
Approximate Computing Techniques:
From Logic Synthesis to Deep Learning

By

Jingxiao Ma

B.S., University of Nottingham, UK, 2018

M.S., Brown University, 2020

Thesis

Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in the Department of Engineering at Brown

University

PROVIDENCE, RHODE ISLAND

September 2024

© Copyright 2024 by Jingxiao Ma

This dissertation by Jingxiao Ma is accepted in its present form by the School of
Engineering as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date
Sherief Reda, Advisor

Recommended to the Graduate Council

Date
Sherief Reda, Reader

Date
Jacob Rosenstein, Reader

Date
James Tompkin, Reader

Approved by the Graduate Council

Date
Thomas A. Lewis, Dean of the Graduate School

iii

Curriculum Vitae
Jingxiao Ma was born and raised in Qingdao, China. He received his BSc degree of
Computer Science from University of Nottingham in 2018, and MSc degree from Brown
University in 2020. He then joined the SCALE lab at Brown University. Initially, his
research focused on electronic design automation and approximate computing, leading
to his development of a comprehensive methodology for generating approximate circuits
using Boolean matrix factorization. Presently, his research has expanded to encompass
Deep Learning, Adaptive/Dynamic Neural Networks, and Edge Computing. He devel-
oped a dynamic neural network framework for efficient inference and a low-precision
training algorithm for efficient training. Additionally, he integrated his knowledge in
electronic design automation with Large Language Models to investigate their potential
in revolutionizing circuit design and analysis.

jingxiao ma@brown.edu

Brown University, RI, USA

Education

2020–2024 Ph.D., Engineering
Brown University (Providence, RI, USA)

2018-2020
M.Sc., Computer Science
Brown University (Providence, RI, USA)

2014–2018
Honors B.Sc., Computer Science
University of Nottingham (Nottingham, UK)

Selected Publications

1. Ma, J., Panda, P., and Reda, S. (2025). FF-INT8: INT8 Forward-Forward Al-
gorithm for Efficient DNN Training on Resource-Constrained Devices. The 9th

Workshop on Approximate Computing.

2. Abdelatty, M., Ma, J., and Reda, S. (2025). MetRex: A Benchmark for Verilog
Code Metric Reasoning Using LLMs. IEEE Asia and South Pacific Design Automa-
tion Conference.

3. Ma, J., and Reda, S. (2023). WeNet: Configurable Neural Network with Dynamic
Weight-Enabling for Efficient Inference. ACM/IEEE International Symposium on

iv

mailto:jingxiao_ma@brown.edu

Low Power Electronics and Design.

4. Ma, J., and Reda, S. (2023). RUCA: RUntime Configurable Approximate Circuits
with Self-Correcting Capability. IEEE Asia and South Pacific Design Automation
Conference.

5. Ma, J., and Reda, S. (2021). Runtime Configurable Approximate Circuits with
Self-Correcting Capability. International Workshop on Logic and Synthesis.

6. Ma, J., Hashemi, S., and Reda, S. (2021). Approximate Logic Synthesis Using
Boolean Matrix Factorization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

7. Ma, J., Hashemi, S., and Reda, S. (2019). Approximate Logic Synthesis Using
BLASYS. Workshop on Open-Source EDA Technology.

v

Acknowledgments

This thesis would not have been possible without the constant support, guidance

and inspirations of many kind individuals. First and foremost, I would like to express

my immense gratitude to my advisor and mentor, Prof. Sherief Reda, whose guidance,

support, and valuable insights during the course of my research has made this thesis

possible. I would also like to thank Prof. Jacob Rosenstein and Prof. James Tompkin for

being on my defense committee and taking the time to review my thesis.

I am extremely thankful for the productive collaborations with all my collaborators.

I would especially like to thank Soheil Hashemi and my advisor, Prof. Sherief Reda,

for their guidance and support during the early stages of my PhD journey. I would

also like to thank Prof. Priyadarshini Panda and Manar Abdelatty for their valuable

insights and guidance. I am grateful to all my fellow graduate students and friends in Prof.

Reda’s group at Brown, including Soheil Hashimi, Abdelrahman Hosny, Farnaz Nouraei,

Abdelrahman Hussein, Marina Neseem, Ahmed Agiza, Jon Nelson, Manar Abdelatty,

Mahdi Boulila, Tasneem Shaffee, Lisa Korver, Maryam Nouh and many others who have

made the past four years memorable.

I cannot express enough my immense gratitude to my family for their constant support

and love. I am particularly thankful to my parents, Yin Zhang and Haiwen Ma, and my

grandparents, Dianyi Chen and Chengde Zhang, whose support has been the cornerstone

of my achievements. Special thanks go to my uncle, Ning Zhang, my aunt, Mei Li, and

my cousins, Zibing Zhang and Helena Zhang, for their invaluable help during my time in

vi

the United States.

Last but certainly not least, the insights in this thesis would not have been possible

without the unwavering support of my friends. I am deeply grateful to Kai Liu, whose

constant inspiration and challenges pushed me beyond my limits, and to Jac Hu, whose

steadfast support during long study sessions was invaluable. My sincere thanks also

go to the Brown Japanese group in the Department of East Asian Studies, especially

Hiramatsu-sensei and Yamakawa-sensei, for nurturing my interest in Japanese language

and culture.

vii

Abstract of Approximate Computing Techniques: From Logic Synthesis to Deep Learning,

by Jingxiao Ma, Ph.D., Brown University, September 2024

Computational efficiency is a critical factor in the design of both software and hardware

systems. As technology progresses, modern computing systems are growing increasingly

complex. For example, OpenAI reports that the computational resources required to train

the largest deep neural networks (DNNs) have been doubling every six months since 2010.

Furthermore, computing devices are continuously shrinking—from desktop computers

to smartphones and even smaller wearable technologies. With rising demand for high-

performance computing in resource-constrained environments, especially for deep learning

applications, optimizing power consumption and computational efficiency has become

essential. This is where approximate computing comes into play, allowing trade-offs in

computational accuracy for gains in energy efficiency or performance. This dissertation

presents novel methodologies in approximate logic synthesis, dynamic neural network

inference, and low-precision training to meet these demands.

In the hardware domain, the research introduces an approximate logic synthesis framework

based on Boolean matrix factorization (BMF), which effectively reduces circuit complexity

by permitting controlled errors, thus balancing accuracy and efficiency. This approach is

further extended to runtime configurable approximate circuits that can adapt at runtime.

On the software side, the dissertation explores dynamic neural network architectures that

adjust their computational load in real-time, optimized for deployment across heteroge-

neous hardware platforms. Additionally, it delves into low-precision training techniques,

focusing on the Forward-Forward (FF) algorithm. By integrating INT8 quantization

into the FF algorithm, the research achieves significant reductions in memory usage and

energy consumption during training, making it particularly suitable for edge devices where

computational resources are limited.

viii

Contents

Acknowledgments vi

1 Introduction 1

1.1 Importance of Energy-Efficient Computing 1

1.2 Problem Statement . 2

1.3 Contributions of the Thesis . 3

2 Background 5

2.1 Approximate Circuits and Approximate Logic Synthesis 6

2.2 Efficient Inference Methods for Deep Learning 9

2.2.1 Model Compression Techniques 9

2.2.2 Neural Architecture Search and Hardware-aware Optimization . . 11

2.2.3 Dynamic Inference and Early Exiting 12

2.3 Efficient Training Methods for Deep Learning 12

2.3.1 Transfer Learning . 13

2.3.2 Parameter-Efficient Training . 13

2.3.3 Low-Precision Training . 14

3 Approximate Logic Synthesis using Boolean Matrix Factorization 15

3.1 Introduction . 15

3.2 Previous Work . 17

ix

3.3 Background . 19

3.4 Proposed Methodology . 20

3.4.1 Approximate Synthesis Using Boolean Matrix Factorization . . . 21

3.4.2 Partitioning and Design Space Exploration 25

3.4.3 Hyperparameters . 30

3.5 Experimental Results . 32

3.5.1 Work Flow . 33

3.5.2 Number of test vectors . 34

3.5.3 BMF-based Approximate Logic Synthesis 36

3.5.4 Design Space Exploration . 38

3.5.5 Comparison of Arithmetic Blocks 40

3.5.6 Runtime Characterization . 43

3.6 Conclusions . 45

4 Runtime Configurable Approximate Circuits with Self-Correcting Capa-

bility 46

4.1 Introduction . 46

4.2 Previous Work . 48

4.3 Proposed Methodology . 49

4.3.1 RUCA with Corrector Circuit . 49

4.3.2 Partitioning and Design Space Exploration 52

4.3.3 Reducing Design Overhead . 54

4.4 Experimental Results . 55

4.5 Conclusion . 60

5 Configurable Deep Neural Network with Dynamic Weight-Enabling for

Efficient Inference 61

5.1 Introduction . 61

5.2 Previous Work . 63

x

5.3 Proposed Methodology . 65

5.3.1 Dynamic Weight-enabling Network (WeNet) 65

5.3.2 WeNet on Convolutional Layers 67

5.3.3 Training WeNet with Switchable Batch Normalization 69

5.3.4 Design Space Exploration . 70

5.4 Experimental Results . 72

5.4.1 Experiment Setup . 72

5.4.2 Channel-Shuffling . 72

5.4.3 WeNet v.s. US-Net . 73

5.4.4 Inference Time and Energy Consumption 74

5.4.5 Evaluation on Different Devices 74

5.5 Conclusion . 76

6 Low-precision Training using Forward-Forward Training Algorithm 77

6.1 Introduction . 77

6.2 Previous Work . 80

6.3 Background . 81

6.4 Proposed Methodology . 84

6.4.1 Network Depth and Gradient Quantization 84

6.4.2 INT8 Forward-Forward Algorithm 86

6.4.3 FF-INT8 Algorithm with Look Afterward 89

6.5 Experimental Results . 92

6.5.1 Experimental Setup . 92

6.5.2 Training with “Look Afterward” 94

6.5.3 Analysis of Computational Cost 96

6.5.4 Accuracy, Time, Energy, Memory Footprint 96

6.6 Conclusion . 98

7 Summary and Possible Extensions 99

xi

List of Figures

3.1 General flow of BLASYS for approximate logic synthesis using Boolean

matrix factorization (BMF). 21

3.2 Utilization of binary matrix factorization for approximate logic synthesis.

(a) an arbitrary input circuit, and (b) the compressor and decompressor

circuits used in binary matrix factorization methodology. 22

3.3 Example of binary matrix factorization using different algebra. (a) input

matrix, (b) matrix factorization using Boolean algebra where addition is

carried out using logical ORs, and (c) matrix factorization using modulo-2

algebra, where the addition is carried out using logical XORs. The errors

are highlighted in red. 23

3.4 Illustrated methodology for partitioning circuits. 25

3.5 Relationship between average size of subcircuits and design area, for 0.1%

Mean Absolute Error on 7-bit unsigned multiplier. 31

3.6 Structure of BLASYS Tool-chain. 33

3.7 Relationship between number of test vectors and standard deviation in

Normalized Hamming Distance in benchmark Max. 35

3.8 Difference between OR-based, XOR-based and XOR/OR-based method on

x2 benchmark. 36

3.9 Benefit offered by output weight scheme on 8-bit unsigned adder. 37

xii

3.10 Comparison between EvoApproxLib and BLASYS. Red points represent

designs explored by BLASYS. Blue points represent designs provided by

EvoApproxLib. 42

3.11 Runtime distribution. Approximate corresponds to the time of approximat-

ing subcircuits. Synthesis corresponds to the time of synthesizing top-level

design from sub-circuits. Simulation corresponds to QoR estimation. . . 44

4.1 Example of a 3-level approximate circuits using RUCA. (a) BMF with

multiple accuracy levels. (b) Runtime configurable circuit design, where

power gating is used to activate different blocks. 50

4.2 An example of runtime configurable designs for a large input circuit. (a)

Input circuit is partitioned into three subcircuits. (b) Subcircuits are

approximated into 2-level runtime configurable designs. Base blocks of

3 subcircuits are synthesized together as the base group of the top-level

circuit. Corrector circuits are grouped together as the full-accuracy group

of the top-level circuit. (c) Additional accuracy levels can be introduced by

re-arranging RUCA blocks of subcircuits into intermediate group(s). . . 51

4.3 2-level approximate design of 8-bit adder: Power consumption with different

error thresholds. 57

4.4 Relative power of RUCAs for each benchmark, with 2-4 levels. 58

5.1 Flexible weight-enabling methodology, where weights can be dynamically

enabled to form different sub-networks for different hardware platforms. . 62

5.2 Example of a WeNet on dense layers. (a) Full network: Enable all weights

to restore original network with highest accuracy. (b) 1/2-network: Enable

1/2 weights and form 2 separated channels. (c) 1/4-network: Enable 1/4

weights and form 4 separated channels. (d) Combination of 1/2- and

1/4-network. 65

5.3 1/4-network of convolutional layer . 68

xiii

5.4 Channel shuffling after 1/4-network . 69

5.5 Comparison between WeNet and US-Net [1] 73

5.6 Inference Time and Energy Consumption on Jetson Nano Board 74

5.7 Evaluation of ResNet50 on three devices, with different batch size 75

6.1 (a) Backpropagation consists of a forward pass and a backward pass. (b)

The Forward-Forward algorithm uses “positive” and “negative” datasets,

and trains each layer individually using “goodness” function G. 82

6.2 Loss and accuracy of ResNet-18 on CIFAR-10 when directly quantizing

gradients to INT8. 85

6.3 Gradient distribution of first layer with different number of hidden layers. 86

6.4 Dataflow of INT8 Forward-Forward algorithm on a single layer (dense or

convolution layer). 87

6.5 Residue block is commonly used in many modern DNN architectures. . . 89

6.6 Gradient computation of FF algorithm after modification, where loss func-

tions of later layers are considered. 90

6.7 Test accuracy for different number of epochs where MLP and ResNet-18

are trained using FF-INT8, with and without “Look Afterward” respectively. 93

xiv

List of Tables

3.1 Size of test vectors required to achieve 0.1% and 0.2% standard deviation

of Hamming distance. 35

3.2 ISCAS ’85 benchmarks evaluated using the proposed methodology with

normalized Hamming distance. 38

3.3 EPFL arithmetic benchmarks evaluated using the proposed methodology

with normalized Hamming distance. 39

3.4 Comparison between EvoApproxLib and BLASYS on 7-bit unsigned multiplier 40

3.5 Comparison between EvoApproxLib and BLASYS on 8-bit unsigned multiplier 41

3.6 Comparison between EvoApproxLib and BLASYS on 16-bit unsigned

multiplier . 41

3.7 Comparison between EvoApproxLib and BLASYS on 16-bit unsigned adder 41

4.1 Characteristics of evaluated benchmarks. 57

4.2 Comparison of total area and power between RUCA and Approximation

through Logic Isolation (ISO) [2] (using 3-level runtime configurable

design) . 58

4.3 Comparison of delay between RUCA and Approximation through Logic

Isolation (ISO) [2] (using 3-level runtime configurable design) 58

4.4 Comparison between RUCA and the naive approach 59

4.5 Comparison between RUCA and QCM [3] 60

xv

5.1 Comparison between Different Dynamic Network Methods 64

5.2 Comparison of top-1 accuracy and inference time with and without channel-

shuffling operations using ResNet-50. 73

6.1 Accuracy of fully-connected layers on MNIST dataset with different number

of hidden layers and training precision. Each hidden layer consists of 500

neurons. Networks are trained using 32-bit floating-point or 8-bit integer. 86

6.2 DNN Architectures and Datasets . 92

6.3 Technical Specifications of NVIDIA Jetson Orin Nano 93

6.4 Comparison of computational cost between INT8 Forward-Forward algo-

rithm and INT8/FP32 backpropagation 95

6.5 Summary of model accuracy, training time, energy consumption and mem-

ory footprint between different approaches. Training algorithms are based

on either BP (backpropagation) or FF (the Forward-Forward algorithm).

The suffix denotes the precision, where FP32 means 32-bit floating-point,

and INT8 means quantizing to 8-bit integer. UI8 [4] refers to unified INT8

training algorithm, and GDAI8 [5] refers to gradient distribution-aware

INT8 training algorithm. 95

xvi

CHAPTER 1

Introduction

1.1 Importance of Energy-Efficient Computing

Computational efficiency and energy consumption are now critical factors in the design

of modern software and hardware systems. With the rapid advancement of technology,

the demand for more powerful yet efficient computational systems has risen sharply,

particularly in areas like natural language processing, augmented reality, and computer

vision. These domains involve highly complex computations, often relying on deep neural

networks (DNNs) and other sophisticated algorithms, all while operating on devices

with constrained resources. As computational complexity grows to meet the need for

processing more intricate data, the push toward smaller, more compact devices — ranging

from personal computers to smartphones and now even wearable technology — has

heightened the importance of efficiency. This convergence of challenges has sparked

increased interest in energy-efficient computing strategies that minimize hardware size,

reduce energy consumption, and shorten delay.

Achieving energy efficiency in computing is not merely a hardware concern; it is a holistic

challenge that encompasses software algorithms, hardware architectures, and the intricate

synergy between the two. One promising approach to tackling this challenge is approximate

1

computing, a technique that intentionally sacrifices some degree of computational precision

in exchange for improvements in energy efficiency, area, and speed. This approach is

particularly valuable in applications where minor inaccuracies in computation do not

significantly degrade the overall output quality, making it highly suitable for a range of

deep learning tasks, multimedia applications, and even sensor-based systems. Approximate

computing can be leveraged to design not only more efficient hardware but also optimized

software systems, such as deep learning models, where the trade-off between accuracy

and energy consumption can be fine-tuned. In this context, the growing emphasis on

approximate computing reflects a broader trend towards creating adaptable, efficient

systems that meet the stringent demands of modern applications without compromising

on functionality or user experience.

1.2 Problem Statement

As computational systems grow in complexity, the power and energy consumption

required to maintain high levels of performance have also increased significantly. This

has posed a challenge for the deployment of advanced computing methods, particularly

in environments with limited power resources, such as mobile and embedded devices.

Traditional methods of improving energy efficiency, such as optimizing individual com-

ponents or utilizing lower power modes, are becoming insufficient as the computational

demands continue to rise. There is a pressing need for innovative methodologies that can

address these challenges holistically, considering both software and hardware aspects of

the system.

Approximate computing has emerged as a promising solution, offering the potential to

reduce power consumption and improve energy efficiency by allowing for controlled errors

in computation. However, implementing approximate computing techniques requires a

careful balance between accuracy and efficiency, as well as the development of new design

methodologies that can automate this process across different computational domains.

2

This thesis explores energy-efficient approximate computing methods, focusing on both

hardware designs and software algorithms. The primary objectives of this thesis are:

• To investigate algorithms and methodologies for the synthesis of approximate circuits,

which optimize chip area, power consumption and circuit delay.

• To explore approximate computing in deep learning context to improve efficiency

for both model inference and training.

• To explore dynamic and flexible methodologies that allow for real-time adjustments

to computational accuracy, thereby optimizing power consumption and performance

based on the specific requirements of the task.

1.3 Contributions of the Thesis

The contributions of this thesis are multifaceted, addressing both theoretical and

practical aspects of energy-efficient computing. The key contributions include:

• In Chapter 3, we introduce an approximate logic synthesis methodology based on

truth table factorization. In addition, we provide an automatic circuit partitioning

approach and a design space exploration heuristic to navigate the search space. We

implement our methodology using a full stack of open-source tools, and thoroughly

evaluate our methodology on a number of representative circuits showcasing the

benefits of our proposed methodology for approximate logic synthesis. Especially, we

compared 23 approximate designs of unsigned multipliers against the state-of-the-art

method, where BLASYS has better power utilization in 17 cases, and better circuit

delay in 16 cases.

• In Chapter 4, we present a novel framework which aims to synthesize runtime

configurable approximate circuits based on arbitrary input circuits. By decomposing

the truth table, our approach aims to approximate and separate the input circuit

3

into multiple configuration blocks which support different accuracy levels, including

a corrector circuit to restore full accuracy. Power gating is used to activate different

blocks, such that the approximate circuit is able to operate at different accuracy-

power configurations. To improve the scalability of our algorithm, we also provide

a design space exploration scheme with circuit partitioning. We evaluate our

methodology on a comprehensive set of benchmarks. For 3-level designs, RUCA

saves power consumption by 43.71% within 2% error and by 30.15% within 1% error

on average.

• In Chapter 5, we present a configurable neural network architecture, where the

weights of neural network can be dynamically enabled or disabled to switch between

different sub-networks, so that we are able to balance the trade-off between inference

time, energy consumption and model accuracy. We extend the methodology to

convolutional layers using group convolution and channel shuffling. We also propose

a design space exploration approach to search for the optimal sub-network for

different scenarios. We thoroughly evaluate our methodology using a number of

DNN architectures on different hardware platforms, showing that WeNet provides

a large number of energy-efficient operation modes, 73.2% of which provide better

accuracy-efficiency trade-off compared to other methodologies.

• Chapter 6 introduces an INT8 quantized training method based on the Forward-

Forward (FF) algorithm, which was proposed recently. Additionally, we propose

a novel loss function and updated training procedure to enhance model accuracy.

Experiments show that our FF-INT8 method accelerates training by 0.7%, de-

creases energy consumption by 6.0%, and significantly reduces memory footprint by

22.2%, while maintaining high accuracy compared to state-of-the-art INT8 training

algorithms.

4

CHAPTER 2

Background

In this chapter, we describe the background and a concise overview of the relevant prior

work related to the techniques proposed in this dissertation. As outlined in Chapter 1,

this dissertation aims to enhance the efficiency of deep learning computing from both

hardware and software perspectives. Accordingly, we will explore key concepts and prior

work from both domains. We begin in Section 2.1 by introducing the methodologies of

approximate computing in circuit and transistor levels, i.e. approximate circuits and

approximate logic synthesis. We then transition to the software domain in Section 2.2,

where we review previous work aimed at enhancing the efficiency of inference in deep

learning models. Finally, in Section 2.3, we conclude with an overview of efficient training

methodologies for deep learning models. Additional details regarding the related work

for the specific techniques discussed in this dissertation are included in their respective

chapters.

5

2.1 Approximate Circuits and Approximate Logic

Synthesis

Recent advancements in Deep Learning, particularly through Deep Neural Networks

(DNNs), have achieved state-of-the-art results in various application domains, including

computer vision and natural language processing. Convolutional Neural Networks (CNNs),

the most widely used DNN architecture, heavily depend on multiplier-accumulate (MAC)

operations [6]. For instance, AlexNet, a CNN architecture proposed in 2012, requires 724

million MAC operations to classify an image with a resolution of 227×227 pixels [7]. This

number dramatically increases to 15.5 billion for more complex models like VGG-16 [8]. To

meet such computational demands, DNN accelerators integrate thousands of MAC units

on a single chip. For example, Google’s TPU contains 64K MAC units, while Samsung’s

neural processing unit (NPU) incorporates 6K MAC units [9]. However, the sheer number

of MAC units, coupled with high parallelization, leads to significant energy consumption,

which is particularly challenging for edge devices like smartphones and smartwatches.

Therefore, designing more efficient circuits is essential.

Approximate computing, an emerging paradigm, challenges the traditional requirement

for absolute precision by employing less accurate functions to enhance power efficiency

and performance. While the idea of sacrificing accuracy might seem counterintuitive, this

approach is highly effective in application domains where small inaccuracies in output are

acceptable. Such tolerance can arise from various sources, including noise in input data,

inherently approximate calculations, or the human ability to tolerate variations in out-

puts [10]. This tolerance is particularly relevant in deep learning applications. For example,

in image classification, input images often contain noisy pixels that are indistinguishable to

the human eye. Additionally, training a neural network is fundamentally an approximation

of an unknown function. These characteristics make approximate computing well-suited

for deep learning tasks. Within the approximate computing paradigm, approximations can

6

be introduced in many different levels of the computing stack [11; 12], ranging from the

software and algorithm [13; 14; 15; 16; 17], to system architectures [18; 19; 20], and circuit

and transistor levels [21; 22; 23; 24; 25]. In this section, we mainly focus on hardware

level.

One class of approximate computing techniques is voltage over-scaling (VOS), which

reduces power consumption by operating circuits at lower-than-nominal supply voltages.

By scaling down the voltage, the dynamic power dissipation, which is proportional to the

square of the supply voltage, is significantly reduced. However, this reduction in voltage

comes at the cost of increased susceptibility to timing errors, as lower voltages slow down the

circuit’s switching speed. These timing errors can lead to incorrect computations, making

VOS particularly challenging in applications requiring high reliability [21]. To mitigate

these errors, designers often implement error detection and correction mechanisms. For

instance, AED-C [26] enhances the efficiency of Adaptive Voltage Over-Scaling (AVOS)

for error-resilient applications, while implementing a tunable detection window that

dynamically adjusts error detection accuracy to make the result of computation more

stable. Huang et al. also proposed to use an inexact full adder (AMA1), which can

operate at significantly lower supply voltages with reduced energy consumption while

maintaining higher computation accuracy compared to exact adders [27].

Compared to VOS, logic approximation of underlying hardware has been explored as a

more stable alternative. These approaches can be broadly categorized into two classes,

which will be introduced separately below:

• Approximate Circuits: Architectural approximations of specific hardware compo-

nents, such as adders and multipliers.

• Approximate Logic Synthesis: Approximation of logic synthesis procedure,

which automatically generates approximations of arbitrary circuits.

Architectural approximations of specific hardware components involve intentionally

7

simplifying or altering the design of these components to achieve improved power efficiency,

reduced area, or faster computation at the expense of precision. Such methodologies

usually apply to arithmetic units, such as adders or multipliers, because of their structural

architecture. For instance, ACA allows for runtime adjustments of accuracy to balance

performance and power consumption, which involves cutting the carry chain to reduce

critical-path delay, implementing error detection and correction circuits, and using a

pipelined architecture to achieve both high performance and low power consumption with

configurable accuracy based on application needs [22]. Mannepalli et al. proposes two

novel approximate multipliers using optimized lower part constant OR adder (OLOCA)

and hardware-optimized approximate adder with normal error distribution (HOAANED)

to enhance performance, reduce power consumption, and minimize area for edge detection

applications, maintaining relatively high accuracy when compared to exact multipliers [28].

Ahmad et al. also proposed a methodology for designing low-error, efficient approximate

adders specifically for FPGAs [29].

On the other hand, the goal of Approximate Logic Synthesis (ALS) is to automate the

design of approximate logic from arbitrary accurate circuits [30; 31; 32; 33; 34; 35; 36; 37].

To achieve this goal, a number of methods in the literature map an approximate synthesis

problem into an instance where established logic synthesis techniques can be applied.

For example, in SALSA, a difference circuit is created to compute the error between

the original circuit and the approximated circuit [31]. The don’t cares of the outputs of

the approximate circuit with respect to outputs of the difference circuit can be used to

simplify the approximate circuit using regular logic synthesis techniques. In SASIMI [33],

a technique is proposed to identify similar signals, such that their values agree over a

large number of input test cases, and then substitute one for the other, simplifying the

logic. Froehlich et al. describe the use of formal methods such as binary decision diagrams

(BDDs) and symbolic computer algebra (SCA) to generate single-output and multi-

output approximate circuits respectively [36; 37]. For higher-level synthesis, ABACUS

8

generates variants of an input high-level Verilog description file by applying a set of

possible transformations on the circuit to generate a set of mutant approximate circuit

variants [30]. A multi-objective design space exploration technique is then used to identify

the best set of approximate variants. Vasicek et al. propose evolutionary approaches,

EvoApprox, on datapath circuits that are composed of basic arithmetic blocks (e.g., adders

and multipliers) and logic blocks [35], where the exact circuit is encoded in a string-based

representation as a ”chromosome” and then a genetic algorithm mutates the circuit to

create approximate versions as long as the error is kept below target.

2.2 Efficient Inference Methods for Deep Learning

As deep learning continues to make strides across various application domains, the

deployment of deep DNNs on resource-constrained devices such as smartphones, IoT

devices, and edge computing platforms has become increasingly common. However, these

environments are often characterized by limited computational power, memory, and energy

resources, making the efficient inference of DNNs a critical challenge. The demand for real-

time performance and extended battery life in these devices necessitates the development

of inference methods that can achieve a balance between computational efficiency and

model accuracy.

2.2.1 Model Compression Techniques

One of the most widely explored strategies for efficient inference is model compression,

which aims to reduce the size of the neural network while maintaining its performance.

Model compression techniques include pruning, quantization, and knowledge distillation.

Pruning is a technique that involves removing redundant or less important parameters

(weights) from a neural network. This reduction in parameters leads to a sparser network,

which requires fewer computations during inference. There are several pruning methods,

9

including:

• Magnitude-based Pruning: This method removes weights with the smallest absolute

values, assuming that these weights contribute less to the overall performance of the

network. After pruning, the model is usually fine-tuned to recover any accuracy lost

during the pruning process. For instance, LAMP [38] proposes to select layer-wise

sparsity based on an adaptive importance score and use this sparsity to prune the

weights.

• Structured Pruning: Unlike unstructured pruning, which removes individual weights,

structured pruning removes entire structures such as neurons, filters, or layers [39].

This method is particularly effective in reducing the computational complexity

and memory footprint, as it directly impacts the architecture of the network. For

instance, DBLP [40] considers filters with smaller norms to have a weak activation

and contribute less to the final classification decision.

• Dynamic Pruning: In this approach, the network is pruned dynamically during

inference, allowing the model to adjust its complexity based on the input data.

This technique is useful in scenarios where different inputs require varying levels

of computational resources. FDNP [41] proposes a dynamic pruning scheme in

the frequency domain to compress convolutional neural networks. Spatial-domain

convolutional is converted into frequency-domain multiplication, in which weight

pruning is performed to compress the model.

Pruning techniques can significantly reduce the size of the network and the number of

operations required for inference, making them particularly valuable for deploying DNNs

on edge devices with stringent resource constraints.

Quantization is another powerful compression technique that reduces the precision of

the weights and activations in a neural network. Typically, neural networks are trained

using 32-bit floating-point (FP32) arithmetic, which is computationally expensive and

10

memory-intensive. Quantization reduces the precision to 8-bit integers (INT8) or even

lower, significantly reducing the memory footprint and accelerating the computation, espe-

cially on hardware that supports low-precision operations. Traditionally, quantization is

performed after training, which is called post-training quantization (PTQ). AdaRound [42]

proposes a better weight-rounding PTQ scheme that adapts to the data and loss func-

tion. Quantization-aware training (QAT) further enhances this process by incorporating

quantization effects into the training process, resulting in models that are more robust

to the reduced precision [43]. As an extension of QAT, PikeLPN proposed QuantNorm,

allowing for quantizing the batch normalization parameters without compromising the

model performance [44].

Knowledge distillation is a technique where a smaller, more efficient ”student” model

is trained to mimic the behavior of a larger, more complex ”teacher” model. The student

model learns from the teacher by minimizing the difference between its predictions and

those of the teacher, often using a softened output distribution from the teacher. This

approach allows the student model to achieve similar accuracy to the teacher while

being significantly smaller and faster, making it more suitable for real-time inference on

resource-limited devices [45].

2.2.2 Neural Architecture Search and Hardware-aware Opti-

mization

Another avenue for achieving efficient inference is Neural Architecture Search (NAS),

a technique that automates the design of neural network architectures optimized for

specific hardware constraints. NAS explores a vast space of possible network designs to

identify architectures that offer the best trade-offs between accuracy, latency, and energy

efficiency. To avoid slow training process of NAS, Mellor et al. propose non-training NAS

approach, which evaluates the overlap of activations between datapoints in untrained

networks, using a measure based on the Hamming distance between binary activation

11

patterns [46]. Hardware-aware NAS further refines this process by incorporating hardware

characteristics directly into the search process, ensuring that the resulting models are not

only accurate but also optimized for the target deployment environment [47].

2.2.3 Dynamic Inference and Early Exiting

Dynamic inference methods have gained traction as a means of further optimizing

the efficiency of DNNs. These methods allow the network to adapt its computational

requirements based on the complexity of the input data or the available computational

resources. One such technique is early exiting, where the model is designed with multiple

exit points. During inference, the model can output a prediction after processing only a

subset of the network’s layers, effectively reducing the computation required for ”easier”

inputs while maintaining full network capacity for more challenging ones [48].

The dynamic nature of these methods makes them particularly well-suited for deploy-

ment in heterogeneous environments, where the available computational resources may

vary over time or across different devices.

2.3 Efficient Training Methods for Deep Learning

Training deep learning models is a resource-intensive process, often requiring vast

computational power, memory, and energy, especially for large-scale networks like Con-

volutional Neural Networks (CNNs) and Transformers. These challenges are magnified

when training needs to be performed on resource-constrained devices or in energy-sensitive

environments. Efficient training methods have thus become a crucial area of research, with

various strategies being developed to optimize the training process without compromising

model performance.

12

2.3.1 Transfer Learning

Transfer learning is a widely used technique that leverages knowledge gained from

pre-trained models on a large dataset and adapts it to a related but different task with

a smaller dataset. This approach significantly reduces the computational cost and time

required for training because it allows the reuse of previously learned features, which

can be fine-tuned for the new task [49]. For instance, a model pre-trained on a large

dataset like ImageNet can be fine-tuned on a smaller dataset for a specific task, such

as medical image classification. By freezing the initial layers of the pre-trained model

and only training the final layers, the training process becomes more efficient, as fewer

parameters need to be updated. This not only accelerates the training process but also

mitigates the risk of overfitting, particularly when working with limited data.

Transfer learning is particularly advantageous in scenarios where computational re-

sources are limited, as it allows the deployment of sophisticated models without the need

for extensive training from scratch. Moreover, it enables the utilization of state-of-the-art

models even in environments where training a large model from the ground up would be

infeasible.

2.3.2 Parameter-Efficient Training

Parameter-efficient training techniques focus on optimizing the number of parameters

that need to be learned during training, thereby reducing the computational load and

memory usage. These methods are particularly useful in scenarios where deploying large

models is constrained by hardware limitations.

One popular approach in parameter-efficient training is model pruning during train-

ing [50]. Unlike post-training pruning, where the model is pruned after training, this

method involves gradually pruning unimportant parameters during the training process.

Lottery ticket hypothesis suggests that a smaller, well-initialized subnetwork can be found

early in training that can achieve similar or even better performance than the original full

13

network when trained in isolation [51].

Another parameter-efficient approach is low-rank factorization, where the weight

matrices of the neural network are factorized into products of lower-rank matrices [52].

This reduces the number of parameters that need to be learned and can lead to faster

training and inference times.

2.3.3 Low-Precision Training

Low-precision training is a powerful technique that reduces the precision of the arith-

metic operations involved in training neural networks. Traditional deep learning models

are typically trained using 32-bit floating-point (FP32) arithmetic, which is both memory-

intensive and computationally expensive. Low-precision training reduces this precision,

commonly to 16-bit floating-point (FP16) or 8-bit integer (INT8), leading to significant

savings in both memory usage and computational power.

One of the major challenges in low-precision training is maintaining the stability and

accuracy of the model. Lower precision can introduce quantization noise, which may

lead to instability in the training process or loss of model accuracy [5]. Mixed-precision

training have been developed to address these issues, where critical parts of the network

are trained using higher precision, while less critical parts use lower precision [53]. This

approach strikes a balance between the efficiency gains of low-precision training and the

stability of high-precision computations.

14

CHAPTER 3

Approximate Logic Synthesis using

Boolean Matrix Factorization

3.1 Introduction

Since the emergence of power as the main factor limiting the scale of the computational

power, novel techniques have been proposed aiming at reducing the power and energy

footprint of conventional computing systems. As introduced in Section 2.1, one of such

emerging low-power techniques is approximate computing, where computational accuracy

is traded for improvements in hardware cost and complexity, e.g. design area, power

consumption or energy cost. Approximate computing is effective for application domains

that inherently tolerate small inaccuracies in their output, such as signal processing, deep

learning, and computer graphics.

A primary challenge of approximate computing is to devise techniques for automated

approximate circuit synthesis that can generate approximate circuits from arbitrary exact

input circuits, while offering a wide range of trade-off between accuracy and hardware

metrics. Such techniques, while less optimized for specific designs, enable a more versatile

approach where any input design amenable to approximations, can be readily optimized

15

without requiring added guidance from the designer.

The proposed approach utilizes recent advance in multivariate analysis, namely Boolean

matrix factorization [54], that can reduce the dimensionality of the problem, by identifying

the common bases which can be later combined to yield the original Boolean matrix. Our

methodology operates on truth tables and introduces approximations in the circuit by

simplifying the input truth table based on statistical analysis [54; 55]. Compared to our

previous publications, this article provides the following contributions.

• We provide a unified approach to approximate logic synthesis utilizing matrix

factorization. Our approach utilizes three factorization techniques, relying on

different algebra. Such methodology introduces an exponentially large search space

which requires careful navigation.

• In order to improve the scalability of our methodology, we partition an input circuit

into manageable subcircuits [56], and perform a detailed design space exploration

over factorization degrees of subcircuits to optimize the resulting approximate top-

level design. Meanwhile, our approach is able to handle various error metrics, such

as Normalized Hamming Distance (HD), Mean Absolute Error (MAE), etc.

• We provide a more comprehensive set of experiments, including the well established

EPFL [57] and ISCAS ’85 [58] benchmark suites commonly used in the literature.

Evaluation on 15 total benchmarks, we clearly demonstrate the versatility of our

proposed technique. Furthermore, we compare our approximation designs against

EvoApproxLib, a library of approximated adder and multiplier circuits, in order to

show that our approach reaches state-of-the-art performance.

• We implement our approach using a full stack of open-source tools, while adopting

a more runtime aware approach and introducing techniques, e.g. parallelization and

computation reuse, to reduce the runtime overhead of our methodology.

The organization of this chapter as follows. In Section 3.2 we overview relevant previous

16

work on approximate logic synthesis and the broader approximate computing paradigm.

Next, in Section 3.3 we discuss the necessary background on Boolean matrix factorization,

as it related to our methodology. In Section 3.4, we describe our new approaches, mainly

the XOR field-based circuit approximation method. We also describe the integration

of our approach in a circuit decomposition and design space exploration technique. We

provide a comprehensive set of experimental results in Section 3.5. The conclusions of

this work are summarized in Section 3.6.

3.2 Previous Work

Within the approximate computing paradigm, approximations can be introduced

in many different levels of the computing stack [11; 12], ranging from the software and

algorithm [13; 14; 15; 16; 17], to system architectures [18; 19; 20], and circuit and transistor

levels [21; 22; 23; 24; 25]. In this section, we briefly discuss some of the existing researches

to explore different aspects of approximate computing and their findings.

First, in software and algorithmic domains, one popular methodology is loop perforation,

where the iterative computation can be stopped prematurely, to reduce the computation

cost while introducing errors in precision [13; 14]. In this domain, approximations

based on approximate GPU kernels [15], approximate compression [16], and approximate

parallelization [17] have also been proposed.

In addition, on the computer architecture front, approximate instruction set archi-

tectures (ISA) have also been explored. Esmaeilzdeh et al. proposed an approximate

processing pipeline within which approximate versions of all main arithmetic and logical

operations are implemented as an ISA extension [18]. Similarly, utilization of approximate

computing techniques for many specific computing components, such as dynamic random

access memories (DRAM) [19], and cache and register file subsystems [18; 20] have also

been proposed.

17

On circuit level, voltage over-scaling (VOS) has received significant attention [21]. Here,

the operating voltage is reduced beyond safe operation thresholds reducing the energy

consumption. However, the indeterministic nature of such approximations has resulted

in limited applicability of such methodologies. Logic approximation of the underlying

hardware have also been explored. Here, two main approaches have been evaluated; (i)

architectural approximations of specific designs (such as adders and multipliers), and (ii)

automated approximations of arbitrary circuits. Arithmetic blocks, due to their utilization

in many other applications, have received significant attention. Here, approximate

adders [22], multipliers [23; 24], and dividers [25] are few examples where architectural

approximations for specific hardware blocks are proposed.

Approximate synthesis methodologies operating on arbitrary circuits have also been

proposed [30; 31; 32; 33; 34; 35; 36; 37]. For example, in SALSA, a miter is created

to compute the error between the original circuit and the approximated circuit [31]

using existing methodologies in logic synthesis. The don’t cares of the outputs of the

approximate circuit with respect to outputs of the difference circuit can be used to

simplify the approximate circuit using regular logic synthesis techniques. This approach

was extended in ASLAN [32] to model error arising over multiple cycles. In SASIMI [33],

a technique is proposed to identify similar signals, such that their values agree over a large

number of input test cases, and then substitute one for the other, simplifying the logic.

For higher-level synthesis, ABACUS generates variants of an input high-level Verilog

description file by applying a set of possible transformations on the circuit to generate a

set of mutant approximate circuit variants [30]. A multi-objective design space exploration

technique is then used to identify the best set of approximate variants. Vasicek et al.

propose evolutionary approaches, EvoApprox, on datapath circuits that are composed of

basic arithmetic blocks (e.g., adders and multipliers) and logic blocks [35], where the exact

circuit is encoded in a string-based representation as a ”chromosome” and then a genetic

algorithm mutates the circuit to create approximate versions as long as the error is kept

18

below target. Raising the approximate synthesis to C-based design, Lee et al. propose a

new technique to synthesize approximate circuit directly from C descriptions [59].

Finally, approximate computing techniques have also been deployed in specific ap-

plications such as deep learning [60], and computer vision. More recently, impact of

approximate computing on end-to-end systems such as biometric security [61], and smart

camera system [62] has also been studied.

3.3 Background

In this section, we describe problem of Boolean matrix factorization (BMF), as it forms

the basis of our methodology. Then, we briefly discuss some existing algorithms of BMF.

Matrix factorization (or decomposition) is a class of algorithms that propose to factor an

input matrix n×m A into two matrices: a n× f matrix, B, and a f ×m matrix, C, such

that A ≈ BC. In many applications the factorization degree, f , is required to be smaller

than m in approximations in the multiplication results. Note that one can interpret the

columns of B as factors or bases that are linearly combined using C.

While generic matrix factorization algorithms allow for both negative and positive

matrix entries, non-negative matrix factorization (NNMF) restricts the elements to non-

negative values [63]. Non-negative values occur in many physical domains, such as

computer vision and document clustering [64]. More recently, NNMF has been extended

to Boolean matrix factorization, where all elements of all matrices are limited to ‘0’s and

‘1’s. Different algebra can be used for the arithmetic [65; 66]. Boolean matrix factorization

algorithms have many applications, including data mining, noise detection, and document

clustering.

Boolean matrix factorization has been proved to be NP-hard [67], which can also be

19

formulated as an optimization problem solving,

argminB,C|A−BC|, (3.1)

where the elements of A, B and C are ‘0 or ‘1’. Therefore, many algorithms take a heuristic

approach. For example, in ASSO, an association matrix is computed as candidates of bases

vectors using association rule mining [67]. Intuitively, the association matrix evaluates the

likelihood among all pairs of columns in the input matrix. Then, for each candidate base in

the association matrix, ASSO calculates a paired column by enumerating all possibilities,

and picks the optimal pair in order to greedily cover ’1’s in the input matrix. As it is fast

and straightforward, there exists one drawback, such that errors of covering ’0’s by ’1’s are

irreversible. Therefore, some improvements have also been proposed, such as clustering

input matrix before factorization or transposing input matrix.

Besides heuristic approach, some other methods have also been studied, which first

solve non-negative matrix factorization problem and then extend to binary case [68].

Penalty function algorithm attempts to build a loss function and optimize by computing

derivatives. Thresholding algorithm aims to solve B and C in real numbers, and then find

thresholds to binarize two matrices. Recently, more methodologies are proposed, such as

using Minimum Description Length principle [66] or Message Passing [69].

3.4 Proposed Methodology

In this section, we first describe our proposed BLASYS methodology for utilizing

Boolean matrix factorization (BMF) in automated approximate logic synthesis. Here, we

also discuss our techniques for improving accuracy and versatility of our methodology, by

introducing XOR algebra and weighting schemes in subsection 3.4.1. Later on, we discuss

the consideration required, when applying the proposed methodology on larger circuits.

20

Figure 3.1: General flow of BLASYS for approximate logic synthesis using Boolean matrix
factorization (BMF).

Since, the proposed BMF based methodology operates on truth tables, in order to keep

the truth table within manageable size, we propose to use circuit partitioning. We then

introduce methodologies for design space exploration (DSE) of the resulting search space

in subsection 3.4.2.

Figure 3.1 illustrates the general flow of BLASYS algorithm. As demonstrated in the

figure, an input circuit can optionally be decomposed into smaller subcircuits, if required

by its input size. Next, each subcircuit is approximated to a specific degree, and the

approximate components are connected together to generate the approximate design. For

each approximate design, the Quality of Results (QoR) and design area are evaluated,

which is then used for design space exploration and guide the factorization degree during

next iteration. Next subsections describe, in more details, the exact inner workings of the

proposed technique.

3.4.1 Approximate Synthesis Using Boolean Matrix Factoriza-

tion

As discussed in Section 6.3, Boolean matrix factorization is a special extension of

matrix factorization, where all elements of all matrices are limited to ’0’s and ’1’s. There

exists an inherent connection between logic circuits and Boolean matrix, where truth

21

. . .

n
in

pu
ts . . .

m
 outputs

n
in

pu
ts . . .

f signals
decompressor circuit

(a) original circuit

compressor circuit

(b) approximate circuit using matrix factorization

. . .

. . .

m
 outputs

Figure 3.2: Utilization of binary matrix factorization for approximate logic synthesis.
(a) an arbitrary input circuit, and (b) the compressor and decompressor circuits used in
binary matrix factorization methodology.

tables of circuits can be represented by Boolean matrix.

To use Boolean matrix factorization methods for approximate logic synthesis, the truth

table of the input circuit is first generated and given as the input matrix for a binary

matrix factorization algorithm, where the factorization degree, f , is chosen to be smaller

than the number of outputs of the original circuit. The two factorized matrices from the

algorithm are then treated as truth tables synthesized into two subcircuits and connected

together to generate the approximate circuit as illustrated in Figure 3.2. In Figure 3.2, the

first subcircuit receives the n outputs as the original circuit, but instead produces f < m

outputs, and thus referred to as the compressor circuit. The second subcircuit receives

f < m inputs and produces m outputs and thus referred to as the decompressor circuits.

In prior work where only semi-ring Boolean algebra is considered, the implementation of

the decompressor is very simple as it uses a network of only OR gates [54].

Factorization Algebra

Boolean matrix factorization aims at minimizing the number of mismatches between

an input matrix and the approximate multiplication result of the factorized matrices.

In Boolean matrix factorization, the multiplications are carried out using the logical

AND operation, and the addition operation can be either based on semi-ring Boolean

algebra, or field modulo-2 algebra. In the case of Boolean matrix factorization (BMF),

the algebra implements a semi-ring algebra, where the addition is carried out using logical

22

1 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

1 1 0
0 0 1
1 0 0
0 1 0
1 0 1

1 0 1 0 1
0 1 0 0 1
0 0 0 1 0

1 1 1 0 1
0 0 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

(a) input matrix (b) factorization using semi-ring Boolean algebra (c) factorization using field modulo-2 algebra

Figure 3.3: Example of binary matrix factorization using different algebra. (a) input
matrix, (b) matrix factorization using Boolean algebra where addition is carried out using
logical ORs, and (c) matrix factorization using modulo-2 algebra, where the addition is
carried out using logical XORs. The errors are highlighted in red.

OR, i.e., 1 + 1 = 1. In the case of field modulo-2 algebra, the addition is carried out using

logical XOR, i.e., 1 + 1 = 0 Figure 3.3 shows an example of an input matrix as well as

the factorized matrices and their multiplication result for both Boolean and Modulo-2

arithmetic.

Using different arithmetic can result in significantly different characteristics in the

factorized matrices as well as the best approximation degree. In the specific case of Figure

3.3, modulo-2 algebra generates better quality of results. Next we describe the utilization

of binary matrix factorization methodologies in the approximate logic synthesis problem.

One possible drawback of using OR-based Boolean arithmetic is that the number of

bases from B, i.e., outputs of the compressor circuits, that can be combined to produce

one column in C, i.e., output of the decompressor circuit, is limited. ORing two bases

from B with a ‘1’ in the same location will lead to a ‘1’ in the corresponding location in

the resulting output column, and this result will not change regardless of any additional

bases that can be further ORed with the two. In contrast, in modulo-2 algebra, 1 + 1 = 0,

thus a ‘1’ can be reduced back to ‘0’ and therefore combining additional bases in modulo-2

implementation can offer more diversity in the results. Interestingly, modulo-2 based

approximate logic synthesis closely resembles that of the Boolean based approach, where

the only differences are (1) a modulo-2 approach is utilized for the matrix factorization,

and (2) the decompressor circuit needs to be mapped to network of XOR gates instead of

a OR gates.

23

Currently there are no modulo-2 matrix factorization algorithms and the complexity of

the problem is unknown [66]. Note that the Boolean counterpart is proven to be NP-Hard,

and therefore all existing algorithms are based on heuristics. To enable our methodology

using modulo-2 arithmetic, we devise a simple heuristic based on the methodologies used

for the Boolean matrix factorization. More specifically, we use ASSO [65; 66] for initial

matrix factorization, where we further do an exhaustive search for the decompressor

matrix to minimize the error assuming modulo-2 arithmetic. Note that this operation

incurs a timing complexity of O(m2n) as different columns of the decompressor circuit

can be identified independently.

Finally, as different columns of the decompressor matrix represent different combinations

of the compressor circuits, one can mix the OR-based and XOR-based methodologies,

where some outputs are implemented using OR and other outputs are implemented using

XORs, i.e., the decompressor circuit uses both OR and XOR gates. We refer to this

approach as XOR/OR, as it chooses the better outcome of OR versus XOR results to

implement. We will evaluate OR, XOR and OR/XOR methodologies in the experimental

results highlighting the benefit of each in different circumstances.

Output Weights

In BMF algorithms, the objective is to minimize ||M − BC||2, which translates to

Hamming distance in Boolean systems. In approximate circuit design, however, such

metric does not provide a good representation of QoR in many cases. As an example, if

the columns of a m-column matrix represent an m bit signal, minimizing the Hamming

distance as the cost function can lead to significant errors in numerical value. For instance,

a bit flip in the least significant bit will lead to a numerical error of 1, whereas a bit flip

in the nth bit leads to an error of 2n−1.

To account for the bit significance, we augment existing BMF algorithms with custom

QoRs enabling weighted cost functions. Specifically, we propose to define the cost function

24

large	circuit

(a) circuit
decomposition

(b) subcircuit
approximation

f	=	3

f	=	5

f	=	4

f	=	4

f	=	5

f	=	4

f	=	2

Figure 3.4: Illustrated methodology for partitioning circuits.

as ||(M−BC)w||2, where w is a constant weight vector, instead of ||M−BC||2 as the

standard hamming distance cost function. Here, if the numerical difference is the objective

QoR, then w will be defined to introduce bit significances based on powers-of-two (e.g., 8,

4, 2, 1); therefore, giving different numerical weights for different bit positions. In our

experiments, we modify the ASSO [66] algorithm as to penalize mismatches on higher bit

indices more than lower significant bits. We will provide experimental results showcasing

the benefits of such weighting schemes in contrast to uniform weights (Hamming distance)

in Section 6.5.

3.4.2 Partitioning and Design Space Exploration

Since the truth table size of a circuit grows exponentially with the number of its inputs,

we break down any large circuit into sub-circuits, where each sub-circuit has a limited

number of inputs (e.g., n ≤ 10) and then approximate each sub-circuit individually using

the proposed binary matrix decomposition method with mixed OR/XOR decompressor

implementation.

25

As our methodology operates on the truth table of the input circuit, the size of the

input matrix, i.e. the number of rows, grows exponentially as the number of primary inputs

increases. Furthermore, BMF is a NP-hard problem, and the existing methodologies are

based on heuristics [63; 65; 66]. Therefore, the applicability of our method can be limited

as the complexity of the circuit increases. Therefore, we propose a circuit decomposition

technique to scale the BMF algorithm for larger circuits. The overall idea of our method

is to first partition a large circuit into a number of subcircuits, such that each subcircuit

has a maximum of k inputs as illustrated in Figure 6.4.a and then each of the subcircuits

is approximated as shown in Figure 6.4.b. The values for k and m, the number of outputs,

are determined based on the afforded runtime of the factorization algorithm.

To limit the number of inputs and outputs in subcircuits, we propose to use hypergraph

partitioning algorithm [56] recursively until all subcircuits have a maximum of k inputs

and maximum of m outputs. Also, we will discuss the relation between size of subcircuits

and performance of approximation in Section 6.5.

Dividing a large circuit into smaller subcircuits of size k ×m requires a change to the

way we compute the QoR. More specifically, we can no longer evaluate the accuracy of

a subcircuit in isolation, as errors in one component can propagate through the circuit

leading to larger errors in the final outputs. Therefore, in our work instead of evaluating

the QoR of a subcircuit individually, we evaluate the QoR of the entire approximate

circuit, denoted by Cir(si → Tsi,fi), where an accurate subcircuit, si, is substituted by its

approximate version, Tsi,fi , with a factorization degree of fi.

Greedy Heuristic DSE

Our design space exploration algorithm starts by identifying the sub-circuits; we calcu-

late the possible approximate realizations for each sub-circuit using various factorization

degrees, OR/XOR implementations. We then greedily explore the space of generated

approximate sub-circuits to identify a good approximation order. We assess the QoR

26

as measured by a user-defined error metric for each of its approximate realization by

substituting the original subcircuit by its approximate realization and evaluating the

outcome using the primary outputs of the circuit. The sub-circuit that leads to the

smallest value of loss function is then chosen, and its approximated realization is then

substituted in the main circuit. This sub-circuit approximation process is repeated until

the maximum target error is reached.

Since a large input circuit will have multiple subcircuits, the order and the degree

to which the approximations are introduced to the circuit has to be carefully analyzed.

We devise Algorithm 1 to gradually approximate the circuit. In our algorithm, first, the

circuit is partitioned into smaller subcircuits (line 1). In the next stage (lines 3-9) and for

each subcircuit, the set of potential approximate versions under various approximation

degrees are profiled. Next, starting from the accurate design, approximations are gradually

added to the input design by exploring the neighbors of the current design (lines 14-24).

Here, neighbors of a given design are defined as top-level circuits for which the degrees of

approximation only reduce by one in one subcircuit. Here in lines 16-20, each neighbor is

synthesized, where its QoR metric and chip area are assessed. The subcircuit with the

least loss value, defined in line 18, is then chosen to replace the current circuit for next

iteration in lines 21-23. The process is repeated iteratively until the QoR gets higher than

a predefined threshold. The output approximation Cir is the one with smallest chip area

in explored design space.

Loss function

In Algorithm 1, our goal is to reduce design area and power consumption as much

as possible with a fixed error threshold. We choose design area as an estimation of

approximation degree, and propose the following loss metric to greedily explore the

design space. Assuming we denote design area of accurate circuit by area(ACir) , the

approximate circuit by area(Ciri), and degradation in QoR by QoR(Ciri), the loss is

27

Algorithm 1: BLASYS: Boolean Level Approximate Circuit Synthesis
Input :Accurate Circuit ACir, Error Threshold
Output :Approximate Circuit Cir

1 subcircuits=Decompose input circuit ACir by using k-way hypergraph partitioning recursively
2 // Factorization profiling Phase
3 for each subcircuit si with mi ≤ m outputs do
4 M=Construct truth table of si
5 // profile for every possible factorization degree
6 for f=1 to mi-1 do
7 [B,C] = BMF(M, f)
8 Tsi,f=Construct truth table of BC

9 end

10 end
11 // Circuit Space Exploration Phase
12 Cir=ACir;
13 ExploredSpace=Empty List;
14 Let fi = mi for all subcircuits si
15 while QoR(Cir) ≤ threshold +ϵ do
16 for each subcircuit si with fi > 1 do
17 Cir′=Cir(si → Tsi,fi−1)
18 lossi = (area(Cir′)− area(ACir)) /QoR(Cir′)
19 Add Cir′ into ExploredSpace

20 end
21 b = argmini(lossi)
22 Cir = Cir(sb → Tsb,fb−1)
23 fb = fb − 1

24 end
25 Cir=Best design in ExploredSpace
26 return Cir

defined as

Li =
area(Ciri)− area(ACir)

QoR(Ciri)
(3.2)

For each iteration, we choose the neighbor with smallest loss to replace the current circuit.

Recall that neighbors of a given design are defined as top-level circuits for which the

degrees of approximation only reduce by one in one subcircuit. To minimize this loss

metric, on one hand, a larger degradation in design area is preferable. On the other

hand, since the loss value is negative, a smaller degradation in QoR is also preferable in

order to minimize the loss. The intuition of the loss function is that, the design space

of approximate circuit is expected to reduce sharply, while the design accuracy should

remain relatively high. Thus, we balance the trade-off between reduction in design area

and QoR. Although design area and power consumption are not strictly proportional to

28

each other, design area is a better representative of circuit complexity, and able to reflect

the changes in other metrics in general.

This loss metric performs even better with output-weighting scheme. Since different

outputs could have different weights in QoR estimation, our loss metric will first explore

design space which approximates less significant output bits, and then gradually move to

more significant ones.

The loss function may be further modified in a stepwise manner. In each iteration, we

first choose from designs with very small degradation of QoR (e.g. 0.01%). If there is no

better design in this range, we then gradually increase the range of QoR degradation. The

reason for this stepwise loss metric is to prevent design accuracy from dropping rapidly.

Error Metric

In previous discussion, we analyze that QoR in Equation 3.2 can be either Hamming

distance error or any output-weighting scheme. In practice, however, we may further

generalize the error metric to any function that takes both simulation results of exact

circuit and approximate circuit as input.

In Section 3.4.1, since we directly factorize the truth table of the exact input circuit,

the output-weighting scheme is proposed to approximate arithmetic circuits with natural

numbers. However, in Algorithm 1, we factorize the truth table of each subcircuit (line

7). It is difficult to analyze the significance of inputs of a subcircuit, or in other word,

how inputs of a subcircuit impact primary outputs. Therefore, when factorizing the truth

tables of subcircuits, we just use Hamming distance error (line 7), and later use objective

error metric to choose the optimal design in design space exploration (line 15-20). In

practice, to compute QoR, we simulate both exact circuit and approximate circuit with

the same testbench, and compare the simulated results. If we denote simulated results of

exact circuit as T and ones of approximate circuit as T ′, we may use any function f of T

29

and T ′ to guide the design space exploration, such as

QoR = f(T, T ′) (3.3)

For example, one common error metric is Mean Absolute Error (MAE), where we

convert simulation results to real numbers and compute mean of absolute of the difference.

Assume that our testbench has N test vectors. For ith test vector, the simulation result of

exact circuit is ti and the one of approximate circuit is t′i, QoR can be formulated as

QoR =
1

N
ΣN

i=1|R(ti)−R(t′i)|, (3.4)

where R is the function that converts simulated results from binary to real numbers.

3.4.3 Hyperparameters

Besides Algorithm 1, we also introduce a few hyperparameters, in order to control the

range of explored design space and balance trade-off between runtime complexity and

approximate performance.

Step size

In Algorithm 1, Cir′ = Cir(si → Tsi,fi−1) (line 17) means that the factorization degree

for one subcircuit is decreased only by one. In practice, in order to factorize truth table

efficiently, large input circuits might be partitioned into hundreds of subcircuits. To speed

up Algorithm 1, we are able to set a larger integer as step size. With a larger value,

each approximation realization will take a larger step, meaning that there will be a more

significant reduction in design area and QoR. In this case, the algorithm will converge

more quickly with a set error threshold. On the other hand, larger step size will ignore

many approximate design in-between, lead to smaller exploration space.

30

Figure 3.5: Relationship between average size of subcircuits and design area, for 0.1%
Mean Absolute Error on 7-bit unsigned multiplier.

Size of subcircuits

The first step of Algorithm 1 is to break down input circuit in subcircuits, whose

number of inputs and outputs is limited. Algorithm 1 calls k-way hypergraph partitioning

recursively, and may further break down subcircuits to smaller ones, which introduces

more subcircuits. Figure 3.5 demonstrates relationship between average size of subcircuits,

which is assessed by average number of NAND gates, and the area of output circuit. We

test on 7-bit unsigned multiplier with 0.1% error threshold. Generally, when average size

of subcircuits is smaller, which means input circuit is partitioned into more pieces of

subcircuits, the approximate circuit has smaller design area. On one hand, our algorithm

relies on synthesis capacity. Smaller subcircuit corresponds to smaller truth table, which

then leads to smaller truth tables of compressor and decompressor. In practice, it is easier

to optimize synthesis result with a smaller truth table. On the other hand, with smaller

subcircuits, each of them represents less information in terms of top-level design, and each

step of approximation leads to a slower degradation in QoR. With a fixed error threshold,

we are able to explore more designs with smaller subcircuits, which is more likely to end

up with a better approximate design.

However, with smaller subcircuits, the algorithm take longer to converge to the error

31

threshold. As Algorithm 1 (line 16) suggests, for each iteration, it will evaluate n designs,

where n is the number of subcircuits. In practice, having more subcircuits is more likely

to improve approximation results, but will dramatically increase runtime.

Multi-path exploration

In Algorithm 1 (line 22), the current design is substituted by the best approximation

realization in each iteration based on the loss metric. In order to expand explored design

space for global optimum, we also propose a multi-path version of greedy DSE. Instead

of only choosing the best approximation realization, the first b best design are chosen

as current designs and explored in each iteration. Specifically, all neighbors of b designs

are assessed. Then again, among all neighbors, best b designs are chosen to substitute

original b designs as starting point of next iteration. Multi-path exploration has a larger

explored design space, which is roughly b times than before, and thus often leads to a

better design with the same error threshold.

3.5 Experimental Results

In this section, we discuss our experimental results and highlight the benefits offered by

the proposed methodology. For hardware metrics, all designs are implemented in Verilog

and synthesized using ABC logic synthesis tool [70] using an industrial 65 nm technology

node at the typical processing corner. We evaluate combinational benchmarks available in

ISCAS [58] and part of EPFL arithmetic benchmark suite [57]. For smaller benchmarks,

we generate the truth table and directly pass the truth table to the factorization algorithm.

For the larger ones, however, we first decompose the circuit as described in Subsection 3.4.2.

Furthermore, we compare approximate designs from our algorithm against EvoApproxLib,

a library of approximate arithmetic circuits, to demonstrate that our algorithm is able to

reach state-of-the-art performance.

32

Figure 3.6: Structure of BLASYS Tool-chain.

For design accuracy, we report the normalized Hamming distance (HD), which is

defined as

Normalized HD =
|A−BC|

Nm
, (3.5)

and mean absolute error (MAE) defined as

MAE =
1

N
ΣN

i=1

|Ri −R′
i|

2m
, (3.6)

for logical and binary numerical outputs, respectively. Here, N represents the size of the

test vectors while Ri and R′
i, represent the accurate and approximate numerical results.

m is the number of primary outputs. Furthermore, for smaller circuits, we define the

accuracy over all possible inputs, while for larger networks, we estimate standard deviation

of QoR with different number of test vectors, and choose a proper size as discussed in the

first subsection.

3.5.1 Work Flow

In this subsection, we briefly describe the work flow of our methodology. Figure 3.6

demonstrates various tools in BLASYS tool-chain, which is used for all following experi-

ments [71].

33

To begin with, Yosys [72] parses the input exact circuit and assesses its chip area with

a given liberty file, which in our case, is an industrial 65 nm technology node. Using the

provided set of test vectors, Icarus Verilog [73] simulates the input exact circuit, which is

then used for QoR estimation.

Next, LSOracle [74] is used to partition the input circuit to multiple subcircuits, each

of which has a similar size. Considering runtime efficiency of Boolean matrix factorization,

our methodology partitions an input circuit until all subcircuits have less than 10 inputs

and 10 outputs. Then a set of test vectors is generated for each subcircuit. We use

the ASSO algorithm [66] to factor each truth table based on a vector called f-stream,

which consists of factorization degree for each subcircuit. This vector is determined by

the design space exploration method as discussed in Section 3.4.2. As a result, each

truth table is factorized into a compressor and decompressor. We use ABC [70] to

synthesize the compressor matrix to a circuit and uses a network of logic OR or XOR

to represent decompressor, depending on heuristic search of XOR/OR-based approach.

Thus, an approximated version of the input circuit can be obtained by recombining all

approximated subcircuits. Afterwards, we use Yosys to estimate the chip area of the

approximate circuit and executes a simulation using the input set of test vectors. From

the original and approximated simulation results, QoR can be defined arbitrarily based

on the functionality of input circuit. In our experiments, we consider the Normalized

Hamming Distance error (HD) and Mean Absolute Error (MAE). The area reduction

ratio and QoR are used to optimize f-stream iteratively as mentioned in Algorithm 1.

The implementation of work flow is available at http://github.com/scale-lab/

blasys.

3.5.2 Number of test vectors

Before experimenting our methodology with various benchmarks, we need to create

testbench for each benchmark. Since most benchmarks have large number of inputs, it

34

http://github.com/scale-lab/blasys
http://github.com/scale-lab/blasys

Figure 3.7: Relationship between number of test vectors and standard deviation in
Normalized Hamming Distance in benchmark Max.

Table 3.1: Size of test vectors required to achieve 0.1% and 0.2% standard deviation of
Hamming distance.

Area 0.2% σ 0.1% σ
Name I/O (um2) Size Size

Adder 256/129 1743.48 700 2100
Barrel shifter 135/128 4878.00 600 2100

Max 512/130 4320.00 1500 4600
Multiplier 128/128 37799.28 500 2000

Sine 24/25 8308.44 2300 9400
Square 64/128 25733.16 5400 -

is impossible to enumerate all possible combination of test vectors. Therefore, for each

benchmark, we generate a set of distinct random test vectors of size s. To find out proper

size for each benchmark, we evaluate standard deviation of Normalized Hamming Distance

with different sizes of test vectors. Specifically, for one benchmark, we generate 200 random

sets of test vectors respectively, from size 100 to 10,000 for every 100, and assess standard

deviation of Normalized Hamming Distance for each size. Figure 3.7 illustrates relationship

between number of test vectors and standard deviation of Normalized Hamming Distance

in Max circuit of EPFL benchmarks. After reaching 0.1%, reduction of standard deviation

becomes slower and standard deviation begins to converge. Considering runtime efficiency

of our algorithm, the number of test vectors cannot be arbitrary large. Therefore, sizes with

0.1% standard deviation is reasonable in terms of both accuracy and efficiency. Table 3.1

demonstrates the number of test vectors required to achieve below 0.1% and 0.2% standard

35

Figure 3.8: Difference between OR-based, XOR-based and XOR/OR-based method on x2
benchmark.

deviation of Normalized Hamming Distance in EPFL arithmetic benchmarks.

3.5.3 BMF-based Approximate Logic Synthesis

Semi-Ring vs Field Algebra

In this section, we compare approximate results among different boolean matrix

factorization algebra. As Section 3.4.1 mentions, semi-ring boolean algebra is implemented

by ASSO algorithm, which is also referred to as OR-based. In order to implement field

modulo-2 algebra (XOR-based), we perform an exhaustive search over the results of

semi-ring algebra. Specifically, for A ≈ BC, we fix B and greedily replace columns in C

with field modulo-2 algebra. Moreover, we mix OR-based and XOR-based method and

derive XOR/OR-based method. After computing OR-based A ≈ BC by ASSO algorithm,

we fix B, and for each column in C, we do an exhaustive search with both semi-ring algebra

and field modulo-2 algebra. Then the one which leads to smallest QoR degradation is

chosen. In this case, the decompressor circuit uses both OR and XOR gates. We evaluate

OR-based, XOR-based and XOR/OR-based method on x2 benchmark in LGSynth 91.

Since x2 is a small benchmark, we generate the truth table and directly pass the truth

table to the factorization algorithm without partitioning. Figure 3.8 demonstrates the

36

Figure 3.9: Benefit offered by output weight scheme on 8-bit unsigned adder.

approximate results from three methods. x2 benchmark has 7 output bits. Therefore,

each method derives 6 approximate designs, ranging from approximation degree 1 to 6.

According to Figure 3.8, with XOR-based and XOR/OR-based method, we make huge

improvement in terms of area saving with similar Hamming distance error. And in most

case, XOR/OR-based method has best performance. With 5.47% Hamming distance

error, XOR/OR-based method can save 14.00% design area. For designs with higher error,

XOR/OR-based method can save 34.11% design area with 10.74% Hamming distance

error, which significantly outperforms other two methods.

Output Weight Schemes

As Section 3.4.1 mentions, considering that significance of output bits may be different,

output weights in BMF algorithm sometimes improve approximate results. For example,

with arithmetic circuit which outputs binary numbers, bit flips in least significant bit and

a more significant bit have different impact on QoR. Therefore, for unsigned arithmetic

circuits, we introduce output weight into ASSO algorithm, where nth output bit has weight

2n−1. We approximate 8-bit unsigned adder with both unweighted and weighted BMF

algorithm. To eliminate the interference of exhaustive search in XOR-based method and

highlight the benefit of using output weights, we only use OR-based method in this section.

37

Table 3.2: ISCAS ’85 benchmarks evaluated using the proposed methodology with
normalized Hamming distance.

Original 5% Error Metric 10% Error Metric 15% Error Metric
Name Area Power Delay Area Power Delay Area Power Delay Area Power Delay

(um2) (uW) (ns) % % % % % % % %

c1355 457.92 64.20 0.81 6.8 6.8 1.7 6.1 6.1 1.7 5.4 5.4 1.7
c17 - - - - - - - - - - - -
c1908 339.84 52.90 1.25 39.3 37.8 28.8 23.9 22.9 23.2 20.0 19.9 23.7
c2670 625.68 219.00 1.16 36.0 28.5 65.4 24.3 19.0 50.6 15.2 13.2 34.5
c3450 959.76 222.00 1.75 60.7 71.6 93.1 56.2 67.1 88.8 50.3 64.4 90.7
c432 152.64 38.60 1.62 85.6 77.7 85.6 83.0 75.1 86.3 71.5 53.6 67.4
c499 460.80 91.50 0.88 47.0 39.8 99.3 21.3 21.9 57.9 19.1 18.7 57.8
c5315 1543.68 487.00 1.31 59.3 58.3 77.2 36.3 32.9 72.1 21.3 18.9 60.7
c6288 3066.84 264.00 4.39 96.3 83.3 91.4 93.7 92.8 92.0 90.3 110.2 97.3
c880 362.16 75.90 1.34 56.6 50.0 53.0 34.5 29.0 32.8 14.3 11.3 25.0

Average 54.2 50.4 66.2 42.1 40.8 56.2 34.2 35.1 51.0

Figure 3.9 demonstrates the necessity of using output weights. Since outputs of adder are

numerical results, we use mean absolute error (MAE) as QoR metric. As Figure 3.9 shows,

output weight scheme provides decent approximate results with good QoR performance,

while approximate designs from unweighted scheme have much higher mean absolute error,

which are all above 18%. If no output weight is provided, BMF algorithm will factorize

truth table while minimizing number of total flipped bits. However, the algorithm does

not consider bit significance. Therefore, although more bits in truth table are accurate,

more significant bits might be flipped, which leads to much higher mean absolute error.

3.5.4 Design Space Exploration

In previous subsection, we approximate small benchmarks x2 and 8-bit unsigned adder

by directly passing the truth table to the factorization algorithm without partitioning.

As Section 3.4.2 mentioned, the size of truth table grows exponentially with the number

of primary inputs. In order to approximate larger circuit, we first partition input circuit

into subcircuits with maximum 10 inputs and 10 outputs, generate truth table for each

subcircuits, and perform BMF on each truth table of subcircuit. Since output bit

significance within each subcircuit is hard to analyze, when approximating each subcircuit,

we use XOR/OR-based method and the target QoR metric to evaluate the simulation

results that guide the design space exploration. In this section, we demonstrate the

38

Table 3.3: EPFL arithmetic benchmarks evaluated using the proposed methodology with
normalized Hamming distance.

Original 5% Error Metric 10% Error Metric
Name A. (um2) P. (uW) D. (ns) A. % P. % D. % A. % P. % D. %

Adder 1325.16 59.40 11.56 89.4 94.8 90.8 79.4 84.0 80.9
Barrel shifter 2828.88 1270.00 2.69 95.8 79.5 105.6 90.0 64.7 88.5
Max 3131.28 851.00 13.45 91.0 65.5 114.3 77.6 58.0 94.3
Multiplier 30417.48 1230.00 12.24 87.7 78.4 99.4 80.5 57.6 93.8
Sine 6608.16 754.00 10.08 84.3 81.2 93.1 71.7 65.2 79.9
Square 24736.32 876.00 9.48 95.8 93.6 85.8 88.5 80.7 75.5

Average 90.7 82.2 98.2 81.3 68.4 85.5

approximate result with design space exploration on ISCAS and EPFL benchmarks. We

also compare our approximate results against EvoApproxLib, which is a well-established

library of adders and multipliers.

Table 3.2 demonstrates approximate designs of ISCAS ’85 benchmarks. Since these

benchmarks are not arithmetic circuits, we use Normalized Hamming Distance as QoR

metric. For each benchmark, we set 3 error thresholds, which are 5%, 10% and 15%, and

evaluate best approximate designs for them. Since c17 benchmark only has 2 primary

outputs, our algorithm has only 1 factorization degree, where Hamming distance is above

15%. Within 5% hammming distance error, on average the area utilization is 54.18% and

power consumption is 50.44% of original. Within 10% Hamming distance error, the area

utilization drops to 42.14% and power utilization is 40.75%. Therefore, our algorithm

shows remarkable saving of area and power on ISCAS ’85 benchmark.

Furthermore, Table 3.3 summarizes approximate designs of EPFL arithmetic bench-

marks. This benchmark suite has 10 circuits, which have larger chip areas than ISCAS

’85. Due to computational capacity, we test our algorithm on 6 benchmarks. Since EPFL

benchmark suite does not provide bit numbering of outputs, we use normalized Hamming

distance as QoR metric. For each benchmark, we set two error thresholds for approximate

design, which are 5% and 10%. Within 5% Hamming distance error, the area utilization

drops to 90.7% and power utilization drops to 82.2%.

39

Table 3.4: Comparison between EvoApproxLib and BLASYS on 7-bit unsigned multiplier

EvoApproxLib BLASYS Naive
Area Power Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW) QoR (um2) (uW)

0.0299% 448.20 82.40 0.0290% 445.68 74.40 - - -
0.0515% 417.60 79.00 0.0488% 421.92 75.00 - - -
0.1400% 351.72 63.10 0.1337% 356.40 61.70 - - -
0.2428% 272.16 44.80 0.2369% 317.16 62.40 - - -
0.4583% 225.36 41.80 0.4532% 252.72 39.00 0.3860% 365.11 57.62
1.1530% 133.20 22.30 1.1203% 125.28 19.70 1.1491% 258.53 38.74
2.2738% 80.64 14.00 2.2298% 69.12 12.30 - - -
5.0938% 30.96 4.26 4.4771% 30.96 4.36 2.6384% 135.14 23.78

3.5.5 Comparison of Arithmetic Blocks

Finally, we test our method on four commonly used arithmetic circuits and compare

results against EvoApproxLib, which provides approximate designs for adders and multi-

pliers. As baseline, we also compare against a naive approximate computing approach,

where we only compute with n-most significant bits and ignore the less significant ones.

For example, the verilog code below shows a naive approximate design of 8-bit unsigned

multiplier, which only takes 6-most significant bits into consideration and assigns the rest

bits to 0. Notice that such approximate design is effectively a 6-bit unsigned multiplier.

1 module mult8u_approx(A, B, O);

2 input [7:0] A, B;

3 output [15:0] O;

4 wire [11:0] N;

5

6 assign N = A[7:2] * B[7:2];

7 assign O = {N, 4’b0000};

8 endmodule

Since circuits in EvoApproxLib are synthesized from a different standard cell library,

we first synthesize their approximate designs with the same industrial 65 nm technology

40

Table 3.5: Comparison between EvoApproxLib and BLASYS on 8-bit unsigned multiplier

EvoApproxLib BLASYS Naive
Area Power Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW) QoR (um2) (uW)

0.0002% 682.92 120.00 - - - - - -
0.0014% 666.72 113.00 0.0011% 640.08 92.10 - - -
0.0076% 612.00 106.00 0.0069% 622.44 92.80 - - -
0.0370% 522.00 88.20 0.0346% 534.96 72.60 - - -
0.1952% 358.56 47.40 0.1757% 413.64 54.60 0.1941% 507.01 87.60
0.8859% 170.64 24.10 0.7973% 239.76 31.60 0.5802% 365.11 57.62
4.8338% 26.28 3.42 4.4782% 52.56 5.13 2.8324% 135.14 23.78

Table 3.6: Comparison between EvoApproxLib and BLASYS on 16-bit unsigned multiplier

EvoApproxLib BLASYS Naive
Area Power Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW) QoR (um2) (uW)

3e-10 3056.40 287.00 0.00% 3038.76 265.00 - - -
5.7e-09 2900.88 275.00 5.1e-09 2925.72 251.00 - - -
4.5e-08 2665.80 246.00 3.4e-08 2702.16 242.00 - - -
7.5e-07 2291.76 218.00 7.5e-07 2322.36 215.00 - - -
7.7e-06 1735.92 170.00 7.3e-06 1864.80 155.00 7.5e-06 2532.07 237.29
0.0150% 1182.24 121.00 0.0110% 1100.16 95.70 0.0115% 1635.71 152.67
0.1000% 732.24 65.60 0.0958% 654.48 49.20 0.0963% 810.26 75.28
1.5500% 225.72 18.30 1.4824% 166.68 10.60 1.5448% 258.53 38.74
18.750% 2.16 0.09 - - - 10.9306% 31.48 4.94

Table 3.7: Comparison between EvoApproxLib and BLASYS on 16-bit unsigned adder

EvoApproxLib BLASYS Naive
Area Power Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW) QoR (um2) (uW)

0.0002% 167.40 56.50 - - - - - -
0.0018% 134.28 46.40 0.0015% 164.16 51.60 0.0010% 172.18 61.26
0.0063% 119.52 41.10 0.0034% 145.44 49.10 0.0053% 155.31 52.85
0.0210% 101.16 34.60 0.0147% 138.60 44.10 0.0114% 141.72 48.90
0.0570% 85.68 27.60 0.0289% 119.88 35.80 0.0481% 125.80 44.97
0.2000% 63.72 20.10 0.1996% 92.88 24.90 0.1944% 102.59 32.07
0.9100% 42.12 13.10 0.7864% 77.40 17.50 0.7802% 81.20 21.72
3.5200% 24.84 6.42 3.2475% 60.84 11.20 3.1273% 54.01 19.21

41

(a) Area utilization of 7-bit unsigned mul-
tiplier

(b) Power utilization of 7-bit unsigned
multiplier

(c) Area utilization of 8-bit unsigned mul-
tiplier

(d) Power utilization of 8-bit unsigned
multiplier

(e) Area utilization of 16-bit unsigned
multiplier

(f) Power utilization of 16-bit unsigned
multiplier

Figure 3.10: Comparison between EvoApproxLib and BLASYS. Red points represent
designs explored by BLASYS. Blue points represent designs provided by EvoApproxLib.

node. Then we use our algorithm and naive approach to generate designs using their QoR

metrics as thresholds, and compare area and power utilizations. Since outputs represent

numerical value, we use mean absolute error (MAE) as QoR metric. Table 3.4 to 3.7

compare approximate designs between EvoApproxLib, BLASYS and the naive approach

42

on 7-bit unsigned multiplier, 8-bit unsigned multiplier, 16-bit unsigned multiplier and

16-bit unsigned adder respectively.

As Table 3.4 to 3.7 demonstrate, the naive approach has an obvious limitation, i.e.

approximate designs with small error are missing. Since the naive approach generates

approximate circuits by ignoring a certain number of less significant bits, the number

of possible approximate designs is fixed. Take 7-bit unsigned multiplier in Table 3.4

as an example. Even ignoring the least significant bit results in 0.3860% MAE, while

approximate designs with less error cannot be generated. Meanwhile, if comparing chip

area and power consumption using the same error threshold, our BLASYS algorithm is a

lot better than the naive approach.

As a unified approach that generates approximate designs for general circuit, our

algorithm outperforms EvoApproxLib in terms of power consumption. Among 24 designs

of unsigned multipliers, our algorithm has better power utilization in 17 designs. Although

we only beat 6 designs in terms of area utilization, the numbers are close in other designs

while ours have better QoR. Figure 3.10 illustrates the explored design space of our

algorithm compared to designs of EvoApproxLib, where blue points are designs from our

algorithm, and red points are designs from EvoApproxLib. It shows that our algorithm is

competitive in terms of area utilization, and outperforms EvoApproxLib in terms of power

utilization. Therefore, our algorithm is able to reach state-of-the-art performance in many

commonly used circuits. Table 3.7 shows that our algorithm has worse results in 16-bit

unsigned adder. Since it is a relatively small design, it has less number of subcircuits,

which leads to a small explored design space. In this case, lack of design space exploration

might sometimes affect performance.

3.5.6 Runtime Characterization

In this subsection, we briefly discuss the improvement of runtime. As mentioned in

Section 3.4.1, the time complexity of exhaustive search for XOR/OR-based method is

43

Figure 3.11: Runtime distribution. Approximate corresponds to the time of approximating
subcircuits. Synthesis corresponds to the time of synthesizing top-level design from sub-
circuits. Simulation corresponds to QoR estimation.

O(m2n), where m is the number of output bits, and n is the number of input bits. In order

to speed up this process, we break down input circuits into subcircuits with maximum 10

inputs and 10 outputs. Also, in practice, to exhaustively search columns in truth table of

decompressor, we compute all possible combinations of columns at first, and then choose

the best for each column.

Then, instead of approximating all subcircuits at once as Algorithm 1 suggests, in

practice we approximate subcircuits on-demand. The approximation realizations of

subcircuits are stored and can be reused later for other designs. With a multi-core

system, we are able to parallel evaluation of designs in each iteration, since the degrees of

approximation is reduced by step size in different subcircuits.

After implementing improvements mentioned above, our method is speed up by 35%.

Figure 3.11 illustrates the distribution of runtime. Due to on-demand approximation of

subcircuits and reusing, subcircuit approximating only takes 0.2% of runtime. Simluation,

which is QoR estimation of approximate designs, takes 33.2% of runtime. And most of

runtime is spent on synthesizing top-level designs from approximate subcircuits using

Yosys.

44

3.6 Conclusions

In this paper we proposed a new approach for approximate circuit synthesis by

generalizing matrix factorization techniques to incorporate field (XOR) and semi-ring

(OR) algebra implementations. This generalization leads to a wider range of possible

approximate circuit realizations that can be explored to identify the best trade-off. We

integrated our approach into a design space exploration method with the capability to

partition large circuits into subcircuits for approximation. We implemented and evaluated

our approach on a large range of circuits using a number of error metrics such as numerical

differences and Hamming distances, and we have demonstrated that our method is able

to result in state-of-the-art performance while being flexible for all kinds of input design.

Furthermore, we elucidated the large space of possible approximate designs generated

from our approach, and the trade-off between accuracy and design metrics such as power

and area.

In our experiments, we compared 23 approximate designs of unsigned multipliers

against the state-of-the-art method, where BLASYS has better power utilization in 17

out of the 23, and better circuit delay in 16 of the designs. Although BLASYS only

achieves smaller area in 8 designs, the numbers are very close. We also noticed that

the input distribution of each subcircuit could potentially be used to improve truth

table factorization and design space exploration. In future work, we plan to analyze

the influence of input distributions of subcircuits on approximation results, and further

improve BLASYS by deriving such distributions.

45

CHAPTER 4

Runtime Configurable Approximate

Circuits with Self-Correcting

Capability

4.1 Introduction

As circuit customization is developed to meet the requirements of various applications,

power consumption becomes a main factor limiting the scale of computational capacity.

As discussed in previous sections, one of such low-power techniques is approximate

computing, which can be widely used in application domains that have inherent resilience

to small inaccuracies in the outputs [75]. Such resilience can originate from various sources

including, noise in input data, inherent approximate calculations, or human tolerance to

variations in the outputs, while different applications may have different resilience. Thus,

one trend is to design approximate circuits which are able to dynamically switch among

various accuracy levels (including full accuracy) at runtime, each of which is associated

with different power consumption. By properly configuring accuracy levels at runtime,

power consumption could be substantially saved.

46

The last few years have seen various techniques for approximate logic synthesis [54; 76;

77; 78]. Most of them focus on approximating circuits with “fixed” accuracy, while some

other works start to explore the flexibility of runtime configuration [2; 3; 79; 80; 81; 82]. In

this chapter, we propose a novel RUntime Configurable Approximate (RUCA) methodology

based on truth tables factorization, which generates approximate circuits with multiple

accuracy levels, including full accuracy. The contributions of this chapter are as follow.

• Using Boolean Matrix Factorization algorithm, RUCA approximates an arbitrary

input circuit and separates it into multiple configuration blocks using truth tables

decomposition. By activating different blocks at runtime using power gating, we can

dynamically choose the expected accuracy-power configuration to optimize power

and delay. A corrector circuit is introduced to restore 100% accuracy.

• To improve the scalability of our approach, a large input circuit is first partitioned

into subcircuits, and a design space exploration scheme is used to choose the proper

subcircuits to approximate in the runtime configurable manner.

• We evaluate RUCA framework on a number of commonly used arithmetic circuits

from Benchmarks for Approximate Circuit Synthesis (BACS) [75]. We also compare

our methodology against other accuracy-configurable frameworks, Approximate

through Logic Isolation [2] and 8-bit QCM [3], showcasing that RUCA efficiently

improves power and delay with the flexibility of operating under multiple modes.

The organization of this chapter is as follow. In Section 4.2, we overview relevant

previous work on Approximate Logic Synthesis (ALS). In Section 4.3, we introduce our

novel RUCA methodology. We provide our experimental results in Section 4.4. Finally,

we summarize our conclusion in Section 4.5.

47

4.2 Previous Work

Various approaches have been proposed for Approximate Logic Synthesis (ALS) [54; 76;

77; 78]. Compared to ALS that generates “fixed” approximate circuits, quality-configurable

approximate design is less explored. One category of runtime configuration is Voltage

Over-Scaling (VOS), where the power and accuracy of operation can be dynamically

adjusted by tuning the voltage. However, the application of VOS is limited since it may

cause uncontrollable errors that affect the most significant bits. Also, VOS increases

delays on all timing paths, which may affect the performance of the whole system and

even lead to the failure of operation [83].

To design stable and predictable circuits, methodologies based on logic synthesis

have been proposed. SASIMI [79] proposed the first methodology to generate quality-

configurable design from an arbitrary input circuit by identifying similar signals and

substituting one for the other to simplify the logic. However, when full accuracy is

required, the approximate circuit may need an additional clock cycle to detect errors and

re-compute the substituted signals. Thus, SASIMI turns a combinational circuit into a

variable latency circuit, which may not be applicable to large systems.

To mitigate the possibly doubled delay, an approximation approach through logic

isolation is proposed [2], which aims to isolate parts of circuit that significantly contribute

to power consumption while having less effect on overall accuracy, where power gating is

then used to control the activation of these parts.

Another method based on clock gating has been proposed [80], where multiple approx-

imate designs of input circuit are first instantiated. Then area-saving gating mechanisms

are used to exploit synthesis relaxation, which leads to total energy saving. This approach

was further extended using cross-layer approach [81]. While such methodologies reduce

dynamic power consumption significantly, a large amount of area overhead is introduced.

Also, clock gating does not reduce leakage power, which is significant in today’s tech-

48

nology node. Besides methodologies that take arbitrary circuits as input, some runtime

configurable designs with arithmetic circuits have been proposed [3; 82]. For example,

QCM [3] designs configurable multipliers using genetic algorithms.

4.3 Proposed Methodology

In this section, we describe our proposed methodology of designing RUntime Configurable

Approximate (RUCA) circuit by factorizing and separating truth table, together with the

method of self-correcting by corrector circuit. Due to the complexity of BMF algorithm,

we partition a large input circuit into subcircuits and use design space exploration to

improve the scalability of our methodology. We also discuss the approaches of reducing

design overhead.

4.3.1 RUCA with Corrector Circuit

According to the rule of matrix multiplication, after factorizing a matrix M into A

and B, we may separate them into individual columns and rows, as Equation 4.1,

M ≈ AB = (a1 · · ·af)


b1

...

bf

 = a1b1 + a2b2 + · · ·+ afbf (4.1)

where ai is the ith column in matrix A and bj is j
th row of matrix B. As discussed in

Chapter 3, due to the heuristic property of BMF algorithm, as we add terms from a1b1

to afbf , the hamming distance ||M −AB||0 keeps decreasing in a greedy manner. To

enable runtime configuration, our goal is to factorize the input matrix M and separate

into multiple terms which may satisfy different error thresholds. For example, suppose

that we want to factorize M such that there exists two configurable accuracy (e.g., error

2% and 1%). Starting from factorization degree f = 1 with only the first term a1b1, we

gradually increment f and sum aibi terms, until the approximation error becomes no

larger than 2%. Assume the current factorization degree is f = k1. In this case, we can

49

(a)

(b)

Figure 4.1: Example of a 3-level approximate circuits using RUCA. (a) BMF with multiple
accuracy levels. (b) Runtime configurable circuit design, where power gating is used to
activate different blocks.

stack vectors from a1 to ak1 as A1, and stack vectors from b1 to bk1 as B1, such that the

error between M and A1B1 is no larger than 2%. We then keep incrementing f until 1%

error threshold is met. Assuming now f = k1 + k2, vectors from ak1+1 to ak2 are stacked

as A2, and vectors from bk1+1 to bk2 are stacked as B2, such that the error between M

and A1B1 +A2B2 is no greater than 1%. In other words, factorized matrices A and B

are separated as

M ≈ AB = A1B1 +A2B2 = (a1 · · ·ak1)


b1

...

bk1

+ (ak1+1 · · ·af)


bk1+1

...

bf

 (4.2)

50

Figure 4.2: An example of runtime configurable designs for a large input circuit. (a)
Input circuit is partitioned into three subcircuits. (b) Subcircuits are approximated into
2-level runtime configurable designs. Base blocks of 3 subcircuits are synthesized together
as the base group of the top-level circuit. Corrector circuits are grouped together as
the full-accuracy group of the top-level circuit. (c) Additional accuracy levels can be
introduced by re-arranging RUCA blocks of subcircuits into intermediate group(s).

If more accuracy levels are needed, this procedure is repeated until we obtain matrices Ai

and Bi for each accuracy level. We propose to synthesize each AiBi term into its own

circuit blocks. To implement binary addition, bitwise OR gates (gate a in Figure 4.1b)

are used to connect each block of AiBi term. Therefore, starting from block of A1B1, as

we activate more AiBi blocks, the error between original truth table M and summation

of AiBi terms keeps decreasing, where different error thresholds can be achieved.

In order to support critical applications which require full accuracy, we propose to use

a corrector circuit to restore the original functionality when needed. Here, field modulo-2

algebra (logic XOR) is used to correct flipped bits, where ‘1’s can be used to flip bits

such that 1⊕ 1 = 0 and 1⊕ 0 = 1. After input truth table M is factorized and separated

into summation of terms AiBi, bitwise XOR is computed between M and ΣiAiBi to

obtain the corrector matrix C. This matrix can be used to restore input truth table M by

M = (ΣiAiBi)⊕C. Figure 4.1a demonstrates a factorization algebra with three accuracy

levels. Corrector matrix C is computed to restore the input matrix by XOR operation.

Figure 4.1b demonstrates structure of a 3-level runtime configurable circuit. Firstly, an

input circuit with n inputs and m outputs is simulated to obtain the 2n×m truth table M.

Then, M is factorized into two matrices A and B, which are then separated into A1B1

51

and A2B2. All matrices are synthesized into corresponding parts of the circuit. Corrector

matrix C, which is used to synthesize the corrector circuit, is computed for restoring

input truth table M. As Boolean algebra indicates, A1B1 and A2B2 are connected

using bitwise OR (gates a), which is then connected to the corrector circuit using bitwise

XOR (gates b). Thus, if all parts are activated, it will produce equivalent functionality as

original circuit, where circuit operates in full-accuracy mode:

M = (A1B1 +A2B2)⊕C (4.3)

In order to enable runtime configuration, we allocate these parts into different configuration

blocks, and use power gating to control their activation. In this example, A1, B1 and all

connecting gates compose the base block, which is always activated by default. When only

activating the base block, the circuit operates in approximate mode with lowest accuracy,

where the output matrix M′ is

M′ = A1B1 (4.4)

A2 and B2 compose the level-2 block, which can be additionally activated for higher-

accuracy mode. And the output matrix M′′ is

M′′ = A1B1 +A2B2 (4.5)

Following this framework, we are able to design runtime configurable circuits with arbitrary

number of accuracy levels.

4.3.2 Partitioning and Design Space Exploration

The number of rows in a truth table grows exponentially with the number of primary

inputs in the circuit, which makes BMF algorithm computationally expensive for circuits

with large number of inputs. To scale our approach, we propose a divide-and-conquer

52

method using circuit partitioning and design space exploration technique. As illustrated in

Figure 6.4a, to begin with, a given circuit is partitioned into a number of subcircuits with

limited number of inputs and outputs, each of which is approximated using RUCA approach

as Figure 4.1. A design space exploration technique is used to find proper subcircuits and

factorization degrees, where the priority is to approximate the subcircuits that consume

more power while having less impact on final accuracy. Figure 6.4b demonstrates a 2-level

configurable circuit, where base blocks of the approximate subcircuits are grouped in an

individual power domain and synthesized together as the base group of the top-level design.

Corrector circuits of approximate subcircuits are also grouped together into full-accuracy

group, which enables the top-level design to restore full accuracy. Moreover, if additional

accuracy levels are expected, more intermediate groups can be created by re-allocating

different blocks of approximate subcircuits, as illustrated in Figure 6.4c.

Algorithm 4 describes the overall procedure of approximating subcircuits and re-

allocating blocks into groups. To begin with, the input circuit is partitioned into subcircuits

(line 1) using hypergraph partitioning algorithm [56]. Then the truth table of each

subcircuit is factorized as Equation 4.1 to prepare for RUCA design (line 3).

In design space exploration scheme (line 7-19), we approximate and replace subcircuits

with RUCA design, whose configuration blocks are re-allocated into groups of top-level

design. In other words, for each subcircuit si, we search proper factorization degrees

f ’s to separate factorized truth tables as Equation 4.2. Factorization degree fi for each

subcircuit is initialized as the number of primary outputs (line 4) and decrement by 1 at

each iteration (line 9,13), where RUCA(si, fi − 1) denotes a runtime configurable design

based on subcircuit si with factorization degree fi − 1. For each candidate design, a loss is

computed based on accuracy Erri, power in full-accuracy mode Pacc and in approximate

mode Papp (line 10,12). Whenever an error threshold is reached, all new added blocks are

placed into corresponding group (line 14-19).

53

Algorithm 2: Runtime Configurable Approximate Circuit with Design Space
Exploration
Input : ICir: input circuit

ϵ: list of error thresholds, sorted in ascending order
Output :RCir: list of groups in output RUCA circuit

1 SCir = Partition ICir into list of subcircuits
2 for each subcircuit si in SCir do
3 Factorize truth table for si
4 Set current factorization degree fi = mi where mi is the number of primary outputs

of subcircuit si
5 end
6 n = 0 // Indexing RCir list
7 while ϵ is not empty do
8 for each subcircuit si in SCir do
9 TCiri = RUCA(si, fi − 1)

10 lossi = Erri · [Pacc + Papp]

11 end
12 k = argmini lossi
13 fk = fk - 1
14 if QoR ≥ ϵ[0] then
15 Replace si with TCiri for each subcircuit si
16 Add all new blocks (except base blocks) into RCir[n]
17 n = n + 1
18 ϵ.pop(0)

19 end

20 end
21 Add all base blocks of subcircuits into RCir[n]
22 return RCir

4.3.3 Reducing Design Overhead

Design overhead is considered as an important criterion in accuracy-configurable

designs, which is defined as additional chip area, power and delay running in full-accuracy

mode compared to original input circuit. In RUCA, the design overhead mainly comes

from two sources: (1) As Figure 4.1b shows, additional bitwise OR and XOR gates are

used to connect blocks, which is inevitable in RUCA design. To mitigate such overhead in

design space exploration, we should limit number of levels for each approximate subcircuit.

In our practice, each subcircuit is approximated with no more than three levels, such that

each of these contains at most one bitwise OR gate and one bitwise XOR gate.

(2) Since each block is synthesized and optimized individually, we may lose the

54

opportunity of logic optimization across different blocks, which leads to logic redundancy.

Such logic redundancy becomes severe with a dense corrector matrix. As discussed in

subsection 4.3.1, the corrector circuit is synthesized from corrector matrix to flip wrong

bits in approximate truth table. Normally, the difference between approximate and original

truth table is not too large, and the corrector matrix is sparse as shown in Figure 4.1a. In

this case, the overhead caused by corrector circuit is small. However, if input circuit is

partitioned and design space exploration is performed, for some subcircuits, the difference

between approximate and original truth table may be large. In this situation, the corrector

matrix is dense, which will be synthesized into large corrector circuit, sometimes even

larger than the original subcircuit. In this case, rather than using a corrector circuit

to achieve full accuracy, we use the original subcircuit instead. In our design space

exploration algorithm, once the corrector circuit is synthesized, we compare the power

consumption between corrector circuit and original one. If a corrector circuit consumes

less power, we follow the algorithm described in Section 4.3.2. However, if the corrector

circuit consumes more power than the original subcircuit, we directly include original

subcircuit for full-accuracy mode. In this case, instead of XOR gates, a multiplexer is

used to choose between original subcircuit and the approximate versions.

4.4 Experimental Results

In this section, we evaluate our proposed methodology on a number of arithmetic

circuits which are commonly deployed in approximate computing from Benchmarks for

Approximate Circuit Synthesis (BACS) [75]. Table 4.1 summarizes the characteristics of

evaluated benchmarks. To begin with, we directly generate runtime configurable designs

of 8-bit adder, where the trade-off between design overhead and choices of error thresholds

is discussed. The remaining benchmarks are first partitioned into subcircuits, and then

design space exploration is performed as Algorithm 4.

For hardware metrics, all designs are implemented in Verilog and synthesized with

55

a 7nm predictive process design kit. Cadence Genus is used to synthesize each design

and estimate chip area, circuit delay and power consumption under the maximum clock

frequency of original circuit. For QoR metric, we report normalized mean absolute error

(MAE) defined as

MAE =
1

N
ΣN

i=1

|Ri −R′
i|

2m
, (4.6)

where N denotes the size of the test vectors while Ri and R′
i denote the accurate and

approximate numerical results.

In the first set of experiment, we analyze the trade-off between design accuracy, power

consumption and design overhead. RUCAs are generated for 8-bit adder with different

error thresholds. Besides full accuracy, only one approximate level is considered for

each design in this experiment. Since the original circuit has 9 primary outputs, after

factorizing its truth table, first f pairs of columns and rows are synthesized into base

block as approximate mode, where f ranges from 1 to 8. For each RUCA design, an

associated corrector circuit is created to restore errors in full-accuracy mode. In Figure 4.3,

we report the power consumption of the corrector circuit, and the RUCA design in both

approximate mode and full-accuracy mode. In approximate mode, power consumption

keeps reducing while error increases. However, in full-accuracy mode, the corrector circuit

becomes more substantial and power-consuming, especially when factorization degree f

is small. As MAE exceeds 5%, where factorization degree f < 4, power consumption of

full-accuracy mode increases substantially due to the corrector circuit. Therefore, to limit

the overhead in full-accuracy mode, error thresholds in approximate mode need to be

limited, e.g., below 5% MAE.

In the second set of experiments, for the remaining six benchmarks in BACS in

Table 4.1, we generate three RUCA designs with 2 levels, 3 levels and 4 levels respectively.

We use 0.1%, 1% and 2% as error thresholds. In order to highlight the benefits of our

methodology, we report relative power as the ratio between power of RUCA design (under

certain accuracy level) and power of the original circuit. Figure 4.4 illustrates relative

56

Table 4.1: Characteristics of evaluated benchmarks.

Bench-
Name Function I/O

Area Power Delay
mark (um2) (uW) (ns)

BACS

adder8 8-bit adder 16/9 47.58 24.70 0.81
abs diff absolute difference 16/9 67.41 22.68 0.90
adder32 32-bit adder 64/33 167.03 32.20 2.83
buttfly butterfly structure 32/34 174.26 42.30 3.05
mac multiply-add 12/8 94.48 33.76 1.14
mult8 8-bit multiplier 16/16 364.61 82.21 1.97
mult16 16-bit multiplier 32/32 1084.52 245.06 3.74

Figure 4.3: 2-level approximate design of 8-bit adder: Power consumption with different
error thresholds.

power of RUCAs for each benchmark. Compared to original circuit, RUCA substantially

saves power in approximate mode, and use slightly extra power to enable corrector circuit

for full-accuracy mode. However, as the number of accuracy levels increases, RUCA

approximates an input circuit into more configurable blocks, which potentially reduces

opportunities to optimize logic synthesis and increases power consumption in full-accuracy

mode.

In Table 4.2 and Table 4.3, we thoroughly evaluate all benchmarks and compare

the performance against another runtime configurable framework named Approximation

through Logic Isolation [2]. Under each accuracy level, we report total area, power and

delay as ratio against original input circuit. We use 3-level runtime configurable designs and

set error thresholds as 1% MAE and 2% MAE. Red numbers represent better performance

between two methodologies. On average, we are able to reduce 30.15% power and 22.96%

57

Figure 4.4: Relative power of RUCAs for each benchmark, with 2-4 levels.

Table 4.2: Comparison of total area and power between RUCA and Approximation
through Logic Isolation (ISO) [2] (using 3-level runtime configurable design)

Name
Total Area Power

RUCA ISO
Under 2% MAE Under 1% MAE Full Accuracy
RUCA ISO RUCA ISO RUCA ISO

abs diff 138.38% 152.09% 65.79% 55.82% 72.73% 82.54% 105.68% 109.85%
adder32 142.74% 134.47% 46.17% 51.89% 70.13% 60.93% 109.86% 113.10%
buttfly 147.73% 136.10% 56.84% 51.82% 70.95% 72.34% 107.93% 107.38%
mac 133.43% 138.22% 75.31% 69.50% 82.39% 83.38% 111.45% 117.42%
mult8 129.23% 133.09% 53.70% 71.29% 67.41% 87.23% 107.41% 112.49%
mult16 117.78% 128.66% 39.90% 54.16% 55.47% 72.45% 104.52% 109.73%

Average 134.89% 137.11% 56.29% 59.08% 69.85% 74.81% 107.81% 111.66%

Table 4.3: Comparison of delay between RUCA and Approximation through Logic Isolation
(ISO) [2] (using 3-level runtime configurable design)

Name
Delay

Under 2% MAE Under 1% MAE Full Accuracy
RUCA ISO RUCA ISO RUCA ISO

abs diff 56.19% 64.90% 85.40% 88.94% 116.34% 124.92%
adder32 62.37% 68.50% 84.92% 82.56% 129.73% 124.99%
buttfly 42.27% 74.24% 76.08% 92.03% 121.05% 137.70%
mac 52.73% 65.10% 74.20% 87.76% 134.79% 129.53%
mult8 40.91% 71.46% 72.00% 91.26% 138.84% 134.26%
mult16 33.05% 62.07% 71.62% 79.41% 126.50% 136.83%

Average 47.92% 67.71% 77.04% 86.99% 127.87% 131.37%

delay with 1% error threshold; and reduce 43.71% power and 52.08% delay with 2% error

threshold. To run in full accuracy mode, RUCA consumes 7.81% additional power than

the original circuit. However, it is expected that with approximate computing, the circuits

58

Table 4.4: Comparison between RUCA and the naive approach

Benchmark
RUCA Naive

Area MAE Power Delay Area MAE Power Delay

8-bit
129.33%

2.00% 53.70% 40.91%
149.20%

2.83% 63.05% 52.18%
unsigned 1.00% 67.41% 72.00% 1.34% 77.15% 73.90%
multiplier 0.00% 107.41% 138.84% 0.00% 129.14% 133.07%

16-bit
117.78%

2.00% 39.90% 33.05%
157.37%

2.23% 54.94% 45.87%
unsigned 1.00% 55.47% 71.62% 0.97% 78.01% 73.00%
multiplier 0.00% 104.52% 126.50% 0.00% 136.41% 143.47%

will run approximately most of the time, and only in a few occasions, full accuracy will

be needed and enabled. Compared to Logic Isolation, our RUCA framework has smaller

total area in 4 designs out of 6 benchmarks, which on average saves 2.22% area compared

to Logic Isolation. In terms of power consumption, our approach has 3 better results

under 2% error level, and 5 better results under 1% error level and full-accuracy level

respectively. In general, compared to Logic Isolation, RUCA is able to use smaller chip

area and consumes less power to implement the same functionality of runtime configurable

design, especially in higher-accuracy mode.

Similar to Section 3.5.5, using 8-bit multiplier and 16-bit multiplier, we compare

3-level RUCA against 3-level approximate circuits generated by the naive approach,

which dynamically “ignores” a certain number of less significant bits. To enable the

functionality of dynamic configuration, the blocks of “ignored” bits need to be synthesized

individually, so that power gating can control their activations. Similar to our observation

in Section 3.5.5, the accuracy level in naive approach is limited. Thus, when generating

configurable approximate circuits with the naive approach, we choose the closest accuracy

level from our RUCA experiments. Table 4.4 demonstrates the results. For both multipliers,

RUCA significantly saves more power consumption and reduces more circuit delay in

approximate mode. In full accuracy mode, RUCA also has less overhead compared to

the naive approach. The main reason is that, in naive approach needs to synthesize each

blocks separately as mentioned before. However, RUCA is able to optimize logic synthesis

across all subcircuits using design space exploration.

59

Table 4.5: Comparison between RUCA and QCM [3]

RUCA QCM

Area MAE Power Delay Area MAE Power Delay

129.33%
2.00% 53.70% 40.91%

135.01%
1.40% 53.93% 47.61%

1.00% 67.41% 72.00%
0.00% 107.41% 138.84% 0.00% 112.40% 128.46%

Finally, in Table 4.5, using 8-bit multiplier, we compare a 2-level QCM [3] against 3-level

RUCA, where RUCA has more accuracy levels with even smaller total area, demonstrating

that the design overhead of RUCA is relatively lower.

4.5 Conclusion

In this chapter, we proposed a novel methodology RUCA to design runtime configurable

approximate circuit with Boolean matrix factorization. Factorized matrices are separated

to synthesize each configuration block, while a corrector circuit is created to restore full

accuracy. Moreover, we integrated our methodology with design space exploration scheme

to improve scalability. We evaluated RUCA on a set of benchmarks, and demonstrated

that RUCA significantly reduce power and delay, while providing flexibility to balance

the accuracy-power trade-off. Comparing against other approaches, on average RUCA

additionally saves power consumption by 3.87% and circuit delay by 11.08% while reducing

chip area by 2.22%, which highlights the state-of-the-art performance.

60

CHAPTER 5

Configurable Deep Neural Network

with Dynamic Weight-Enabling for

Efficient Inference

5.1 Introduction

Deep Neural Networks (DNN) are widely used in many applications, e.g. object

detection, gesture recognition and augmented reality, which are often deployed on edge

devices with limited computational resources. While it is possible to train DNNs on the

cloud, inference on edge devices needs to meet timing and energy constraints. Different

devices have different computing power, while other running tasks also limit the amount of

available computational resources. To deploy the same DNN model in different scenarios,

one solution is to train a dynamic DNN with multiple configurations of operation modes,

where we are able to choose the most applicable configuration at runtime to meet the

timing and energy constraints while optimizing accuracy.

The last few years have seen various methodologies for dynamic DNNs, which can be

categorized into three classes: flexible width [1; 84; 85], flexible depth [86; 87] and flexible

61

Figure 5.1: Flexible weight-enabling methodology, where weights can be dynamically
enabled to form different sub-networks for different hardware platforms.

precision [88; 89]. In this chapter, we propose a novel orientation, flexible weight-enabling,

where connective weights between layers can be dynamically enabled or disabled. As

Figure 5.1 illustrates, the entire model is first trained on server. For inference, the model

can be dynamically configured to different sub-networks by enabling different set of weights

to meet the timing and energy constraints of different devices. We name our methodology

dynamic Weight-enabling Network (WeNet). The contributions of this chapter are as

follow.

• We introduce a novel dynamic DNN architecture, WeNet, that is able to dynamically

enable different subsets of weights at runtime. We propose a weight-enabling

pattern, that for each layer, the subset of weights forms a sub-network with several

independent groups.

• We extend WeNet to convolutional layers by using flexible group convolution and

channel shuffling operation.

• During training, random sub-networks are sampled at each iteration, where switchable

batch normalization [85] is used. At inference time, we propose a design space

exploration method to search optimal sub-networks and balance the trade-off between

62

efficiency and accuracy.

• We evaluate WeNet using multiple DNN architectures, and measure inference time,

energy consumption and accuracy with different configurations of sub-networks.

By comparing against other dynamic DNNs, we demonstrate that WeNet provides

better accuracy-efficiency trade-off.

The organization of this chapter is as follow. In section 5.2, we overview relevant

previous works. In section 5.3, we introduce WeNet and its training algorithms. We

provide our experimental results in section 5.4. Finally, we summarize our conclusion and

directions for future works in Section 5.5.

5.2 Previous Work

A number of methodologies for efficient DNNs have been proposed [90; 91; 92]. While

these methodologies aim to shrink model size and reduce computational cost, none of them

have the flexibility of adjusting model efficiency at runtime. The first design with such

flexibility is “Big/Little” implementation [93], where two networks are trained and the

“big” network is triggered only if the result from “small” network is not deemed confident

enough. However, such methodology needs to store multiple models, and the latency for

switching between different models is not negligible. Thus, a more efficient approach is to

train one single network, with the flexibility to switch between different modes at runtime.

Recent works on dynamic network can be categorized into three classes:

• Flexible Width: At runtime, the width of each layer can be shrunk to reduce

computational cost, or expanded to increase accuracy. Tann et al. [84] propose one

of the first runtime configurable DNN with flexible width, where DNN is trained

incrementally at each width ratio. Slimmable neural network (SNN) [85] further

improves the idea with switchable batch normalization. US-Nets [1] extends SNN

to execute at arbitrary width ratio.

63

Table 5.1: Comparison between Different Dynamic Network Methods

Memory Num. of Special
Footprint Neurons Device

Flex. Width Reduced Reduced Not Needed
Flex. Depth May Increased Reduced Not Needed
Flex. Precision Reduced Same Needed
Flex. W.E. Reduced Same Not Needed

• Flexible Depth: Flexible depth means that the depth of DNN is adjustable at

runtime. One common approach is to introduce early-exiting points, where the rest

layers are ignored [87]. BranchyNet [86] proposes to add side branches to exiting

points, where a forward pass can exit earlier from the main branch with higher

confident inputs.

• Flexible Precision: Flexible precision means that the precision of operands,

including both weights and inputs, can be adjusted dynamically at runtime. Pagliari

et al. [88] find that many inputs do not need full precision to make accurate

classification, and propose to reduce precision of operations when the confidence of

input is high enough. SP-Nets [89] propose to train a multi-precision network using

switchable batch normalization.

Table 5.1 compares three categories of dynamic networks, where all of them aim to

reduce inference time and energy consumption. For flexible width, the number of neurons

activated at each layer can be reduced at runtime, which leads to less memory footprint.

For flexible depth, however, due to the additional side branches, memory footprint may

even increase. Both flexible width and flexible depth reduce number of neurons, where

crucial information may be lost and accuracy may drop significantly. For flexible precision,

each weight uses less memory space by decreasing its floating-point precision, which

reduces memory footprint. Since the number of neurons remains the same as original

network, it is more likely to retain extracted features and remain high accuracy. But this

class of dynamic networks cannot be used on any arbitrary devices, since the device has

to support operations with multiple precision to exploit the efficiency of low-precision

64

Figure 5.2: Example of a WeNet on dense layers. (a) Full network: Enable all weights to
restore original network with highest accuracy. (b) 1/2-network: Enable 1/2 weights and
form 2 separated channels. (c) 1/4-network: Enable 1/4 weights and form 4 separated
channels. (d) Combination of 1/2- and 1/4-network.

operands. Comparing to all three categories, we expect our methodology to reduce memory

footprint for energy-efficient inference, keep the number of neurons unchanged for higher

accuracy, while generalizing to all types of devices. Thus, as Table 5.1 shows, we propose

flexible weight-enabling (Flex. W.E.), where different subsets of weights can be enabled

dynamically at runtime.

5.3 Proposed Methodology

In this section, we propose the methodology of Weight-enabling Network (WeNet). As

Figure 5.2 shows, WeNet enables different subsets of weights to dynamically switch between

different sub-networks, where computational cost can be adjusted without changing the

number of activated neurons. Such network architecture can be executed on any types of

hardware platforms, though as discussed later, it will benefit even more with parallelism.

After discussing WeNet and its extension to convolutional layers, we will introduce

training algorithm and design space exploration method for optimizing the trade-off

between efficiency and accuracy at inference time.

5.3.1 Dynamic Weight-enabling Network (WeNet)

WeNet dynamically balances between accuracy and efficiency by switching between

different sub-networks, each of which enables a subset of weights, following a specific

pattern as shown in Figure 5.2. Assume for a dense layer, input vector is x and output

vector is y. In a standard dense layer, every neuron in y is connected to every neuron in

65

x, which leads to ℓ(x) · ℓ(y) weights, where ℓ(x) denotes the number of neurons in x. In

WeNet, we propose to divide both input x and output y into n groups, respectively, such

that x = x1 ∪ x2 ∪ . . . ∪ xn and y = y1 ∪ y2 ∪ . . . ∪ yn. To reduce the computational cost,

instead of connecting all input and output neurons, only neurons in yi are connected to

neurons in xi, which forms a partially-connected sub-network. In other word, for each

layer, (xi,yi) pairs form independent groups. By adjusting the number of groups n at

runtime, WeNet dynamically controls the number of enabled weights, and thus adjusts

computational cost.

Notice that all independent groups can be executed in parallel. To optimize inference

time and energy consumption, each layer is evenly divided, in other word, x1,x2, . . . ,xn

have same number of neurons. Evenly-divided layers have two benefits: (1) For layers with

n groups, evenly division leads to the least number of weights as well as computational

cost

O

(
L(x) · L(y)

n

)
(5.1)

(2) Each group has the same amount of FLOPs, which further improves efficiency with

parallel execution.

Figure 5.2(a) shows the full network. To improve efficiency, we may disable half of

the weights and execute the 1/2-network as Figure 5.2(b) shows. If faster inference time

or lower energy consumption is expected, we may then switch to 1/4-network shown

in figure 5.2(c). As less weights are enabled during this process, WeNet loses more

information, which leads to lower accuracy as trade-off. To further improve the flexibility,

we may create more operating modes, where each layer may have individual weight-

enabling ratio. Figure 5.2(d) shows a combination of 1/2- and 1/4-network. By enabling

different subset of weights, WeNet dynamically switches between sub-networks to balance

between efficiency and accuracy.

66

5.3.2 WeNet on Convolutional Layers

WeNet transforms standard dense layers into a set of switchable partially-connected

sub-networks. Nowadays, the most widely used layers in DNNs are convolutional layers,

which itself is a partially-connected layer. In this subsection, we extend the idea of WeNet

to convolutional layers.

Similar to enabling subset of weights in dense layers as shown in Figure 5.2, in

convolutional layer, WeNet dynamically enable subset of kernels between feature maps,

which forms independent groups of channels, or in other word, using group convolution

with the flexibility of switching number of groups. We consider a standard convolutional

layer as the full network of convolutional WeNet. Assume that it takes an input tensor Li

of size hi ×wi × ci, and applies convolutional kernel K ∈ Rk×k×ci×co to produce an output

tensor Lo of size ho × wo × co. The computational cost of standard convolution is

Tfull = hi × wi × ci × co × k × k (5.2)

Similar to WeNet on dense layer, input tensor Li with ci feature maps is divided evenly

into n groups, each of which has ci/n feature maps, such that Li = L1
i ∪ L2

i ∪ . . . ∪ Ln
i .

Output tensor Lo is also divided in same pattern Lo = L1
o ∪ L2

o ∪ . . . ∪ Ln
o . In standard

convolution, there exist kernels that convolve any input feature map into any output

feature map. In sub-network of WeNet, however, only kernels between feature maps

of Lj
i and Lj

o is enabled. Figure 5.3 demonstrates the example of dividing input and

output tensors into 4 groups, where input feature maps in Lj
i are only convolved to output

feature maps in Lj
o, using only the kernels shown in same color. Since WeNet effectively

forms 4 separate groups of channels, only 1/4 of kernels in each filter are enabled. Thus,

computation cost is reduced to 1/4 of original cost Tfull.

T1/4 = hi × wi ×
ci × co × k × k

4
=

Tfull

4
(5.3)

67

Figure 5.3: 1/4-network of convolutional layer

Similar to dense layer, each group of channels is independent, which can be executed

in parallel to further improve efficiency at inference time. However, on the other hand,

each feature map can only receive inputs from its own group. Compared to standard

convolution, feature maps in each group receive limited input information for features

extractions, where accuracy may drop significantly. To mitigate the accuracy loss caused

by isolated groups, we adopt a channel-shuffling operation proposed by ShuffleNet [91]. A

channel-shuffling operation is performed between two convolutional layers. As Figure 5.4

shows, after the first convolutional layer, each group of features is first split, and then

shuffled and merged to form new groups of features as input to the next convolutional

layer. Although a standard convolution is replaced by several independent groups of

channels, channel-shuffling allows each group to learn from the others, which significantly

improves accuracy. Meanwhile, parallelism can still be used on each group to improve

efficiency.

Implementation of channel-shuffling is straightforward. Suppose a convolutional layer

of WeNet has maximum g independent groups (in experiment, we set g = 16), where each

group has n feature maps. All g × n feature maps are first reshaped into (g, n), which are

then transposed to (n, g) and flattened as shuffled groups. Channel-shuffling operation

only involves matrix transposing, where the computational cost is negligible compared to

model inference.

68

Figure 5.4: Channel shuffling after 1/4-network

Algorithm 3: Train with random sampling and S-BN

Input :Training set (X,Y) with features X and labels Y, Number of iterations niter,
Number of sampled sub-network per iteration s, Loss function loss fn,
Optimizer opt

Output :WeNet M
1 Initialize WeNet M
2 Initialize S-BN layers for each weight-enabling pattern
3 for num iter = 1, 2, . . . , niter do
4 Get next batch of data and labels (x,y) from (X,Y)
5 Clear gradients opt.zero grad()
6 Execute full network ŷ = M(x)
7 Compute loss loss = loss fn(ŷ, y)
8 Accumulate gradient loss.backward()
9 Adjust S-BN to smallest sub-network

10 Execute smallest sub-network ŷ = M ′(x)
11 Compute loss loss = loss fn(ŷ, y)
12 Accumulate gradient loss.backward()
13 Randomly sample s− 2 sub-networks
14 for each sampled WeNET do
15 Adjust S-BN according to weight-enabling patterns
16 Forward training data ŷ = M ′(x)
17 Compute loss loss = loss fn(ŷ, y)
18 Accumulate gradient loss.backward()

19 end
20 Update gradients to weight opt.step()

21 end
22 return M

5.3.3 Training WeNet with Switchable Batch Normalization

WeNet dynamically enables subset of weights or kernels to form sub-networks, where

each layer may have different number of independent groups. Since it is impractical

to enumerate and train all possible sub-networks, we propose to randomly sample sub-

69

networks at each iteration.

We also need to reconsider the implementation of Batch Normalization (BN) layers,

which normalize feature maps across each batch. Nowadays, BN is widely used to reduce

internal covariate and stabilize training process. Using y and y′ to denote inputs and

outputs, computation of BN layers is defined as

y′ = γ · y − µ√
σ2 + ϵ

+ β (5.4)

where µ, σ2 are means and variance of feature maps of current batch, γ, β are learnable

variables. Since each layer has a number of possible weight-enabling pattern, where each

neuron receives different inputs as Figure 5.2, µ and σ2 are not consistent, which leads to

inaccurate learning of γ and β. Yu et al. propose Switchable Batch Normalization (S-BN)

in SNN [85], which privatizes µ, σ2, γ, β settings for different pattern of the same layer.

In other words, each weight-enabling pattern has its own customized BN layer, which is

switchable according to the selected pattern. The number of learnable variables in BN

layers is negligible compared to other weights and kernels. Notice that in WeNet, although

there is a large number of possible sub-networks, for each layer the possible number of

weight-enabling patterns is limited (in our experiment, maximum 16 independent groups).

Thus, it is still efficient to use customized S-BN layers for all weight-enabling patterns in

each layer. Algorithm 3 describes the process of training WeNet using S-BN. We initialize

DNN with independent BN layers for each weight-enabling pattern (line 1-2). For each

iteration, we accumulate gradients from full network (line 6-8), the smallest sub-network

(line 9-12) and other s− 2 random sub-networks (line 14-19).

5.3.4 Design Space Exploration

After training with Algorithm 3, theoretically WeNet can be configured into operation

modes corresponding to all possible sub-networks. But in practice, some sub-networks

performs better in terms of efficiency-accuracy trade-off. Given an accuracy threshold, to

70

Algorithm 4: Design space exploration of WeNet
Input :Full network of WeNet M , Accuracy threshold δ
Output :Optimal sub-network M ′

1 M ′ = M // Keep track of most efficient sub-network so far
2 acc = Accuracy of M // Accuracy of current sub-network
3 while acc > δ do
4 for each layer i in M ′ that has < 16 groups do
5 Increase the number of groups in layer i as sub-network mi

6 acci = Accuracy of mi

7 ti = Inference time of mi

8 lossi = ti/acci
9 end

10 k = argmini lossi
11 M ′ = mk and acc = acck
12 end
13 return M ′

determine the optimal operation mode on a specific hardware platform, we propose to

explore the design space of possible sub-networks, using design space exploration (DSE)

approach as Algorithm 4.

We start from the full network (line 1-2). In each iteration of DSE, we consider a

number of candidate sub-networks by increasing the number of groups in one of the

WeNet layers, respectively (line 5). We set an upper bound on number of groups (16

in experiment) to prevent accuracy dropping rapidly. As our objective is to minimizing

computational cost (represented by inference time t) while keeping accuracy acc high, for

each candidate sub-network i, we evaluate ti and acci using targeted hardware device,

and compute a loss using ti/acci (line 8). By minimizing the loss in each iteration, we

keep reducing computational cost while optimizing the trade-off against accuracy. When

accuracy of current sub-network drops below threshold, DSE is finished.

Using DSE, we effectively explore a number of possible sub-networks. At each iteration,

sub-network with smallest loss forms Pareto Frontier, which demonstrate the optimal

trade-off between efficiency and accuracy.

71

5.4 Experimental Results

In this section, we first describe our experiment setup. To highlight the benefits of

channel-shuffling, we evaluate WeNet with and without channel-shuffling operations. We

also explore the design space of WeNet and compare optimal execution modes against

other methodologies, showing that WeNet provides better trade-off. Finally, we measure

inference time and energy consumption, showing the benefits on different types of real

devices.

5.4.1 Experiment Setup

1. Datasets and models: We implement and evaluate WeNet using ResNet-50 [94],

MobileNet-V2 [90] and EfficientNet-B0 [92] on ImageNet classification problem.

2. Software setup: We implement weight-enabling operations with group convolution in

PyTorch. We use default training settings for each benchmark, with one additional

hyper-parameter s = 20, meaning that in each iteration we randomly sample 20

sub-networks.

3. Hardware setup: We measure inference time and energy consumption on the NVIDIA

Jetson Nano board.

5.4.2 Channel-Shuffling

In the first experiment, we demonstrate the benefit of channel-shuffling operation by

evaluating five operating modes of WeNet with and without channel-shuffling. Table 5.2

shows the comparison result using ResNet-50, where each residual block has one channel-

shuffling operation after the first 1 × 1 convolution layer. Channel-shuffling operation

significantly improves accuracy for all five sub-networks. On average, channel-shuffling

increases accuracy by 2.98%. Meanwhile, channel-shuffling introduces additional computa-

tional cost. On average, these operations use additional 3.36ms out of 118.38ms inference

72

Table 5.2: Comparison of top-1 accuracy and inference time with and without channel-
shuffling operations using ResNet-50.

Sub- Without Shuffling With Shuffling
Network Acc.(%) Time(ms) Acc.(%) Time(ms)
1/16 60.88 41.68 64.24(+3.36) 43.41(+1.73)

1/8 65.81 82.79 70.43(+4.62) 85.62(+2.38)

1/4 69.38 124.14 74.07(+4.69) 127.35(+3.21)

1/2 73.49 127.88 75.63(+2.41) 132.17(+4.29)

Full 75.99 198.62 76.07(+0.08) 203.38(+4.76)

Average 69.11 115.02 72.09(+2.98) 118.38(+3.36)

(a) ResNet-50 (b) MobileNet-V2

Figure 5.5: Comparison between WeNet and US-Net [1]

time. Compared to significant improvements on accuracy, increasing of inference time is

negligible.

5.4.3 WeNet v.s. US-Net

In the second set of experiment, we compare WeNet against US-Net [1], which provides

multiple operation modes by adjusting width ratio for each layer, using two benchmarks, i.e.

ResNet-50 [94] and MobileNet-V2 [90]. After training WeNet using Algorithm 3, we explore

the design space of WeNet operation modes using Algorithm 4, where computational

cost is measured by number of Floating-Point Operations (FLOPs). Figure 5.5 shows

the comparison results, where red star represents the original model. Compared to US-

Nets, WeNet has less number of FLOPs in most accuracy range, which demonstrates the

state-of-the-art performance. For ResNet-50, WeNet provides more efficient operating

73

(a) Inference time (b) Energy consumption

Figure 5.6: Inference Time and Energy Consumption on Jetson Nano Board

modes when accuracy is higher than 69%. For MobileNet-V2, WeNet performs better

when accuracy is between 64% and 71%.

5.4.4 Inference Time and Energy Consumption

In the third set of experiment, we implement WeNet using all three benchmarks and

plot operation modes on Pareto Frontier. Using Jetson Nano board, we evaluate inference

time and energy consumption of these optimal points. Figure 5.6 shows the evaluation

results, including US-Net in Section 5.4.3 as comparison. As Figure 5.6a shows, for all

three benchmarks, WeNet substantially saves inference time by trading-off small amount

of accuracy. Compare to number of FLOPs in Figure 5.5, the improvement of inference

time is more significant, which is always lower then US-Net. Since each layer of WeNet

consists of independent groups, which can be executed in parallel, inference time can be

further saved if there are idle threads (or warps). Thus, the benefit of inference time

is more significant. As Figure 5.6b shows, WeNet also substantially improves energy

consumption compared against US-Net.

5.4.5 Evaluation on Different Devices

Finally, in Figure 5.7, we measure inference time of models trained in Section 5.4.3

using three devices, i.e. Tesla P40 (GPU), Tegra X1 (GPU) and Xeon E5-2680 (CPU).

74

Figure 5.7: Evaluation of ResNet50 on three devices, with different batch size

High-performance GPUs (Tesla P40) are already well-optimized for tensor operations.

Thus, on these devices, inference time of full network is already fast enough. Disabling

part of weights does not accelerate inference time as expected, but does improve energy

efficiency due to fewer FLOPs. If we increase batch size, inference time and energy

consumption keep reducing, since there is still enough computational resources to do

parallel computing for each batch. On the other hand, for low-performance devices (Tegra

X1), all threads (or warps) are busy even if batch size is 1. In this case, increasing batch

size does not make much difference. But inference time and energy consumption vary a lot

according to sub-network, where disabling more weights improves efficiency a lot. Since

CPU (Xeon E5-2680) is not designed specifically for tensor operations, the inference time

and energy consumption is much higher compared to GPU. But disabling more weights

still improves energy efficiency significantly.

75

5.5 Conclusion

In this chapter, we proposed a novel dynamic network methodology, WeNet, which

enables different subsets of weights on the fly to trade-off between accuracy and inference

time. By enabling smaller subsets of weights, WeNet effectively forms a “sparser” sub-

network with multiple separate groups of channels, where parallelism can be used to

further improve efficiency. We also extended WeNet to convolutional layers using group

convolution and channel shuffling, trained with switchable batch normalization and

explored design space of possible sub-networks. We thoroughly evaluate our methodology

using a number of DNN architectures on different hardware platforms, showing that WeNet

provides a large number of energy-efficient operation modes, 73.2% of which provide better

accuracy-efficiency trade-off compared to other methodologies.

76

CHAPTER 6

Low-precision Training using

Forward-Forward Training Algorithm

6.1 Introduction

Deep neural networks (DNNs) have recently achieved state-of-the-art results across a

variety of application domains, including computer vision, natural language processing,

and more. To enhance their accuracy, the architectures of these networks are becoming

increasingly complex and deeper. It has been reported that the computational resources

needed to train the largest DNNs are doubling every 6 months from 2010 to 2022 [95].

Training and deploying these more intricate networks require significantly more energy

and a larger memory footprint to accommodate the increase in parameters. For example,

ResNet-50, a computer vision model proposed in 2015, comprises 26 million parameters,

requires 7.5 GB of local DRAM, and demands 14 days of training on an NVIDIA M40

GPU [96]. On the other hand, GPT-3, a large language model released in 2020, which

contains 175 billion parameters, requires 3,640 PF-days of computation for a training run,

equivalent to 355 years of single-processor computing time, consuming 284,000 kWh of

energy and costing over 4.6 million US dollars [97]. Concurrently, the evolution of DNNs

77

has driven a significant demand for training capabilities on edge devices. Training on the

edge, as opposed to centralized servers, not only enhances model personalization but also

ensures data privacy and security. However, these devices are typically constrained by

limited memory and computing power, making real-time training increasingly challenging

as DNN models grow in size. Therefore, minimizing the time, memory requirements, and

energy consumption of DNN training has become crucial.

Numerous methodologies have emerged recently to enhance the training efficiency of

DNNs. As an innovative alternative to the traditional backpropagation, the Forward-

Forward (FF) algorithm [98] has been introduced to address the inefficiencies associated

with the backward pass of gradient computation by replacing it with an additional forward

pass. The FF algorithm brings about efficiency improvements in several ways. Firstly,

it operates in a layer-by-layer greedy manner during training, thereby storing only the

current layer in memory instead of the entire computational graph. This reduction in

memory footprint is substantial. Additionally, the introduced forward pass in FF takes

less time compared to the backward pass. Moreover, without propagating derivatives

backward, the FF algorithm shows potential for implementation on analog devices.

This chapter delves into yet another benefit of the FF algorithm, specifically its applica-

bility in implementing INT8 quantized training algorithms. Traditional backpropagation

algorithms face instability when directly quantizing gradients, leading to computational

challenges. Our observation highlights the effectiveness of FF’s layer-wise greedy approach

in mitigating the problem of accuracy loss accumulation often encountered in traditional

backpropagation methods. The contributions of this chapter are outlined below.

• To the best of our knowledge, FF-INT8 is the first work to devise a low-precision

(INT8) training method leveraging the Forward-Forward algorithm, which is advanta-

geous as it learns effectively from a stream of input data while maintaining a smaller

memory footprint, making it especially well-suited for resource-constrained edge

devices. To date, no other studies have explored network quantization specifically

78

using the Forward-Forward algorithm.

• We propose an INT8 training method based on the Forward-Forward algorithm,

named FF-INT8. This innovative approach involves greedily training each layer of a

deep neural network independently, using INT8 precision. By confining gradient

quantization to the current layer, our method effectively prevents the cumulative

degradation of accuracy typically associated with precision loss in traditional training

methodologies.

• Since the Forward-Forward algorithm is a greedy procedure, what is learned in earlier

layers cannot be affected by what is learned in later layers, which typically results in

low convergence accuracy and slow convergence rate. To address these limitations,

we propose a novel loss function that accounts for interactions across layers, with a

particular focus on the final output layer. Additionally, we introduce an updated

training procedure termed the Look-afterward Forward-Forward algorithm, which

is designed to better integrate this new loss computation. This enhancement aims

to improve both the accuracy and speed of convergence in low-precision training

environments.

• Utilizing FF-INT8, we train multiple DNNs on the Jetson Orin Nano board, which is

outfitted with an INT8 engine. Our comprehensive evaluation covers model accuracy,

training time, memory footprint, and energy consumption. The results demonstrate

that our low-precision training algorithm not only significantly enhances efficiency

but also maintains a high level of accuracy. With FF-INT8, we achieve speedups of

0.7% in DNN training. Furthermore, FF-INT8 also reduces the memory footprint

by 22.2% and energy consumption by 6.0% compared to a state-of-the-art INT8

training algorithm.

The organization of this chapter is as follows. In section 6.2, we overview relevant

previous works in DNN quantization. We then briefly introduce Forward-Forward algo-

79

rithm as preliminary in section 6.3. In section 6.4, we introduce FF-INT8 and its training

algorithms. We provide our experimental results in section 6.5. Finally, we summarize

our conclusion in Section 6.6.

6.2 Previous Work

Recent years have witnessed a proliferation of methodologies aimed at enhancing the

efficiency of deep neural network (DNN) computations. These approaches include pruning,

quantization, and neural architecture search, and others [99]. Particularly, quantization

significantly reduces the memory footprint and computational cost by lowering the precision

of weights and activations without altering the number of learned features. Neural network

quantization can be categorized into post-training quantization (PTQ) and quantization-

aware training (QAT). PTQ reduces the precision of a neural network model after it has

been fully trained with floating-point precision. AdaRound [42] proposes a better weight-

rounding PTQ scheme that adapts to the data and loss function. Smoothquant [100]

proposes a PTQ solution for large language models by smoothing the activation outliers.

PTQ4DM extends PTQ to diffusion models by adjusting calibration dataset [101]. To

make the model more robust to the reduced precision, QAT methodologies are proposed

to incorporates quantization directly into the training process. This means the model is

aware of the quantization effects during training and can adapt to them, which typically

leads to better performance and accuracy with quantized models compared to PTQ [43].

Additionally, QAT reduces the sensitivity of the model to weight initialization, as it

learns quantization-friendly weights during training. This can result in more stable and

consistent performance across different training runs. As an extension of QAT, PikeLPN

proposed QuantNorm, allowing for quantizing the batch normalization parameters without

compromising the model performance [44].

Compared to huge amount of studies on accelerating inference by model quantiza-

tion, few works explore low-precision training including backward pass comprehensively.

80

MPTraining [102] uses 16-bit floating-point (FP16) to train DNNs with accuracy com-

parable to full-precision model. Minifloat [103] also proposes to use 8-bit floating-point

numbers to train DNNs. Floating-point quantization requires specific hardware platform

to achieve acceleration, which is not conducive to the practical deployment on resource-

constrained devices. On the other hand, compared to floating-point, quantizing into 8-bit

integer (INT8) has great potential in hardware acceleration, since INT8 operations are

widely supported by recent GPUs. Besides, the 8-bit integer arithmetic is theoretically

and practically 2× faster than FP16 and 4× faster than FP32. UI8 [4] utilizes direction

sensitive gradient clipping and deviation counteractive learning rate scaling to implement

a fully unified INT8 training for convolutional neural networks. DAI8 [104] achieves better

gradient quantization by performing channel-by-channel gradient distribution perception,

but it sets too many channel dimension quantization parameters, adding additional com-

putational complexity. GDAI8 [5] also uses a data-aware dynamic quantization scheme to

quantize various special gradient distributions. In summary, most INT8 training methods

require extra computation to analyze and adapt to gradient distribution.

6.3 Background

Before introducing the Forward-Forward (FF) algorithm [98], we first briefly discuss

backpropagation (BP) algorithm. Nowadays, most training algorithms for DNNs are built

upon BP, which consists of a forward pass and a backward pass. In forward pass, input

data is passed through DNN layer-by-layer to compute the final outputs and loss function.

In backward pass, the loss is propagated backward through the network and gradients

are computed using the computational graph to update weights and biases. Despite high

accuracy, BP algorithm is inefficient in many aspects. First, it requires large storage to

store the full computational graph in memory, which leads to a large memory footprint.

Also backward pass has a larger delay and consumes higher energy. Moreover, many have

argued that BP algorithm is not biologically plausible.

81

Figure 6.1: (a) Backpropagation consists of a forward pass and a backward pass. (b) The
Forward-Forward algorithm uses “positive” and “negative” datasets, and trains each layer
individually using “goodness” function G.

Alternatively, the Forward-Forward training algorithm [98] provides a brand new

direction for DNN training, where two forward passes are used to replace the forward and

backward passes in BP to improve efficiency. Different from BP, two forward passes of

FF algorithm use different data with opposite objective, and trains DNN layer-by-layer

in a greedy manner. Figure 6.1 compares training procedure between BP and FF. The

first step is to generate “positive” and “negative” datasets from input data. One way

to generate datasets is to annotate the input data using one-hot encoding vector of the

label. More specifically, the one-hot vectors in positive samples are pointing to the true

labels, while the ones in negative samples are pointing to the wrong labels. Besides loss

function, FF algorithm uses goodness function to qualify how well each layer is trained.

The positive pass operates on positive samples and adjusts the weights to increase the

goodness in every hidden layer, while the negative pass operates on negative samples and

adjusts the weights to decrease the goodness. One common measurement of goodness

82

function is the sum of squared neural activities, such that

G(x) = ||y||2 =
∑
j

y2j (6.1)

where x represents the vector of input neurons to the layer, y represents the vector of

output neurons of the layer. FF algorithm aims to make the goodness function well above

a certain threshold θ for positive data and well below θ for negative data, where θ can be

considered as a hyperparameter that controls scale of the weights. In other words, it is a

classification problem such that whether this set is positive or negative. We can express

the probability of being positive or negative sample by applying logistic function σ to

goodness function G,

p(positive) = σ(G− θ) =
1

1 + e−(||y||2−θ)
(6.2)

p(negative) = 1− σ(G− θ) = σ (−(G− θ)) =
1

1 + e(||y||2−θ)
(6.3)

FF algorithm trains each layer once until convergence and then optimize its successor.

The main idea behind such greedy scheme is to make each layer “excited” about positive

samples and, at the same time, less excited about negative samples, so that positive

samples can be trained to match the correct label on the last layer.

FF algorithm improves efficiency in many aspects. First, instead of the entire computa-

tional graph, FF algorithm only stores current layer in memory, which significantly reduces

memory footprint. Also, forward pass takes less time than backward pass. Moreover,

the absence of backward pass gives FF algorithm the potential to be executed on analog

devices. However, the heuristic property prevents earlier layers to learn from the later

ones and final outputs. where training of earlier layers can be misleading. Thus, as a

trade-off, FF algorithm usually suffers from accuracy loss.

83

6.4 Proposed Methodology

In this section, we describe our proposed methodology of INT8 Forward-Forward

algorithm for efficient DNN training (FF-INT8). In the beginning, we analyze the effect

of network depth in gradient quantization, as a motivation of using Forward-Forward

algorithm in low-precision training. Then we describe our FF-INT8 training methodology

in detail. We also modify the procedure of FF algorithm with a novel goodness function

to improve convergence accuracy and convergence rate.

6.4.1 Network Depth and Gradient Quantization

Our FF-INT8 training method builds upon symmetric uniform quantization (SUQ),

which is one of the most efficient quantization methods due to its hardware-friendly

computation [105]. More specifically, given data x (i.e. weights, activations, gradients) in

range (l, u) and a clipping value c ∈ (0,max(|l|, |u|)), SUQ can be fomulated as

q(x) = round(
clamp(x, c)

s
) (6.4)

where scale s = c/127 and clamp function is defined as

clamp(x, c) =


x if |x| ≤ c

c× sign(x) if |x| > c

(6.5)

The clipping value c directly affects quantization error of gradients, where quantization

error is defined as the accuracy loss post quantization. The simplest and most efficient

way is to set c = max(|x|) to cover the entire expressible data range of x.

As a preliminary experiment, we train ResNet-18 using CIFAR-10 dataset, with

backpropagation and INT8 quantization including gradients. Figure 6.2 compares the

changes of loss and accuracy per epoch between 32-bit floating-point (FP32) and INT8

84

Figure 6.2: Loss and accuracy of ResNet-18 on CIFAR-10 when directly quantizing
gradients to INT8.

training. The network is trained properly with FP32 precision. However, the loss of

INT8 training increases dramatically as soon as we start training, while the accuracy

drops to random level. We assumes that INT8 training fails due to the accumulation of

quantization error through backward propagation of derivatives. To further prove this

hypothesis, we train several fully-connected layers on MNIST dataset with different number

of hidden layers, each of which is trained with FP32 and INT8 precision respectively. As

Table 6.1 shows, as the number of hidden layers increases, the accuracy of FP32 training

increases until the model overfits. On the contrary, the accuracy of INT8 training decreases

dramatically as the network becomes deeper. The accuracy difference between FP32 and

INT8 training is considerably small with a single-layer network, but increases significantly

as we include the first hidden layer. We may conclude that quantization error accumulates

as network becomes deeper. Instead of deep networks, INT8 training can be directly

executed on a single-layer network. Finally, we plot gradient distribution of the first layers

of different networks in Table 6.1, which are trained using FP32. As Figure 6.3 shows, for

deeper networks, gradient distribution of earlier layers are sharper with larger extreme

values, while distribution of single-layer network is more even. Thus, direct quantization

in deeper network leads to large quantization error, since most gradients gather in a small

range and we cannot tell the differences in such small range after quantization. On the

other hand, direct quantization in single-layer network is less error-prone.

85

Table 6.1: Accuracy of fully-connected layers on MNIST dataset with different number of
hidden layers and training precision. Each hidden layer consists of 500 neurons. Networks
are trained using 32-bit floating-point or 8-bit integer.

Number of FP32 INT8 Accuracy
Hidden Layers Acc. (%) Acc. (%) Difference (%)

0 89.5 87.9 -1.6
1 93.4 73.8 -19.6
2 94.5 62.4 -32.1
3 94.3 65.2 -29.1

Figure 6.3: Gradient distribution of first layer with different number of hidden layers.

In summary, directly training multi-layer networks with INT8 is risky due to the

accumulation of quantization error. Gradient distribution of earlier layers also poses

a challenge to quantization of gradients in small range. On the other hand, single-

layer network does not have these problems and is more suitable for INT8 training.

Although almost all DNNs have multiple layers, FF algorithm proposes to train each

layer individually in a greedy manner, making FF algorithm and INT8 training a perfect

combination.

6.4.2 INT8 Forward-Forward Algorithm

To devise INT8 Forward-Forward algorithm, we first need to decide the clipping value

c and round function in Equation 6.4. Since gradient distribution is smooth in single-layer

network as shown in Figure 6.3(a), it is safe to set c = max(|x|) to cover the entire range.

To ensure the quantized gradients maintain an unbiased expectation, we adopt stochastic

86

Figure 6.4: Dataflow of INT8 Forward-Forward algorithm on a single layer (dense or
convolution layer).

Algorithm 5: INT8 Forward-Forward Algorithm

Input :Training set (X,Y), Number of epochs n,
Output :Trained network M with k layers

1 Initialize neural network M
2 Generate positive and negative sets from (X,Y)
3 for layer = 1, 2, . . . , k do
4 for num epoch = 1, 2, . . . , n do
5 Quantize input data A and weights W into INT8 Aint and Wint

6 Compute layer outputs Yint = Wint
⊗

Aint

7 Compute loss function L
8 Compute gradient gY of Y to the loss function
9 Quantize gradient gY into INT8 gYint

10 Propagate gradient to gWint
11 De-quantize and update weights W

12 end

13 end

rounding [106] as follows

round(x) =


⌊x⌋ w.p. 1− (x− ⌊x⌋)

⌊x⌋+ 1 w.p. x− ⌊x⌋
(6.6)

FF-INT8 algorithm trains each layer individually with both positive and negative

datasets in a greedy manner, where only one layer is trained at a time. For either positive

87

or negative samples, our INT8 training workflow of a single layer is demonstrated as

Figure 6.4. We first use SUQ with stochastic rounding to quantize both input data A and

weight W , as Equation 6.4 and 6.6, where INT8 MAC operation is used to compute dot

product in either dense layer or convolution layer. Negative log-likelihood is used as loss

function. For positive dataset, loss function Lpos is computed as

Lpos = − log p(positive) = log (1 + e−(||y||2−θ)) (6.7)

For negative dataset, loss function Lneg is computed as

Lneg = − log p(negative) = log (1 + e(||y||
2−θ)) (6.8)

where y represents the vector of output neurons of the current layer, and θ is the

hyperparameter that represents threshold in Equation 6.2 and 6.3. Two loss functions

Lpos and Lneg can be rewritten into one function as

L(x) = log (1 + e−β(||y||2−θ)) (6.9)

where β = 1 means that input x is a positive sample, and β = −1 means that input x is a

negative one. By optimizing this loss function, we encourage outputs of positive samples

to be large and outputs of negative samples to be small. Then gradient gY is computed

and quantized into INT8. Since gradients are not back-propagated to previous layers,

there is no need to compute the gradients of input data gA. Only gradients of weights gW

are computed and updated to current weights. Thus, for computation of neuron activity

Y and gradient gW , we replace floating-point computation using INT8, which saves a large

amount of computation. We summarize the entire procedure of FF-INT8 in Algorithm 5.

88

Figure 6.5: Residue block is commonly used in many modern DNN architectures.

6.4.3 FF-INT8 Algorithm with Look Afterward

In Section 6.4.2, we propose FF-INT8 training algorithm to speed up MAC opera-

tions in computation of neuron activity and gradient. As discussed in Section 6.3, FF

algorithm is efficient, but only allows one layer to learn from its input and prevents it

from communicating with later layers, especially the final outputs. Thus, earlier layers

are only trained to classify between positive and negative samples, where the task of

classifying specific labels is only left to the very last layer. Once a layer is trained, FF

algorithm continues to optimize the next layer and never looks back. Without receiving

feedback from the final outputs, training of earlier layers can be misleading. As a result,

FF algorithm usually has lower accuracy and requires much more epochs to converge

compared to backpropagation, as demonstrated later in Section 6.5.3. Also, FF algorithm

does not fit certain structure, e.g. residue blocks, which are used in many modern DNN

architectures. As Figure 6.5 shows, residue block allows inputs to be skipped over certain

layers and accumulated to block’s output [94]. Thus, all layers within same block should

be optimized interactively. However, due to the limitation of FF algorithm, each layer

within the same block is trained individually without knowing later layers, which may

cause significant accuracy loss.

To solve these issues, our solution is to enhance the connection between different layers,

especially with final outputs, while keeping the advantage of efficiency in FF algorithm.

We name this modifed algorithm “FF-INT8 Algorithm with Look Afterward”. Previously,

89

Figure 6.6: Gradient computation of FF algorithm after modification, where loss functions
of later layers are considered.

Algorithm 6: FF-INT8 Algorithm with Look Afterward

Input :Training set (X,Y), Number of epochs n
Output :Trained network M with k layers

1 Initialize neural network M
2 Initialize hyperparameter λ = 0 in loss function
3 Generate positive and negative sets from (X,Y)
4 for num epoch = 1, 2, . . . , n do
5 Execute forward pass using INT8 precision
6 Compute goodness function G = ||y||2 for each layer
7 for current layer = 1, 2, . . . , k do
8 Compute loss for current layer
9 Update weights using gradients in INT8 precision

10 end
11 Increase hyperparameters λ in loss function

12 end

when training one layer, only goodness function of current layer is considered in the loss

function as described in Equation 6.9. To receive feedback from different layers, we rewrite

the loss function to take goodness functions of later layers into consideration. Assume

that L1 denotes the loss of current layer, L2,L3, . . . denote the loss of following layers,

and Lfinal denotes the loss of final outputs at the last layer. The new loss function is as

90

follow:

Lnew = L1 + λ× (L2 + L3 + · · ·+ Lfinal) (6.10)

where λ is a coefficient to balance between current layer and later layers. Figure 6.6

demonstrates gradient computation with the new loss function, which is

∂Lnew

∂W
=

∂L1

∂W
+ λ× ∂(L2 + L3 + · · ·+ Lfinal)

∂W
(6.11)

Previously, Algorithm 5 trains each layer with n epochs individually without knowing

information in later layers. For neural network with k layers, Algorithm 5 requires k × n

epochs in total, which is a large number, especially considering the growing depth of

DNNs nowadays. Although each forward pass only needs to reach the current layer to be

trained, there are still n epochs requiring complete forward passes in order to train the

final layer.

For new loss function in Equation 6.10, since it consists of losses of later layers including

the final one, we have to execute complete forward passes for each layer. For the sake

of efficiency, we propose Algorithm 6 to utilize one forward pass to update all layers.

More specifically, for each epoch, we execute complete forward pass (line 5), and compute

goodness function as Equation 6.1 (line 6). We can then construct loss functions of all

layers as Equation 6.10 using only goodness function of each layer (line 8). Gradients

can be computed directly as Equation 6.11 without any backpropagation process (line

9). Therefore, “FF-INT8 Algorithm with Look Afterward” managed to optimize all

layers with n′ epochs, which is much faster than k × n epochs in previous one. Also, it

enables interaction between different layers and allows different layers to optimize together,

which improves accuracy. As for memory footprint, similar to previous algorithm, since

“FF-INT8 Algorithm with Look Afterward” does not have backpropogation process, it

does not require memory usage for that. Besides basic memory usage for forward pass, it

only needs addtional memory usage for goodness function (Equation 6.1) and loss function

91

Table 6.2: DNN Architectures and Datasets

DNN Dataset
Num. of

Params (M)

Multi-layer perceptron (MLP)
MNIST 1.79

(2 hidden layers)
MobileNet-V2 [90]

CIFAR10
2.24

EfficientNet-B0 [92] 3.39
ResNet-18 [94] 11.19

(Equation 6.10) for each layer, which is negligible compared to other memory usage.

One more hyperparameter in “FF-INT8 Algorithm with Look Afterward” is λ, which

balances between current layer and other layers. For first few epochs, since each layer is less

optimized, our priority is to train each layer so that it can basically tell between positive

samples and negative samples. In other word, we want to discourage the interaction

between layers at the beginning of training, since later layers are not optimized and

information of later layers does not help the optimization of current layer. After a

few epochs, each layer is better optimized. We then gradually increase λ to encourage

interaction between layers to improve convergence accuracy.

6.5 Experimental Results

In this section, we first introduce our experimental setup. The first experiment is to

compare FF-INT8 algorithm with and without “Look Afterward”, to show the benefit of it.

We then theoretically analyze and compare the number of each operation, demonstrating

that our methodology reduces computational cost. Finally, we comprehensively use

our methodology to train different DNNs, and compare against other methodologies to

demonstrate state-of-the-art performance.

6.5.1 Experimental Setup

1. Datasets and models: We train 4 different models using FF-INT8, as listed in

Table 6.2. Note that the sizes of feature maps and kernels are adjusted based on

92

Table 6.3: Technical Specifications of NVIDIA Jetson Orin Nano

GPU 1024-core NVIDIA Ampere architecture GPU
CPU 6-core Arm®Cortex®-A78AE v8.2 64-bit CPU
Memory 8GB 128-bit LPDDR5 68 GB/s
Power 7-15W
AI Performance 40 TOPs

Figure 6.7: Test accuracy for different number of epochs where MLP and ResNet-18 are
trained using FF-INT8, with and without “Look Afterward” respectively.

dataset used. Also, since we experiment our methodology over edge devices, batch

size is limited to 32.

2. Hardware setup: NVIDIA Jetson Orin Nano board with an INT8 engine is used to

measure the training time, energy consumption and memory footprint. Specifications

of the device are listed in Table 6.3, showing that this board is representative of

edge devices, which is resource-constrained for computationally intensive tasks such

as DNN training.

3. Quantization method: We adopt stochastic rounding method as described in Sec-

tion 6.4.2. An 8-bit optimizer [107] is used for gradient quantization and update.

4. Other hyperparameter: In Equation 6.2 and 6.3, threshold θ is used to separate

positive and negative samples, while controlling the scale of weights. To avoid

gradient explosion or vanishing, we set θ = 2.0. In Equation 6.10, λ is a coefficient

to balance between current layer and later layers, which is initialized to 0, and

increased by 0.001 for each epoch.

93

6.5.2 Training with “Look Afterward”

In the first set of experiment, we show that “Look-Afterward” scheme improves accuracy

for FF-INT8 as described in Section 6.4.3. The vanilla FF-INT8 algorithm without “Look

Afterward” is described in Algorithm 5. The updated FF-INT8 algorithm with “Look

Afterward” is described in Algorithm 6. We first train MLP with 2 hidden layers using

both FF-INT8 algorithms and demonstrate results in Figure 6.7(a). Without “Look

Afterward” scheme, the accuracy converges to nearly 90% with 180 epochs. However,

with “Look Afterward” scheme, MLP reaches slightly higher convergence accuracy with

only 130 epochs. Thus, we argue that by interaction with later layers, earlier layers

compute gradients and update weights in a “more optimized way”, which leads to higher

convergence accuracy and faster convergence speed.

Figure 6.7(b) demonstrates the results in ResNet-18, which consists of residue blocks

as Figure 6.5. Different from MLP, if ResNet-18 is trained without “Look Afterward”

scheme, the accuracy converges to only 60%, while the accuracy curve is very unstable.

There are two reasons for the bad performance:

1. The scale of ResNet-18 is much larger compared to MLP, which means it is much

difficult for a greedy approach like FF algorithm to find the optimized solution.

2. Residue block allows input to be skipped over few layers and accumulated to block’s

output. However, without “Look Afterward” scheme, when previous layers in a

block are trained, the vanilla FF algorithm does not consider the accumulation

operation in block’s output layer. And when block’s output layer is trained, the

previous layers have already trained and cannot be modified. Thus, the optimization

process is limited, which leads to low convergence accuracy.

As shown in Figure 6.7(b), by layer interaction, “Look Afterward” scheme solves both

problems and significantly improves convergence accuracy. Given that many modern

DNN architectures incorporate residual blocks, the “Look Afterward” scheme significantly

94

Table 6.4: Comparison of computational cost between INT8 Forward-Forward algorithm
and INT8/FP32 backpropagation

Computation Operation Counts (OPs)

FF-INT8

Quantization 32-bit CMP 32.4K
Phase 32-bit FADD 165.9K
MAC 8-bit MUL 23.8M
Phase 8-bit ADD 23.8M

BP-FP32
MAC 32-bit FADD 898.2M
Phase 32-bit FMUL 898.2M

Quantization 32-bit CMP 7.2K
GDAI8 [5] Phase 32-bit FADD 18.4K
(BP-INT8) MAC 8-bit MUL 898.2M

Phase 8-bit ADD 898.2M

Table 6.5: Summary of model accuracy, training time, energy consumption and memory
footprint between different approaches. Training algorithms are based on either BP
(backpropagation) or FF (the Forward-Forward algorithm). The suffix denotes the
precision, where FP32 means 32-bit floating-point, and INT8 means quantizing to 8-bit
integer. UI8 [4] refers to unified INT8 training algorithm, and GDAI8 [5] refers to gradient
distribution-aware INT8 training algorithm.

Model Training Algorithm Accuracy (%) Time (s) Energy (J) Memory (MB)

MLP

BP-FP32 94.5 482.3 2315.0 247.6
BP-INT8 52.4 326.1 1206.6 213.9
BP-UI8 [4] 92.3 335.2 1277.1 197.0
BP-GDAI8 [5] 93.8 344.9 1345.4 182.6
FF-INT8 94.0 321.7 1097.0 140.7

MobileNet-v2

BP-FP32 91.7 2370.8 11593.2 649.8
BP-INT8 5.9 1851.6 7836.0 571.6
BP-UI8 [4] 87.2 1960.0 7618.5 592.6
BP-GDAI8 [5] 90.9 1790.7 6528.1 578.9
FF-INT8 90.5 1743.9 6344.3 491.0

EfficientNet-B0

BP-FP32 89.4 2692.8 13356.2 861.0
BP-INT8 11.8 2095.0 8563.9 703.9
BP-UI8 [4] 85.3 2230.8 8656.2 735.5
BP-GDAI8 [5] 88.9 2177.1 8589.9 692.0
FF-INT8 88.5 2219.9 8203.8 505.2

ResNet-18

BP-FP32 93.6 3853.0 18764.1 1096.4
BP-INT8 7.2 2676.1 10436.8 885.8
BP-UI8 [4] 89.7 2873.8 11466.5 920.7
BP-GDAI8 [5] 92.9 2751.6 10291.0 894.1
FF-INT8 92.1 2876.9 10526.5 682.3

Avg. difference between FF-INT8
Reduce 0.3% Save 0.7% Save 6.0% Save 22.2%

and BP-GDAI8

enhances the FF-INT8 algorithm.

95

6.5.3 Analysis of Computational Cost

In Section 6.5.2, our experiment suggests that FF-INT8 training requires a large

number of epochs to converge. In this section, we analyze the theoretical computational

cost to demonstrate that although FF-INT8 training has much more epochs compared

to backpropagation, it is still efficient. We count the number of required operations to

train 4-layer MLP using MNIST dataset with three settings, i.e. the proposed FF-INT8

training method with “Look Afterward”, and backpropagation with 32-bit floating-point

(BP-FP32) as baseline. We also include Gradient Distribution-Aware INT8 training

algorithm (GDAI8) [5] for comparison, which is an INT8 training algorithm based on

backpropagation. Table 6.4 summarize the amount of computation required for training a

mini-batch of 10 samples for three approaches. In FF-INT8, we have quantization phase

and multiply–accumulation (MAC) phase, where computation of quantization phase is

negligible compared to MAC. Comparing MAC phase, FF-INT8 training requires 23.8M

8-bit MAC operations, whereas backpropagation approach (BP-FP32 or GDAI8) requires

898.2M MAC operations (FP32 or INT8). This is because FF algorithm does not have

large matrix multiplication to back-propagate derivatives from the last layer to the first.

Thus, per mini-batch, FF-INT8 only requires 2.6% of MAC operations in backpropagation

approach. INT8 arithmetic is also 4x faster than FP32 in hardware, which makes FF-INT8

hundres of times more efficient compared to BP-FP32 per epoch. Additionally, FF-INT8

only computes forward pass and does not compute backward pass of gradients. In many

devices, forward pass is more efficient due to hardware optimization for model inference.

In conclusion, although FF-INT8 training needs a large number of epochs, theoretically it

is still more efficient compared to both backpropagation approaches.

6.5.4 Accuracy, Time, Energy, Memory Footprint

For the last set of experiment, we compare model accuracy, training time, energy

consumption between multiple training algorithms, and demonstrate results in Table 6.5.

96

As baseline, we train DNNs using backpropagation (BP) with 32-bit floating-point opera-

tions, denoted as BP-FP32. If directly quantizing gradients to INT8 using BP (BP-INT8),

although we observe significant time, energy and memory savings, accuracy decreases

dramatically due to the accumulation of quantization error, as analyzed in Section 6.4.1.

With deeper architecture, direct quantization makes training much worse. Thus, for simple

architectures such as MLP, training accuracy of BP-INT8 reaches 50%. On the other

hand, deeper models such as MobileNet or ResNet have training accuracy below 10%.

As a comparison, we train each DNN with two existing INT8 training algorithms, i.e.

Unified INT8 Training Algorithm (BP-UI8) [4] and Gradient Distribution-Aware INT8

Training Algorithm (BP-GDAI8) [5]. Both algorithms are based on BP, and quantize

gradients based on analysis of gradient distribution. Since they use BP as basic with

additional operation of gradient monitoring and analysis, the computational cost of both is

slightly higher than direct quantization (BP-INT8). The training accuracy is much higher

compared to BP-INT8, and is close to traditional BP with FP32 operands. BP-GDAI8

has the state-of-the-art performance in terms of trade-off between model accuracy and

efficiency, which is chosen as the comparison model to our methodology.

Finally, we implement Forward-Forward Algorithm with “Look Afterward” scheme

(FF-INT8) as described in Section 6.4.3. As analysis in Section 6.4.2, gradient quantization

works better on FF algorithm due to its layer-by-layer greedy manner. Thus, the training

accuracy is much higher compared to direct quantization in BP (BP-INT8), and is also

higher compared to BP-UI8. By comparing to BP-GDAI8, we show that training accuracy

of FF-INT8 is very close to the state-of-the-art INT8 training algorithm, with a 0.3%

reduction. For training time and energy consumption, since Jetson Orin Nano board

has an INT8 engine, we observe a significant improvement compared to training with

FP32 operations. As analysis in Section 6.5.3, although FF-INT8 requires more epochs

compared to BP-base algorithms, each epoch is much faster. Thus, our FF-INT8 algorithm

is more efficient compared to BP-GDAI8, with 0.7% saving in training time and 6.0%

97

saving in energy consumption. We also notice that FF-INT8 has even better performance

in smaller models (such as MLP) compared larger ones (such as ResNet).

As mentioned in Section 6.3, one of the major benefits of FF algorithm is smaller

memory footprint. Normally, BP algorithms rely on automatic differentiation, which

requires to store the large computational graph for gradient backpropagation in memory.

But since FF algorithm does not have backward pass, it does not need to store this

computational graph. Such improvement in memory footprint is further enhanced by

INT8 operations. Thus, compared to BP-GDAI8, FF-INT8 saves memory footprint by

22.2%.

6.6 Conclusion

In this chapter, we proposed a novel low-precision training methodology, i.e. INT8

Forward-Forward Algorithm (FF-INT8). We found that error from gradient quantization

increases as DNN becomes deeper, while INT8 quantization can be implemented on a

single-layer network. Since Forward-Forward algorithm trains DNNs in a greedy manner,

which only trains one layer at one time, we implemented INT8 training on Forward-

Forward algorithm. To improve accuracy, we proposed a novel loss function which also

considers the following layers, and modified training procedure to make it more effective.

Compared against the state-of-the-art approach, FF-INT8 accelerates training by 0.7%,

decreases energy consumption by 6.0%, and significantly reduces memory footprint by

22.2%, while maintaining high accuracy.

98

CHAPTER 7

Summary and Possible Extensions

This dissertation has explored various techniques to enhance the efficiency of deep

learning computing from both hardware and software perspectives. The primary con-

tributions of this work include the development of advanced approximate computing

methodologies, the introduction of dynamic deep neural network architectures, and the

design and implementation of novel low-precision training algorithms.

1. Approximate Logic Synthesis: We developed a comprehensive methodology for ap-

proximate logic synthesis using Boolean matrix factorization. This approach enables

the generation of approximate circuits that achieve significant reductions in design

area and power consumption while maintaining acceptable levels of computational

accuracy. The proposed methodology has been shown to be versatile, scalable, and

effective across a wide range of benchmark circuits.

2. Runtime Configurable Approximate Circuits: The dissertation introduced the con-

cept of runtime configurable approximate circuits (RUCA) with self-correcting

capabilities. This innovation allows circuits to dynamically adjust their accuracy

levels in response to varying computational demands and power availability, thereby

optimizing both performance and energy efficiency. The experimental results demon-

99

strated the potential of RUCA designs to significantly reduce power consumption in

various application scenarios.

3. Dynamic Neural Networks: We proposed and evaluated a configurable deep neural

network architecture, WeNet, which leverages dynamic weight-enabling techniques

for efficient inference. This approach allows the network to adapt its computational

complexity at runtime, making it suitable for deployment on resource-constrained

devices without sacrificing performance.

4. Low-Precision Training Algorithms: The Forward-Forward (FF) algorithm was

introduced as a novel approach to low-precision training of deep neural networks.

The FF-INT8 algorithm, in particular, was shown to reduce the memory footprint

and computational cost associated with traditional backpropagation methods while

maintaining high levels of accuracy. This advancement is especially relevant for

training on edge devices with limited computational resources.

Overall, this dissertation has demonstrated the feasibility and effectiveness of integrating

approximate computing techniques into logic synthesis and deep learning. The proposed

methodologies not only address the growing need for energy-efficient computing but also

provide practical solutions for deploying advanced machine learning models in resource-

constrained environments.

While this dissertation has made significant contributions to the field of efficient deep

learning computing, there are several avenues for future research that could further enhance

the impact of this work:

1. Extension to Other Deep Learning Models: While the methodologies developed in

this dissertation were primarily applied to convolutional neural networks (CNNs),

they could be extended to other types of deep learning models, e.g. transformers,

which forms the basis of large language models nowadays. Investigating the appli-

cability of approximate computing techniques to these models could lead to new

100

insights and further optimization opportunities.

2. Integration with Emerging Hardware Technologies: As new hardware technologies,

such as neuromorphic computing and quantum computing, continue to evolve, there

is potential to integrate the techniques developed in this dissertation with these

emerging platforms. Exploring how approximate computing methodologies can be

adapted to take advantage of the unique characteristics of these technologies could

lead to significant breakthroughs in energy-efficient computing.

3. Advanced Design Space Exploration: The design space exploration techniques

employed in this dissertation focused on specific metrics such as area, power, and

accuracy, and mainly uses greedy search methods. Future work could investigate

more advanced multi-objective optimization techniques that simultaneously consider

a broader range of metrics, such as fault tolerance and reliability. And methods such

as reinforcement learning could also be used to improve design space exploration.

This could lead to more robust and versatile approximate computing methodologies.

4. Exploration of SW/HW Co-design: Combining approximate computing method-

ologies proposed in this dissertation could lead to new architectures that are both

energy-efficient and scalable. Investigating how these paradigms can be harmonized

to create holistic solutions for distributed AI systems would be a promising direction

for future research.

In conclusion, this dissertation has laid a strong foundation for the development of

energy-efficient hardware circuits and deep learning models. By exploring the possible

extensions outlined above, future research can build on this work to create even more

advanced and impactful solutions for the challenges facing modern computing systems.

101

References

[1] J. Yu and T. S. Huang, “Universally slimmable networks and improved training

techniques,” in Proceedings of the IEEE/CVF international conference on computer

vision, pp. 1803–1811, 2019.

[2] S. Jain, S. Venkataramani, and A. Raghunathan, “Approximation through logic

isolation for the design of quality configurable circuits,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), pp. 612–617, IEEE, 2016.

[3] V. Mrazek, Z. Vasicek, and L. Sekanina, “Design of quality-configurable approximate

multipliers suitable for dynamic environment,” in 2018 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pp. 264–271, IEEE, 2018.

[4] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and J. Yan, “Towards uni-

fied int8 training for convolutional neural network,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 1969–1979, 2020.

[5] S. Wang and Y. Kang, “Gradient distribution-aware int8 training for neural networks,”

Neurocomputing, vol. 541, p. 126269, 2023.

[6] P. Raj, K. Saini, and C. Surianarayanan, Edge/Fog Computing Paradigm: The

Concept, Platforms and Applications. Academic Press, 2022.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in neural information processing systems,

vol. 25, 2012.

[8] K. Simonyan, “Very deep convolutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556, 2014.

[9] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware approximate

techniques for deep neural network accelerators: A survey,” ACM Computing

Surveys, vol. 55, no. 4, pp. 1–36, 2022.

102

[10] G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran, and J. Henkel,

“Approximate computing for ml: State-of-the-art, challenges and visions,” in Proceed-

ings of the 26th Asia and South Pacific Design Automation Conference, pp. 189–196,

2021.

[11] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8–22, 2015.

[12] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in 18th IEEE European Test Symposium, pp. 1–6, IEEE,

2013.

[13] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing

performance vs. accuracy trade-offs with loop perforation,” in Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, ESEC/FSE ’11, (New York, NY, USA), pp. 124–134, ACM,

2011.

[14] S. Li, S. Park, and S. Mahlke, “Sculptor: Flexible approximation with selective

dynamic loop perforation,” in Proceedings of the 2018 International Conference on

Supercomputing, ICS ’18, (New York, NY, USA), pp. 341–351, ACM, 2018.

[15] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “Sfu-driven transparent

approximation acceleration on gpus,” in Proceedings of the 2016 International

Conference on Supercomputing, ICS ’16, (New York, NY, USA), pp. 15:1–15:14,

ACM, 2016.

[16] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning

approximation for graphics engines,” in 2013 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 13–24, Dec 2013.

[17] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “Helix-up: Relaxing

program semantics to unleash parallelization,” in Proceedings of the 13th Annual

103

IEEE/ACM International Symposium on Code Generation and Optimization, CGO

’15, (Washington, DC, USA), pp. 235–245, IEEE Computer Society, 2015.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for

disciplined approximate programming,” SIGPLAN Not., vol. 47, pp. 301–312, Mar.

2012.

[19] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram

refresh-power through critical data partitioning,” SIGPLAN Not., vol. 46, pp. 213–

224, Mar. 2011.

[20] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das, “Exploiting

staleness for approximating loads on cmps,” in 2015 International Conference on

Parallel Architecture and Compilation (PACT), pp. 343–354, Oct 2015.

[21] G. Karakonstantis and K. Roy, “Voltage over-scaling: A cross-layer design perspec-

tive for energy efficient systems,” in 20th European Conference on Circuit Theory

and Design (ECCTD), pp. 548–551, IEEE, 2011.

[22] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic

designs,” in Proceedings of the 49th Annual Design Automation Conference, pp. 820–

825, 2012.

[23] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased multiplier

for approximate applications,” in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, ICCAD ’15, (Piscataway, NJ, USA), pp. 418–

425, IEEE Press, 2015.

[24] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an

underdesigned multiplier architecture,” in 24th International Conference on VLSI

Design, pp. 346–351, 2011.

[25] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider for approximate

104

applications,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference

(DAC), pp. 1–6, June 2016.

[26] R. G. Rizzo, A. Calimera, and J. Zhou, “Approximate error detection-correction for

efficient adaptive voltage over-scaling,” Integration, vol. 63, pp. 220–231, 2018.

[27] J. Huang, T. N. Kumar, and H. Abbas, “Simulation-based evaluation of approximate

adders for image processing using voltage overscaling method,” in 2020 IEEE 5th

International Conference on Signal and Image Processing (ICSIP), pp. 499–505,

IEEE, 2020.

[28] Y. Mannepalli, V. B. Korede, and M. Rao, “Novel approximate multiplier designs for

edge detection application,” in Proceedings of the 2021 on Great Lakes Symposium

on VLSI, pp. 371–377, 2021.

[29] W. Ahmad, B. Ayrancioglu, and I. Hamzaoglu, “Low error efficient approximate

adders for fpgas,” IEEE Access, vol. 9, pp. 117232–117243, 2021.

[30] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated high-level

generation of low-power approximate computing circuits,” IEEE Transactions on

Emerging Topics in Computing, pp. 1–13, 2016.

[31] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa:

Systematic logic synthesis of approximate circuits,” in Design Automation Confer-

ence, pp. 796–801, 2012.

[32] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “Aslan:

Synthesis of approximate sequential circuits,” in Design, Automation & Test in

Europe Conference, pp. 1–6, 2014.

[33] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A

unified design paradigm for approximate and quality configurable circuits,” in

Design, Automation and Test in Europe, pp. 1367–1372, 2013.

105

[34] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under gen-

eral error magnitude and frequency constraints,” in Proceedings of the International

Conference on Computer-Aided Design, pp. 779–786, 2013.

[35] Z. Vasicek and L. Sekanina, “Evolutionary design of complex approximate combi-

national circuits,” Genetic Programming and Evolvable Machines, vol. 17, no. 2,

pp. 169–192, 2016.

[36] S. Frohlich, D. Grobe, and R. Drechsler, “Error Bounded Exact BDD Minimization

in Approximate Computing,” in International Symposium on Multiple-Valued Logic,

pp. 254–259, 2017.

[37] S. Frohlich, D. Grobe, and R. Drechsler, “Approximate hardware generation using

symbolic computer algebra employing grobner basis,” in Design, Automation and

Test in Europe, pp. 889–892, 2018.

[38] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for the

magnitude-based pruning,” arXiv preprint arXiv:2010.07611, 2020.

[39] Y. He and L. Xiao, “Structured pruning for deep convolutional neural networks: A

survey,” IEEE transactions on pattern analysis and machine intelligence, 2023.

[40] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for

efficient convnets,” CoRR, vol. abs/1608.08710, 2016.

[41] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic pruning for

convolutional neural networks,” Advances in neural information processing systems,

vol. 31, 2018.

[42] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort, “Up

or down? adaptive rounding for post-training quantization,” in International

Conference on Machine Learning, pp. 7197–7206, PMLR, 2020.

[43] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

106

D. Kalenichenko, “Quantization and training of neural networks for efficient integer-

arithmetic-only inference,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 2704–2713, 2018.

[44] M. Neseem, C. McCullough, R. Hsin, C. Leichner, S. Li, I. S. Chong, A. G. Howard,

L. Lew, S. Reda, V.-M. Rautio, et al., “Pikelpn: Mitigating overlooked inefficiencies

of low-precision neural networks,” arXiv preprint arXiv:2404.00103, 2024.

[45] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,”

International Journal of Computer Vision, vol. 129, no. 6, pp. 1789–1819, 2021.

[46] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture search

without training,” in International conference on machine learning, pp. 7588–7598,

PMLR, 2021.

[47] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and

N. Wang, “A comprehensive survey on hardware-aware neural architecture search,”

arXiv preprint arXiv:2101.09336, 2021.

[48] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early exiting

for deep learning applications: Survey and research challenges,” ACM Computing

Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[49] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A

comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1,

pp. 43–76, 2020.

[50] M. Shen, P. Molchanov, H. Yin, and J. M. Alvarez, “When to prune? a policy

towards early structural pruning,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 12247–12256, 2022.

[51] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable

neural networks,” arXiv preprint arXiv:1803.03635, 2018.

107

[52] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, “Sparse low rank factorization

for deep neural network compression,” Neurocomputing, vol. 398, pp. 185–196, 2020.

[53] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,

M. Houston, O. Kuchaiev, G. Venkatesh, et al., “Mixed precision training,” arXiv

preprint arXiv:1710.03740, 2017.

[54] J. Ma, S. Hashemi, and S. Reda, “Approximate Logic Synthesis Using Boolean Matrix

Factorization,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2021.

[55] S. Hashemi and S. Reda, “Generalized matrix factorization techniques for approxi-

mate logic synthesis,” in 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 1289–1292, IEEE, 2019.

[56] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz, “k-

way hypergraph partitioning via n-level recursive bisection,” in 18th Workshop on

Algorithm Engineering and Experiments, pp. 53–67, 2016.

[57] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational benchmark

suite,” in 24th International Workshop on Logic & Synthesis, 2015.

[58] D. Bryan, “The iscas’85 benchmark circuits and netlist format,” North Carolina

State University, vol. 25, p. 39, 1985.

[59] S. Lee, L. K. John, and A. Gerstaluer, “High-level synthesis of approximate hardware

under joint precision and voltage scaling,” in Design, Automation and Test in Europe,

2017.

[60] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn: energy-

efficient neuromorphic systems using approximate computing,” in 2014 IEEE/ACM

International Symposium on Low Power Electronics and Design (ISLPED), pp. 27–

32, IEEE, 2014.

108

[61] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda, “Approximate computing

for biometric security systems: A case study on iris scanning,” in 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), pp. 319–324, March

2018.

[62] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy trade-

offs: A case study of an approximate smart camera system*,” in 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2017.

[63] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix

factorization,” Nature, vol. 401, pp. 788–791, 1999.

[64] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative ma-

trix factorization,” in Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval, pp. 267–273, 2003.

[65] P. Miettinen and J. Vreeken, “Model order selection for boolean matrix factorization,”

in 17th ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 51–59, 2011.

[66] P. Miettinen and J. Vreeken, “Mdl4bmf: Minimum description length for boolean

matrix factorization,” ACM Transactions on Knowledge Discovery from Data, vol. 8,

no. 4, pp. 18:1–31, 2014.

[67] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, “The discrete basis

problem,” IEEE transactions on knowledge and data engineering, vol. 20, no. 10,

pp. 1348–1362, 2008.

[68] Z. Zhang, T. Li, C. Ding, and X. Zhang, “Binary matrix factorization with applica-

tions,” in 7th IEEE International Conference on Data Mining, pp. 391–400, IEEE,

2007.

[69] S. Ravanbakhsh, B. Póczos, and R. Greiner, “Boolean matrix factorization and

109

noisy completion via message passing.,” in International Conference on Machine

Learning, pp. 945–954, 2016.

[70] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification

tool,” in International Conference on Computer Aided Verification, pp. 24–40,

Springer, 2010.

[71] J. Ma, S. Hashemi, and S. Reda, “Approximate logic synthesis using blasys,” 2019.

[72] C. Wolf, “Yosys open synthesis suite.” http://www.clifford.at/yosys/, 2016.

[73] S. Williams, “Icarus verilog.” http://iverilog.icarus.com/, 2006.

[74] W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E. Gaillardon,

“Lsoracle: a logic synthesis framework driven by artificial intelligence,” in IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), November 2019.

[75] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S. Reda, “Ap-

proximate logic synthesis: A survey,” Proceedings of the IEEE, vol. 108, no. 12,

pp. 2195–2213, 2020.

[76] J. Castro-Godinez, H. Barrantes-Garcia, M. Shafique, and J. Henkel, “Axls: A

framework for approximate logic synthesis based on netlist transformations,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2845–2849,

2021.

[77] S. Boroumand, C. S. Bouganis, and G. A. Constantinides, “Learning boolean circuits

from examples for approximate logic synthesis,” in Proceedings of the 26th Asia and

South Pacific Design Automation Conference, pp. 524–529, 2021.

[78] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for automated

behavioral synthesis of approximate computing circuits,” in 2014 Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 1–6, IEEE, 2014.

[79] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A unified

110

http://www.clifford.at/yosys/
http://iverilog.icarus.com/

design paradigm for approximate and quality configurable circuits,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 1367–1372,

IEEE, 2013.

[80] T. Alan, A. Gerstlauer, and J. Henkel, “Runtime accuracy-configurable approximate

hardware synthesis using logic gating and relaxation,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), pp. 1578–1581, IEEE, 2020.

[81] T. Alan, A. Gerstlauer, and J. Henkel, “Cross-layer approximate hardware syn-

thesis for runtime configurable accuracy,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 29, no. 6, pp. 1231–1243, 2021.

[82] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider for approximate

applications,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference

(DAC), pp. 1–6, IEEE, 2016.

[83] S. Reda and M. Shafique, Approximate Circuits. Springer, 2019.

[84] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Runtime configurable deep

neural networks for energy-accuracy trade-off,” in 2016 International Conference

on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 1–10,

IEEE, 2016.

[85] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” arXiv

preprint arXiv:1812.08928, 2018.

[86] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast inference via

early exiting from deep neural networks,” in 2016 23rd International Conference on

Pattern Recognition (ICPR), pp. 2464–2469, IEEE, 2016.

[87] S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference through early-exit

networks: Design, challenges and directions,” in Proceedings of the 5th International

Workshop on Embedded and Mobile Deep Learning, pp. 1–6, 2021.

111

[88] D. J. Pagliari, E. Macii, and M. Poncino, “Dynamic bit-width reconfiguration

for energy-efficient deep learning hardware,” in Proceedings of the International

Symposium on Low Power Electronics and Design, pp. 1–6, 2018.

[89] L. Guerra, B. Zhuang, I. Reid, and T. Drummond, “Switchable precision neural

networks,” arXiv preprint arXiv:2002.02815, 2020.

[90] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4510–4520, 2018.

[91] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 6848–6856, 2018.

[92] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural

networks,” in International conference on machine learning, pp. 6105–6114, PMLR,

2019.

[93] E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo, “Big/little deep

neural network for ultra low power inference,” in 2015 international conference on

hardware/software codesign and system synthesis (codes+ isss), pp. 124–132, IEEE,

2015.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[95] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute

trends across three eras of machine learning,” in 2022 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, IEEE, 2022.

[96] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in

112

minutes,” in Proceedings of the 47th international conference on parallel processing,

pp. 1–10, 2018.

[97] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instructions

with human feedback,” Advances in neural information processing systems, vol. 35,

pp. 27730–27744, 2022.

[98] G. Hinton, “The forward-forward algorithm: Some preliminary investigations,” arXiv

preprint arXiv:2212.13345, 2022.

[99] Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and A. S.

Hafid, “A comprehensive survey on tinyml,” IEEE Access, 2023.

[100] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han, “Smoothquant:

Accurate and efficient post-training quantization for large language models,” in

International Conference on Machine Learning, pp. 38087–38099, PMLR, 2023.

[101] Y. Shang, Z. Yuan, B. Xie, B. Wu, and Y. Yan, “Post-training quantization on

diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 1972–1981, 2023.

[102] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,

M. Houston, O. Kuchaiev, G. Venkatesh, et al., “Mixed precision training,” in

International Conference on Learning Representations, 2018.

[103] S. Fox, S. Rasoulinezhad, J. Faraone, P. Leong, et al., “A block minifloat represen-

tation for training deep neural networks,” in International Conference on Learning

Representations, 2020.

[104] K. Zhao, S. Huang, P. Pan, Y. Li, Y. Zhang, Z. Gu, and Y. Xu, “Distribution

adaptive int8 quantization for training cnns,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 35, pp. 3483–3491, 2021.

113

[105] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A

survey of quantization methods for efficient neural network inference,” in Low-Power

Computer Vision, pp. 291–326, Chapman and Hall/CRC, 2022.

[106] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning

with limited numerical precision,” in International conference on machine learning,

pp. 1737–1746, PMLR, 2015.

[107] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, “8-bit optimizers via

block-wise quantization,” in International Conference on Learning Representations,

2021.

114

	Acknowledgments
	Introduction
	Importance of Energy-Efficient Computing
	Problem Statement
	Contributions of the Thesis

	Background
	Approximate Circuits and Approximate Logic Synthesis
	Efficient Inference Methods for Deep Learning
	Model Compression Techniques
	Neural Architecture Search and Hardware-aware Optimization
	Dynamic Inference and Early Exiting

	Efficient Training Methods for Deep Learning
	Transfer Learning
	Parameter-Efficient Training
	Low-Precision Training

	Approximate Logic Synthesis using Boolean Matrix Factorization
	Introduction
	Previous Work
	Background
	Proposed Methodology
	Approximate Synthesis Using Boolean Matrix Factorization
	Partitioning and Design Space Exploration
	Hyperparameters

	Experimental Results
	Work Flow
	Number of test vectors
	BMF-based Approximate Logic Synthesis
	Design Space Exploration
	Comparison of Arithmetic Blocks
	Runtime Characterization

	Conclusions

	Runtime Configurable Approximate Circuits with Self-Correcting Capability
	Introduction
	Previous Work
	Proposed Methodology
	RUCA with Corrector Circuit
	Partitioning and Design Space Exploration
	Reducing Design Overhead

	Experimental Results
	Conclusion

	Configurable Deep Neural Network with Dynamic Weight-Enabling for Efficient Inference
	Introduction
	Previous Work
	Proposed Methodology
	Dynamic Weight-enabling Network (WeNet)
	WeNet on Convolutional Layers
	Training WeNet with Switchable Batch Normalization
	Design Space Exploration

	Experimental Results
	Experiment Setup
	Channel-Shuffling
	WeNet v.s. US-Net
	Inference Time and Energy Consumption
	Evaluation on Different Devices

	Conclusion

	Low-precision Training using Forward-Forward Training Algorithm
	Introduction
	Previous Work
	Background
	Proposed Methodology
	Network Depth and Gradient Quantization
	INT8 Forward-Forward Algorithm
	FF-INT8 Algorithm with Look Afterward

	Experimental Results
	Experimental Setup
	Training with ``Look Afterward''
	Analysis of Computational Cost
	Accuracy, Time, Energy, Memory Footprint

	Conclusion

	Summary and Possible Extensions

