

Performance Driven Frequency/Voltage Planning for

Multi-Core Processors with Thermal Constraints

Honors Thesis Submitted by

Michael Aaron Kadin

In partial fulfillment of the

Sc.B in Electrical Engineering

Brown University

4/22/2008

 2

Prepared under the Direction of

Professor Sherief Reda, Advisor

Professor Roderic Beresford, Reader

Professor Jennifer Dworak, Reader

 3

Table of Contents

Abstract ... 4

Chapter 1: Introduction ... 5

1.1 Multi-core Architectures... 5
1.2 Temperature Constraints and Thermal Management.. 6
1.3 Research Overview ... 8

Chapter 2: Previous Work... 12

Chapter 3: Methods and Models ... 14

3.1 Performance-Power-Temperature Tool-chain .. 14
3.2 Thermal Model.. 18
3.3 Optimization Using Linear Programming .. 22
3.4 Scaling Trends .. 27

Chapter 4: Model Validation and Parameter Learning .. 31

4.1 Validating the Linear Frequency/Power Relationship.. 31
4.2 Thermal Model Parameter Fitting and Validation .. 33
4.3 Thermal Model Validation with an FPGA.. 34

Chapter 5: Experiments and Results .. 39

5.1 Frequency Planning .. 39
5.2 Process Priorities and Sensitivity Analysis... 42
5.3 Frequency and Voltage Planning .. 45

Chapter 6: Conclusions ... 49

References... 53

 4

Abstract

With feature sizes moving into the nanometer regime, clock frequency and

transistor density increases have resulted in elevated chip temperatures. In order to meet

temperature constraints while still exploiting the performance opportunities created by

continued scaling, chip designers have migrated towards multi-core architectures. Multi-

core architectures use moderate clock frequencies with multiple processing units running

multiple threads to exploit Thread-Level Parallelism (TLP). In this work, we propose a

design for a system that performance-optimizes a multi-core system with thermal

constraints. By adjusting core clock frequencies and voltages, on-chip power dissipation

can be controlled in a scheme that maximizes the chip’s physical performance. We

propose a simple model that accurately simulates the effects that changes in clock

frequency and voltage have on both on-chip power and on-chip temperature. Using the

model, we find the optimal operating conditions for several circumstances. Namely, (1)

standard processor performance, where there is no variation in parameters between the

various cores, (2) optimal core performance where there is no constraint for parameter

similarity between cores, and (3) optimal processor performance with thread priorities,

where each core runs a thread of varied importance. We run several experiments across

six different technology nodes to validate the work, assuring that our models and methods

are accurate. Our methods have been shown to increase the physical performance of a

multi-core system by up to 33.4% with minimal hardware overhead and without violating

a steady-state temperature constraint.

 5

Chapter 1: Introduction

1.1 Multi-core Architectures

 As scaling continues into the nanometer regime, more transistors are being

fabricated on chips of equal size. Along with these increases in transistor density, clock

frequencies are increasing, creating more switching activity. In ideal scaling, supply

voltages are also decreased in order to avoid high power density. However, thermal noise

and process variations have slowed the scaling of supply voltages in today’s deep sub-

micron chips. High supply voltages themselves do not limit frequency increases; in fact,

high supply voltages can facilitate faster switching speeds. However, without ideal

voltage scaling, on-chip power density increases with technology, and higher power

density leads to higher on-chip temperatures. The temperature problem was traditionally

solved by removing the dissipated energy with improvements in packaging technology

and thermal cooling systems. However, these techniques have become economically

infeasible, and do not scale with technology. Thus, new solutions to the “thermal wall”

are needed.

In order to continue to take advantage of performance improvements enabled by

scaling, chip designers have shifted towards multi-core architectures. Rather than

completing a single process more quickly, multi-core architectures have several

independent cores that simultaneously compute separate threads. Since transistor size

continues to shrink, more cores can be added to a chip of the same area. Though the

smaller transistors have the potential to be run at high frequencies, thermal constraints

continue to restrict their operating frequencies. However, since there are several

 6

independent processing units, running them at moderate frequencies does still permit

large performance gains. With an ideal amount of thread level parallelism (TLP),

performance can approximately double with each technology generation.

However, a given workload has a fundamental limit on extractable concurrency.

Thus, situations may occur where all of the cores in a multi-core processor may not be in

use. In fact, coding and compiling for TLP is expected to be one of the most difficult

challenges of the multi-core era.

1.2 Temperature Constraints and Thermal Management

High on-chip temperatures can have several negative effects on a processor.

Increases in thermal noise can cause memory bits to unexpectedly flip. In addition,

raised temperatures increase the likelihood that electrons can escape the quantum well

imposed by an OFF transistor. Thus, high temperatures increase sub-threshold leakage

current, increasing overall processor power consumption. Increased temperatures also

increase Elmore delay, decrease the mean time to failure, and can cause physical damage

to the chip. In general, increased on-chip temperatures are detrimental to processor

performance, power, and reliability.

Solutions to the temperature problem have been proposed from several research

areas. For example, Ku et al. attempt to lower temperatures with a static micro-

architectural design technique [1]. By deactivating alternating cache lines rather than

entire cache banks, power is spread more evenly, and temperature is decreased. Tsai and

Kang [2] approach the temperature problem with a placement algorithm designed to

 7

spread heat more evenly. Mutyam et al. [3] propose complier optimizations that more

evenly spread heat between functional units. Successful chip/software designs will likely

incorporate a number of these and similar design changes from many different research

fields.

One of the most active fields that deals with the “thermal wall” is dynamic

thermal management (DTM). DTM methods read in the current thermal state of the chip

with temperature sensors or performance counters, and make changes to processor

parameters to adapt to the chip’s current temperature (or temperature gradient). As

mentioned above, high power densities can currently be handled with expensive

packaging solutions. However, DTM methods seek to avoid the need for these expensive

techniques. A processor that utilizes DTM has a package designed (inexpensively) for

the average power dissipation rather than peak dissipation. When the chip processes a

particularly aggressive code section, and the power dissipation becomes too great for the

packaging to successfully remove, temperatures will rise. DTM techniques sense this

temperature change and adjust chip parameters (frequency, voltage, pipeline width, etc)

to compensate. Most DTM techniques impose some form of performance penalty. For

example, decreasing a pipeline’s width will decrease the number of switching transistors,

and thus, the amount of power dissipated. However, the number of instructions a

processor completes per cycle will also decrease, and this will hurt performance.

Research into DTM techniques attempts to maintain temperature constraints, while

minimizing the performance degradation.

As the industry turns towards multi-core processors, many chip-makers are also

looking to a Globally Asynchronous, Locally Synchronous (GALS) architecture. GALS

 8

systems have multiple Voltage/Frequency Islands (VFIs) that operate internally on a

synchronous clock network, but communicate with other VFIs via asynchronous means.

A GALS structure, or similar structures in use, allow different VFIs to operate at different

voltages/frequencies.

Research into DTM techniques has leveraged the independence of different VFIs

for thermal advantages. If a high temperature area forms in one VFI, the entire chip need

not be throttled. Instead, an individual VFI’s parameters can be changed, to eliminate the

hot spot, without affecting the performance of other VFIs. Donald and Martonosi [4]

show that using Dynamic Voltage and Frequency Scaling (DVFS) on individual

voltage/frequency independent cores gives significant performance improvements over

chip-wide DVFS. Mukherjee and Memik [5] develop optimal frequencies for a core and

its surrounding cores for recovery during thermal emergencies.

 Upcoming chip designs with several independent processing units, or cores, each

with its own voltage and frequency settings (e.g. AMD Quad-Core Phenom Processor

[6]) set the framework for our methods. Currently chip-designers select voltage and

frequency levels to be equal on all of their cores. Our methodology seeks the optimal

frequency setting for each core in a multi-core system that does not necessarily obey that

identical frequency constraint.

1.3 Research Overview

The International Technology Roadmap for Semiconductors (ITRS) shows that

with increases in technology, chip temperature must be capped at 85° C to alleviate the

 9

aforementioned concerns. In this work, we propose a method to increase the physical

performance of a multi-core processor under this thermal constraint. For the sake of this

work, physical performance is defined as the performance of a system based solely on

cycles per second. In other words, we seek to increase on-chip clock frequencies. We

treat chip-wide physical performance as the sum of the frequencies of all of the cores.

Architectural changes and other enhancements complement increases in physical

performance to benefit overall processor throughput, but these additional improvements

are outside the scope of this work.

To begin the performance optimization, a series of high-level models must be

constructed. First, we must model the power dissipated by units within the processor

based on operating parameters. In addition, we must model temperature variations that

result from this released power. These modeling objectives are complicated by a myriad

of factors. First, within the chip, heat is transferred in all three dimensions. Thus, power

released by units within the processor can travel out of the chip via the package, or be

transmitted laterally to other units nearby. Thus, the temperature of a section of the die is

not only dependent on the power dissipated in that section, but also on nearby areas’

power. A second modeling complication arises from coupling between power and

temperature. Leakage current increases with increasing temperature. However,

temperature is a power dependant quantity. With increasing power comes increasing

temperature, which in turn increases power more. Therefore, temperature and power are

coupled through Leakage Dependence on Temperature (LDT). Third, cores exhibit

spatial variations in temperature. In other words, power is not uniformly dissipated

across a core; one area within a core may be significantly hotter than another. A fourth

 10

complication comes with changes in process parameters at different technology nodes.

Examinations of current technology nodes (65nm) may not be applicable to future nodes

(45nm, 32nm, and beyond). Lastly, these models are complicated by the fact that

different workloads may use different core modules at different rates. This means that

one process may heat one part of the chip a great deal, while another process may be

power intensive in a totally different section of the die. Our modeling and learning

techniques attempt to conquer all of these difficulties.

Once thermal and power models have been set up, we will propose a methodology

for selecting the frequency for each core in a multi-core system that will optimize full

system performance. In addition, we will propose a method for optimizing the physical

performance in a system where processes have different priorities. The models and

methods will be applied to six different technology nodes: 130nm, 90nm, 65nm, 45nm,

32nm, and 22nm. All of these models and methods will be comprehensively tested and

checked for accuracy. The main contributions of this thesis can be summarized as

follows:

• We propose a simple power-thermal model for multi-core systems that

produces accurate temperatures, while maintaining high-level simplicity.

The model incorporates both vertical and horizontal heat transfer and the

leakage dependence on temperature.

• We use the parameters of the power-thermal model to formulate a design

optimization space. An exploration of this space shows the potential

performance improvements in multi-core systems with thermal

constraints.

 11

• We propose using the model and optimization techniques during processor

operation with multiple thread priorities. In this scheme, cores will run

threads of varying importance. The operating system can assign the

optimal frequencies to the cores so that critical threads are completed

more quickly without violating temperature constraints.

• The models, methods, and optimizations are all tested on several systems

and core arrangements, at several technology nodes. In addition, the

results are validated using previously confirmed full-scale power and

thermal models. The results show that it is possible to boost the physical

performance of a multi-core processor by up to 33.4% without violating a

thermal constraint. Most importantly, these optimizations can be executed

with minimal hardware/software overhead.

The rest of this thesis is organized as follows. Chapter 2 briefly reviews some previous

work on optimal multi-core voltage/frequency assignment. Chapter 3 elucidates our

models and methods. Chapter 4 details the techniques and results of our model

validation. Chapter 5 explains the experimental results, and Chapter 6 concludes the

work.

 12

Chapter 2: Previous Work

 There has been much DTM research focusing on methods for recovering from

thermal emergencies [4],[5],[7],[8],[9],[10]. These works, center mostly on what to do

when a chip’s temperature rises above a certain threshold. Our work, on the other hand,

focuses on maximizing performance under a given steady-state temperature constraint.

In other words, we seek to keep temperature at a reasonably constant level by working

with some of the same parameters that are utilized in the emergency DTM techniques.

Even in our steady-state methods, however, temperatures may fluctuate with code

intensity and external factors. Therefore, it is still possible that sections of the chip may

reach emergency temperatures. Our methodology is designed to complement existing

emergency DTM techniques to maximize processor throughput while still assuring that

the chip will never reach dangerous temperatures.

 Some work has been conducted along similar lines. Rao et al. used similar power

and thermal models as in our work, to develop system level expressions for number/speed

of active of cores with thermal constraints [11]. The goal in this work is very similar to

our own: a simple method for determining system-level parameters in thermal

management environments. However, their work chooses to ignore horizontal heat

transfer, which was shown in [5] to be of critical importance. According to Rao, a core

with a hotspot will cool just as effectively while surrounded by 6 hot cores, as it would if

cold cache banks surrounded it. Skadron [12] comments that the horizontal heat transfer

path can account for up to 30% of heat transfer. Thus, we seek to improve upon Rao’s

techniques.

 13

Murali et al. [13] propose the use of convex optimization methods to solve the

problem of temperature-aware processor frequency assignments. However, their work

does not offer a clear, generic method to calculate the parameters of the convex model,

and they do not report the speedups achieved while using the proposed method in

comparison to traditional frequency assignment. Furthermore, the reported runtime

required to solve their problem formulations takes “less than few hours” which reduces

the method’s utility in their proposed dynamic setting. Solutions to our linear program

can be solved very quickly.

 The importance of multiple VFIs has been called into question by Herbert and

Sebastian [14]. Herbert and Sebastian examine the success of three different DVFS

schemes at varying levels of VFI granularity on a multi-core processor. Their

experiments compared the improvements in energy efficiency for different numbers of

VFIs on chip. The results showed that for a 16 core chip the increases in energy

efficiency for having each core be its own VFI were eclipsed by the increases in cost and

complexity. However, the authors only investigated the possibility of improving energy

efficiency. Donald and Martonosi [4] showed, and our work will confirm, that individual

core VFIs will bring huge performance benefits in the context of thermal management,

and not just energy efficiency. These performance improvements will show that there is

a great deal of utility in having an independent voltage/frequency island for each core in a

multi-core processor.

 14

Chapter 3: Methods and Models

3.1 Performance-Power-Temperature Tool-chain

 In order to accurately model chip temperature from operating parameters, we

must first obtain temperature data based on real chip behavior. There are several

possibilities for obtaining these measurements. One possibility would be to measure the

on-chip temperatures in real silicon. This can be accomplished with an Infra-Red Camera

[15], or with on-chip temperature sensors such as performance counters, ring oscillators,

or thermal diodes [16]. Alternatively, chip temperature data can be obtained in a

simulation environment. In order to allow for a large amount of data to be collected, to

account for scaling trends, and to keep the optimization environment malleable, we

acquire the majority of the temperature data through a simulator chain. We also validate

our model on a small data set in silicon to assure that the model accurately reflects real

chip behavior.

 The temperature gradient of a chip is related to amount of power dissipated on

that chip. Before we can model on-chip temperature, we must first understand where

power is dissipated across the die, and how much power is dissipated. Each core

dissipates its own power, and each core is sub-divided into individual functional units

(ALUs, L1 caches, branch predictors, etc). The power dissipated by each functional unit

is governed by

2
dd dd leakP CV f V Iα= + (1)

 15

where α is the average switching frequency for all the transistors in the unit, C is the

total capacitance of the gates in the unit, ddV is the supply voltage of the unit, f is the

frequency of the core that the unit is contained within, and leakI is the total leakage current

of the unit. For this work, we chose not to change any architectural parameters; we focus

exclusively on the physical parameters: voltage and frequency. Architectural, system,

and software level optimizations complement our work to maximize total processor

throughput.

Because of the introduction of high-k dielectrics, the effects of gate leakage will

be dominated by sub-threshold leakage current in the coming technology generations.

Therefore, our models only examine sub-threshold leakage current. Sub-threshold

current, is composed of electrons that escape OFF transistor energy wells. Leakage

dependence on temperature (LDT) creates a feedback loop between leakage power and

temperature. Dissipated leakage power increases power density, which in turn increases

temperature. This temperature increase causes further increases in leakage current, which

further increases temperature, and so on. At reasonable temperatures, LDT eventually

converges to a stable value. However, as temperatures increase, the possibility of

“thermal runaway” emerges. At these extreme temperatures, the exponential nature of

LDT cause power to increase until the circuit is permanently damaged.

Therefore, according to (1), in order to calculate the power dissipated for a given

functional unit, we must have accurate measures of the switching constant α , the unit’s

total capacitance C , the voltage and frequency of the core containing the unit, the

leakage current in the unit leakI , and the unit’s temperature so as to accurately model

LDT. The flow in Fig. 1 below was used for this calculation.

 16

Figure 1: Tool-chain developed to calculate performance, power, and
temperature of a multi-core system.

The tool-chain takes the cores’ operating frequencies, the specification of the system’s

circuitry, and the workload tasks that the system will complete as inputs. The circuit

characterization and the workload are given as inputs in order to calculate α , C , and

leakI . These inputs are broken down by each individual functional unit inside each

individual core in the multi-core system. The dynamic power is calculated and then fed

into a thermal simulator. Once the temperatures have been calculated, they are fed into

the leakage block so that the leakage power can be calculated while accounting for LDT.

The leakage power is then added to the original dynamic power, new temperatures are

 17

calculated, and the process is iterated until the temperatures converge. The process

usually takes ten iterations or less to become stable.

 As a dynamic power simulator we use PTScalar [17]. PTScalar is a Wattch-like

[18] power simulator built as an extension of the of Simple-Scalar toolset. Simple-Scalar

[19] is a cycle-accurate performance simulator of modern out of order processors.

PTScalar is an extension of this tool that models per-cycle power dissipation at the 65nm

node. To do this, PTScalar uses the functional unit usage data from Simple-Scalar. With

the details of the processor circuitry, PTScalar is able to predict how much energy each

functional unit will dissipate with the usage predicted by Simple-Scalar. We also take the

expressions for leakage power from PTScalar, though we construct our own leakage

power calculator in order to maintain tool versatility.

To more accurately model cache leakage power, we use CACTI 5.0 [20], which

has accurate cache leakage values at current and coming technology nodes. CACTI is an

industry trusted cache access time and power calculator. CACTI uses simulated data

from SPICE models for the future technology nodes to construct its model. Thus, we

believe its values will be more accurate at later nodes.

We utilize HotSpot (version 4.0) [12] as our temperature simulator. HotSpot uses

the duality between RC circuits and thermal systems to model heat transfer in silicon.

Given power values over time, a floorplan, and the details of a chip’s package, HotSpot

uses a Runge-Kutta (4th order) numerical approximation to solve the differential

equations that govern the thermal RC circuit’s operation.

All of these tools have been comprehensively tested and validated and are

considered to be accurate for the sake of this work. We use the Alpha EV6 processor as

 18

our baseline core [21]. The EV6 is a out-of-order speculative execution core that is

commonly used as a test-bench core in thermal management research [17],[9]. Each

Alpha core has its own L1 data cache and L1 instruction cache, and all of the cores on

the chip share a single L2 cache. As workloads, we use 8 benchmarks from the

SPEC2000 suite [22]. We use 4 integer benchmarks: gcc, bzip, mcf, and twolf, and 4

floating point benchmarks: ammp, equake, lucas, and mesa.

 With the tool-chain set up, it becomes possible to predict the on-chip temperature

gradient that would result from a particular workload, on a particular multi-core system.

However, with several cores, several benchmarks, and a continuum of frequency

selections, the design space is far too large to permit any “brute-force” attempts to

characterize the space. For instance, suppose we wish to inspect 10 different frequency

points on an 8 core system. With 1 of 8 different benchmarks to be assigned to 8

different cores, and 1 of 10 frequencies to be assigned to each core, there are ~1015

possible scenarios. The design space grows for larger numbers of cores as well. Thus,

in order to keep our methods feasible, we must construct a mathematical model for the

system that abstracts the underlying complexity, and then efficiently sample the design

space so as to apply the model parameters to the data. The following section will

provide an in-depth description of our model.

3.2 Thermal Model

Our model utilizes the well known duality between RC circuits and thermal

systems. In these thermal RC models, temperature is analogous to voltage, and current is

 19

analogous to heat transfer. Resistances represent paths of heat transfer, current sources

represent power dissipation, and voltage sources represent constant temperature sources.

Thermal capacitors, represent the ability to store heat, and are included in transient

analysis (as opposed to steady-state) to model the time dependant changes in temperature.

Consider a very simple system with two functional units surrounded by L2 cache.

Figure 2: A simple 2 unit floorplan

Unit 0 connects to unit 1 via a thermal resistance aR . Both units are connected to the

package through additional thermal resistances 0R and 1R . The package is then

connected to the ambient air through pR . Each unit also generates its own power, 0P and

1P , which is modeled as a thermal current source. Thermal resistances to the cache are

absorbed into the 0R and 1R resistances. Since cache temperatures are generally lower

than core temperatures, their effects on the system will not be of as much impact as the

cores. As a result, cache effects are absorbed into model constants and are not directly

modeled. In this work, we model the steady-state chip behavior. Therefore, thermal

capacitors are fully “charged” and can be omitted. The equivalent circuit is pictured

below.

Unit 0

Unit 1

L2

 20

Figure 3: Steady-state equivalent thermal circuit for a dual unit system

Solving Kirchhoff’s Current Law for the above system yields the following results:

0 1 0 0 1 0 1 0 1
0 0 1

1 0 1 0

a p a p p a p p p

a a

R R R R R R R R R R R R R R R R R R
t p p

R R R R R R
+ + + + + + +

= +
+ + + +

 (2)

0 1 0 1 1 1 0 0 1
1 0 1

1 0 1 0

a p p p a p a p p

a a

R R R R R R R R R R R R R R R R R R
t p p

R R R R R R
+ + + + + + +

= +
+ + + +

 (3)

Or more generally:

0 0,0 0 0,1 1

1 1,0 0 1,1 1

t p p
t p p

λ λ

λ λ

= +

= +
 (4,5)

where ,i jλ are constants composed of thermal resistances, and 0t and 1t are the

temperatures of each unit, above ambient. In addition, we propose (and will later

 21

validate) that the power of a unit, can be approximated as a linear function of its

frequency. Therefore, if we assume a constant supply voltage, for a given unit x

x x x xp fα β= + (6).

Substituting (6) into (4) and (5),

() ()
() ()

0 0,0 0 0 0 0,1 1 1 1

1 1,0 0 0 0 1,1 1 1 1

t f f

t f f

λ α β λ α β

λ α β λ α β

= + + +

= + + +
 (7,8)

distributing the constants λ , and renaming gives expressions of the form

0 0,0 0 0,1 1 0

1 1,0 0 1,1 1 1

t f f
t f f

π π θ

π π θ

= + +

= + +
 (9,10)

Since all of the steady-state circuit components are linear, it can easily be shown that

solutions of higher numbers of units will always be linear combinations of f with an

additive factor θ . Thus, these results can be generalized in matrix form.

0,0 0,1 0,0 0 0

1,0 1,11 1 1

,0 ,

N

N N NN N N

t f
t f

t f

π π π θ
π π θ

π π θ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

L

L M

M M O MM M M

L L

 (11)

 or

T F= Π +Θ (12).

 For our experiments, a single core has 17 different functional units. We thermally model

each unit independently while keeping a core’s units in the same clock frequency domain.

 There are several possible models that could describe our system. We have

chosen this linear model for two main reasons. The first, is simplicity. Without an

overly complicated model for temperatures the parameters can be accurately fit with a

 22

reasonable amount of machine learning. We will explain, in detail, our supervised

learning techniques and model validations in Chapter 4. The simplicity of our model will

also allow for calculations to be made on fine-grained time scales so as to be useful in

thermal management. The second purpose for using this simple linear model is that it fits

well with our optimization procedure: linear programming. Since all of the units’

temperatures are linear functions of frequency, the model elegantly fits into an

optimization framework that is well understood and can be solved quickly.

3.3 Optimization Using Linear Programming

Linear programming is a computational method for maximizing an objective

function subject to a set of linear constraints. In this work, we seek to maximize the total

physical performance across the processor, while using temperature as a constraint.

Thus, we use the linear system (12) to form constraint equations of the form below,

 T F≥ Π +Θ (13).

This set of expressions (13), defines a multi-dimensional feasible space, within

which, the operating point of the system must lie. The linear program is very malleable.

It is possible to constrain the system to require positive frequencies (0F ≥). The system

may also be constrained to keep the core frequencies above (or below) a user defined

minimum (or maximum) threshold. Therefore, we choose to constrain a minimum value

on the clock frequencies of each core with another set of expressions:

 23

0 min

1 min

minN

f f
f f

f f

≥
≥

≥
M

(14)

and if minf is the same for every core,

minF f≥ (15).

Now with a fully defined feasible region in “frequency space,” we can define an

objective function that we wish to maximize. Additional constraints are omitted in this

work, but are easily integrated into the linear program. Power constraints, core frequency

equality constraints, maximum frequency constraints, etc, are all possible additions. Our

methods and models have been designed for malleability in order to include additional

optimization criteria.

The clock frequency of a core is the measure of a core’s physical performance.

Therefore, we wish to maximize a linear combination of the clock frequencies of each

core in order to maximize performance.

0 0 1 1... N NZ w f w f w f= + + (16)

or more generally,

TZ WF= (17)

where Z represents physical performance and is the quantity to be maximized, and W

represents the weight or importance of each process running on the system. If all of the

processes are of equal importance or urgency, the weight constant, W , will be a vector of

equal quantities. However, if a particular process running on a core is of high priority,

the weight constants can be adjusted.

 24

 There are several methods for solving linear programming problems. For this

work, we utilize the simplex method [13], which typically converges to a solution in

polynomial time. However, for worst case scenarios, the simplex method can converge

in exponential time. For our work, the algorithm was expected to converge in 2N or 3N

iterations, where N is the number of cores in the system. Thus, the simplex method was

more than efficient enough, but for complex systems of tens or hundreds of cores a

different method (such as an interior-point method) may prove more successful. We

leave this issue to further research.

 Small changes in the weight constants, W , may not bring about a change in the

optimal point. Sensitivity analysis can be conducted at design/testing time. With the

sensitivity information in advance, it can be determined if a run-time change in the

weight constants W will bring about a new solution to the linear programming problem.

If the changes in W are sufficiently small, no time must be wasted solving the linear

program.

 To better understand the effects of changes in W , consider again the two unit

system represented by the thermal constraints below

max 0,0 0 0,1 1 0

max 1,0 0 1,1 1 1

t f f
t f f

π π θ

π π θ

≥ + +

≥ + +
 (18,19)

with the objective function

0 0 1 1Z w f w f= + (20)

and the minimum frequency constraints

0 min

1 min

f f
f f
≥
≥

 (21).

Plotting this system in “frequency space” gives fig. 4 below.

 25

Figure 4: The optimal point in “frequency space” occurs at the intersection between the

maximized objective function and a vertex of the feasible region.

In this figure, blue orthogonal lines represent the minimum frequency constraints.

The additional blue lines represent a thermal constraint. Running the cores at frequencies

beyond this constraint would result in an on-chip temperature that is greater than the

specified value.

For this example, we keep the weight constants, W , at unity. The objective

function is plotted in red. We can shift the objective function (as indicated by the arrows)

until Z is maximized. This will always occur at a intersection between the objective

function and one of the feasible region’s vertices. The intersection (or the optimal point)

is marked by a box in the figure. Fig. 5 below shows the effect of small changes in W on

the objective function, and its resultant optimal point.

 26

Figure 5: Effects of small changes on the objective function

From this figure, we can see that small changes in the slope of the objective function,

which correspond to small changes in the weight constants W , do not effect the resultant

optimal point. However, Fig. 6 below shows that if the objective line is tilted far enough

(the importance of one thread is very high in comparison to the other), then a new

optimal point will be set.

 27

Figure 6: Tilting the objective function past the slope of the isothermal curve causes the
optimal point to shift to a different vertex.

An analogous analysis can be completed in higher dimensional spaces (more cores). By

analyzing the sensitivity of our model, unnecessary optimization calculations can be

avoided, saving time and power at runtime.

3.4 Scaling Trends

In order to better predict the effects of our methods on many-core systems (16, 32,

and more cores) we must examine the physical changes in chip design that are likely to

occur in coming years. Admittedly, our scaling methodology is not overwhelmingly

rigorous. However, the purpose of this paper is not to model future scaling trends to a

high degree of accuracy. Rather, our work is in thermal management, and these “first-

order” scaling models have been designed to provide insight into future implementations

 28

of our temperature-oriented methods. They have not been designed to be extremely

accurate models to be used outside of the scope of this work.

For our experiments, we examine 7 different technology settings using the Alpha

EV6 processor as our baseline core. Namely, 130nm (1 core), 90nm, (2 cores), 65nm (4

cores), 45nm (8 cores), 32nm (16 cores), 32nm with low cache power (16 cores), and

22nm with low cache power (32 cores). Each technology generation halves the area of a

given circuit, and doubles the number of transistors in the cache. Thus, transitioning

from one technology node to the next, doubles the number of cores, and doubles the

memory capacity of the cache.

Changes in supply voltages, threshold voltages, oxide thickness, and other

parameters cause changes in power values with technology. In order to model these

changes in power, we turn to the International Technology Roadmap for Semiconductors

[23]. This work provides a framework for the industry to follow as scaling proceeds into

the deep sub-micron regime. Assuming the ITRS trends are accurate, we use them to

formulate Table 1.

Transistor Type Bulk
Silicon

Bulk
Silicon

Bulk
Silicon

FD SOI FD SOI FD SOI

Technology Node
(nm)

130 90 65 45 32 22

Number of cores 1 2 4 8 16 32

Supply voltage
(V)

1.3 1.2 1.1 1.0 .9 .8

Leakage current
per micrometer of

width (uA)

.01 .05 .2 .22 .29 .37

Capacitance per
micrometer width

(F)

1.15E-15 9.98E-16 6.99E-16 7.35E-16 6.18E-16 5.25E-16

Table 1: Scaling data

 29

The ITRS report provides us with the expected supply voltage, expected leakage

current per micrometer of gate width, and expected gate capacitance at past, current, and

future technology nodes. Since our power model is native to the 65nm node, we must

scale these values, according to the ITRS, for the changes at other nodes. Table 1 is a

summary of the results from the ITRS scaling trends.

Consider a technology node k , with supply voltage, total gate capacitance, and

leakage current @kV , @kC , @kI , respectively. An individual core’s power can be

expressed as the sum of its dynamic and leakage powers,

@ ,@ ,@k d k l kP P P= + (21).

Since dynamic power is proportional to the square of supply voltage and proportional to

gate capacitance, and since leakage power is proportional to supply voltage and sub-

threshold current,

@ 1 ,@ 1 ,@ 1k d k l kP P P+ + += + (22)

@ 1 @ 1 @ 1 @ 1
@ 1 ,@ ,@

@ @ @ @

1
2

k k k k
k d k l k

k k k k

V V C I
P P P

V V C I
+ + + +

+

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
� (23).

We introduce the 2 factor, because the total gate width scales by 2 from one

technology generation to the next. Note that (23) applies to the scaling of a single core.

To scale total chip-wide power, we must double the power provided by (23), assuming

that each technology generation doubles the number of transistors on chip. One

limitation of our model is that it does not incorporate the effects of global busses that

span chip-wide dimensions. We leave the scaling and power consumption of these

busses to future research.

 30

 In order to more accurately scale cache power, we use CACTI 5.0 [20]. CACTI is

an industry trusted cache access time and power calculator. We use CACTI’s high power

cache models at the technology nodes up to 32nm. Cache leakage power grows

exponentially with technology, and thus, an unreasonable amount of leakage power is

predicted at the 32nm and 22nm technology nodes (~150 W). Chip designers will have

to address this problem. Using low power transistors (with decreases in performance),

using “drowsy” cache methods, and other design techniques, designers will be able to

lower the amount of energy dissipated in the caches. It is difficult to quantify these

design improvements at future nodes. Therefore, at the 32nm node we run our

experiments with both high power and low power transistors, and for 22nm we use only

the low power transistors. This may not exactly model the power behavior of L2 caches

at future technologies. However, we use these low power models to gain insight into the

possibilities at these later nodes.

 With the scaling trends in hand, it is now possible to characterize the thermal

model at various technology nodes, with various numbers of cores. The machine

learning techniques, and validity of the model will be assessed in the following chapter.

 31

Chapter 4: Model Validation and Parameter Learning

4.1 Validating the Linear Frequency/Power Relationship

In order for our linear model to be a valid approximation of actual chip behavior,

we must first assure that our assumption in (6) is legitimate. In other words, we must

confirm that total power is a linear function of frequency. Dynamic power, by (1), is a

linear function of frequency. Leakage power, however, is only quasi-dependent on

frequency. Sub-threshold leakage is an exponential function of temperature. Increased

frequencies bring about higher dynamic power densities, which bring about increases in

temperature. Thus, we must assure, that a core’s “self-heating” does not cause enough

non-linearity to weaken the model.

To do this, we isolate a single core and run it through the iterative flow in fig. 1.

We vary frequency and plot the total (dynamic and leakage) core power at the various

technology nodes. Fig. 7 below shows the resultant total power vs. frequency for each

technology node.

 32

Figure 7: Total power vs. clock frequency for a single core at several technology nodes.

Clearly, fig. 7 shows that despite exponential LDT behavior, a core’s total power

approximates a linear function of frequency. This confirms our claim in (6) is accurate.

Fig. 7 may be misleading, because it appears that the ratio of leakage power to dynamic

power is very small. It is true that, especially at later nodes, leakage power represents

much larger percentages of total power. However, the majority of the leakage power is

concentrated in the cache structures. Since fig. 7 is for cores only (the L2 cache is not

included), leakage plays a much smaller role.

 33

4.2 Thermal Model Parameter Fitting and Validation

As stated above, the design space for many cores, at many frequencies, with

various test benchmarks is astronomical in size. Thus, it is impossible to fit our linear

model’s parameters to a real system’s behavior at all points. Instead, we must efficiently

sample the system and apply the model to the smaller data set. To do this, we run a

machine learning algorithm described by the pseudo-code below.

• Monte Carlo Simulation:
o Input a random frequency/benchmark vector into the tool-

chain
o Compute a multiple regression of all available data
o Examine the mean error between the regression model and the

tool-chain outputs
o If the mean error is unchanged from the previous iteration

 Setup and solve the linear program with the model
parameters (section 5.1)

 Run the program solution through the tool-chain to
assure proper steady-state temperature

o Else
 Repeat Monte Carlo Simulation

We begin by selecting a random frequency (on a reasonable range) and a random

benchmark for each core in the multi-core system. We input these vectors to the tool-

chain (fig. 1). This provides a resultant temperature vector. We use the temperature

vectors and the applied frequency vectors from all of the Monte Carlo iterations thus far,

and run a robust multiple linear regression. We use MATLAB to take the regression

using the least squares method. This method minimizes the sum of the squares of the

differences between the model and the observed data. Using the regression results, we

reapply the same frequency vectors to (12) and compare the model results with the

 34

observed temperature from the tool-chain. We continue this procedure until the error

stabilizes.

A typical processor workload over time is more likely to be biased towards

integer or floating point benchmarks. A personal computer may be more likely to

compute integer threads than a high-performance server. In order to assess our model’s

validity on these more constrained workload sets, we also run Monte Carlo simulations

using random integer benchmarks only.

 The absolute mean error for all of our Monte Carlo simulations ranged from .6%

to 2.8% depending on technology node. Generally speaking, our models are accurate to

within a 1-3 degrees C of the predicted temperature. A model accurate to this level is

more than capable of making thermal predictions accurate enough for thermal

management. As argued in [16], external factors like weather conditions and building

environmental controls can have effects on the order of a few degrees. Thus, a model

more accurate than ours, at added complexity, is likely to be superfluous.

4.3 Thermal Model Validation with an FPGA

We construct an experiment to assure that our thermal model actually does

represent the behavior of a multi-core system. Without the ability to monitor the

temperature of a commercial multi-core processor (such as an Intel Core 2 Duo), we

instead turn to a Field Programmable Gate Array (FPGA). We use a Cyclone II FPGA

on the Altera DE2 development board for our experiments.

 35

In order to validate our model, we must be able to measure the temperature

gradient across the FPGA. For this task, we propose vMeter. vMeter is a set of ring

oscillators (ROs) arranged in a scan chain. Since the frequency of oscillation of an RO

varies with temperature, it is possible to use vMeter to ascertain local temperature. As an

example, we embed a single core in the center of the FPGA along with vMeter. Fig. 8

shows the ring oscillator period for the different vMeter sensors embedded across the

chip.

Figure 8: Chip wide ring oscillator period

With a single, centrally located, active core, we would expect to see slowest ring

oscillators at the chip’s “hot” center. The data in fig. 8, however, includes the effects of

 36

local on-chip process variations. Variations in oxide thickness and other process

parameters cause some ROs to be innately slower than others. In order to have this data

reflect temperature accurately, we also capture vMeter data with the core deactivated.

Subtracting away these inherent variations gives fig. 9.

Figure 9: Chip-wide temperature map

Fig. 9 clearly shows the thermal effects of the single active core. Thus, taking the

difference between vMeter’s readings during and before chip operation gives an on-chip

temperature gradient.

 37

To test our multi-core model, we embed two NIOS II cores in two spatially

adjacent locations on the chip using the Altera development software’s “Logic Lock”

feature. We also include several vMeter sensors.

Figure 10: FPGA Floorplan

We use the DE2 development board’s 50MHz clock fed through a phase-locked

loop to produce 12.5, 25, and 75MHz clock signals. We multiplex these signals so that

any of the clock frequencies can be applied to either core. The Dhrystone benchmark is

run continuously and repetitively on both cores as the frequency is varied. Using the data

collected by vMeter, we use rigorous linear fitting techniques to fit the data to the form of

(12). We subsequently plot a contour map of the recorded data from vMeter.

Superimposed on this image, we include the isothermal lines from the model fit to the

FPGA data.

 38

Figure 11: Observed contour map (color) and modeled isothermal lines (black)

Visually, the isothermal lines track the contour map correctly. Comparing the model’s

results with the observed data shows agreement to .5% mean absolute error. This

confirms that the model we have created is a reasonably accurate measure of multi-core

behavior in real silicon.

Having validated our well defined methods models and tools, we are now

prepared to run several experiments in thermal management, to assess the possible

performance gains brought about by our work.

 39

Chapter 5: Experiments and Results

5.1 Frequency Planning

We solve the linear programming problem to maximize system performance. We

present two different solutions to the problem: a standard solution, and an optimal

solution. The standard solution has an added constraint equating the frequencies of every

core. This is the standard frequency plan in use in most chips today. If the design hyper-

space is perfectly symmetrical, than the optimal frequency plan, and the standard plan

will be the same. However, we have seen that core adjacency to various chip features, as

well as local variations in heat within the cores, have brought about asymmetry in the

hyper-space. Thus, we have seen much improved performance with the optimal

frequency plan, especially at later technology nodes.

We solve the linear programming problem defined by the constraints (13) and

(15), with the objective function (17). In this experiment, we set W from (17) to be a

vector of all ‘1’s. This indicates that each core is running a thread of equal importance.

We use the MATLAB optimization package’s linear program solver to ascertain the

optimal solution. Most optimizations took approximately .01 seconds on a 2.93GHz Intel

Dual Core Extreme workstation with 2GB RAM. This assures that the solutions could be

recomputed at run time in a dynamic thermal management setting. The results for the

various technology nodes are tabulated and plotted below.

 40

Technology 130nm 90nm 65nm 45nm 32nm 32nm* 22nm
Standard Integer Only
Throughput

2.71 5.68 12.3 19.8 30.6 39.8 74.3

Optimal Integer Only
Throughput

2.71 5.69 12.5 20.7 32.1 43.4 84.0

Standard Mixed-Benchmark
Throughput

2.61 5.50 11.9 19.0 29.4 38.1 71.4

Optimal Mixed-Benchmark
Throughput

2.61 5.53 12.1 19.9 30.8 41.6 80.8

Table 3: Throughput in billions of cycles per second for the standard and optimal

frequency plans. (* indicates low power caches)

Technology 130nm 90nm 65nm 45nm 32nm 32nm* 22nm
Integer Only %
Improvement

0 .2 1.6 4.3 4.6 8.3 11.5

Mixed-Benchmark %
Improvement

0 .55 1.7 4.5 4.5 8.5 11.2

Table 4: Percent Improvement of the optimal plan over the standard frequency

plan (* indicates low power caches)

Figure 12: Throughput vs. technology node (mixed benchmark)

0
20
40
60
80

100

Throughput
in Total GHz

65nm 32nm
Technology Node

Chip-Wide Throughput

Standard

Optimal

 41

0

1

2

3

4

Frequency
(GHz)

Optimal Frequency Plan

0

1

2

3

4

Frequency
(GHz)

Standard Frequency Plan

Figure 13: Low power cache, 32nm, 16 core standard frequency plan and optimal

frequency plan (mixed benchmark)

 We see from table 3 and fig. 12 that there is a significant throughput improvement

for the optimal frequency plan over the standard plan. In addition, the improvement

seems to increase with technology. Moreover, the performance improvement with

coming generations does not just show increases in absolute performance, but in

percentage improvement as well (table 4). In other words, our methods will become

more effective at future technology nodes. With more cores on the chip, the thermal

advantages/disadvantages of adjacency become more evident and can be exploited more

easily by our methods.

 We also see in fig. 13 the optimal frequency plan itself. In this figure, we can

clearly see that some cores have had their frequencies increased at the expense of other

cores. Fig. 13 shows one of the most important conclusions of our work. Cores

surrounded by other cores should be run at slower frequencies, while cores near the

comparatively cold cache or adjacent to the chip edge should be run at higher

frequencies. The colder caches and chip edges represent “thermal reservoirs” where heat

 42

can more quickly and easily be transferred. Thus, outer cores can dissipate heat more

effectively and should be run faster. Interior cores, surrounded by comparatively hot

additional cores have less efficiency at dissipating their heat laterally, and can count only

on a heat transfer path through the package for heat removal. If an interior core is colder

than its surrounding cores, heat will also flow into the interior core from its neighboring

cores, only worsening its thermal disadvantage.

 Thus, fig. 13 confirms that outer cores are much better candidates for frequency

increases, and interior cores should be run at slower frequencies. Also, corner cores have

two free sides, and thus can be run even faster. The integer units are located on one side

of the Alpha EV6 floorplan. As a result, cores that had their integer side near the cache

were able to be run faster in the integer only optimal plans.

 To validate our solutions, we input both the optimal and standard frequency plans

into the tool-chain (fig.1). Across both workload sets and all technology settings, the

mean absolute error was 1.2 degrees Celsius. Thus, we have confirmed that applying the

optimal frequency plans to the chip actually does result in the desired steady-state

maximum temperature.

5.2 Process Priorities and Sensitivity Analysis

One of the most difficult aspects of the change to multi-core architectures will be

designing and compiling code from which a great deal of TLP can be extracted.

However, there will be unavoidable situations where the number of computable threads

and the number of cores may be different. In the case where the number of “ready”

threads is greater than the number of cores, the operating system will select which threads

 43

are to be run on the available cores. In the case where the number of cores exceeds the

number of threads, the processing power of the vacant cores will be wasted.

In order to lower the performance penalty imposed by the stalled cores, we can

increase the speed of the cores with active threads. Their frequencies can be raised, since

cores can now more easily dissipate their heat horizontally to the cold stalled cores.

Assigning frequencies to the active cores can easily be accomplished by finding the

solution to our linear program. However, in this approach, the weight constants, W ,

from (17) will not all be unity. Instead, inactive cores should have no priority (weight

constant will be 0) and active cores will all have equal priority (weight constants will be

equal).

Figure 14: Throughput tradeoffs for different numbers of active cores

Fig. 14 shows the performance tradeoffs re-solving the linear program provides. The

figure shows that when the number of active cores is near 16, the possible performance

 44

improvements are small. However, if 9 cores or less are active, re-solving the linear

program can bring significant improvements in throughput for the active cores. Since

there may be a small performance penalty associated with changes to the frequency

parameters for a core (i.e. resetting a phase-locked loop), chip-designers can decide

when re-solving the linear program and changing the core frequencies is worthwhile.

 It is also prudent to examine the success of our methods in situations where all

cores are in use, but where the threads being run on said cores are of varying importance.

To illustrate the possible advantages of our system, we propose a simple case study.

Suppose a 16 core system is running 16 separate threads, 2 of which are of critical

importance to the user. The other 14 cores run tasks of low importance, that do not

directly interact with the user.

We begin with the optimal frequency solution from section 5.1 for 16 cores. We

assume the operating system would have already assigned the high priority threads to the

two fastest cores. We subsequently examine the time it would take to complete the two

high priority tasks as we vary their weight constants. The other low priority tasks will

have weight constants equal to unity.

 45

Figure 15: Case study throughput. As the priority of the 2 high importance threads are
increased, the time to complete those tasks decreases, but at the expense of decreases in

other cores’ performance.

As fig. 15 shows, the speed of the high-priority cores can be increased, at the expense of

the speed of the low-priority cores. However, since the high-priority tasks were directly

visible to the user, quickly completing these tasks can greatly increase the observed

performance of a machine. The background tasks are not as time sensitive, and thus can

be sacrificed for the high-priority threads.

 Chip, OS, and software designers can decide on how to assign weight constants to

each program, thread, or core. Using sensitivity analysis similar to this case study,

designers will be able to assign a weighting system to best optimize their system to boost

high-priority threads, while not completely sacrificing the needs of important background

threads.

5.3 Frequency and Voltage Planning

Because dynamic power scales with the square of voltage, and static power scales

directly with voltage, it is very difficult to construct an optimization methodology that

incorporates frequency and voltage scaling. We leave this addition to future work.

However, in order to show the potential performance improvements made possible by

true DVFS (as opposed to frequency scaling only as used in section 5.1), we have

developed a heuristic method. We use this method to show the possible performance

gains with the incorporation of voltage into our methods. This heuristic is non-optimal,

and takes extra computation to find a solution. However, it does provide some further

insight into even greater performance gains made possible by our methods.

 46

To compute our voltage-incorporated solution, we first solve the linear program to

establish core frequencies without voltage scaling. We note the power consumed by each

core in the frequency plan. We adjust the frequencies/voltages such that the chip-wide

power distribution remains the same. We follow in suit with [13] and scale voltage by

V f∝ (24).

Thus, the supply voltage at a given frequency is given by

'
'

std

fV V
f

= (25),

where V designates the supply voltage for the frequency-optimal case calculated in

section 5.1, 'V and 'f designate the new parameters for the inclusion of voltage scaling,

and stdf is the reference frequency where voltage is at its nominal value.

A core’s total power is governed by

d sP P P= + (26).

Since dynamic power is a quadratic function of voltage and a linear function of

frequency, and since static power is a linear function of voltage, and since we wish to

keep the power profile constant,

2' ' '

d s d s
V f VP P P P
V f V

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
 (27)

Combining (25) and (27) gives

()2' '

d s d s
std std

f fP P P P
f f f

+ = +
⋅

 (28).

An analytical solution for 'f is extremely complex. Thus, we numerically iterate the

RHS of (28) until a value of 'f is found that makes the equality in (28) valid. We use

 47

the solutions to redefine the frequencies from the optimal frequency plans for the

inclusion of voltage scaling. The results for each technology node are summarized in

tables 5 and 6 below.

Technology 130nm 90nm 65nm 45nm 32nm 32nm* 22nm
Standard Throughput 2.61 5.50 11.9 19.0 29.4 38.1 71.4
Frequency Optimal
Throughput

2.61 5.53 12.1 19.9 30.8 41.6 80.8

Voltage Heuristic
Throughput

2.61 5.76 12.9 21.5 35.8 47.4 107.7

Table 5: Mixed benchmark throughput for standard, frequency optimal, and voltage
incorporated heuristic plans.

Technology 130nm 90nm 65nm 45nm 32nm 32nm* 22nm
Frequency Optimal
Plan

0 .55 1.7 4.5 4.5 8.5 11.2

Voltage Heuristic 0 1.13 7.59 11.7 17.9 19.7 33.4

Table 6: Mixed benchmark percent improvement over the standard frequency plan for
the frequency only and voltage heuristic plans.

Clearly, the effects of the supply voltage scaling only further the increases in

performance that we have reported in section 5.1. Since these results are not necessarily

optimal, tables 5 and 6 actually provide a lower bound for the possible performance gains

made possible by true DVFS as opposed to scaling frequency alone. Again, since DTM

techniques will already be in use at the core granularity, a performance gain of at least

33.4% can be obtained at the 22nm node with little or no additional hardware overhead.

Since the core-level chip-wide power profile is unchanged from the optimal

frequency plan, the same steady-state temperatures are measured as are measured in

 48

section 5.1. Thus, the voltage-included results are also accurate to about 1.2 degrees

Celsius.

 49

Chapter 6: Conclusions

 In coming generations, chip designers are likely to continue the trends towards

multi-core processors with multiple VFI’s. These processors will allow chips to continue

to increase their performance while maintaining a reasonable thermal budget. Since an

aggressive code piece, an external cooling malfunction, or some other effect may cause a

hotspot to form in a single core, and not chip wide, DTM methods have looked towards

core-level granularity for VFIs. We have presented a method for increasing chip-wide

performance that uses all of these existing design choices, with little extra cost.

 We have proposed a very simple thermal model for multi-core systems. This

model allows us to calculate a core’s temperature to a reasonable degree of accuracy. We

have successfully fit the model to simulated data from industry accepted tools, as well as

to real silicon measurements on an FPGA. We have shown that the model fit both sets of

data to a reasonable degree of accuracy.

 Our model fits elegantly into a linear programming optimization problem. We

have examined several different situations where the linear program provides an optimal

frequency plan that gives superior physical performance when compared to standard

frequency choices. Moreover, the optimization environment we have developed is

extremely malleable. If two cores are running threads that need to be computed at the

same time, those cores’ frequencies can be equated with an additional constraint in the

program. If there is a maximum power budget constraint, this can also be incorporated

into the program. If the chip design does not include individual VFIs for each core, but

rather for clusters of cores, it is a simple matter to equate each cluster’s frequency as a

 50

constraint in the program. In addition, our model can be fit to any processor, any

floorplan, or any technology generation.

 We have shown that performance gains can also be obtained in an all integer

workload. It is unlikely that a processor will always run a workload that is either entirely

integer or entirely floating point. Also, every chip fabricated from the same design may

not behave in exactly the same manner. These problems can be alleviated by leveraging

the existing temperature sensors on each core. Since multi-core DTM techniques will

require temperature input data from each core, this data can be stored along with

frequency data during chip operation. During down-time, or when single cores are

stalled waiting for a task, the processor can re-fit and re-compute the parameters of the

model with the recorded data. Since this data will be collected during run-time, it will

represent the most likely workload, and will most accurately reflect the real chip

behavior. This will assure that the model can most effectively leverage the possible

advantages/disadvantages of core location and workload type.

 There are limits on the amount of TLP a workload can have. As a result,

situations may arise where all of the cores in a multi-core system are not in use. We have

shown that using our methods can help to increase the performance of a system with

stalled cores. Our method increases the active cores’ frequencies just enough to assure

the specified steady-state temperature constraint is not violated. Solving the linear

program does not just give a generic increase that can be applied to all cores. Rather, it

takes into account the spatial locality of stalled cores as well as the existing thermal

advantage/disadvantages of each core, and recomputes an optimal frequency plan. This

technique has a great deal of value at the current technology node, where multi-core

 51

architectures are running workloads not necessarily designed for TLP. Even at future

nodes, there are fundamental limits to the TLP of a task, and thus, this technique for

boosting active core frequencies will be of incredible importance.

 We have also analyzed the possible user-perceived performance increases

associated with priority values given to each of the threads being computed. By

increasing the weight of a certain thread, we have shown that that task can be sped up at

the expense of the other threads. In situations where some threads interact with the user

and some do not, the user-oriented threads can be completed more quickly. This will

help to increase continuity for the user. While this method may decrease the overall

throughput of the processor, the low-priority background tasks need not be completed

urgently. Furthermore, we have shown techniques for sensitivity analysis so that chip,

OS, and software designers can properly assign weight (priority) values to threads, in

order to maximize performance as desired.

The large performance gains that we have observed using our methodology make

a very strong case for keeping VFI granularity at the core level. Though energy

efficiency increases at this level of granularity may be small, the performance

improvements through our non-uniform frequency/voltage optimization methods are

significant. A frequency selection scheme like ours can best help to improve

performance by being given the opportunity to exploit as much thermal

advantage/disadvantage as possible. Restricting this ability with large VFI granularity is

a mistake.

Most importantly, all of these possible performance gains can be obtained with

very little hardware/software overhead. Since chips already have multiple cores, with

 52

multiple VFIs, only adjustments to the thermal management unit’s control logic would be

necessary for implementation. Overall, these large performance gains, at little cost, are

likely to become essential as we move into the nanometer regime. Our method’s

malleability, its large performance improvements, and its scalability to the many-core

designs to come, make it an excellent steady-state thermal management system for future

multi-core processors.

 53

References

[1] Ja Chun Ku et al., “Thermal management of on-chip caches through power density
minimization,” Microarchitecture, 2005. MICRO-38. Proceedings. 38th Annual
IEEE/ACM International Symposium on, 2005, p. 11 pp.

[2] C. Tsai and S.(. Kang, “Standard cell placement for even on-chip thermal distribution,”

Proceedings of the 1999 international symposium on Physical design, Monterey,
California, United States: ACM, 1999, pp. 179-184;
http://portal.acm.org/citation.cfm?id=300067.

[3] M. Mutyam et al., “Compiler-directed thermal management for VLIW functional units,”

SIGPLAN Not., vol. 41, 2006, pp. 163-172.

[4] J. Donald and M. Martonosi, “Techniques for Multi-core Thermal Management:

Classification and New Exploration,” Computer Architecture, 2006. ISCA '06. 33rd
International Symposium on, 2006, pp. 78-88.

[5] R. Mukherjee and S. Memik, “Physical Aware Frequency Selection for Dynamic

Thermal Management in Multi-Core Systems,” Computer-Aided Design, 2006. ICCAD
'06. IEEE/ACM International Conference on, 2006, pp. 547-552.

[6]AMD Phenom Processor Datasheet, AMD, 2007; http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/44109.pdf.

[7] A. Kumar et al., “HybDTM: a coordinated hardware-software approach for dynamic

thermal management,” Proceedings of the 43rd annual conference on Design
automation, San Francisco, CA, USA: ACM, 2006, pp. 548-553;
http://portal.acm.org/citation.cfm?id=1146909.1147052&coll=Portal&dl=GUIDE&CFID
=61233991&CFTOKEN=34737561.

[8] K. Skadron, “Hybrid Architectural Dynamic Thermal Management,” Proceedings of the

conference on Design, automation and test in Europe - Volume 1, IEEE Computer
Society, 2004, p. 10010; http://portal.acm.org/citation.cfm?id=969045.

[9] K. Skadron et al., “Temperature-aware microarchitecture: Modeling and

implementation,” ACM Trans. Archit. Code Optim., vol. 1, 2004, pp. 94-125.

[10] Tsorng-Dih Yuan, “Thermal management in PowerPC microprocessor multichip

modules applications,” Semiconductor Thermal Measurement and Management
Symposium, 1997. SEMI-THERM XIII., Thirteenth Annual IEEE, 1997, pp. 247-256.

[11] R. Rao, S. Vrudhula, and C. Chakrabarti, “Throughput of multi-core processors under

thermal constraints,” Proceedings of the 2007 international symposium on Low power

 54

electronics and design, Portland, OR, USA: ACM, 2007, pp. 201-206;
http://portal.acm.org/citation.cfm?id=1283824.

[12] Wei Huang et al., “HotSpot: a compact thermal modeling methodology for early-stage

VLSI design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol.
14, 2006, pp. 501-513.

[13] S. Murali et al., “Temperature-aware processor frequency assignment for MPSoCs

using convex optimization,” Proceedings of the 5th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, Salzburg, Austria: ACM, 2007,
pp. 111-116; http://portal.acm.org/citation.cfm?id=1289816.1289845.

[14] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors,” Proceedings of the 2007 international symposium on Low power
electronics and design, Portland, OR, USA: ACM, 2007, pp. 38-43;
http://portal.acm.org/citation.cfm?id=1283780.1283790.

[15] F.J. Mesa-Martinez et al., “Measuring performance, power, and temperature from real

processors,” Proceedings of the 2007 workshop on Experimental computer science, San
Diego, California: ACM, 2007, p. 16;
http://portal.acm.org/citation.cfm?id=1281700.1281716.

[16] H. Hanson et al., “Thermal response to DVFS: analysis with an Intel Pentium M,”

Proceedings of the 2007 international symposium on Low power electronics and design,
Portland, OR, USA: ACM, 2007, pp. 219-224;
http://portal.acm.org/citation.cfm?id=1283827.

[17] Weiping Liao, Lei He, and K. Lepak, “Temperature and supply Voltage aware

performance and power modeling at microarchitecture level,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 24, 2005, pp. 1042-1053.

[18] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level

power analysis and optimizations,” Computer Architecture, 2000. Proceedings of the
27th International Symposium on, 2000, pp. 83-94.

[19] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infrastructure for computer

system modeling,” Computer, vol. 35, 2002, pp. 59-67.

[20] S. Wilton and N. Jouppi, “CACTI: an enhanced cache access and cycle time model,”

Solid-State Circuits, IEEE Journal of, vol. 31, 1996, pp. 677-688.

[21] R. Kessler, E. McLellan, and D. Webb, “The Alpha 21264 microprocessor

architecture,” Computer Design: VLSI in Computers and Processors, 1998. ICCD '98.
Proceedings. International Conference on, 1998, pp. 90-95.

 55

[22] J. Henning, “SPEC CPU2000: measuring CPU performance in the New Millennium,”
Computer, vol. 33, 2000, pp. 28-35.

[23]“International Technology Roadmap for Semiconductors”; http://public.itrs.net.

