that kernels usually

go through tens of iterations, and dynamically changing hardware configurations requires

only a few microseconds, the proposed algorithm introduces very little runtime overhead.
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e. Design-aware Frequency Boosting

The run-time algorithm could improve the performance further for less-than-TDP ker-

nels that are frequency sensitive with relatively flat CU scalability around the optimal

CU count. Figure 5.14 (a) shows the performance boost of four kernels that consume

less than TDP at their optimal CU count. Among them, CoMD.EAM.advVel (K2)

and graph500.botUpStep (K11) have 11% performance improvement by running at

higher frequency. Similarly, Figure 5.14 (b) shows performance improvement for four ker-

nels, kmeans.kernel c (K13), GEMM.sgemmNT (K15), XSBench.bitSort (K16)

and bprop.adjW (K19) with our PG design-aware runtime algorithm in a design with

16 CU granularity. The left bars indicate performance for the kernels, where a design-

decoupled runtime always enables optimal number of CUs for an application without con-

sidering any effects of PG granularity, resulting in additional CUs idle but ungated due

to granularity size. These kernels do not see any frequency boosting as they reach TDP

limits because of leakage power dissipated by the idle CUs. However, our design-aware

run-time algorithm, as indicated by the right bars for these kernels, chooses to turn on CUs

that are multiple of PG granularity and utilizes the saved idle leakage power and remain-

ing power headroom to boost frequency leading to up to 18% better performance. It also

translates to average 5% additional power-efficiency improvement for the selected kernels.
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Figure 5.14: Performance boosting by increasing the frequency to use the power slack.
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By exposing the PG granularity as a readable register or an API, OS/driver/firmware can

easily access such information and make appropriate power dating decisions. Hence, ad-

ditional performance gains can be achieved by boosting the frequency through a design

and workload-aware run-time algorithm.

f. Effect of TDP on Optimal PG Granularity

So far, we have assumed a 150 W TDP during run-time power gating analysis. It is

necessary to look at other TDP values and see if the 16 CU cluster decision is still valid.

Figure 5.15 shows an example of such analysis for the miniFE.matvec (K5) kernel

at 125 W, 150 W and 175 W TDP, which is a representative high-power kernel that can

reach all TDP levels with different number of active CUs. We can see that execution time

reduces as TDP increases as a result of more CUs being active. In all three TDP levels,

performance starts to flatten out beyond a power gating granularity of a 32 CU cluster size,

and a 16 CU cluster size is good enough for the studied design. Our run-time algorithm

is able to adapt to the optimal CU count under different TDP constraints. We observe that

design-time PG granularity is mostly independent of TDP.
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Figure 5.15: Normalized execution time of miniFE.matvec kernel (K5) at different
PG granularities and three different TDPs.
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5.5 Summary

In this chapter, we investigated how to leverage power gating to improve performance and

power efficiency for future massively parallel GPU architecture. We showed that the opti-

mal power gating granularity is a design-time architecture knob that governs the maximum

gain that can be achieved during runtime. Further, our results demonstrate that finer power

gating granularity can result in large area over-heads, whereas a sub-optimal power gating

granularity can also result in wastage of leakage power and performance degradation under

a fixed TDP for applications that need fewer number of CUs than the power gating granu-

larity. By scaling measurements from a real 28 nm GPU to a hypothetical future GPU with

192 CUs in 10 nm node, we showed that a PG granularity of 16 CU/cluster achieves 99%

peak run- time performance without the excessive 53% design-time area overhead of per-

CU PG. We also demonstrate that a run-time power management algorithm that is aware of

the PG granularity leads to up to 18% additional performance through frequency- boosting

under thermal-design power (TDP) constraints. Thus, there is a design-time tradeoff to be

made, and it is important to make the decision application-aware to implement an efficient

power management in future GPU systems.
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Chapter 6

Summary of Dissertation and Potential

Future Extensions

In this thesis, we proposed new techniques to improve power efficiency of current and

future CPU-GPU processors. To validate our techniques, we used extensive set of ex-

periments on real hardware. To evaluate the proposed techniques on existing hardware,

we used a quad-core CPU and an accelerated processing unit (CPU-GPU processor) from

AMD. Similarly, for evaluating low-power design technique (in particular, power gating)

on future hardware (massively parallel GPU), we first make measurements on an existing

GPU by running different workloads and use those measurements to make projections on

the future hardware. This chapter summarizes our contributions by highlighting the key

results and discussing the potential research extension of the thesis.
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6.1 Summary of Results

In chapter 3, we introduced multiple novel techniques that advance the state-of-the-art

post-silicon power mapping and modeling. We devised accurate finite-element models

that relate power consumption to temperatures, while compensating for the artifacts in-

troduced by using infrared-transpired heat removal techniques. We devised techniques to

model leakage power through the use of thermal conditioning. These leakage power mod-

els were used to yield fine-resolution leakage power maps and within-die variability trends

for multi-core processors. We used an optimization formulation that inverts temperature to

power and decomposes this power into its dynamic and leakage components and analyzed

the power consumption of different blocks of a quad-core processors under different work-

load scenarios from the SPEC CPU 2006 benchmarks. Our results revealed a number of

insights into the make-up and scalability of power consumption in modern processors. We

also devised accurate empirical models that estimate the infrared-based per-block power

maps using the PMC measurements. We used the PMC models to accurately estimate the

transient power consumption of different processor blocks.

Further, for heterogeneous CPU-GPU processors, we showed that the integration of

two architecturally different devices, along with the OpenCL programming paradigm,

create new challenges and opportunities to achieve the optimal performance and power

efficiency for such processors. With the help of detailed thermal and power breakdown,

we demonstrated that choosing the appropriate CPU frequency and hardware device for

CPU-GPU workloads are crucial to attain higher power efficiency for these devices. For

the studied CPU-GPU processor, among different frequencies and two devices, the per-

formance could vary up to 10.5×, while the total power and peak temperature vary up to

23.4 W and 40.5 °C, respectively. In other words, workload scheduling and DVFS are

highly intertwined for these processors and should be decided appropriately.
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In chapter 4, we presented a scheduling framework that takes in to account the sys-

tem dynamic conditions, along with the workload characteristics to minimize runtime or

energy on CPU-GPU processors. In contrast to previous approaches that either mapped

entire applications or did not consider run- time conditions, our fine-grained approach en-

ables scheduling at the kernel-level while considering system conditions during schedul-

ing decisions to fluidly map the kernels between CPU and GPU devices. In a way, our

approach complements the built-in hardware capabilities to limit TDP by incorporating

the ability to schedule as well. To identify the best mapping for a kernel, we developed

an SVM-based classifier that monitors the measurements of the performance counters to

profile both the current workload and detects the number of available cores online, and

accordingly decides the best device for the kernel to minimize total runtime or energy. We

trained the classifier using off-line analysis that determined the best performance counters

to use. We fully implemented the scheduler and tested it on a real integrated CPU-GPU

system. Our results confirm its superiority as it is able to outperform application-based

scheduling and the state-of-art scheduling methods by 40% and 31%, respectively. Simi-

larly, our scheduling framework provides unto 10% more energy saving for selected time-

varying TDP patterns than the user-based application-level scheduling scheme.

Finally, in chapter 5, we investigated in detail how to leverage power gating (a well

known power saving technique) to improve performance and power efficiency for future

massively parallel exascale and petascale GPU architectures. The analysis is based upon

a scalable power projection framework that employs a combination of native hardware-

execution, analytical and empirical scaling models, and industry-scale technology models

to enable power efficiency optimization of future GPUs. We showed that a simplistic per-

CU power gating granularity only incurs significant silicon area overhead without further

benefits of run-time performance. Therefore, to achieve better power efficiency without

sacrificing performance, we believe the design-time decision on optimal power gating
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granularity needs to be aware of applications characteristics on run-time parallelism. This

is particularly important to high-performance computing systems with massive amount

of hardware parallelism, such as future GPUs in exascale and petascale HPC systems.

We show that a PG granularity of 16 CU/cluster for a 192 CU hypothetical future GPU

achieves 99% peak runtime performance without the excessive 53% design-time area over-

head of per-CU PG. In addition to presenting the analysis methodology, we also demon-

strate results with an efficient run-time algorithm that has the knowledge of underlying

hardware power gating granularity. Our results show that a run-time power management

algorithm that is aware of the PG granularity leads to up to 18% additional performance

through frequency-boosting under thermal-design power (TDP) constraints.

6.2 Potential Research Extensions

In this thesis, we introduced multiple techniques to improve the power efficiency of mod-

ern processors. The ideas presented in this dissertation could be extending through the

following possible research directions.

In this work, while performing the thermal and power mapping of heterogeneous CPU-

GPU processors, we kept the GPU frequency fixed at factory settings due to publicly

available drivers at the time. On the newer processors, with better power management

capabilities, one could study the impact of adaptively changing the operating frequency

and the number of compute-units of GPU based on the workload characteristics. Similarly,

recently, researchers in both academia and industry are studying devices with different

performance and power capabilities to target different market domains. For example, Intel

is actively pursuing its goal of integrating reconfigurable computing with the x86 CPU

cores [39, 18]. Integration of high power CPU with relatively lower power FPGA on the

135



same die will certainly add new dimension to the heterogeneous systems. One could apply

our proposed power mapping and modeling techniques to understand and design better

power management units on these systems. Similarly, our infrared imaging based power

mapping setup could be used to study thermal and power issues on mobile processors and

SoCs (e.g., Snapdragon from Qualcomm [99] and Tegra series from NVIDIA [80]).

Our online workload characterization and mapping work for CPU-GPU processors

could be extended to multiple CPU and GPU devices for systems equipped with multiple

such devices. The results shown in the thesis are for a system equipped with processor

with one CPU and one GPU integrated on the same die. Multiple CPUs, GPUs, and even

FPGA, will allow applications with wide range of kernel characteristics to run on a suitable

device in the most power efficient manner. Our proposed scheduling algorithm could be

scaled for efficient workload scheduling on such systems.

Finally, in this thesis, we provided a comprehensive analysis of power gating design to

save power on future massively parallel GPUs. Due to very high power efficiency demand

(about 25× the existing GPUs) of future exascale and petascale systems [73], multiple low

power techniques will be needed to save power under different workload conditions. Some

of these techniques are asynchronous logic to save clocking power, data-compression to

save interconnect power, SRAM retention to save cache and register power, etc. The

benefits of these techniques should be evaluated against their cost and design overheads.

For example, we believe that interconnect power could be significant in future systems,

so techniques such as 3D die stacking and processing in/near memory would be crucial

to further reduce power associated with data movement. Our design framework could be

extended to study such different low power techniques for future systems.
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