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Abstract of “Energy-Efficiency Optimization Techniques for Computing Clusters: Ex-
ploiting the Heterogeneities” by Xin Zhan, Ph.D., Brown University, May 2018

The development of cloud computing and online services result in rapid increases of num-

ber and scale of computing clusters. Because of cost and sustainability concerns, energy

efficiency has been a major goal for cluster architects. Computing clusters are designed

to serve a wide range of workload types. Heterogeneous workloads stress different as-

pects of the server hardware. The servers in a computing cluster also can be configured

with various hardware configurations. These heterogeneities that exist in computing clus-

ters and the hosted applications create potential opportunities of optimizations. Given

the complexity and scale of the infrastructure and workloads in clusters, optimizing the

performance and energy-efficiency of clusters are the most challenging problems.

Towards energy-efficient computing clusters, we formulate and devise efficient algo-

rithms to optimize the heterogeneous cluster performance. We start with the power bud-

geting problem: in a power-constrained computing cluster, how to optimally allocate the

power across the servers to maximize the performance. The cluster operates computing

nodes and cooling infrastructure. We propose optimization techniques that find the opti-

mal partition between cooling power budget and computing power budget, as well as the

optimal computing power allocation among individual server nodes. As the size of cluster

grows, the centralized optimization control will become a bottleneck of computation and

networking. To improve the scalability and robustness of the computing power allocation

method, we propose a fully distributed optimization algorithm that achieves optimality

and fast convergence.

Computing cluster typically is composed of servers with diverse configurations where

each type has distinct performance-power characteristics. The layout of the server (racks)

impact significantly the hotspot and peak temperature in clusters, which subsequently de-

termines the minimum cooling power. We propose an optimal optimization technique that
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minimizes the cooling power while taking peak inlet temperature as constraint. With the

characteristics of the heterogenous servers and the corresponding workloads are realized,

our algorithm find the optimal organization of the server racks to reduce the required cool-

ing power consumption.

System heterogeneity provides a great opportunity for energy-efficiency optimizations.

However, the performance of the server nodes highly rely on the composition of the hosted

workloads. As the workload characteristics changes rapidly in modern clusters, the static

heterogeneous server makeup is not always effective. To introduce flexibility and recon-

figurability in server heterogeneity, we propose a method to reconfigure a homogeneous

server cluster to become heterogeneous cluster through firmware reconfiguration with re-

spect to the workloads characteristics.

This dissertation summarizes our interesting insights in optimization problems for

computing clusters and presents the corresponding methods of addressing each of the

problems. We demonstrate that our optimization techniques achieve significant improve-

ments over existing solutions. In addition, we present novel approaches to create and to

better leverage the server heterogeneity in computing clusters.
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Chapter 1

Introduction

Computing clusters consist of thousands of servers with diverse functionalities. They en-

able large web services such as web search, e-commerce and social networks, as well

as super computings and cloud computing with huge amount of data. Groups of servers

are responsible for computing, storage or networking. Altogether they consume exces-

sive amounts of power, with large facilities consuming up to 50 MW [4, 40]. Computing

clusters in world-wide contribute to about 30 BW of power, which roughly equals to the

power output of 30 large nuclear power plants [28]. As a result, the total cost of ownership

of computing clusters is dominated by power consumption, which constrains total perfor-

mance and scalability [24, 40, 59]. Improving the performance and energy-efficiency of

clusters are quickly becoming urging issues in need of effective solutions.

The power consumption of computing infrastructures and the power of cooling units

are two major components of the total power of the cluster, where the power consumption

of the Computer Room Air Conditioning (CRAC) units depends on the power consump-

tion of servers and the hot spots in the layout of the center [1]. To increase the efficiency of
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computing clusters, many servers are normally hosted by an electric circuit than its rated

power permits [8]. This power over-subscription is justified by the fact that the nameplate

ratings on servers are higher than the servers’ actual power utilization. Moreover, rarely all

servers work at their peak powers simultaneously. In the case that the power consumption

of subscribed servers peak at the same time and exceed the circuit capacity, power must

be capped quickly to avoid tripping the circuit breakers. Power capping can be used as

a safety mechanism to reduce power consumption of servers when supporting equipment

fails [24, 63, 76]. For instance, the breakdown of a cluster’s CRAC system may result

in a sudden temperature increase of IT devices. In this scenario, power capping can help

maintain the baseline temperature inside the cluster.

On the other hand, cluster workloads exhibit large variation in their characteristics.

Different workload can stress different components of the server. For instance, numeri-

cally intensive high performance computing (HPC) jobs saturate the CPU usage, big data

processing jobs are usually memory-bounded, and most the web service jobs are bounded

by disk/network IO performance. Allocating higher power budget benefits differently for

workloads due to there characteristics. This heterogeneity provides a potential opportunity

for power budgeting and power allocation optimizations.

Chapter 3 and Chapter 4 of this dissertation aim to address the power budgeting op-

timization problem. In Chapter 3, we describe our centralized solution of total power

budgeting, where the total power budget is allocated among the servers and cooling equip-

ment to maximize the system normalized performance (SNP), or equivalently minimize

the average runtime. A novel method is devised to split the total power budget between

the computing servers and cooling units in a self-consistent way, where the cooling power

meets the heat removal requirements for the computing power, which is allocated using an

optimal power budgeting technique. We propose an optimal computing power budgeting

technique that is inspired by methods for solving the well-known knapsack problem. The
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budgeting technique identifies the optimal power caps for the servers, such that the total

server power meets the computing budget and the system performance is maximized. We

simulate a computing cluster with thousands of servers, where the power estimates for the

servers are derived from real measurements on a server executing heterogeneous workload

sets. Our experimental results demonstrate the advantages of our power budgeting method

and performance improvements, in terms of SNP, slowdown norm and unfairness, over

previous approaches.

Incorporating new server nodes is only practical if the computing cluster has a modu-

lar architecture. Currently used power management methods are not aligned with such an

architecture as they have a centralized design, i.e., there is a central controller aggregating

information from all active computing nodes to allocate power efficiently [45]. Specifi-

cally, in conventional power management techniques, local data of all computing nodes,

such as workloads, application priorities, and thermal distributions, are constantly moni-

tored to efficiently allocate power budget among them in a centralized manner. Therefore,

adding new computing nodes to a cluster necessitates reconfiguration of power manage-

ment hardware and software which drives up the scaling cost. To tackle this challenge, in

Chapter 4, we describe DiBA, a distributed power budgeting framework that scales grace-

fully for large clusters. It is a novel fully-distributed algorithm for power budget allocation

to maximize the combined utility of the entire cluster subject to a given total power budget.

The utility of each computing node is a metric of its throughput that depends on the bench-

mark of the workload as well as server specifications. In our distributed framework, each

server exchanges its decision to increase/decrease its power usage with neighboring nodes

in the cluster through rounds of communications. After each round, the local parameters

of each node are updated in the form of a state-space model. In this phase, the local actions

of neighbors are implemented as a control input. Further, the actions of servers take into

account the global power constraint that must be satisfied. In contrast to centralized meth-
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ods that have communication bottlenecks at the central coordinator, DiBA provides a fully

decentralized mechanism which eliminates the role of the central coordinator. As a result,

we demonstrate that for large scale clusters with thousands of nodes, the communication

time of DiBA is substantially less than that of centralized scheme.

Cooling infrastructure is a major source of energy consumption in computing clusters.

Recent studies show that cooling power can contribute 42% of the total energy consump-

tion of clusters [4]. Cooling power of the CRACs is used to extract the heat produced

from the servers and to supply cold air back to the facility through the perforated tiles.

The supply temperatures of the cold air from the CRAC units should be set as high as

possible to reduce cooling power while not violating the red temperature specifications

of the servers. The planning of homogeneous computing clusters is relatively simple as

servers are all identical in their configurations; thus, there is no inherent advantage from

changing the locations of the racks as the servers will have the same power consumption

behavior irrespective of their locations. In homogeneous clusters, it is the allocation of

workloads to the servers that mainly determines the spatial power distribution inside the

cluster, which consequently determines the thermal characteristics and the cooling power.

Modern computing clusters are heterogeneous in nature, where they deploy clusters of

heterogeneous server platforms that offer the same instruction set architecture, and thus,

they are capable of executing the same workloads. However, the hardware makeup of

the servers can be completely different. Heterogenous servers can use different processor

types, number of cores, and DRAM capacities. The heterogenous makeup helps clusters

cater to workloads with different characteristics (e.g., transactional, batch, numerically

intensive, etc) by matching workloads with the right platforms to better achieve the clus-

ter’s target metrics (e.g., performance and energy consumption). Another reason for the

heterogeneity arises from multiple replacement, upgrades and the deployment of more

cost-efficient systems that become available over time [4]. We observe that heterogeneous
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clusters provide an interesting opportunity to plan their facilities in a way to reduce cool-

ing power. Heterogeneous servers have different power specifications, and thus, the spatial

positions at installment will lead to inherent thermal characteristics in the cluster. Thus,

we can reduce cooling power by carefully laying out the racks of heterogeneous servers

during the planning phase of computing clusters.

In Chapter 5, we formulate the problem of rack layout for planning of heterogeneous

clusters, where the goal is to identify the best locations of the racks of servers with dif-

ferent hardware capabilities to improve the supply temperatures of the CRAC units and

the total cooling power. Given the nature of modern computing clusters with varying uti-

lization that is a function of time and sophisticated job schedulers, we reformulate the

rack layout problem in a probabilistic manner to identify layouts that are likely to provide

the best cooling subject to various operating conditions. An optimal solution methodol-

ogy is presented based on integer linear programming (ILP) and evaluated using realistic

cluster configurations. Since the planning of clusters occur only once, the ILP runtime is

practically feasible.

However, since servers are meant to support diverse workloads in a cluster, making

application-specific hardware component changes is impractical. Furthermore, creating

a cluster by purchasing servers with different hardware capabilities can complicate re-

source management and increase costs. Instead, a more realistic approach is proposed to

change the configuration of the available hardware and software components. Among the

many potential ways of changing the configuration of the hardware components, we ob-

serve that modern servers offer a large number of firmware settings that can be tuned with

significant impact on the runtime and power consumption of a server. Some of these set-

tings include hardware-prefetching, adjacent cache-line perfecting, memory turbo boost,

CPU turbo boost and hyper threading. Thus, by configuring these settings differently for

different servers, we can create a soft heterogeneous mix of servers out of an originally
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homogeneous set that delivers improved performance and energy efficiency for targeted

workloads. In comparison to purchasing custom servers, we offer a soft approach for cre-

ating heterogeneity as it is always possible to change the customizations with a simple

reboot to the servers.

The traditional approach of configuring the firmware settings involves a human in

the loop. System administrators follow simple ad-hoc rules to identify the appropriate

firmware settings [44, 5], which can potentially lead to ineffective use of the hardware

components and is naturally prone to human errors. In contrast, we present an automated

firmware exploration tool, FXplore, in Chapter 6. FXplore is effective in finding firmware

configurations of servers that can deliver the maximum benefits in performance and en-

ergy efficiency. There are several challenges in finding the optimal firmware configura-

tions. First, there are exponential number of configurations as a function of the number

of firmware settings, which makes identifying the optimal configuration for a workload

a hard problem. Second, creating a dedicated sub-cluster with its own custom firmware

settings for each target workload can complicate system management, especially if there

are a large number of target workloads. Third, administrators sometimes deploy workload

co-runners on the same server. Through FXplore, we provide a framework that addresses

these challenges.
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Chapter 2

Background

In this chapter, we describe the background and related prior works that are related to the

optimization problems in this dissertation. As the main goal of our proposed methods is

to optimize power and energy-efficiency of computing clusters, we start with introducing

the power provisioning mechanism and power capping techniques in clusters. To solve

the power budgeting optimization, it is important to understand the performance-power

models. Power budgeting techniques allocates power cap based on performance-power

model to optimize the system performance. As cooling power in clusters is another major

component of the total power, we introduce the thermal approaches to estimate the cooling

power. The optimization methods proposed in this dissertation are exploiting the hetero-

geneities in clusters. We discuss the useful heterogeneities existing in clusters that can be

leveraged in optimizations. Finally, we summarize prior computing cluster optimization

works.
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2.1 Power Provisioning and Capping in Computing Clus-

ters

Cluster power provisioning. Computing clusters power provisioning policies assures

sufficient capacity for each server. Given the fact that the typical power usage is much

lower than the highest provisioning power, the power infrastructure is usually over-provisioned

[24, 29, 74, 65]. Power capping mechanisms is designed to trade acceptable performance

degradation for substantial saving of the power provisioning infrastructure. More impor-

tantly, it avoids the cascading failures due to overloading.

Power budgeting. Power budgeting control mechanisms are proposed to allocate a power

cap for each server. Ghandi et al. proposed power budgeting methods for servers that ex-

ecute the same workload [27]. This situation can be useful for computing clusters that ex-

ecute transactional workloads of the same nature; however, they are not relevant for com-

puting facilities that execute high-performance computing (HPC) applications. These later

facilities typically have high utilizations where most of the servers are fully utilized exe-

cuting a large range of workloads with potentially heterogeneous characteristics. Nathuji

et al. consider the case of power budgeting for heterogeneous workloads and servers [58].

The main proposed approach is a greedy method, where the throughput per Watt for the

servers is calculated, and then servers with higher throughput per Watt are allocated more

power during budgeting.

Power allocation in multi-core processors is a related problem to power budgeting

in computing clusters [37, 67]. Power budgeting for computing cluster is different in a

number of ways: (1) unlike independent servers, multi-core processors do not offer power

cap controllers for the individual cores; (2) workloads on a multi-core processor are likely
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to show memory interference issues, whereas workloads servers are relatively independent

unless they explicitly communicate using message passing; (3) computing clusters feature

air conditioning units that have to be considered during power budgeting; and (4) the

interactions between computing and cooling power in cluster are highly complex in nature.

Server power capping. To enforce a power cap on a server, a number of previous ap-

proaches have been proposed in the past [38, 63, 13]. One possible approach is to equip

each server with a feedback controller that computes the observed difference between the

measured power and the power cap, and accordingly adjusts the p-state of the server using

dynamic frequency and voltage scaling (DVFS). As is shown in Figure 2.1. if the differ-

ence is positive then DVFS is decreased, and if the difference is negative then DVFS is

increased.

DVFS 
controller	  

error 
performance 

power cap 

power 

Figure 2.1: power capping feedback controller.

2.2 Cluster Performance-Power Models

Dynamic power budgeting requires the ability to estimate the impact of changing the op-

erational power cap of the server on its performance characterizations. The performance

characteristics of the workload can be realized by the performance monitoring counters
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available in processors.

Performance monitoring counters. To collect runtime performance information of com-

puters, most processors have hardware performance monitoring counters (PMCs) imple-

mented by the Performance Monitoring Unit (PMU) of the CPU. Various performance

events can be selected and counted with PMCs. The generally available performance

events include branch prediction, cache/TLB misses, memory accesses and executed/stalled

clock cycles. PMCs provide data for identifying program performance bottleneck and op-

timizing code performance [22, 70, 71]. Also, processor power consumption can be esti-

mated with PMCs [14, 12, 68]. PMC is a powerful tool for modeling the characteristics of

system and workloads.

Performance modeling. A number of models have been proposed in the literature to cap-

ture the relationship between the performance and power of a single server. In early works,

Rajamani et al. proposed linear models [64] and Gandhi et al. proposed linear and cubic

models [27]. The coefficients of these models are functions of the server configuration

and the workload characteristics. In these works, fixed values for these coefficients were

assumed irrespective of the workload characteristics. These values were obtained through

prior characterization of standard benchmarks. As a result, these models are likely to show

prediction errors for throughput and power in case heterogeneous applications with wide

range of characteristics are executed on a cluster. In some recent works, Rountree et al.

analyzed existing performance models for heterogeneous applications and proposed a lin-

ear model [66] based on IPC (instructions per cycle) and LLC (last level cache misses per

cycle).

Performance metrics. Many metrics are used to assess different type of computing clus-

ters. HPC clusters usually focus more on the throughput of the system, which can be
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quantified as Billion Instructions Executed Per Second (BIPS) or Floating Point Opera-

tions Per Second (FLOPS). In case of certain heavy job dominates the throughput, per-

formance normalization methods are introduced. The following normalized metrics are

considered:

1. System normalized performance (SNP): SNP is the geometric mean of all the Ap-

plication normalized performance (ANP) for the workloads running in the cluster,

where ANP is the ratio of ideal runtime to actual runtime of a workload [77]. It

is equivalent to the ratio of actual throughput to ideal throughput. Associated with

ANP;

2. Slowdown norm (denoted by s): slowdown norm of workload i is calculated as

1/ANPi and the slowdown norm of the computing cluster is computed by (
∑

i si)/N ,

where N is the number of workloads executing in the cluster;

3. Unfairness (denoted by f ): Unfairness is the coefficient of variation of the ANPs

for all the workloads in a cluster.

2.3 Thermal Modeling for Clusters

To compute the minimum requirement of cooling power given a distribution of computing

power, a model is needed to translate the power distribution to thermal distribution in com-

puting clusters. There exist some works in thermal management in clusters. For example,

Tang et al. proposed a heat cross-interference coefficient matrix based method to model

the thermal distribution of computing cluster in a fast way [73]. To quantify the efficiency

of CRAC units (a typical CRAC unit is shown in Figure 2.2), Moore et al. proposed a
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metric of Coefficient of Performance (CoP) [56], which enable us to build a relationship

between cooling power consumption and the supply temperatures of CRAC units.

Modeling Cooling Power. CRAC units consume cooling power to remove the heat gen-

erated by the computing servers. The cooling power pcool of a CRAC is a function of

the inlet heat flowing into the CRAC, its supply temperature tsup, and its coefficient of

performance CoP, such that

pcool =
inlet heat from racks

CoP (tsup)
, (2.1)

where the CoP (·) gives the efficiency of the CRAC unit as a function of its supply tem-

perature [56]. The exact function of the CoP is determined empirically by the CRAC

manufacturer [56]. Achieving the minimum sufficient cooling power is equivalent to find-

ing the maximum tsup that guarantees that the inlet temperatures of all the servers are

below the manufacturer’s redline temperature tred.

The inlet temperatures tini of rack ri is impacted by the CRAC supply temperature and

the heat recirculation from all the racks in the cluster. Given a floor plan of the cluster,

the heat recirculation matrix D can be derived using CFD simulations [73]. Each element

Figure 2.2: computer room air conditioning (CRAC) unit.
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D(i, j) of the heat circulation matrix defines the contribution of the power consumption

of rack j to the temperature increment of rack i. For a cluster that consists of n racks, let

tout = [tout1 , tout2 , · · · , toutn ] denotes the vector of the outlet temperatures of the racks, while

tin = [tin1 , t
in
2 , · · · , tinn ] denotes the vector of inlet temperatures. If p = [p1, p2, · · · , pn]

denotes the vector of power consumption of racks in cluster, we can compute the inlet

temperatures as [73]:

tin = tsup +Dp (2.2)

where tsup is a vector of length n that denotes the supply temperatures of the racks, where

each element is equal to tsup of the CRAC units.

2.4 Heterogeneity in Computing Clusters

Since applications often have varying hardware-resource requirements, heterogeneity helps

improve the performance and energy-efficiency of large-scale computing platforms. In the

literature, employing heterogeneous hardware resources has been shown to improve the

performance of HPC and cloud-computing clusters [17, 50, 52, 51, 18, 34]. Specifically, in

[51] and [52], Mars et al. have quantified the potential performance improvements that can

be achieved by smartly leveraging the heterogeneity in the instruction-set architecture and

hardware resources of servers. Subsequent works such as [50] and [17, 18] have proposed

methods that employ in-place continuous workload profiling techniques and scheduling al-

gorithms to better utilize heterogeneous computing fabrics in warehouse scale computers.

Despite these benefits, server cluster operators usually tend to purchase servers with ho-
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mogeneous hardware configurations in order to minimize cost and resource-management

issues. Thus, the existing heterogeneity in server clusters is minimal, which is simply

a result of replacing and mixing new server hardware with older ones. Consequently,

the attainable performance benefits using the aforementioned approaches are limited. A

potential complementary is altering the firmware configurations to increase the level of

heterogeneity in servers. Many of the firmware configurations cannot be changed in soft-

ware, for instance via the operating system or virtual-machine managers. There exists

a large amount of prior work that employs software techniques such as voltage and fre-

quency scaling of the processor [35, 37, 13] and main memory [15, 20, 47]. Although

these are effective methods to control the server behavior, we believe there are many more

control knobs to improve or impair server performance and energy efficiency, which can

only be controlled through the firmware. CPU hyper-threading is one such example, which

is shown to significantly impact application performance [39, 32].

There is also some related work in the compiler community that employs machine

learning (ML) to tune memory prefetch settings in software and in BIOS [25, 42, 43]. A

few works provide an overview of some of these approaches [49, 36]. Liao et al. adjust

four memory prefetch settings in the firmware and collect performance counters to build

ML models, which optimize any memory performance parameter such as throughput or

cache miss rate [42]. For new workloads, they use these models and predict the optimal

firmware configurations.

2.5 Related Previous Optimization Works

The problem of efficient power management in clusters has been studied extensively from

different perspectives, for a recent survey see [7]. Different practices can be applied to
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reduce power consumption. Nevertheless, they can be divided into one of the following

categories:

1. Schemes based on dynamic voltage/frequency scaling (DVFS) [46, 6, 21, 33].

2. Load balancing and workload scheduling techniques [11, 60].

For memory-intensive workloads, dynamic voltage and frequency scaling (DVFS) dur-

ing memory-bound phases of execution have been shown to provide power savings with

minimal impact on the quality of service (QoS) [16]. Using the same technique, Bel-

oglazov et al. [6] proposed heuristics for energy management under strict service level

agreement (SLA) constraint. Specifically, by dynamically migrating virtual machines

(VMs) across physical machines, workloads are consolidated and subsequently idle re-

sources are put on a low-power state using DVFS. In conjunction with the DVFS tech-

nique, Elnozahy et al. [21] evaluated five different policies for cluster-wide power man-

agement in server farms. In particular, in the independent voltage scaling policy, the au-

thors consider a mechanism in which each node independently manages its own power

consumption using dynamic voltage scaling. Nevertheless, this policy does not consider

the hard constraint on the power consumption of the entire cluster.

Previous work proposed a centralized power feedback controller for satisfying end-

to-end delay [46]. The central application performance monitor measures the latency of

delay sensitive workloads. It then communicates the information to a centralized DVFS

controller to adjust allocated power for each server. Clearly, such a centralized scheme

does not suite large-scale clusters: it is prone to single point of failure and the centralized

controller must solve a complex, high-dimensional optimization to determine the power

cap for each computing node, which can introduce delay.
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Along the path of leveraging DVFS techniques, distributed power management schemes

are proposed[33]. Specifically, the problem of minimizing the power consumption in a

three tier computing cluster under the end-to-end SLA constraint has been investigated.

To solve this problem, two strategies have been investigated. In the first strategy dubbed

as OptiTuner, a primal-dual decomposition method has been employed, where each tier

of servers updates its power consumption by communicating with a central unit. In the

second strategy, a Linear-quadratic regulator (LQR) control method has been employed.

Despite having a distributed structure, OptiTuner suffers from the single point of failure.

Because, it requires a central node to coordinate the optimization parameters, and there-

fore, is susceptible to node failure. Moreover, OptiTuner allocates power uniformly at the

tier level, i.e., all machines at each tier are assumed to host same amount of workload.

In the context of load balancing techniques for power management, a “bidding” mech-

anism akin to the economic models for managing shared resources has been studied [11].

In the proposed framework, services bid for resources and negotiate for SLA based on

the offered price and their QoS requirement. Therefore, SLA is assumed to be a flexible

parameter. While load balancing improves the system performance, load concentration

(unbalancing) can save energy by making servers idle and thus consume less energy [60].

To optimize the trade-off between performance versus power saving, a load balancing and

unbalancing algorithm is proposed [60] that takes into account both the total load imposed

on the cluster and the power and performance implications of turning nodes off.
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Chapter 3

Total Power Budgeting in Computing

Clusters

3.1 Introduction

We describe our holistic total power budgeting technique in this chapter. The total power

consists of computing power and the cooling power. The major challenge is that the cool-

ing power is a function of computing power distribution. Under a total power budget,

partitioning the budget between the cooling power and computing power is a hard prob-

lem. Another challenge, in server power budgeting, is that different workloads trigger

different power consumption patterns, and thus the power management settings that work

for one set of workloads do not necessarily work for another set of workloads [37, 62].

As a result, one needs to find settings for each server that lead to a global optimal for the

entire computing facility. Our goal is to devise a new power budgeting method, where the

total power budget is allocated among the servers and cooling equipment to maximize the
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system normalized performance (SNP), or equivalently minimize the average runtime. We

summarize our contributions as follows.

1. We propose a novel method to partition the total power budget between the com-

puting servers and cooling units in a self-consistent way, where the cooling power

meets the heat removal requirements for the computing power, which is allocated

using an optimal power budgeting technique.

2. We propose a novel throughput predictor for servers with heterogeneous workload

sets, where the measurements from the performance counters are used to estimate

the change in the throughput as a function of the server power cap, on top of which,

we can estimate the Application normalized performance (ANP) beyond current

power cap.

3. Leveraging the throughput predictor, we propose an optimal computing power bud-

geting technique that is inspired by methods for solving the well-known knapsack

problem. The budgeting technique identifies the optimal power caps for the servers,

such that the total server power meets the computing budget and the system normal-

ized performance is maximized.

4. We setup a realistic simulation environment for a computing cluster with thousands

of servers, where the power estimates for the servers are derived from real mea-

surements on a server executing heterogeneous workload sets. We use Computa-

tional Fluid Dynamics (CFD) simulations to ensure accurate modeling of air flow

and heat transfer within the center, and use the CFD results to compute the cooling

power requirement for a given power distribution. To speedup CFD simulation, we

use an approximate approach based on heat cross-interference coefficient matrix.

We experimentally demonstrate the advantages of our power budgeting method and
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performance improvements, in terms of SNP, slowdown norm and unfairness, over

previous approaches.

The organization of this chapter is as follows. We formulate the power budgeting problem

and describe our proposed framework in Section 3.2. Our experimental results are pre-

sented in Section 3.3, and Section 3.4 provides the conclusions of this work and directions

for future work.

3.2 Proposed Approach

We assume that a computing cluster is composed of n servers with identical hardware

configuration and m CRAC units. We make no restriction on the operational workloads,

i.e., the workload among the servers and even within the processors of a single server

could be different. We also assume that the supply temperature of the CRAC units can

be controlled independently. We assume a closed-loop queueing model where all servers

are fully utilized. As a result, maximizing the performance of a server is equivalent to

minimizing its response time [27].

Problem Statement: Given n fully utilized servers with heterogeneous workloads, m

CRAC units, and a total B power budget, the objective is to distribute the total power

among the n servers and m CRACs, such that the SNP is maximized or equivalently the

average response time is minimized. That is, if pi denotes the allocated power for server i

and tsup denotes the supply temperature of CRAC units, then the goal is to determine the

power caps of the servers and the supply temperatures of the CRACs to maximize the SNP

such thatBs+BCRAC ≤ B, whereBs =
∑n

i=1 pi is the total server computing power, and
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Figure 3.1: Impact of power cap on the SNP of a server.

BCRAC is the total cooling power, such that the budget is allocated in a self-consistent way,

where cooling power is able to extract the heat generated from the servers while staying

below the manufacturer redline temperature.

If the workloads on all servers are identical then the budgeting problem is trivial since the

total power can be divided uniformly among all servers. To get a better understanding of

the relationship between SNP and the allocated power cap in case of heterogeneous work-

loads, we equip our experimental server with a power capping controller. The capping

controller executes once every 100 millisecond and adjusts the p-state of the server using

DVFS based on the difference between the allocated power cap and actual power con-

sumption [38]. We report the application normalized performance (ANP) as a function of

the power cap for four identical servers with different workload sets in Figure 3.1, where

each server is executing a heterogeneous mix of four workloads from the SPEC CPU06

benchmarks. The plot leads to a number of observations.

1. The observed ANP is highly dependent on the workload characteristics. Workloads
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C and D show large improvement in ANP with increased power allocations while

workload set A shows modest improvements. ANP of workload set B grows fast

under lower power budgets, while it saturates at higher power budgets. Thus, some

workload sets will not be able to leverage their allocated power caps to improve

ANP.

2. The plot shows that the gradient of an individual workload set plot changes as a

function of the operating power cap. For instance, Workload D shows a larger gra-

dient in the range of 130-140 W compared to other regions of operation. Thus,

accurate modeling requires considering the impact of the operational power cap of

the server on its performance characterizations.

3. The plots of workloads C and D show that general greedy allocation methods (e.g.,

[58]) will not give optimal results. For example, if the current power allocations for

workload sets C and D are at the lowest cap, then Figure 3.1 shows that workload

set B has higher ANP than workload set D, which can lead to the wrong conclusion

that it is better to allocate more power to workload set C. However, the plots of the

two workload sets eventually cross over, where workload set D attains large ANP

than workload set C at higher power caps.

While clusters contain other elements (e.g., network switches, UPS, and chillers), we do

not focus on these elements in this work. We mainly focus on servers and CRACs because

they (1) consume the largest chunk of power (total about 75%) in a computing clusters [4];

(2) represent the most adaptable elements in a clusters; and (3) interact indirectly through

heat coupling.

Overall Approach: Our power budgeting approach, shown in Figure 3.2, consists of two

components: (i) a total power budgeting method that partitions the total power budget, B,
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into the computing budget, Bs, and the cooling budget, BCRAC , in a self-consistent way;

and (ii) an optimal computing power budgeting method that identifies the power cap for

each server, such that the total computing power budget, Bs, is met and the SNP is max-

imized. SNP is the geometric mean of the ANPs of all the servers. Maximizing the SNP

requires the information about the ANP value of each server for different power caps,

which is not available during runtime. Thus, an ANP prediction method is desired. As

ANP is the ratio of current throughput to ideal throughput which is the throughput under

highest power cap, the problem could be translated to predict the throughput over power

caps. Our optimal computing power budgeter makes use of a novel throughput predictor

that takes as inputs the measurements, e.g., power and performance counters, of servers at

the current power cap, and uses them to predict the change in throughput of each server for

every possible power cap. Note that we claim our computing power budgeting algorithm

is optimal. The self-consistent partitioning algorithm guarantees a partition between com-

puting power and cooling power where the cooling power meets the minimum requirement

for the computing power. However, the combination of these two algorithms do not nec-

essarily yield the optimal total power budgeting solution. Each of these components is

described in the next subsections. We summarize the symbols and notations involved in

this Chapter in Table 3.1.

3.2.1 Total power budgeting

Our goal is to apply a total power budget for both computing power and cooling power in a

self-consistent way, where the cooling power,BCRAC , extracts the heat generated from the

computing power. The cooling power is a function of many factors, including the layout

of the computing cluster, the spatial allocation of the computing power, the air flow rate,
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Figure 3.2: An overview of our proposed method.

and the efficiency of the CRAC units. The power consumption pcrac of a CRAC unit is

equal to

pcrac =

∑
i pi

CoP (tsup)
, (3.1)

where
∑

i pi is the power consumption of servers with their heat flow directed towards the

CRAC unit, and CoP is the coefficient of performance that gives the performance of the

CRAC units [56]. For example, based on physical measurements, an empirical model for

CoP of the chilled-water CRAC units at the HP Labs Utility cluster is equal to:

CoP (tsup) = 0.0068t2sup + 0.0008tsup + 0.458, (3.2)

where tsup is the supply air temperature of the CRAC unit in degrees Celsius [56]. To

find the minimum sufficient cooling power for an allocation of a certain computing power,
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it is necessary to maximize the supply air temperature tsup, while ensuring that the inlet

temperatures of all the servers will not exceed the manufacturer’s redline temperature tred.

Identifying the inlet temperature for the servers requires accurate CFD models for the air

flow and the heat transfer dynamics inside the computing cluster.

Figure 3.3 shows a typical pattern of the air flow and heat flow racks for a computing

cluster, which is plotted from simulating 3200 servers using 6SigmaRoom Lite [26]. The

Symbol Description
m the number of CRAC units in the clusters
n the number of servers in the clusters
r the number of power caps on the server
Bs total computing power

BCRAC total cooling power
PCRAC the power consumption of CRAC units
pi power cap of the i-th server
CoP coefficient of performance
~P power cap settings of all servers
tred the manufacturer’s redline temperature
~Tred the manufacturer’s redline temperature vector
tsup the supply temperature of CRAC units
~Tsup the supply temperature vector
tiin the inlet temperature of the i-th server
~Tin the inlet temperature vector represents all servers
tiout the outlet temperature of the i-th server
~Tout the outlet temperature vector represents all servers
K a diagonal matrix where Kii representing

the coefficient to translate the energy consumption
to temperature rise of server i

A heat cross-interference coefficient matrix
X a matrix representing the power cap of each server
w the power increment over the least power cap

τi(pi) the throughput of server i
a, β coefficients of the quadratic model of

throughput

Table 3.1: Symbols and definitions
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Figure 3.3: The air flow in computing cluster and the spatial temperature maps.

streamlines indicate air flow and air temperature from floor grilles to top side of CRAC

units via server racks. By simulation the thermal map inside the cluster, we can evaluate

the inlet temperatures of servers from the report of the tool. If the results of CFD simula-

tion show that the inlet temperature of any server violates tred, then tsup should be lowered

to bring the inlet temperature back under tred, and if the inlet temperature has not reached

tred, then tsup should be increased without causing an inlet temperature of racks increase

beyond tred. Given the result from CFD simulation and the total computing power bud-

get, Equation (3.1) and Equation (3.2) enable us to compute the required cooling power

BCRAC .

To ensure that the sum of the computing power, Bs, and the cooling power, BCRAC ,

meets the total power budget B, we propose an algorithm, given in Algorithm 1, to iden-

tify a self-consistent partitioning of the total power budget. The main loop of the iterative

algorithm first calculates the computing power budget Bs in Step 3, and then in Step 4,
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the computing budget, Bs is allocated by power budgeting algorithms. We use the dy-

namic programming based algorithm described in the next subsection to guarantee Bs is

allocated optimally among the servers. Given power allocation and the cluster configura-

tion, Step 5 estimates the minimum required cooling power, BCRAC , as described in the

previous paragraph. If it happens that BCRAC + Bs = B (step 6), then the algorithm has

converged to a solution; otherwise, it continues iterating.

Proof of Convergence: Let (B∗s , B
∗
CRAC) denote the self-consistent solution of a total

power budget B∗s + B∗CRAC = B at a maximum CRAC supply temperature of t∗sup. Let

the computing power at iteration k of the algorithm is denoted by Bs(k), and the mini-

mum cooling power required for heat extraction is BCRAC(k) at a maximum CRAC sup-

ply temperature of tksup. To prove it by induction, the hypothesis is, at any iteration k,

|Bs(k) − B∗s | > |Bs(k + 1) − B∗s |. For iteration k + 1, our method will update the com-

puting power as:

Bs(k + 1) = B −BCRAC(k)

= B∗s +B∗CRAC −BCRAC(k),

input : Total power budget B; cluster configuration; Tred.
output: Computing power Bs and cooling power BCRAC .
1. initialize BCRAC based on initial CFD simulation;
2. while BCRAC is not equal to B −Bs do

3. let Bs = B −BCRAC ;
4. budget Bs using the multi-choice knapsack algorithm;
5. run CFD simulations to get minimum BCRAC given Tred;

end
Algorithm 1: Algorithm for self-consistent total power budgeting.
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which can be re-arranged to:

Bs(k + 1)−B∗s = B∗CRAC −BCRAC(k)

|Bs(k + 1)−B∗s | = |B∗CRAC −BCRAC(k)|

Given Equation 3.1, we can further formulate BCRAC(k) = Bs(k)
CoP (tksup)

and, similarly,

B∗CRAC = B∗s
CoP (t∗sup)

. Thus,

|Bs(k + 1)−B∗s | = |
B∗s

CoP (t∗sup)
− Bs(k)

CoP (tksup)
|

As dynamic programing algorithm and sophisticated CFD simulations are included in

our proposed algorithm, it could be intractable to formulate the relationship between the

required supply temperature and a power distribution in cluster in a closed mathematical

form. Without this relationship, we are not able to describe how the changing in power

budget will impact the cooling power. Thus, in this section, we incorporate empirical data

into the proof. Define δp(k) = |Bs(k)− B∗s | and δc(k) = | Bs(k)
CoP (tksup)

− B∗s
CoP (t∗sup)

|. Further,

define Ratio of Distance R(k) = δc(k)/δp(k). We plot the value of R over iterations in

Figure 3.4. As k increases, it shows a clear trend that R(k) tend to stabilize at a value less

than 1, namely, δp(k) > δc(k) for every iteration. As δp(k+1) = δc(k), δp(k+1) < δp(k).

Thus, the distance, δp(k + 1), between Bs(k + 1) and B∗s is less than the distance,
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Figure 3.4: The Ratio of Distance over iterations.

δp(k), between Bs(k) and B∗s . Therefore, the computing power approaches B∗s with every

iteration and finally converges to B∗s . �

Simulation Speedup. Accurate CFD simulation usually takes relatively long time and the

workload phase might change during this period of time. To speedup this procedure, in

our work, we use an abstract heat cross-interference coefficient matrix, denoted by D. It

is based on thermal model that can be used to compute the thermal map for a give spatial

distribution of computing power in computing cluster [73]. Each element D(i, j) of the

heat cross-interference coefficient matrix defines the impact of server j to the tempera-

ture increment of server i. ~Tout = [t1out, t
2
out, · · · , tnout] denotes the outlet temperatures for

servers, ~Tin = [t1in, t
2
in, · · · , tnin] denotes the inlet temperatures and ~P = [p1, p2, · · · , pn]

denotes the power distribution of servers in cluster. Let tsup be the CRAC supply temper-

ature and ~Tsup = [tsup, tsup, · · · , tsup], we can compute the inlet temperatures as [73]:

~Tout = ~Tsup + (K −DTK)−1 ~P (3.3)
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~Tin = ~Tout −K−1 ~P (3.4)

whereK is a diagonal matrix whereKii representing the coefficient to translate the energy

consumption to temperature rise of server i. D is the heat cross-interference coefficient

matrix.

~Tin = ~Tsup + [(K −DTK)−1 −K−1]~P (3.5)

where DT is the transpose of matrix D. If the results of the ~Tin prediction show that the

inlet temperature of any server violates tred, then ~Tsup should be lowered to bring the inlet

temperature back under ~Tred, and if the inlet temperature has not reached ~Tred, then ~Tsup

should be increased without causing an inlet temperature of racks increase beyond ~Tred.

3.2.2 Computing Power Budgeting

Our goal is to maximize the normalized performance under a total computing power bud-

get Bs. In our work, we consider the system normalized performance (SNP) from several

metrics as the objective to maximize. We consider a discrete set of individual server power

caps with a fixed increment (e.g., 130 W, 135 W, 140W, . . .). The choice of a discrete num-

ber of power caps is natural given that p-states are discrete and changing them does not

lead to a continuous power range. Thus, the power cap of a server can be described as

pi = p0 +
r∑
j=1

wjXij, (3.6)
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where p0 is the least possible power cap, r is the number of individual server power

caps, wj is the increment power for each cap over the least possible cap, and Xij ∈ {0, 1},

where Xij is only equal to 1 when server i is assigned a power cap equal to p0+wj . Based

on our experimental server, we pick power caps as: 130 W, 135 W, . . .. In formal notation,

r = 8, p0 = 130W and w1 = 0, w2 = 5, w3 = 10, . . ., w8 = 35.

The ANP of a server can be calculated from throughput under current power cap and

ideal throughput. In this work, we assume the ideal throughput is the throughput under

highest power cap, 165 Watt, of a server. A challenging aspect is that we need to estimate

the impact of a change in power cap on the throughput of a server. We propose the follow-

ing throughput predictor. Suppose that p̂i denotes current allocated power cap to server

i, and that the attained throughput for the server from using the power cap controller is

equal to τi(p̂i). Given the measurements at the current power cap, the objective of the

throughput predictor is to estimate the throughput of the server resulting from allocating

a new power cap pi to the server. In Figure 3.5, we plot the relationship between power

cap and throughput of servers for 10 heterogeneous combinations, where each heteroge-

neous combination consists of four applications that were selected from SPEC CPU2006

benchmarks at random. And in Figure 3.6, 10 homogenous combinations of four PARSEC

and SPEC benchmarks are plotted. We observe that homogeneous data is more quadratic

while heterogeneous data is more linear. As quadratic model could reduce to linear model,

we propose a quadratic model, where the predicted throughput is equal to,

τi(pi) = a1,i + a2,ipi + a3,ip
2
i , (3.7)

where the parameters a1,i, a2,i and a3,i are functions of the workload characterizations of
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Figure 3.5: Throughput vs. power cap of 10 heterogeneous combinations of SPEC bench-
marks.

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

4.5	  

5	  

5.5	  

6	  

6.5	  

130	   135	   140	   145	   150	   155	   160	   165	  

th
ro
ug
hp

ut
	  (B

IP
S)
	  

power	  caps	  (Wa=)	  

SPEC	  2006	  and	  PARSEC	  benchmarks	  

Figure 3.6: Throughput vs. power cap of 10 SPEC (solid line) and PARSEC (dashed line)
benchmarks.

server i at the server’s current power cap. To predict the throughput, we need to iden-

tify these parameters of the model from the observations at the current operating point of

server i. To get an insight into the factors that determine the parameters of the throughput-

power characteristics, we analyzed a large number of performance counters from off-line

characterization data. We have found that the Last Level Cache (LLC) misses is one of the

most reliable predictor of the parameters. Figure 3.7 illustrates the relationship between

LLC and parameter a1 from our proposed quadratic model using the characterization data
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SPEC 2006 benchmarks.
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Figure 3.8: Relationship between current throughput/Watt and the value of parameter ”a”
for PARSEC and SPEC 2006 benchmarks.

collected from the SPEC CPU 2006 benchmarks [69] and PARSEC benchmarks [9]. The

results show a roughly exponential relationship between them. This trend is plausible as

LLC misses show memory boundedness [2, 23], and as a result allocating more power

caps to memory bound workloads give little improvements to throughput. In addition to

the LLC misses, we have found that the current throughput/power ratio, i.e., τi(p̂i)/p̂i, is

a good predictor of the parameters at the setting. Figure 3.8 illustrates the clear linear re-

lationship between the τi(p̂i)/p̂i and parameter a1 using our off-line characterization data.

The results show that servers with higher throughput per Watt usually have higher value

of parameters. In addition to parameter a1, we observed that parameter a2 and a3 have

similar relationships with these two predictors as well.
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Our parameter estimator makes use of both τi(p̂i)/p̂i and ˆLLCi. We experimented

with a number of models for the parameters, and we found that the following model gives

the best results. The quadratic model parameters a1, a2 and a3 can be modeled as:

aj,i = βj,1 + βj,2
τi(p̂i)

p̂i
+ βj,3e

βj,4· ˆLLCi , j ∈ {1, 2, 3} (3.8)

where βj,1, βj,2 and βj,3 are the model coefficients for the current power cap. The coeffi-

cients can be easily found through off-line training on subset of workload characterization

data.

To evaluate the overall accuracy of throughput predictors, we consider two types of

workload combinations on servers: heterogeneous workloads within a server and homo-

geneous workloads within a server. We simulated 3200 servers which consisted of 1600

servers with heterogeneous workload and 1600 servers with homogeneous workload and

we run our proposed optimal power budgeting algorithm with collected data to obtain the

optimal performance value as the upper bound of throughput prediction. We compare

our predictor in three versions: (i) quadratic-LLC+TP which uses quadratic model

together with the measurements of throughput, power and LLC as described in Subsec-

tion 3.2.2; (ii) linear-LLC+TP that uses linear model proposed in previous work [66];

(iii) linear-TP just uses the throughput and power; and (iv) exponential-LLC that

just uses LLC measurements. We also compare against the linear (previous-linear)

model [64, 27] and cubic (previous-cubic) model proposed in previous works [27].

The average absolute error of the predictors are reported in Table 3.2. The results show
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prediction throughput
method prediction error

quadratic-LLC+TP 1.37%
linear-LLC+TP [66] 2.13%
linear-TP 2.45%
exponential-LLC 2.73%
previous-cubic [27] 4.29%
previous-linear [64, 27] 6.11%

Table 3.2: Error in throughput prediction for various models.

that our predictor leads to better throughput prediction, and that combining LLC measure-

ments together with throughput and power leads to more accurate results. Both linear and

cubic model previously proposed in the literature trail our models in accuracy.

Using Equations (3.6) and (3.7), and given the current τi(p̂i) and p̂i, it can be shown

that the SNP objective can be recast as follows:

maxSNP ⇔ maxn

√√√√ n∏
i=1

ANPi(pi) (3.9)

⇔ max
n∏
i=1

ANPi(pi), (3.10)

⇔ max
n∏
i=1

τi(pi)/τi(pr), (3.11)

⇔ max
n∏
i=1

τi(pi) (3.12)

where pr is the highest power cap. The optimization problem can be formulate as:
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maximize
∏n

i=1 τi(pi)

subject to
∑n

i=1

∑r
j=1wjXij ≤ Bs − np0,

∑r
j=1Xij = 1 ∀i = {1 . . . n},

Xij ∈ {0, 1}.

We observe the similarity between power budgeting formulation and the multiple-

choice knapsack problem [61]. In the multiple-choice knapsack problem, there are a num-

ber of classes, where each class has a few items, each with its own value and weight, and

we have to select one item from each class to maximize the total value for the given total

weight of the knapsack. Our problem naturally leads to a multiple-choice formulation,

where the each server corresponds to a class, and the items within the class correspond

to the power cap settings that can be applied to the server, each with its own ANP value

(τi(pi)/τi(pr)) and weight (power cap pi). For our problem, we slightly modified the algo-

rithm: instead of maximizing the sum of ”value”, we maximize the product. The multiple-

input : ANP(v) and power for the servers, n, and Bs.
output: Power allocated for every server.

Let V be a vector that holds the total knapsack’s value for each possible budget. V
is initialized to all zero.
for i := 1 : n do

for k := Bs : −1 : 1 do
for j := 1 : r do

pi := p0 + wj;
if k ≥ pi and V (k) ≤ vij × V (k − pi) then

let V (k) = vij × V (k − pi);
let Xij = 1 and let Xil = 0 for all l 6= j;

end
end

end
end

Algorithm 2: Algorithm for optimal power budgeting.
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Figure 3.9: The layout of our experimental cluster.

choice knapsack problem is readily solved using dynamic programming. Algorithm 2

provides the details of the dynamic programming algorithm, which has a complexity of

O(nrBs). In a computing cluster with hundreds or thousands of servers, it is easy to envi-

sion a server dedicated to carrying out the computations necessary for power budgeting.

3.3 Experimental Results

In our computing cluster configuration, we assume 3200 servers forming 80 U40 racks

with 40 servers per rack. To obtain the heat cross-interference coefficient matrix given our

experimental cluster layout, we use 6SigmaRoom Lite [26], which is a CFD software tool

for simulating cooling characteristics of computing clusters. As illustrated in Figure 3.9,

the dimensions of the cluster is 20m× 13m× 3m. The 80 racks are arranged into 8 sym-

metric rows at the center of the room. In addition, 8 down flow CRAC units are located at

two sides of the center. Cold air comes from under the floor through floor grilles between

the two front side rack rows. The fans integrated with the racks draw the cold air through

servers, which removes the heat generated by the operation of servers. The air heated by

servers leaves the racks from the back side and is sucked into the CRAC units at the sides.
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The CRAC units extract the heat from the hot air and push cold air back into cluster from

perforated tiles on the floor at user specified temperature. We assume a redline inlet tem-

perature of racks is 24 ◦C.

To evaluate the trade-off of using matrix-based thermal modeling method, we compare

the runtime and accuracy of matrix-based method to CFD simulation. By simulating the

heat flow and air flow in the cluster using 6SigmaRoom Lite, we evaluate the inlet tem-

peratures of all the servers to generate the heat cross-interference coefficient matrix. The

results show that matrix-based method achieves 94% of accuracy compared to CFD. In

terms of runtime, CFD simulation on our experimental computing cluster requires around

10-15 minutes to converge while the matrix-based simulation could finish in few microsec-

onds on the same computer, which is a significant speedup.

The throughput and power estimates for the servers are derived from measurements on

a real server executing heterogeneous workload sets. The Linux-based server has a quad-

core Intel Core i7 processor and 8 GB of memory. To measure power consumption, the

120 V AC power lines to the server are intercepted and the electric current is measuring

using an Agilent 34410A digital multimeter. The total power measurements are read back

to the server over USB using the SCPI interface and provided as inputs to the power cap

controller. The engagement period of the feedback power cap controller is 1 second. We

use the experimental server to construct a database of execution traces of workload sets

selected from the SPEC CPU06 [69] and PARSEC benchmarks [9]. For the SPEC CPU06

benchmarks, each workload set consists of four randomly chosen benchmarks, so that all

the cores of our server are fully utilized. For the PARSEC benchmarks, all workloads

are executed with four-thread configuration. We measured the number of retired instruc-

tions per second and LLC misses using the pfmon tool library interface. To train our
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predictor, we collected a large volume of characterization, where the throughput and LLC

are measured for different workloads under different power caps. The database enables

us to simulate the impact of different power budgets on a large number of servers in an

extremely fast way that preserves the accuracy of results. In particular, each time a new

power budget is applied, the power and performance outcomes are computed by reassem-

bling the proper sections of the workload set traces of different servers from the database.

Exp 1. Total Power (Computing+Cooling) Budgeting. In the first experiment, we eval-

uate our proposed method to calculate the optimal partition between cooling power and

computing power of a given total power budget. We consider five total power budgets 0.60

MW, 0.63 MW, 0.66 MW, 0.69 MW and 0.72MW. We execute the self-consistent budget-

ing algorithm of Algorithm 1 to find the optimal partition of total power budget between

computing power and cooling power under several total power budgets. The partitioning

of the total power into its computing and cooling components is given in Figure 3.10.

From Figure 3.10, we can observe that the cooling power consumption typically takes

30%− 38% of total power consumption. Another interesting observation from the results

in Figure 3.10 is that the proportion of cooling power increases with the increase in total

power budget, and that the rate of this increment also increases. Figure 3.11 illustrates

the application of the self-consistent budgeting algorithm of Algorithm 1 to the case of

0.72 MW total power budget. The dashed black line gives the power partitions that sum to

0.72 MW. The red points give the intermediate partitions before convergence and the red

star shows the self-consistent solution. At the beginning, we initialize the algorithm by

computing the minimum requirement of the current computing power distribution using

the heat cross-interference coefficient matrix based method. Then we take step 3 to update

computing power budget and run our proposed optimal power budgeting algorithm using

the new computing power budget and recalculate cooling power. After several iterations
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Figure 3.11: Illustration of the self-consistent power budgeting of the algorithm in Algo-
rithm 1 for the case of 0.72 MW.

of step 3-5, we finally reach at the self-consistent solution.

Exp 2. Evaluation of Our Computing Power Budgeting Method for Normalized

Performance Improvement. In the second experiment, we evaluate the effectiveness

of the proposed knapsack-based optimal power budgeting method given a total comput-

ing power budget. We take the self-consistent partitioning solution of computing power
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Figure 3.12: (a), (b) and (c) show the SNP, slowdown norm and unfairness respectively of
four power budgeting method for heterogeneous workloads across servers, homogenous
within server over multiple power budgets, while (d), (e) and (f) show these metrics of
the power budgeting method for heterogeneous workloads across servers, heterogeneous
within server
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from the first experiment as the input of this experiment. We refer to our technique by

predictor+knapsack. We select (uniform) power allocation method as baseline

method, where the budget is allocated uniformly among the servers. We also compare

against a previously proposed approach (previous-greedy) [64], which utilizes a

greedy approach for power budgeting, where servers with higher throughput per Watt at

the moment of re-calculating the power budget are allocated more power. Finally, we

compute an upper bound on the attainable throughput by using the optimal knapsack al-

gorithm on the true throughput and power for each server at the power cap, which are not

known during runtime, but can be computed in our simulation environment. We refer to

this method by oracle+knapsack. We consider two cases and report the performance

of each of them:

a) Heterogeneous across servers, homogenous within server: In the first case, the servers

execute different workload sets, but the workload set assigned for each server is ho-

mogenous, e.g., a PARSEC workload with four threads or four instances of the same

SPEC CPU06 benchmark. This is the most common case in modern clusters as ad-

ministrators prefer to eliminate the interference between workloads arising from execu-

tion on the same server. The SNPs of the four power budgeting methods are given in

Figure 3.12 (a) for a number of total power budgets. The results demonstrate that our

predictor+knapsack method consistently outperforms other methods. The perfor-

mance of slowdown norm and unfairness are given respectively in Figure 3.12 (b) and (c).

The results from our predictive method are close to the results from the oracle case. Our

method achieves 1.8%− 3.4% improvement in SNP and slowdown norm over uniform

and achieves 0.6% − 4.8% over previous-greedy. In terms of unfairness, our pro-

posed method has at best 51.7% improvement over uniform and 90.0% improvement

over previous-greedy. It is even better than oracle+knapsack under lower
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power budgets.

b) Heterogeneous across servers, heterogeneous within server: In the second case, the

servers execute different workload sets, and each workload set on a server consists of dif-

ferent benchmarks (e.g., four instances of different SPEC CPU06 applications). The SNPs

of four power budgeting methods are given in Figure 3.12 (d) for five total power budgets.

The results show that our proposed method consistently outperforms other methods. The

slowdown norm and unfairness are shown in Figure 3.12 (e) and (f). The heterogeneity

of workloads within the server causes averaging in characteristics, which leads to less dif-

ferentiation among the ensemble of servers. Furthermore, the interactions between the

workloads within the servers reduce the accuracy of the throughput predictor. This is the

reason why the gap between predictor+knapsack and oracle+knapsack in this

case is larger than what is in the first case. Therefore, there might be further room for

improvement through better throughput predictors. However, the relative improvements

of our proposed method over uniform in this case are even better than the first case:

SNP and slowdown norm have 2.0%−4.1% improvements. Our method has 1.3%−2.8%

improvements of SNP over previous-greedy. Under lower power budgets, the fair-

ness achieved by our proposed method outperforms uniform by 33.7%, outperforms

previous-greedy by 76.7% and even outperforms oracle+knapsack by 7.2%.

Both results show that previous-greedy has a worse performance than other

methods when power budget is low. The reason is that greedy algorithm focuses on

throughput, which will undermine its performance in terms of normalized performance.

This characterization is clearly shown in the result of unfairness. From the results, our pro-

posed method achieves especially high improvements when power budget is low. Namely,

our proposed method will guarantee system performance in under-provision scenario. In
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both cases, it is natural to expect that the relative advantages among the methods would

disappear when the total power budget is too high or too low. If the total budget is too high,

then all servers can afford to run at the highest power cap and throughput irrespective of

the method, and similarly when the total budget is too low, then all servers will be forced

to the lowest power state.

Exp 3. Evaluation of Our Computing Power Budgeting Method for Power Saving.

Another metric to evaluate a power management technique is the power consumption for

a target system performance constraint. We take uniform power budgeting method as

the baseline algorithm and compare it with our proposed method, previous greedy algo-

rithm and the optimal power budgeting algorithm refered by oracle+knapsack, which

shows the upper bound of how much power could be saved. The results are given in Figure

3.13. From the results, we can observe that our proposed method consistently outperforms

greedy method and save total computing power from 1.3% to 2.5%, while the greedy al-

gorithm shows little improvement or even consume more power than uniform method at

lower and intermediate SNP requirements.
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Figure 3.13: power saving percentage over baseline uniform method.
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Exp 4. Dynamic Performance Evaluation of Total Power Budgeting Technique. In the

fifth experiment, we evaluate our technique’s ability to adapt the budget periodically for

3200 servers. In dynamic scenario, when total power budget changes, the cooling power

will change and the supply temperature of CRAC units will be set to a new value. Some

previous works [56, 72] assume an instant delivery of cooling air from CRAC units to

inlet of servers. However, in reality, it takes time for the cooling air to reach servers. In

this case, simply assuming a instant arrival of cooling air will lead to a short period of

time of undercooling in the cluster. For example, when total power budget increases, both

computing and cooling power budget will be increased. After the new budgets applied to

cluster, the computing power will increase immediately and the corresponding heat load

of servers will increase at the same time. However, the lowered supply temperature has

not arrive to the front side of all the servers, which will cause some of the inlet temperature

of servers exceeding the red line temperature.

As this latency is highly depended on the model of CRAC units and the layout of com-

puting cluster, we use CFD simulation tool to simulate the air velocity and compute the

worst case air travel time for our experimental computing cluster. As the heat loads vary

in servers, the air flow velocity at different racks are different. Our simulations consider

the lowest cool air velocity for all the server. The result shows that it takes 6.4 seconds for

the cooling air travel from CRAC units to the highest server in the rack. When the total

power budget is raised, our proposed method apply the new cooling budget first to make

sure the temperature decreases to a desired degree. Then, after 6.4 seconds, computing

power budget is increased. When the total power budget decreases, the computing power

will decrease immediately while the supply temperature of CRAC units will stay low for

few seconds. There will be a short period of overcooling, which does not affect the system

performance. Re-computing the power caps in a finer granularity does improve the per-
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formance of our proposed techniques. However, as the adjusted the CRAC units supply

temperature takes 6.4 seconds (in our experimental cluster layout) to reach the inflow side

of servers, resolving power caps of servers with a very short interval will potentially lead

to the red line temperature being violated. The power cap setting resolve interval should

be determined by the actual server room conditions and workload characteristics.

To demonstrate the dynamic performance of our method, we simulate our experimental

cluster for 75 seconds, where the total power budget is assumed to be adjusted at the 15th

second and the 45th second. Figure 3.14 gives the SNP as a function of time for our

proposed method and uniform power budget. And Figure 16 demonstrates the power cap

distribution on the servers in the cluster and how does the power caps change with the total

power budget. It visualizes the power distributions over different stages. From the figure,

we can observe that the servers running diverse workloads are classified based on their

workload characteristics and assigned to the different power caps accordingly. We resolve

the power budgeting and determine the power caps of each server every 15 seconds. The

re-solving is necessary because workloads change their characteristics during runtime,

and because the total power budget can also change. In the plot, in the first 15 seconds,

servers are initialized at random power caps. At time 15s, a new total power budget of

0.66 MW is imposed and new power caps are applied. At time 30s, we re-calculate the

power budgets of all servers using the same total budget of 0.66 MW. This calculation is

needed to account for the changes in application characteristics over time. At time 45s,

a new budget of 0.62 MW is applied and the new SNP and power caps are calculated,

and finally at time 60s, the power budgets are re-calculated. The results show consistent

higher SNP for our methods, and its ability to adjust the caps of every server dynamically.

The power caps clearly show the reduction in power caps when the total power budget is

reduces from 0.66 MW to 0.62 MW.
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Figure 3.15: Power allocation for each server over time for the SNP schedule plot given
in Figure 3.14.

3.4 Summary

In this chapter, firstly, we proposed a self-consistent method to partition the total power

budget between the computing and the cooling component of the cluster and speed up

the procedure using heat cross-interference coefficient matrix. Secondly, we proposed a

method for optimal power budgeting for servers considering the heterogeneity of work-
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loads both across and within servers. It is well-known that workloads exhibit different

power and performance characteristics depending on their memory or processor bounded-

ness. We leveraged this characterization to devise a computing power budgeting method

that allocates power to servers that can efficiently translate their power allocation to im-

provements in many system performance metrics, such as SNP, slowdown norm and un-

fairness. During runtime, a power budgeting system has no information about the servers’

status beyond their current measurements. Thus, we proposed a throughput prediction

method that estimates the changes in throughput as functions of potential changes to allo-

cated power caps. We have demonstrated that our throughput predictor is capable of pro-

viding accurate predictions under different power cap and workload characteristics. We

have devised an optimal computing power budgeting method based on the multiple-choice

knapsack formulation to identify the optimal power allocations for each server such that

the SNP is maximized. For the simulated experimental computing cluster, results from

our proposed method show 4.1% improvement on the average over previous methods in

SNP and slowdown norm. Although we consider SNP as the objective to maximize, the

fairness achieved by our method outperforms by 51.7% to uniform method and by 90.0%

to greedy method. In addition, we evaluate the performance of our proposed method for

power saving and dynamical power management.
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Chapter 4

Distributed Computing Power

Budgeting

4.1 Introduction

We presented our total power budgeting method in Chapter 3. It is a centralized method

that can have difficulty scaling with the size of the computing clusters. Within a very large

scale computing cluster, solving the optimal computing power allocation is not fast enough

to react to the dynamic status changes. Besides, centralized coordinator compromises the

reliability of the system since it introduces a single point of failure.

In this chapter, we propose, DiBA, a fully distributed method to solve the comput-

ing power budgeting problem under a given computing power budget. In particular, our

contributions are as follows:

• We propose DiBA, a novel algorithm for distributed power budget allocation to max-
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imize the combined utility of the entire cluster subject to a given total power budget.

The utility of each computing node is a metric for its throughput that depends on

the benchmark of the workload as well as server specifications. In our distributed

framework, each server exchanges its decision to increase/decrease its power us-

age with neighboring nodes in the cluster through rounds of communications. After

each round, the local parameters of each node are updated in the form of a state-

space model. In this phase, the local actions of neighbors are implemented as a

control input. Further, the actions of servers take into account the global constraint

that must be satisfied.

• We compare the performance of DiBA with a centralized power budgeting scheme in

terms of total and per iteration communication/computation time. We note that there

is a communication bottleneck at the central coordinator in the centralized method

for large clusters. The primal-dual (PD) method also suffers from the same issue

since it relies on the same architecture to disseminate information among nodes. In

contrast, DiBA provides a fully decentralized mechanism which eliminates the role

of the central coordinator. As a result, we demonstrate that for large scale clusters

with thousands of nodes, the communication time of DiBA is substantially less than

that of centralized scheme and primal-dual method.

• We also examine the impact of a number of issues on the performance of DiBA,

including dynamic workloads and dynamic power budgets. We also analyze the

impact of topology of communication among the distributed computations, and we

show that DiBA can provide fast convergence with topologies as simple as a ring.

• We also implement a working prototype of DiBA on a real experimental cluster and

demonstrates its ability in meeting dynamic total power budget in a fully distributed

fashion.
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The organization of this chapter is as follows. Section 4.2 motivates the need for

distributed power management techniques, and Section 4.3 provides the detailed of our

proposed DiBA algorithm. Our experimental results are given in Section 4.4. Finally, we

summarize our conclusions and directions for future work in Section 4.5.

4.2 Motivation

Large clusters are often constrained by power consumption due to the large operational

costs for energy consumption. Furthermore, dynamic constraints such as those arising

from demand response energy programs or from variations in utilization require cluster

operators to find ways to meet changing total power budget throughout daily operation.

Although current employed power management techniques are effective in their ob-

jective of reducing power usage, they have a centralized design. Those techniques require

a central controller to measure their workload and throughput and determine the optimal

DVFS of processors of active servers. Nevertheless, a centralized approach has the fol-

lowing shortcomings:

• Fault isolation: Centralized control creates a single point of failure and also a per-

formance bottleneck. In particular, the malfunction in controller or communication

breakdown between controller and local servers renders the SLA violations. To

avoid such a scenario in centralized methods, the local servers are set to automati-

cally default to maximum power [46]. We present a decentralized method in which

each server determines its action locally. Thus, the failure in one or few servers or

the communication breakdown can be mitigated as the overall performance of the

system does not hinge on a particular unit.
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• Real-time monitoring: In centralized power budgeting techniques, the state of each

server is measured by a centralized monitoring unit. This introduces additional

latency and deteriorates the quality of service (QoS) due to data aggregation and

communication delay. In comparison, the decentralized technique obviates the cen-

tralized monitoring unit as each computing node measures its performance metrics

locally. For variable internet traffic such as search and social networking, the local-

ized performance monitoring provided by the decentralized control approach results

in a faster response time to workload and power management.

• Scalability: A centralized power management is an inflexible architecture for hor-

izontal scaling, in the sense that adding new racks to the cluster must be comple-

mented with the increase in the communication bandwidth and power management

reconfiguration of the central power controller. In comparison, a decentralized ar-

chitecture facilitates a modular design. Particularly, DiBA can scale to large clusters

with distributed communication requirements that are as simple as a ring and that

are carried over regular cluster network infrastructure.

4.3 Power Management Methodology

We formulate an optimization problem for maximizing the throughput of a cluster with N

server nodes, where we assume a power budget of P for the whole cluster. Thus,

max
{pi}Ni=1

:
N∑
i=1

ri(pi) (4.1)

N∑
i=1

pi ≤ P, (4.2)

pidle
i ≤ pi ≤ pmax

i , i = 1, 2, · · · , N, (4.3)
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where pidle
i and pmax

i denote the power that is used by each server in the idle mode and the

maximum possible power usage of server i, respectively. In our formulation, the utility

metric ri(·) : R → R≥0 corresponds to the throughput of each server node that can be

increased/decreased by adjusting its capacity (e.g., increasing/decreasing the frequency of

the processors using DVFS). We note that the throughput of server i as a function of its

power usage pi depends on the characteristic of the workload that is being executed. We

defer further details about modeling a proper throughput function to Section 4.4.

Solving the optimization problem in a decentralized fashion requires coordination

among servers, since the power consumption of servers are coupled via the constraint

(4.2). To achieve coordination among nodes, our distributed algorithm creates a consen-

sus framework for each node.

In this section, we consider two distributed schemes that are structurally different.

First, we analyze the more conventional primal-dual decomposition approach and discuss

its limitations for practical implementation in large clusters. We then propose an alterna-

tive algorithm, DiBA, that is fully distributed that outperforms the primal-dual method in

terms of convergence speed.

4.3.1 Primal-dual decomposition algorithm

The algorithm that we present here is based on the primal-dual decomposition method

which is a well-known scheme for distributed optimization and has been extensively stud-

ied in the context of TCP/IP and congestion control in networks with elastic traffic [48].

We also remark that the primal-dual decomposition method has been investigated in [33]

in the context of power management of computing clusters. However, we use this al-

gorithm as the benchmark for comparison with the performance of DiBA we present in
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subsequent subsections. Hence, we give a detailed analysis of the primal-dual method in

the following.

We describe the simple structure of the asynchronous primal-dual algorithm when it is

characterized for the problem. Consider the dual form of the optimization problem that is

formulated in (4.1)-(4.3),

min
λ≥0

g(λ) (4.4)

where λ is the dual variable, and g(λ) is defined as

g(λ)
def
= sup
{pi}Ni=1

N∑
i=1

ri(pi) + λ

(
P −

N∑
i=1

pi

)
.

Let λ? be the optimal solution of the dual optimization problem (4.4). Given the

optimal Lagrangian multiplier λ?, each server can compute its optimal power budget

p?i , i ∈ {1, 2, · · · , N} via solving the following local optimization problem

p?i = arg max
pidle
i ≤pi≤p

max
i

ri(pi)− λ?pi.

In this formulation, λ? can be interpreted as the price of using the shared power budget P .

In particular, in the case that power demands exceed the amount of shared power budget

P , the central coordinator increases the price λ? to reduce the demand.

A simple scheme to compute the optimal value of λ? can be achieved by an iterative

update rule in which the price λ is computed by a coordinator unit, and then communicated

to all local servers. In particular, the coordinator updates the price using the following
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update formula; see [48],

λt+1 =

[
λt − ε

(
P −

N∑
i=1

pti

)]+
, (4.5)

where [z]+
def
= max{0, z}, ε > 0 is a small step size.

By having the Lagrangian update λt+1, the i-th server can compute its power con-

sumption p?i as follows

pt+1
i = arg max

pidle
i ≤pi≤p

max
i

ri(pi)− λtpi. (4.6)

The structure of the primal-dual decomposition algorithm for the optimization problem

is described in Algorithm 3.

We make few remarks about Algorithm 3.

1. Although the primal-dual decomposition method is scalable, it is not efficient in

terms of communication requirements. For large clusters, the central coordinator

must be equipped with a high communication bandwidth to accommodate com-

munication with all servers. Moreover, since network switches support a limited

number of servers, for a large cluster of thousands server nodes, multiple network

1. initialize p0i , i = 1, 2, · · · , N , λ0, and ε ∈ R≥0;
2. for t = 1, 2, · · · do

At the central coordinator:
3. update λt according to (4.5);
At the ith server:
4. update pti according to (4.6) ;
5. transmit pti to the central coordinator ;

end
Algorithm 3: Primal-dual algorithm.
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switches must be employed which is costly and adds additional latency to the net-

work.

2. The existence of a central coordinator in the primal-dual approach is also undesir-

able since it creates the SPF problem. In the case of failure of the central coordina-

tor, the PD power management technique fails. Therefore, PD does not provide the

robustness that is necessary to power management in computing clusters.

3. The PD algorithm we considered is synchronized in the sense that servers update

their power usage information simultaneously. This level of synchronization be-

tween different servers is usually provided through Network Time Protocol (NTP)

in computer systems [55].

4.3.2 DiBA: Distributed Power Budget Allocation Algorithm

In this section we propose and analyze our proposed distributed algorithm called DiBA to

control the power consumption of each computing node to maximize the throughput of

the cluster subject to total power budgets. We can qualitatively describe DiBA from two

different perspectives. From a game design perspective, DiBA is a gradient algorithm that

achieves the pure Nash equilibrium corresponding to the state based game defined by the

optimization [41].

From the view point of distributed optimization, DiBA is a consensus based optimiza-

tion algorithm. In particular, DiBA establishes the consensus on the estimation from the

coupling constraint (4.2) by augmenting the local utility function of each server node with

a barrier (penalty) function which when minimized/maximized, gradually reduces the dif-

ference between local variables of computing nodes.
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Naturally, to create such a consensus, the communication graph between servers needs

to be connected. The connectivity requirement is naturally facilitated in clusters, where

clusters can communicate using the cluster’s network infrastructure.

For each i-th server, we introduce the estimation ei term for the coupled constraint

(4.2), i.e.,

ei ∼
N∑
i=1

pi − P. (4.7)

During each round of DiBA algorithm, the i-th server transmits its local measurement and

also receives the local variables of all its neighbors. Specifically, lets êi→k (êi←k) denote

the estimates from (resp. to) the i-th server to (resp. from) the k-th server, where k ∈ Si

and Si ⊆ {1, 2, · · · , N} denotes the set of servers that are connected to the i-th server.

By aggregating these estimates, the i-th server updates its state variable as well as its

estimate from the coupled system constraint. Specifically, based on a state-space control

model, we have the following update rule during the t-th iteration of DiBA algorithm,

pt+1
i = pti + p̂ti (4.8)

et+1
i = eti + p̂ti +

∑
k∈Si

êtk←i −
∑
k∈Si

êti→k, (4.9)

where pti is the power state of the i-th server, and p̂i is the power control input that takes
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values from the action space

Ai(p
t
i, e

t
i)

def
=

(p̂i, êi) : p
t
i + p̂i ∈ [pidle

i , pmax
i ], êi→k < 0,

eti + p̂ti −
∑
k∈Si

êi→k < 0

.

The action space guarantees that the controller inputs (p̂i, êi) in the state-space model does

not violate the constraint on the maximum power and idle power of each computing node,

and also satisfy the coupled constraint (4.2). For each node, we now define a local utility

function for node i = 1, 2, · · · , N as follows

Ri(p
t
i, {etj}j∈Ni

) = ri(p
t
i)− η

∑
j∈Si

log(−etj), (4.10)

where η ∈ R≥0. The second term
∑

j∈Si
log(−etj) is a penalty factor that plays a role on

the cost function only when etj > 0, which translates into the constraint violation condition∑N
i=1 p

t
i > P .

We note that the speed of reaching the consensus is controlled by the value of η. By

choosing a small positive value for η in (4.10), we can assure that the solution of DiBA is

close to the optimal solution of Problem 1. But, choosing a small η will cause numerical

difficulty which may lead to slower convergence.

In addition, the barrier function in (4.10) enforces the constraint to be satisfied. By

employing this barrier function, we thus assure that the resultant answer from the above

algorithm fulfills the system power constraint. We now have all the machinery to describe

DiBA. The steps of DiBA are outlined in Algorithm 4.
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It is imperative to calculate the communication overhead introduced from decentral-

izing the power management controller. The communication overhead of each control

epoch can be approximated by the product of the number of communications required

during each round and the number of iterations to converge. In a cluster with N servers,

1. For primal-dual decomposition algorithm, each computing node sends one packet

and then receives one packet from the central coordinator during each iteration.

Thus, total number of 2N packets are communicated per iteration.

2. For DiBA, each computing node sends packets only to its local neighbors which in

case of a ring communication topology is two and thus results in the total number

of 2N packets that are communicated in parallel among the nodes. For a general

graph, dN communications per iteration is required where d is the average degree

of each node.

1. initialize η ∈ R≥0 and a non-increasing sequence εti ∈ R≥0, i = 1, 2, · · · , N .
Choose p0i , e

0
i such that

∑N
i=1 p

0
i ≤ P ;

2. for t = 1, 2, · · · do
At the ith server:
3. compute

p̂ti = βt

(
−εti

∂Ri

∂p̂i

∣∣∣∣
p̂i=0

)
;

êti→j = βtmin

(
0,−εti

∂Ri

∂êi→j

∣∣∣∣
êi→j=0

)
;

where βt is computed by backtracking to the constraint (p̂ti, ê
t
i) ∈ Ai(p

t
i, e

t
i), and

εti is the gradient step size.
4. update pt+1

i , et+1
i according to (4.8)-(4.9) ;

end
Algorithm 4: Distributed Power Budget Allocation (DiBA).
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Although it may appear that DiBA has the same communication complexity as the

primal-dual method, in practice it has a lower communication latency and packet loss. In

particular, if we consider the network overhead in terms of the bottleneck of communi-

cation topology, the central coordinator in the primal-dual decomposition method must

communicate with all N computing servers which has a degree of N . In comparison, the

degree of each node in DiBA is a small fixed number (e.g., two in case of ring topology),

the packets from the nodes to their neighbors proceed in parallel. As a result, packet loss is

less likely to happen in DiBA architecture. We will show in the next section that DiBA also

shows better performance compared to the primal-dual decomposition method in terms of

communication latency.

4.4 Numerical Evaluation

4.4.1 Setup

Workloads: To evaluate the performance of our distributed power management architec-

ture, we select 10 HPC benchmarks. Eight benchmarks from NAS Parallel Benchmarks

(NPB) suite [3] (BT, CG, EP, FT, IS, LU, MG, and SP) and two benchmarks from High

Performance Computing Challenge (HPCC) benchmark (HPL, MPI-RA) and the descrip-

tion of each benchmark is listed in Table 4.1.

Infrastructure: We evaluate DiBA using numerical simulations and using a real server

cluster. The numerical simulations enable us to study DiBA’s performance for large-scale

clusters, while the real cluster implementation demonstrates a proof-of-concept for DiBA.
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name description
BT (NPB) Block Tri-diagonal solver
CG (NPB) Conjugate Gradient
EP (NPB) Embarrassingly Parallel
FT (NPB) discrete 3D fast Fourier Transform
IS (NPB) Integer Sort
LU (NPB) Lower-Upper Gauss-Seidel solver
MG (NPB) Multi-Grid on a sequence of meshes
SP (NPB) Scalar Penta-diagonal solver

HPL (HPCC) High performance Linpack benchmark
RA (HPCC) Integer random access of memory

Table 4.1: List of the selected benchmarks and corresponding description.

1. Server cluster infrastructure: Our cluster consists of 12 Dell PowerEdge C1100

servers, where each server has two Xeon L5520 quad-core processors, 40 GB of

memory and 10 Gbe network controller. The servers are connected to a Mellanox

SX1012 10Gbe switch. The frequency of each processor can scale from 1.60 GHz to

2.27 GHz. To collect performance counters values from all servers, the perfmon2

[22] tool is used. We created a power measurement appartus to measure the supplied

AC current to each server and its power consumption correspondingly. To enforce

the local power targets for the individual servers, we implement a software feedback

controller on each server. The DVFS-based controller adjusts the DVFS up or down

according to the difference between the power target and the current power con-

sumption, with positive difference triggering an increase in DVFS, while negative

differences triggering a decrease in DVFS [13]. The controller enables us to apply

the local constraints on each server as derived from the DiBA.

2. Simulation infrastructure: To evaluate the performance and overhead of DiBA on

large clusters, we have developed a simulation tool as follows. We first run each

workload in Table 4.1 on one of our servers and collect the throughput and power

consumption pi of ith workload under various DVFS levels, and then fit a through-

put function ri(pi) on the attained data. The power consumed by each workload has
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a range that is determined by the lowest and highest DVFS levels. The throughput

functions are then used to emulate the behavior of the applications running on the

server nodes. To simulate a cluster with arbitrary number of servers N , we draw

the throughput functions from a uniform distribution such that each server hosts at

least one type of workload and such that the entire server cluster is fully utilized.

To mitigate the effect of randomness in our simulation results, we average the con-

vergence results we obtain for DiBA over 10 trials. The network architecture of our

simulation environment is based on a two-tier star topology. Each rack consists of

40 servers which are connected with one top-of-rack 10 Gbe Ethernet switch. Fur-

ther, all racks are connected via a higher-layer core switch. We model the network

traffic using queuing systems in our simulation, where the network service times are

derived from measurements on our real cluster.

Algorithm Topology: For the primal-dual method, each computing node is connected

with the central coordinator as shown in Fig. 4.1. Furthermore, for DiBA algorithm, we

adopt a ring communication network as shown in Fig. 4.1. Note that the algorithm com-

munication topology runs on top of our cluster network, which naturally facilitates any

two servers to communicate.

Throughput Estimation: The throughput function ri(pi) of each server is dependent on

the nature of the workload. Moreover, we create a framework in which the local controller

learns the throughput function ri(·) on-the-fly as the workload changes on the server.

Specifically, we can learn the throughput function of each workload in our benchmark

suite of Table 4.1 by applying different DVFS power levels and subsequently measuring

the resultant throughput value. We then interpolate a quadratic throughput function. Fig.

4.2 illustrates a number of throughput functions for our workloads on our servers. This

61



     Central Coordinator

          Computing Nodes           Computing Nodes

Figure 4.1: The communication topology of the decentralized algorithms. Left: Primal-
Dual Decomposition. Right: DiBA algorithm.

process is repeated for each workload to derive its throughput function when it is executed

on a server. As we observe from Fig. 4.2, the throughput functions for all the benchmarks

are concave in power which justifies the use of convex optimization toolbox CVX in our

simulations.
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Figure 4.2: The normalized throughput function of 4 workloads.
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System Performance metrics: To ensure fairness in our power allocation scheme, we

normalize the throughput of each workload by its peak value of rmaxi . The application

normalized performance (ANP) of each server is computed, where ANP is the ratio of

ideal runtime to actual runtime of the workload on the server [77]. In our case, the ANP of

application i under power budget pi is defined as the ratio of actual throughput to its peak

throughput:

ANPi(pi) =
ri(pi)

rmaxi

Then to quantify the performance of the entire cluster, the system normalized performance

(SNP) is computed as the arithmetic mean of the ANPs of allM workloads that are running

on the cluster. That is,

SNP =

∑M
i=1 ANPi(pi)

M
.

We next describe the results from our simulation infrastructure in Subsection 4.4.2.

4.4.2 Simulation results

To evaluate the performance, scalability and resiliency of DiBA, we organize the following

experiments.

1. Static experiment of allocating power budget to maximize the system’s performance.

2. The scalability of the DiBA on clusters with large number of nodes, considering the

communication and computation overhead.

3. Dynamic simulations that evaluate how DiBA reacts to the power budget reallocation
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and workload dynamics.

4. Experiments that evaluate the effect of communication topology of the distributed

computations of DiBA.

1. Static power budgeting results: In this experiment we demonstrate the value of power

budget algorithms that use the utility functions of the servers to maximize performance

subject to a total power budget. We simulate 1000 servers that are serving 1000 instances

of the benchmarks under total power budgets that range from P = 166 kW to P = 186

kW with the incremental step size of 4 kW. The results of our decentralized algorithms

are compared against the method of allocating power budget uniformly. The SNP results

under each total power budget are given in Fig. 4.3. The primal-dual decomposition algo-

rithm improves the SNP by 14.7% over uniform power allocation in average, while DiBA

achieves 14.5% improvement. The performance gap between uniform and DiBA shrinks

from 22.6% to 8.2% depending on the amount of total power allocated. Clearly, when the

total power budget is sufficiently large, all servers receive enough power for their work-
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Figure 4.3: The system normalized performance of 1000 servers under different power
budgets.
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loads, and hence the performance differences between DiBA and uniform power allocation

diminishes.

2. Scalability: To show the advantage of DiBA for large cluster sizes, we compare its

performance to that of the centralized approach and primal-dual method. For centralized

method, we use CVX toolbox [31] to solve the optimization problem formulated in Eqs.

(4.1)-(4.3). Specifically, in the centralized method, the computing servers transmit their

utility functions to the centralized power management unit to calculate the optimal allo-

cation of the total power budget across all servers. Then the power budget of each server

is sent back and applied by the servers. By decentralizing the power budgeting unit, the

utility functions are optimized locally and the optimization is accelerated. However, to as-

sess the optimization performance, the communication latency between of each iteration

has to be taken into account. In this experiment, we quantify the runtime of each algo-

rithm with different number of server nodes. The average latency of reading and write a

packets to TCP sockets between two nodes in our cluster is measured to be approximately

200µs and 10µs respectively. We used these results as the service times in our network

queuing model, which is used to model the communication time at the central coordinator

in the centralized and primal-dual methods. In the ‘uplink’ phase, when nodes transmit

their packets to the central coordinator, the packets arrival time are drawn from the Pois-

son distribution with average inter-arrival time of 200µs. In the ‘downlink’ phase, i.e.,

transmitting from the central coordinator to the nodes in the centralized and primal-dual

methods, the communication time is assumed to be the total time to send all the packets in

a serial fashion. In contrast, in DiBA architecture, each node only communicates with two

neighbor nodes in parallel, thus the communication time for each iteration is time to send

and receive a packet.

We compute the runtime of each algorithm with different number of nodes and break
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# of nodes
centralized primal-dual DiBA

Comp (ms) Comm (ms) Comp (ms) Comm (ms) Comp (ms) Comm (ms)

400 432.76 86.25 1.47 517.52 0.07 28.00
800 477.25 170.37 1.44 1022.22 0.11 26.20

1600 693.40 339.83 1.41 2038.99 0.43 28.00
3200 1041.50 675.95 1.55 4055.70 0.80 27.20
6400 1882.52 1362.50 1.58 8175.00 1.78 28.40

Table 4.2: The breakdown of algorithm runtime with different number of server nodes.

the total runtime between computation time and communication time in Table 4.2. We take

the result from CVX solver as the baseline and set the convergence condition of the primal-

dual decomposition algorithm and DiBA as achieving 99% of the base line performance. In

particular, the initial power setting for DiBA is set as uniform allocation. The convergence

time for DiBA is the first time that the utility function obtained from DiBA satisfies the

following inequality

|Optimal Utility− Utility of DiBA|
|Optimal Utility|

< 0.01, (4.11)

where the optimal utility is the utility that is computed by solving (4.1) centrally. The

convergence of PD algorithm is defined similarly.

The total computation and communication time of the primal-dual decomposition and

DiBA are computed by taking into account the number of iterations required for each algo-

rithm to converge. The communication time of each iteration is modeled by our simulation

network architecture and the computation time of each iteration is the real measurement

from our simulation system. DiBA is completely distributed and all communications and

computations are assumed to be carried out in parallel for each iteration. For primal-dual,

the computation of all the nodes are done in parallel but need to be added to the computa-

tion time of the central coordinator.
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Figure 4.4: Dynamic simulation of total power budget reallocation.

From Table 4.2, we observe that PD method improves upon the centralized power

allocation strategy in terms of computation time. This is due to the fact that in the PD

method, the optimization problem is solved in a decentralized fashion. Nevertheless, in

the overall performance, the PD method performs poorly when the communication time

is taken into account. As we mentioned in Section 4.3.1, this increase in latency is due to

the communication bottleneck at the central coordinator.

In contrast, we observe that the communication time of DiBA on a ring network in-

creases only slightly. Consequently, DiBA outperforms both the PD and the centralized

method in the overall run-time. DiBA also outperforms both the primal-dual and central-

ized method in the computation time for small to mid range size clusters.

3. Dynamic simulation results: In the previous experiment, we considered a static power

budget. Here, we examine a dynamic case where the power budget changes every minute

during operation as possibly the case in demand-response programs. We demonstrate how
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DiBA re-allocates the power budget. Specifically, we evaluate DiBA for cluster of N =

1000 servers with dynamic power budget in Fig. 4.4. We observe that DiBA provides a

near optimal performance without power budget violation. To demonstrate a more detailed

response of DiBA when there is an adjustment in the total power budget, we consider cases

where the power budget decreases/increases between P = 190kW and P = 170kW power

levels as depicted in Fig. 4.5 and Fig. 4.6, respectively. In both cases, DiBA immediately

adapts to the new power budget.

DiBA is also adaptive to workload variations on servers. DiBA dynamically recom-

putes the power usage of each server as the workloads change on the servers. We simulate

a cluster with N = 1000 servers at a fixed total power budget of P = 180kW. The servers

host different instances of the testing workloads that are presented in Table 4.1. After a

workload is completed, a new workload is randomly drawn from the workload pool in

Table 4.1 and is launched on the free server. We simulated this process for 80 minutes.

The resulting power consumption and SNP is given in Fig. 4.7. We observe that despite

variations in the server’s workload, the SNP metric of DiBA is close to optimal. Further-

more, our simulation has shown that under variable workload scenario, the total power

consumption is strictly below the power limit.

We now analyze a scenario in which the utility of a single server node undergoes an

abrupt change in its utility function. This scenario can occur for example when a node

serves a workload and begins processing a new workload from a different benchmark.

Under this circumstance, it is interesting to observe the effect of workload changes in a

single server on the power states of other servers in the network.

First we examine how the estimation ei of the affected node propagates through the

ring network. More precisely, we consider a ring network of sizeN = 100 nodes. Further-

more, we assume that the coefficients of the quadratic utility function of the node i = 50
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Figure 4.5: Detailed simulation of total power budget reallocation when total power budget
drops from high to low.
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Figure 4.6: Detailed simulation of total power budget reallocation when total power budget
jumps from low to high.

undergoes a sudden change. For this scenario, the estimation vector e def
= (e1, · · · , eN) is

shown in Fig. 4.8 at different phases of DiBA algorithm. As shown in Fig. 4.8 initially,

all nodes in the network, except for the perturbed node, have negligible error estimations

ei, i 6= 50. After few iterations, the estimation error propagates through the network while

the magnitude of the absolute error decreases. More interestingly, as depicted in Fig. 4.9,
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after convergence to the new equilibrium point, only few nodes in the vicinity of the per-

turbed server node need to adjust their power consumption states. More specifically, Fig.

4.9 shows the difference between power usage before and after utility perturbation at the

node i = 50. It can bee seen that fluctuation in the utility function has a desirable local

effect on power consumptions of computing nodes.

4. The effect of algorithm communication topology: The communication topology of

the distributed algorithms can be optimized to improve their convergence. A ring topology

is particularly ideal for DiBA due to its low degree and symmetry. In practice, to guarantee

the connectivity of the distributed algorithm in the case of multiple node failures, the ring

topology must be equipped with a few chords. To investigate the effect of connectivity of

the distributed computation on the convergence speed of DiBA, we created 100 instances

of connected Erdös-Réyni random graphs [10], where the number of computing nodes is

fixed at N = 100. In the Erdös-Réyni random graph model, a graph is chosen uniformly

at random from the set of all possible graphs with N nodes and a certain number of edges.

Note that Erdös-Réyni random graph model is degree homogeneous since its degree dis-

tribution (i.e., the probability of a node to have a certain degree) decays exponentially

fast. In our simulation experiment, the number of edges varies which results in graphs
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Figure 4.7: The performance of DiBA on a cluster with dynamic workloads.
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Figure 4.8: The absolute estimation error of server nodes in the case of utility change of
node i = 50.

with different average degrees per computing node.

For each random graph, we have computed the average degree and the number of iter-

ations. The termination criterion for the iterations is defined to be the time at which DiBA

achieves 99% of the optimal utility value (cf. Eq. (4.11)). The result of this analysis is

shown in Fig. 4.10. We observe that DiBA’s convergence time has strong correlation with

the average degree of connectivity. The appropriate setting for the average communication

degree is then a choice of the system administrator, who can assess the required fault tol-

erance and adjust the topology of the distributed computation accordingly. It is also worth

mentioning the convergence time of DiBA can be adjusted by tuning the free parameters

εti as well as µ in the structure of Algorithm 4.
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Figure 4.10: The iteration numbers of 100 samples of Erdös-Réyni random graphs with
N = 100 versus the average degree. The red line shows the 3rd order polynomial regres-
sion on the samples.

4.5 Summary

We studied the problem of utility maximization in large-scale server clusters with the

power budget constraint. To improve the scalability of power budgeting system, we pro-

posed DiBA, a framework to compute the optimal power usage of each node in a fully

distributed way. In this framework, each node must exchange its power consumption state

to the neighboring nodes in the cluster. We investigated various performance metrics as-

sociated with DiBA. DiBA finds the optimal power allocation as well as the state of art
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centralized method, while outperforms the uniform power allocation by 14.5% in average.

In particular, we showed that DiBA outperforms the centralized power budgeting scheme

as well as the primal-dual algorithm in terms of computation/communication time. We

simulated clusters with up to 6400 nodes and demonstrate that DiBA always converges in

milliseconds which is 272× faster than centralized method for large scale clusters. The

fast convergence of DiBA is particularly ideal for dynamic workloads as well as dynamic

power budget with fast time scales.
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Chapter 5

Thermal-aware Computing Cluster

Layout Planning

5.1 introduction

The planning of homogeneous computing cluster is relatively simple as servers are all

identical in their configurations; thus, there is no inherent advantage from changing the

locations of the racks as the servers will have the same power consumption behavior ir-

respective of their locations. In homogeneous computing clusters, it is the allocation of

workloads to the servers that only determines the spatial power distribution inside the

cluster, which consequently determines the thermal characteristics and the cooling power.

However, as is motivated in Chapter 2, modern computing clusters are heterogeneous

in nature. The heterogeneous makeup helps clusters cater to workloads with different

characteristics (e.g., transactional, batch, numerically intensive, etc) by matching work-

loads with the right platforms so that the target metrics (e.g., performance and energy
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consumption) can be improved. Another reason for heterogeneity arises from multiple

replacement, upgrades and the deployment of more cost-efficient systems that become

available over time [4].

We observe that heterogeneous computing clusters provide an interesting opportunity

to plan their facilities in a way to reduce cooling power. Heterogeneous servers have differ-

ent power specifications, and thus, the spatial positions at installment will lead to inherent

thermal characteristics in the cluster. Thus, we can reduce cooling power by carefully

laying out the racks of heterogeneous servers during the planning phase of clusters. We

believe the contributions are as follows.

• We formulate the problem of rack layout for planning of heterogeneous computing

clusters, where the goal is to identify the best locations of the racks of servers with

different hardware capabilities to improve the supply temperatures of the CRAC

units and the total cooling power.

• Given the nature of modern clusters with varying utilization that is a function of

time and sophisticated job schedulers, we reformulate the rack layout problem in a

probabilistic manner to identify layouts that are likely to provide the best cooling

subject to various operating conditions.

• We propose a number of of heuristics and an optimal solution methodology based on

integer linear programming (ILP) and evaluate them for realistic cluster configura-

tions. Since the planning of clusters occur only once, the ILP runtime is practically

feasible.

• Using a state-of-the-art Computational Fluid Dynamics (CFD) thermal modeling

tool for computing clusters, we demonstrate the effectiveness of our approach in re-

ducing total cooling power between 15.5%−38.5% based on the cluster utilizations
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with an average of 23.3%. This improvement is realized by planning the cluster

using the rack locations identified from our algorithm and without any side effects.

The organization of this chapter is as follows. In Section 5.2 we formulate the layout

planning problems for heterogeneous computing clusters to reduce cooling power and

propose methods to solve it. Our experimental setup and results are provided in Section

5.3, where we demonstrate significant improvements in cooling power. Finally, Section

5.4 provides the main conclusions for this chapter.

5.2 Proposed Layout Methodology

In our cluster organization, we assume the existence of multiple racks of heterogeneous

servers, where each rack holds a number of servers of the same configuration. The as-

sumption that a rack holds servers of the same type is not restricting, and it is natural

given typical cluster purchases and upgrade cycles.

Rack Layout Problem formulation: Given n heterogeneous server racks each consum-

ing power pi, the objective is to find the optimal layout that maps the n racks to n locations

in the cluster such that the sufficient cooling power of the cluster’s m CRAC units is min-

imized.

While the proposed problem formulation bears resemblance to the thermal-ware job

scheduling problem, there is an important distinction between the two. The rack layout

problem determines the inherent thermal characteristics of the cluster, and a bad rack

layout can handicap a thermal job scheduler from achieving its target. By solving the rack
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layout problem, we enable the design of computing clusters with inherently less cooling

requirements, which can be leveraged for further improvements using thermal-aware job

scheduling algorithms.

Given a cluster with a heat recirculation matrix D that represents the heat recirculation

relations among the locations in this cluster, a greedy algorithm that can solve the proposed

rack layout problem is given in Algorithm 5:

for each rack location i of the n locations do
Compute hi =

∑n
j=1D(i, j);

end
Sort hi in ascend order;
Sort the racks based on pi in descending order;
Allocate the racks to locations based on their sorting order;

Algorithm 5: Greedy layout planning algorithm.

This algorithm allocates servers racks based on their power consumption rank to the

locations based on their heat recirculation rank in the reverse order so the server with the

highest power consumption gets in the position where it has the least recirculation effect

on other servers and so on for other servers and locations.

Another solution to solve the proposed rack layout problem is through local search

techniques as given in Algorithm 6. The local search method changes the allocations at

random and will save the one with the lowest heat recirculation effect.

The greedy and local search methods are only heuristics and cannot guarantee finding

optimal layouts. Thus we investigate an integer linear programming based algorithm to

find the optimal solution for the rack layout problem. We use the greedy and local search

for comparison in the experimental results section 5.3.
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for each rack ri of the n racks do
allocate ri to a free location picked at random

end
Assemble the p vector based on allocated rack locations;
let tcurr = max of Dp;
let tmin = tcurr;
while the maximum iteration is not reached do

for each rack ri do
swap the location of ri with a random rack;
recompute tcurr;
if tcurr ≤ tmin then

let tmin = tcurr;
end
else

swap racks back to their original locations;
end

end
end

Algorithm 6: Local search-based layout planning algorithm.

5.2.1 Thermal-aware Layout Optimization

To maximize the Tsup while ensuring the resulted Tin will not exceed the red line tem-

perature tred, we can instead minimize the maximum element in Dp. Let X be an n × n

permutation matrix, where xij ∈ {0, 1} is equal to 1 if and only if rack rj is placed to

location i. The rack layout problem can be formulated as follows.

minimize ||DXp||∞

subject to ∀i :
∑n

j xij = 1 (1),

∀j :
∑n

i xij = 1 (2),

xij ∈ {0, 1},

where the infinity norm ||DXp||∞ gives the maximum element in the vector DXp. Con-

straint (1) guarantees each location is assigned at most one rack, while constraint (2)

guarantees that each rack rj is assigned to a location. To solve this optimization problem,

we can transform the problem into an integer linear program by adding a slack variable s,
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where:

s = ||DXp||∞ (5.1)

Then we can establish relationship between s and the temperature increment of each

rack location i:

∀i : ti ≤ s, (5.2)

where ti =
∑n

k=1Dik(
∑n

j=1 xkjpj). Thus, the formulation can be rewritten as:

minimize s

subject to ∀i :
∑n

k=1Dik(
∑n

j=1 xkjpj) ≤ s

∀i :
∑n

j=1 xij = 1,

∀j :
∑n

i=1 xij = 1,

xij ∈ {0, 1}.

The integer linear program accurately describes the optimization objectives and con-

straints and by solving it we can guarantee the optimal rack layout during the cluster

planning phase for minimizing the cooling power later during operation.

5.2.2 Probabilistic Layout Planning

In the previous subsection, we assumed that the power distribution vector p is constant

over time. However, in reality, the power consumption of each rack, p(λ), varies as a
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function of job arrival rate λ and the decisions of the job scheduler. In this case, the

optimal rack layout will change with varying server utilization distributions. However,

once located, the rack layout cannot be changed dynamically. Thus, it is important to find

the optimal layout that minimizes the cooling power on the average over the distribution

of utilization cases.

Integrating an accurate server power model that captures the impact of utilization will

lead to a better layout that saves cooling power over a larger range of cluster operation. In

this work, we consider two power models:

1. Servers with idle power consumption. In computing clusters where the number of

service requests fluctuates frequently over a large range, the under-utilized servers

should remain active in idle mode to enable immediate response. However, when

idle, servers still consume 40%− 50% of their peak power [4]. Let pidle denote the

power consumption of a rack in idle mode and pdyn denote the extra power when the

rack is fully utilized, then the power pi of each rack ri can be modeled as:

pi(λ) = pidle + ui(λ)pdyn, (5.3)

where 0 ≤ ui(λ) ≤ 1 is the utilization of rack i for a job arrival rate λ to the cluster.

Since our clusters are heterogeneous, the racks could have different pidle and pdyn

depending on their servers configurations.

2. Servers with power nap states. To eliminate the idle power, especially when there

is no hard requirement for request response time, some computing clusters put un-

derutilized servers to power nap states to eliminate their idle power consumption. In

this case, the power of rack i is given by
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pi(λ) =


pidle + ui(λ)pdyn, ui(λ) > 0

0, ui(λ) = 0

(5.4)

It is important to stress that the utilizations of the racks, which determine their power

consumption and consequently the vector p, is a function of both the job arrival rate λ

and the policy of the job scheduler of the computing cluster. For each arrival rate λ, the

corresponding utilization ui for each server rack i can be estimated using a discrete-event

simulation with the cluster’s job scheduler.

To solve the rack layout problem with the consideration of utilization dynamics, we

propose a probabilistic formulation for the rack layout problem. For a job arrival rate λ

with probability density function pdf(λ), the objective of the optimal rack layout can be

formulated as:

XOPT = argmin
X

∫ ∞
0

||DXp(λ)||∞ × pdf(λ)dλ (5.5)

In reality, computing clusters are provisioned to operate under a maximum job arrival

rate λmax. Thus we can approximate the integration in Equation (5.5) with a summation

over the discrete integer values for λ. Using a slack variable sλ for every possible λ, the

integer linear program can be formulated as:
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minimize
∑λmax

λ=0 sλ × pdf(λ)

subject to ∀i, λ :
∑n

k=1Dik(
∑n

j=1 xkjpj(λ)) ≤ sλ

∀i :
∑n

j=1 xij = 1,

∀j :
∑n

i=1 xij = 1,

xij ∈ {0, 1}.

Figure 5.1: the CFD simulation results and configuration of our experimental computing
cluster.

5.3 Experimental Results

We setup our cluster space to accommodate 80 U42 racks for a total of 3200 servers or-

ganized in the form of 8 aisles with 10 racks per aisle. We used the CFD modeling tool

6SigmaRoom Lite [26] to simulate the thermal and airflow characteristics of the cluster.

The tool is used to generate the heat circulation matrix. Our cluster configuration and

Table 5.1: Server configurations.

num num freq DRAM
server CPU CPUs cores (GHz) (GB)

A Intel Core i7 920 1 4 2.67 4
B Intel Core i5 3450S 1 4 2.80 8
C Intel Xeon E5530 2 8 2.27 12
D AMD Phenom II X4 1 4 3.40 16
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an example of the simulation result are illustrated in Figure 5.1. We consider a base-

line of four classes of different servers to emulate the architectural heterogeneity in re-

alistic computing clusters. The configurations for servers of the four classes are given

in Table 5.1. We collect execution traces of SPEC CPU2006 benchmarks [69] on each

of the four types of servers using the pfmon tool, while simultaneously measuring the

power consumption trace using an Agilent 34410A digital multimeter. We consider 20

racks for every server type. The cluster has 8 CRAC units located at the sides as il-

lustrated in Figure 5.1. We use the HP CRAC model given in Moore et al. with a

CoP (tsup) = 0.0068t2sup + 0.0008tsup + 0.458 [56]. We assume maximum inlet tem-

perature is 25◦C. To simulate the dynamic behavior of the cluster under different loading

scenarios, we implement a discrete event queuing simulator [54], which uses the execution

and power traces and the heat recirculation matrix to estimate the power and thermal char-

acteristics as a function of time. The job arrival rates are drawn from a random exponential

distribution with parameter λ, which controls the mean job arrival rate (jobs/second). The

simulator uses a greedy job scheduler to assign jobs to servers, where it assigns an incom-

ing job in the queue to the most energy-efficient free server i.e., the server with highest

throughput per Watt [56].

Exp 1. Layout Planning with no Utilization Knowledge. In this experiment, we demon-

strate our rack layout method under the scenario that the utilization is not a priori known.

Thus, we assume that all servers are running at their highest power consumption which

corresponds to maximum utilization. Because we assume full utilization, this planning

experiment does not make value of the queueing simulations, and it corresponds to a case

where the cluster is designed based on the plate specifications of the servers regardless of

the workloads. We solve the rack layout problem by our proposed ILP algorithm, local

search and greedy approaches. The estimated CRAC units supply temperature require-
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Table 5.2: Supply tempereture and cooling power for the first experiment

Method tsup cooling
(◦C) power (kW)

ILP 22.1 117
Local Search 20.6 133

Greedy 21.4 124
Heterogeneous oblivious 16.6 191

ment and minimum cooling power computed from each algorithm are given in Table 5.2.

We also compare against the case of heterogeneous oblivious planning, where the racks

are placed randomly independent of their specifications.

Our results show that the optimal locations identified by our ILP algorithm can achieve

38.5% savings in cooling power from 191 kW to 117 kW. The results also show that the

use of the ILP-based method is justified compared to easier and faster alternatives such as

greedy and local search, as the ILP method saves 11.8% of cooling power over local search

and 5.6% over greedy. The runtime of the ILP took 60 seconds on server configuration A,

which is quite reasonable given the large size of our experimental cluster and given that

Server D 

Server A Server B 

Server C 

(a) (b) 

Figure 5.2: The layout planning of the experimental cluster. (a) using greedy on the left
and (b) using ILP on the right.
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the ILP needs to be solved only once during the planning phase of the cluster.

The cluster layouts using ILP and greedy method are given in Figure 5.2. The slight

difference between these two layouts illustrates that placing the high power servers in

locations with low heat recirculation effect is not enough. While both techniques have

similar general trends in their layouts, ILP is able to find a global optimal solution while

the greedy heuristics reaches a local optimal.

Exp 2. Layout Planning with known Utilization. When the utilization is known, our

proposed method can find the optimal layout planning for a given utilization. We repeat

the queuing simulation five times with five different mean job arrival rates from low mean

arrival rate (λ = 8) to high arrival rate (λ = 24), which cover all service conditions from

undersubscribed to oversubscribed operation. The average server utilizations of the four

different server types for different job arrival rates are given in Figure 5.3. Note that for

a given λ, the servers show different utilizations, which arise from the role of the job

scheduler, which prefers to schedule jobs on the most energy-efficient servers first. Thus,

at low job arrival rates, the most energy-efficient servers (e.g., servers of configuration D)
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Figure 5.3: The average utilization of each server type.
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Figure 5.4: Reductions in cooling power over heterogeneous-oblivious planning when
non-utilized servers consume idle power.
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Figure 5.5: Reductions in cooling power over heterogeneous-oblivious planning when
non-utilized servers switch to nap states.

will be mostly utilized but other servers will be relatively idle, while all servers tend to

become more utilized as the mean job arrival rate increases.

To determine the optimal server rack layout, we consider two power management

policies: (a) one where non-utilized servers consume a base amount of idle power depend-

ing on their specifications, and (b) one where non-utilized servers are put into near-zero

power-saving state (e.g., power nap states [53]).

a. Servers with idle power consumption. When service requests transition rapidly,

free servers must stay at idle state so that they can respond to new requests immedi-

ately. Given the non energy-proportional characteristics of servers [4], an idle server
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still consumes 40% − 50% of its peak power consumption. We evaluate the mini-

mum cooling power achieved by our proposed algorithm and demonstrate its power

saving performance. In Figure 5.4, the layouts produced by the ILP reduce the

cooling power by 25.5% − 36.9% compared to heterogeneous-oblivious planning,

whereas local search and greedy methods reduce the cooling power requirements by

21.1%− 33.2%.

b. Servers with power nap states. In some computing clusters where the service

request rate is relatively stable, power management techniques could turn the free

servers into near-zero power napping states to improve the energy-efficiency. In this

case, the optimal layouts identified by our ILP method algorithm reduce the cooling

power by 18.6% − 36.9% depending on the utilization rate as given in Figure 5.5,

where local search and greedy algorithm give only 13.2%−33.2% of improvements

over heterogeneous oblivious rack layout. Our job scheduler prioritizes energy-

efficient servers with low power consumption; thus, at low job arrival rates, the low-

power servers have higher utilization while the high-power servers are under utilized

and switch to nap mode, which leads to a relatively uniform power consumption by

the racks. Thus, the optimization searching space and the reductions in cooling

power are limited for small λ.

In both cases, ILP improves the cooling power reduction a maximum of 12.1% over local

search and 5.6% compare to greedy method.

Exp 3. Layout Planning with Variable Utilization. In a real computing cluster, the mean

job arrival rate and utilization are not static but they rather change over time reflecting user

trends. Thus, for this experiment we used real computing cluster utilization traces to drive

the distribution of job arrival rate for our cluster simulator. Figure 5.6 shows the proba-
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Figure 5.7: Cooling power reductions achieved by layout from our methods compared to
heterogeneous-oblivious planning.

bility density function (pdf) of our institution’s computing cluster utilization (i.e., Brown

University) over a year and the pdf of a Google datacenter during 24 hours over a week

[75]. We mapped these distributions to the corresponding job arrival rate for our cluster

configuration. Using the probability of each job arrival rate and utilization distribution

of each job arrival rate, we use our probabilistic ILP formulation to identify the optimal

layout planning.

Figure 5.7 gives the result for our cluster using the PDFs from Google and our institu-
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tion for the two power management cases: (a) free servers remain idle and (b) free servers

are switched to nap modes off. Result shows that our methods are able to consistently

deliver layouts that lead to reduced cooling power for various utilization trends. The mag-

nitude for improvement is higher for our institution’s cluster because it has a higher mean

job arrival rate.

5.4 Summary

We have formulated the problem of rack layout for heterogeneous computing clusters,

where the goal is to identify the locations of the server racks during the planning phase

of the cluster to reduce cooling power. Whereas homogeneous racks offer no incentive to

lay them out in a particular way, heterogeneous racks offer different power specifications

that can be exploited to produce layouts with improved thermal characteristics and cool-

ing. We also investigated the impact of varying cluster utilization and the impact of the

job scheduler on cooling power and reformulated the rack layout problem to identify the

locations that are likely to reduce cooling power under different operating conditions. We

devised optimal solution methods to the rack layout problem using integer linear program-

ming. For the experimental results, we devised a realistic model for computing clusters

using state-of-the-art CFD modeling tools and demonstrated that our methods lead to sig-

nificant improvements in the thermal characteristics and cooling power. We demonstrate

the effectiveness of our approach in reducing total cooling power between 15.5%−38.5%

based on the cluster utilizations with an average of 23.3%

89



Chapter 6

Creating Soft Heterogeneity Through

Firmware Reconfiguration

6.1 Introduction

Leveraging the server architecture heterogeneity delivers a significant improvements in

computing cluster performance and energy-efficient. However, the workloads in a com-

puting cluster changes in fast iterations, dedicated hardware configurations do not always

guarantee optimal output. Furthermore, creating a cluster by purchasing servers with dif-

ferent hardware capabilities can complicate resource management and increase costs. In-

stead, a more realistic approach is to change the configuration of the available hardware

and software components.

The traditional approach of configuring the firmware involves a human in the loop.

System administrators follow simple ad-hoc rules to identify the appropriate firmware set-

tings [44, 5], which can potentially lead to ineffective use of the hardware components
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Figure 6.1: FXplore enables soft heterogeneity in a cluster by customizing firmware for
target workloads to improve performance and energy efficiency.

and is naturally prone to human errors. In contrast, we propose an automated firmware

option exploration tool called FXplore that is far more effective in finding firmware con-

figurations of servers that can deliver the maximum benefits in performance and energy

efficiency. Figure 6.1 contrasts the traditional approach with our approach.

There are several challenges in finding the optimal configurations. First, there are

an exponential number of configurations as a function of the number of firmware settings,

which makes identifying the optimal configuration for a workload a hard problem. Second,

creating a dedicated sub-cluster with its own custom firmware configuration for each target

workload can complicate system management, especially if there are a large number of

target workloads. Third, administrators sometimes deploy co-runners on the same server.

Through FXplore, we provide a framework that addresses these challenges. We make the

following key contributions.

• We quantify the impact of firmware configurations on the runtime and power con-

sumption of a diverse range of workloads. We demonstrate that the optimal con-

figurations for these workloads can be very different. Furthermore, we show that
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the optimal configurations cannot be derived by analyzing the impact of each of the

individual firmware settings in isolation.

• We propose an automated firmware configuration exploration methodology called

FXplore that employs a sequential-search heuristic algorithm to identify the optimal

configuration for any given workload with substantial speedups compared to brute-

force search. In particular, for every n firmware settings, we show that we can

reduce the exploration time from O(cn) to O(n2).

• To simplify system management, FXplore uses machine-learning (ML) techniques

to trade-off the degree of heterogeneity in the cluster with the optimality of the

performance and energy. In particular, FXplore uses k-means to partition a homo-

geneous cluster of servers into sub-clusters, each with its unique firmware config-

uration and suitability for sets of targeted workloads rather than a single workload.

Thus, FXplore simplifies system management in the presence of heterogeneity.

• We extend FXplore to handle co-running workloads, such that it identifies the firmware

configurations for cases when multiple workloads are run on the same server. We

also evaluate a number of techniques from the literature geared for on-line operation

to enable administrators to map new workloads to existing sub-clusters depending

on the similarity to workloads in the training set.

• We validate our methodology on a fully-instrumented cluster with eight server nodes

using a diverse set of parallel workloads that span HPC applications and cluster

workloads. We demonstrate that FXplore can improve runtimes by 11% and energy

efficiencies by 15% in average, compared to baseline firmware configurations. It can

also accelerate firmware configuration exploration by 2.2× compared to brute-force

exploration.
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The rest of the paper is organized as follows. In Section 6.2, we motivate the need for FX-

plore. In Section 6.3, we describe our firmware configuration methodology including the

sequential exploration, sub-clustering and ML-based mapping approaches. In Section 6.4,

we present the experimental results. We summarize the work in Section 6.5.

6.2 Motivation: Impact of firmware configurations

In this study, we aim to improve the performance and energy efficiency of a server by

customizing its hardware to the software characteristics of the workloads using the options

in the firmware. Modern servers offer many firmware configurations with each offering a

different impact on the power-performance levels of different workloads.

Table 6.1 lists five important firmware settings that are available in our servers through

BIOS Setting Description

Hardware prefetcher (HP) Enabling HP fetches the data and instructions
from memory into cache before the processor
loads them.

Adjacent cache-line prefetcher (CP) Enabling CP will make the processor always
fetch two adjacent cache lines.

CPU turbo boost (CTB) Allows CPU cores to scale up their clock fre-
quency on-demand depending on thermal or
voltage slack.

Memory turbo boost (MTB) Allows adjustment of the memory frequency to
a higher or lower value.

Hyper threading (HT) Enables simultaneous multithreading, which al-
lows threads to share the processor resources
where each physical core is regarded as two vir-
tual cores.

Table 6.1: Firmware settings that we explore in our study.
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the BIOS. There are two settings related to the cache performance: the hardware prefetcher

(HP) and adjacent cache-line prefetcher (CP). HP enables prefetching between the cache

and main memory, while CP enables prefetching between cache and CPU cores. Enabling

HP and CP will benefit workloads with predictable memory-access patterns and good data

locality. CPU turbo boost (CT) mode is another option that is also widely available in

server-class processors. CT enables processors to operate at a higher frequency than the

nominal especially when thermal and voltage slacks are available. The speed of mem-

ory is another configuration option that can be tuned from firmware. Our servers provide

control over the frequency through an option called the memory turbo boost (MT). En-

abling MT allows the memory to run at a higher frequency (1066 MHz), while disabling

it lowers the speed (to 800 MHz). Thus, by enabling MT, the system can potentially lower

cost for memory accesses, which will provide a sizable benefit to memory-bound appli-

cations. Hyper-threading (HT) allows throttling the server performance through simulta-

neous multi-threading. By sharing the hardware resources on a single physical processor

core, two different threads can be executed simultaneously. Ideally, multi-threaded work-

loads may benefit from enabling HT at the cost of some additional power. However, for

workloads with compute-intensive threads, enabling HT can, in fact, create contention for

the CPU core and degrade performance compared to no HT. Thus, optimally configuring

these five firmware options is a highly nuanced and workload-driven task.

Among the limited set of options provided by the version of the firmware on our

servers, we found that the above five settings are the ones that impact power and per-

formance levels the most. Thus, we focus on these five parameters to demonstrate the

benefits of FXplore. However, with newer firmware versions and server models, there are

many more configuration options that are available [5]. Such options provide an oppor-

tunity for much finer grain firmware tuning by FXplore. The basic premise of our work

lies in the fact that enabling or disabling firmware options can have a large impact on
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the performance and power consumption of servers as a function of the workloads. To

illustrate this point, we profile a number of parallel workloads on our networked cluster

that is composed of eight fully instrumented Xeon-based servers. We select parallel work-

loads from the NAS Parallel Benchmarks (NPB), which are representative of HPC and

workloads from the NU-MineBench benchmarks, which are representative of data min-

ing workloads. Since we consider five firmware options, each server in the cluster can be

configured in total of 25 = 32 different ways. Since we run an application on the entire

cluster, we enforce any chosen firmware configuration on all of our servers. For instance,

consider four exemplary workloads from our two benchmark datasets. Figure 6.2 shows

the runtime and power of these workloads under the 32 possible firmware configurations.

All results are normalized with respect to the results when all firmware options are en-

abled. The trends in the figure lead us to our first observation.

Observation #1:. Firmware settings can have a large impact on the performance and

power consumption of applications since each application has its own unique character-

istics. For instance, from Figure 6.2, we see that application CG shows 173% variation

in runtime as a function of the firmware settings. However, application SP shows 59%

variation in runtime as a function of the firmware settings. Given these large application-

dependent variations in runtime and power, it is imperative to ask if there are any shared

Runtime-optimal Configurations Energy-optimal Configurations

NAME CTB MTB HT HP CP Runtime NAME CTB MTB HT HP CP Energy

BT X X X X 5 0.982 BT 5 X X 5 5 0.962
CG X X X X 5 0.937 CG 5 X X 5 5 0.915
LU X X 5 X 5 0.629 LU 5 X 5 5 X 0.569

SVM X X 5 X X 0.701 SVM 5 X 5 5 X 0.655

Table 6.2: Optimal firmware settings are different for each of the four applications consid-
ered in Figure 6.2. Further, different settings optimize runtime and energy consumption.
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Figure 6.2: Firmware configurations can have a large impact on the runtime and power
consumption of a server depending on the application characteristics.

optimal settings among various applications or whether there is a simple characterization

for the optimal runtime and energy efficiency based on the firmware settings.

Observation #2:. The optimal firmware configurations vary by application, where each

application could have its own distinct optimal configuration for performance and energy

efficiency. Table 6.2 illustrates how the optimal configurations for minimizing runtime

and energy consumption of the four workloads can be drastically different. The results

interestingly show that enabling all firmware settings does not necessarily lead to the best

runtime or energy efficiency. One possible reason for this behavior is that the enabled

options could conflict with each other. Further, different applications have different sen-
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Figure 6.3: The normalized runtime of workloads under firmware configurations with only
HP enabled, only MT enabled, and both HP and MT enabled shows how the interdepen-
dence between firmware options is application specific. The baseline (i.e., runtime = 1)
case is where all five options are enabled.

sitivity to the firmware settings. Turning on some firmware settings might not yield good

performance improvement or even not have a positive impact. For instance, enabling HT

reduces the runtime of many workloads, but it hurts LU and SVM. The results also show

that the optimal settings for runtime minimization may not be the best settings for energy

minimization.

Observation #3:. There are subtle interactions among the firmware configurations that do

not necessarily add up to provide or diminish gains. Thus, combining settings that yield

better results individually may not necessarily further improve the results, and similarly

combining settings that have a negative impact individually might surprisingly lead to a

positive impact. Figure 6.3 illustrates the inter-dependency between MT and HP. In the

figure, we compare the runtime under three different firmware configurations: enabling

only MT, enabling only HP, and enabling both MT and HP. The runtime is normalized

against the case that all five settings are enabled. The runtime of disabling all firmware

options is also plotted for reference to show the impact of the individual options. From
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Figure 6.4: Overview of FXplore. It comprises two operation modes. First, is an offline
mode where we use sub-clustering and sequential search to find the optimal firmware
configurations for groups of servers. This requires rebooting the servers several times.
Second, is the online mapping stage, where we use machine learning algorithms to map
incoming workloads to appropriate sub-clusters requiring no rebooting of the servers.

the results, for most of the applications such as BT, LU, SP, HOP, and SPC, enabling HP

and MEM individually improves the runtime over all-disabled case and enabling both of

them delivers greater improvement. However, for CG and KM, enabling both of them yields

worse runtimes compared to the cases where only MT is enabled. And for FT, IS, MG,

and SVM, although only enabling HP makes the runtime worse than the all-disabled, when

HP is enabled together with MT, the runtime is improved, comparing to the case where

either HP or MT are exclusively enabled.

We thus conclude that there is no ideal firmware configuration that is optimal for all

kinds of workloads. Also, there is no simple rule that could give us the optimal firmware

configuration for a given application. Thus, an intelligent and efficient method to deter-

mine the optimal configuration for any given application is highly desirable. Next, we

present FXplore that precisely addresses this problem.
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6.3 FXplore Methodology

In this section, we present the methodology of FXplore. We describe how it enables

system administrators to partition servers into sub-clusters such that each sub-cluster is

configured with a different firmware configuration to improve performance and/or energy

efficiency for target workloads. Figure 6.4 gives an overview of our methodology. There

are two modes of operation. First is the offline mode, where given a set of M target

workloads, we partition them into κ sub-clusters, afforded by the administrator, and derive

the optimal configurations for the sub-clusters in a fast and effective manner. Second is

the online mode, where incoming workloads are profiled using hardware performance

counters (PMCs) and mapped to one of the existing sub-clusters with a pre-determined

optimal configuration. This process requires no reboots of the servers and is invoked

during regular use of the servers. Note that if M = κ then each workload can afford its

own sub-cluster with optimal settings. However, it is expected that κ < M because a large

κ can complicate cluster management.

Today, for system administrators, the only available alternative to FXplore is brute-

force enumeration, where the outcomes (i.e., runtime and energy) under all possible firmware

settings need to be enumerated for every workload. Among these settings, the one that

gives the best results needs to be chosen and used for the server. For N firmware op-

tions, brute-force enumeration requires an exploration of 2N settings per workload (e.g.,

32×M reboots of the server are required forM workloads and 5 firmware options), which

is not scalable especially when modern high-end servers provide 10-15 firmware options

that could impact the power/performance of applications [19]. Through FXplore, we pro-

pose to reduce this firmware exploration time complexity from 2N to O(N2). Further,

once the one-time exploration process is completed offline, we provide a methodology to

map new incoming workloads in real time to sub-clusters of servers with pre-determined
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optimal configurations. We describe the details of our offline heuristic exploration and

sub-clustering methodologies in Sections 6.3.1 and 6.3.2, respectively. The details of the

on-line operation are given in Section 6.3.3. In Section 6.3.4, we extend our methodology

to handle the case when co-runners are enabled; i.e., when multiple applications are run

on the same server.

6.3.1 Identifying the BIOS configurations

This is the first part of the offline process in FXplore, which needs to be run one time

with O(N2) server reboots. In this method, we follow an iterative sequential approach

to optimize our cost function (i.e., performance or energy) with the aim to minimize the

search space of firmware options. Our approach seeks to capture the subtle interactions of

the firmware configurations as outlined in observation #3 in Section 6.2, which concluded

that the improvements in performance or energy obtained by a combination of firmware

options is not equal to a simple superposition of improvements due to each option. The

procedure for our proposed sequential search method, FXplore-S, is given in Algorithm 7.

At the outset, we enable all candidate firmware options and label them as free (step 1).

Then, in each iteration (step 2), we profile the input workload by temporarily disabling

one free firmware option at a time (steps 3, 4, and 6). During this time, for each option, we

also measure and register the cost function i.e., runtime or energy consumption (step 5).

After this, we disable the option that, when it is disabled, the cost function is minimized.

We also label that option as locked for all subsequent iterations of the procedure (item 7).

At the kth iteration, N − k + 1 free options are evaluated and the one with the highest

impact on the cost function is disabled and locked. Thus, to disable and lock N firmware

options, we will needN iterations. After completingN iterations, we rank the results from

all iterations by their cost-function value, and set the combination of firmware options that
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globally minimize the cost function.

The exploration time complexity of FXplore-S is N + (N − 1) + · · · + 1 = O(N2),

which is a substantial improvement compared to the exponential complexity (i.e., 2N )

of brute-force enumeration. Our approach can also be extended to handle non-binary

firmware options. We convert a non-binary firmware option to a group of binary options

and configure them using FXplore-S. However, during the locking stage, we lock the group

as a whole instead of considering the binary options in the group separately.

6.3.2 Deriving the Subclusters

This is the second part of the offline process, which also needs to be run one time during

configuration of the servers. If the system administrator can afford a dedicated sub-cluster

for every target workload, then the firmware configurations identified by FXplore-S can be

directly used. In reality the number of sub-clusters is likely to be smaller than the number

input : Input workload and n candidate firmware options.
output: Optimal firmware configuration for input workload.
1. Enable all n candidate firmware options and label them as free;
2. for k = 1 . . . n do

3. for each free firmware option do
4. Disable the firmware option;
5. Run the workload, measure, and record runtime or energy;
6. Enable firmware option;
7. Disable the option that, when it was disabled, workload achieved the best
results in Step 5 and label it as locked;

end
8. Repeat 2-7 until all the firmware option are disabled;

end
9. Search the firmware configurations have been explored and find the one gives the
best results;

Algorithm 7: FXplore-S: Offline sequential-search algorithm to determine the optimal
firmware configuration.
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Figure 6.5: Plot of truncated feature vectors (only three performance counters out of the
five) and their natural clusters.

of target workloads. Thus, in this section we propose a method, FXplore-SC that aims to

partition the target workloads into groups with consistency so that they can be executed

together in the same sub-cluster configured with the same firmware configurations.

FXplore-SC proceeds by (1) grouping applications based on their system-level per-

formance characteristics, (2) identifying the optimal configurations for a representative

application from each group using FXplore-S, and (3) applying the firmware configura-

tions from the representative application of each group to the remaining workloads in the

group. The insight behind this procedure is that workloads that exhibit similar system-

level performance characteristics should have similar firmware settings.

To measure similarity of workload characteristics, we resort to PMCs. PMC values

reveal subtle characteristics of the workloads since they are directly associated with their

hardware interactions. For each workload, we compute the average PMC values over time

and then per core. For our benchmarks, we collected 13 PMCs covering a diverse range

of characteristics. We then computed the principal component analysis (PCA) of the PMC
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measurements and analyzed the PCA scores of the performance counters. The PCA anal-

ysis reveals that the most relevant performance counters are the number of instructions

retired, L1 data references, L2 data-cache misses, last-level cache (LLC) misses, and mis-

predicted branch instructions. As it is difficult to visualize high dimensional data, we

selected three of the five counters: LLC misses, branch prediction misses and L1 data

cache references and plotted their three-dimensional feature vectors in Figure 6.5. In the

figure, the PMC values are normalized. We can clearly see clustering of the benchmarks

even in this lower-dimensional space. FXplore-SC is based on PMC values. Its procedure

is shown in Algorithm 8. Given a set of workloads, we first quantify the characteristics of

each workload in the set by running it on a baseline configuration (e.g., where all firmware

options are enabled). We do this quantification by collecting the PMCs mentioned above

(step 1). Thus, the average PMC values comprise the feature vector for every workload

(step 2). After this, we apply the k-means algorithm to group the workloads into κ groups

(step 3). The clustering algorithm works by minimizing the distance between the group

members (i.e., workloads) and maximizing the distance between the group centroids. For

each group (step 4), we pick a representative workload and determine its optimal configu-

ration using FXplore-S (step 5). Finally, we employ these settings for all other workloads

of the group (step 6).

input : Workload set W and desired clustering granularity k.
output: Optimal configurations for the subclusters.
1. Run each workload on a baseline configuration and collect its PMC values;
2. Average the PMC values for each application to produce each workload unique
feature vector;
3. Apply k-means on the feature vectors to cluster the workloads into k clusters
based on their feature vectors;
4. for each cluster do

5. Pick an application from the cluster and apply FXplore-S to determine its
optimal firmware configuration;
6. Use this firmware configuration for the remaining workloads in the cluster;

end
Algorithm 8: FXplore-SC: Offline process to determine sub-clusters of servers and fix
their optimal configurations.
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The value of κ is chosen by the system administrators, which provides them with the

flexibility to trade-off the amount of heterogeneity and improvement in performance/power

against the amount of management overhead. At its extremes, κ = 1 leads to one nominal

firmware configuration that is used for all servers, and κ = M provides a high degree of

customization, where every application gets it own sub-cluster that is optimally configured

according to its characteristics. It is up to the system administrators to decide the accept-

able amount of heterogeneity in the cluster. We will evaluate the impact of κ in Section

6.4.

6.3.3 On-line Operation

This is the online process in FXplore, which is run all the time and it requires no server

reboots. Once the sub-clusters of servers have been identified and set to have optimal

configurations using a number of representative or training workloads, the mapping of a

new workload is done based on the similarities to the training workloads. A number of

works in the literature tackle this problem [42, 17]. For instance, Liao et al. evaluate

a number of ML techniques, such as decision trees (DT) and support vector machines

(SVM), to map new workloads to a target set of trained workloads as a function of the

features of the workloads [42]. We follow a similar approach in this paper. In our case, a

new workload is profiled on a baseline server to get its PMC-based feature vector. Then

it is mapped using nearest-neighbor (NN) search into one of the existing groups based on

the distance between its feature vector and the centroids of the groups, where the cluster

with minimum distance is chosen. Once, we map a new workload to a cluster, we use the

configuration of the cluster for the incoming workload.
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6.3.4 Workload Co-location

In many modern clusters, a single server might host multiple workloads concurrently to

leverage the availability of the large number of cores or processor sockets. A number

of prior works consider the interference arising from allocating workloads on the same

server and provide techniques to identify the optimal pairing of co-running workloads

to minimize the degradation in performance [17, 50, 52, 30]. We address the co-runner

problem by leveraging these prior works to extend our framework so that co-runners are

enabled as follows.

1. A desired workload allocation algorithm is first run to identify the optimal pairing

of application co-runners on a server with a baseline firmware configuration.

2. If (w1, w2) are identified to be an optimal pairing of two applications w1 and w2,

then FXplore-S is executed to identify the best firmware configuration for the pair

simultaneously.

3. If clustering is required, then the average per-core PMC vector from running both

workloads is first profiled. This average vector is then used as part of the feature

space in the sub-clustering algorithm FXplore-SC.

We evaluate the effectiveness of FXplore in handling co-runners in Section 6.4.4. Note

that we do not propose any new workload co-location or scheduling algorithm. Instead,

we observe that co-runner algorithms can have cyclic dependencies with firmware tun-

ing; i.e., there is a possibility that the results of the co-runner algorithm depend on the

firmware configuration chosen in the first place. We broke that dependency by choosing

to identify the optimal co-runners on a baseline server using existing co-runner algorithms;
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however, the possibility of co-optimizing the firmware configuration and co-runner pairs

of applications can lead to further improvements in future work.

6.4 Experimental Results

We present experimental results that validate the ability of FXplore to determine the

runtime- and energy-optimal firmware configurations for various workloads, while pro-

viding system administrators with the ability to control the degree of soft-heterogeneity

through sub-clustering. To evaluate FXplore, we use a cluster of 8 Dell PowerEdge C1100

servers. Each server is equipped with dual Xeon L5520 quad-core processors (total 8

cores) and 40 GB of DRAM. They run Ubuntu 12.4 and AMI BIOS version 2.66. We use

the perfmon2 tool to collect PMC values from the servers. To determine the total power

consumption of the cluster, we created a measurement environment that senses the current

flow through the power cord of each server.

We profiled a large set of benchmarks to evaluate the effectiveness of FXplore. In

particular, we consider workloads from the following two sets of parallel benchmarks: (1)

eight workloads from NPB representing computational fluid-dynamics applications: BT,

CG, EP, FT, IS, LU, MG, and SP) [3] and (2) six workloads from NU-MineBench repre-

senting data mining applications: HOP, kmeans(KM), SVM, Utility Mining(UM),

RSearch(RS) and SaclParC(SPC)) [57]. NPB is designed to characterize HPC

clusters, while NU-MineBench comprises datacenter-like workloads. We configure each

workload as 64 threads (8 × 8) to execute on our experimental cluster. We double the

number of threads when hyper-threading is enabled.

To establish ground truth for the optimal configurations, we exhaustively search through
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all possible firmware configurations. For every configuration, we collect PMC values,

power consumption and the runtime of each workload, and compute the energy consump-

tion and exploration time for exhaustive search. Note that to collect the PMC values in

our experiments, we run our parallel workloads to completion. We next assess the effec-

tiveness of FXplore.

6.4.1 Sequential search results

In this subsection, we present experimental results for the offline exploration mode of FX-

plore i.e., FXplore-S. We demonstrate the effectiveness of FXplore-S in finding the optimal

configurations for a given workload, while attaining large reductions in exploration time

compared to brute force. We consider the following configurations:

1. all-enabled: We enable all the five firmware options. The runtime (or energy) un-

der other firmware configurations are normalized with respect to this runtime (or

energy). We choose it as baseline configuration in all experiments of Section 6.4.

2. FXplore-S: We run our sequential search algorithm to find the best configuration.

We consider two cases: a runtime-driven case that seeks to minimize runtime, and

an energy-driven case that seeks to minimize energy.

3. Brute-force: We use a brute-force enumeration on all configurations to find the

optimal configuration for optimizing runtime or energy consumption.

Optimizing runtime: We report the normalized runtime of all workloads using the dif-

ferent configuration methods above in Figure 6.6. From the results, we can draw the

following conclusions. Enabling all options does not necessarily deliver near-optimal re-

sults as is obvious in the cases of LU, KM, SVM, and SPC. One possible reason for this
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behavior is that the enabled firmware options conflict with one another. For instance, if

a workload contains several spin-wait loops, enabling HT can create memory-order con-

flicts and slow down execution. Now, in such a case, if we enable HP in addition to HT,

the server can end up with a large number of unusable memory fetches, which may lead

to thermal issues and throttling. Thus, the overall performance of the workload may suffer

substantially. Figure 6.6 shows that FXplore-S always finds the optimal or near-optimal

firmware configuration for all the workloads except for the runtime of UM, which is 2%

longer than the optimal. FXplore-S finds the exact optimal configurations for the rest of

the workloads. Overall, FXplore-S improves runtime by 11% over the all-enabled

configuration on average. In terms of exploration time, the results in Figure 6.8 demon-

strate that the average exploration time of FXplore-S is only 46% of brute-force search;

that is, FXplore-S speeds up the exploration time by 2.2×. Note that the speed-up will

increase with more firmware settings because the exploration time of FXplore-S grows

quadratically, while that of brute-force search grows exponentially.

Optimizing energy efficiency: Energy efficiency is another important objective for clus-

ters. Therefore, in this second experiment, we switch FXplore-S to the energy-driven case

where we determine firmware configurations that minimize the energy consumption for

various workloads. For the five options, unlike the impact of the firmware configuration

on runtime, the effects on power consumption are more or less predictable. In particu-

lar, disabling any of the five options always saves power. Since energy is the product of

power and runtime, the impact of the firmware configurations on energy is determined by

how pronounced are the savings in power. Figure 6.7 gives the energy consumption of

the workloads for various firmware exploration methods, where we normalize the energy

numbers with respect to the energy measurements from all-enabled. From the figure,

we observe that by using FXplore-S we can almost always find the energy-optimal or near
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Figure 6.6: Normalized runtime improvement of workloads with different firmware con-
figuration methods. Normalized to all-enabled.
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Figure 6.7: The normalized energy of workloads under different BIOS configurations.
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Figure 6.8: The normalized exploration time of each workload, normalized to
Brute-force.

energy-optimal configuration. The speed-up in exploration time in the energy-driven case

is similar to the runtime case.
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Scalability of FXplore with number of firmware settings. Since FXplore-S is a heuristic

algorithm. In this section, we study its effectiveness and scalability in finding the optimal

configuration as a function of the number of available settings N . Since our evaluation

servers provide only a limited number of firmware options that we can tune, we consider

the cases of N = 2-5. We use exploration error as a metric to evaluate the effectiveness of

FXplore-S. For any workload N , let To(N) be its runtime under its optimal configuration

(found by brute-force search) and Ts(N) be the runtime under the firmware configuration

identified by FXplore-S. Then, we define exploration error as:

exploration error(N) =
Ts(N)− To(n)

To(N)

and exploration accuracy as equal to 1 minus the exploration error. We report this number

using the y-axis on the right hand side of Figure 6.9. We observe a near negligible degra-

dation in exploration accuracy as we go from 1 to 5 firmware options. On the y-axis on

the left hand side of Figure 6.9, we also report the average number of mispredictions that

we get for all the candidate workloads using FXplore-S. Again a small degradation occurs

because of the increase in depth of the search path; however, the inaccuracy is considered

almost negligible from a practical perspective. Unlike the cases of N = 3 and N = 4
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Figure 6.9: The scalability of FXplore-S as a function of the number of firmware options
for optimizing runtime.
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Figure 6.10: Workload runtime under sub-clusters firmware configurations created by
FXplore-SC, when κ = 4, i.e., four sub-clusters.

firmware options, where we have
(
5
3

)
= 10 and

(
5
4

)
= 5 estimation samples, respectively,

the case of N = 5 options has only one sample, which makes it sensitive to experimental

noise. The overall trend is that exploration error grows linearly, which means the accuracy

will not decrease drastically when more firmware options are considered.

6.4.2 Clustering results

In this subsection, we evaluate the second part of the offline mode in FXplore, i.e., FXplore-

SC. In particular, we assess how well can FXplore-SC derive sub-clusters with heteroge-

neous configurations. The number of sub-clusters κ is a configurable parameter and is

chosen by the system administrator depending on management costs. Since we have 14

benchmarks, we can potentially vary κ from 1 to 14 and evaluate the resulting runtimes of

the workloads under different clustering results. Note that when κ = 14, the FXplore-SC

method becomes essentially the FXplore-S method since no clustering is involved, and

each workload gets it optimal configuration. However, choosing the optimal number of

sub-clusters in general is a challenging task in itself. Choosing a small number of clus-
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ters will minimize the heterogeneity of the servers, while a large number of them will

complicate system management. Thus, to maintain a good tradeoff between management

overheads and the amount of heterogeneity, we choose four sub-clusters for our experi-

ments.

Figure 6.10 shows the runtime of each workload in four sub-clusters, i.e., κ = 4. Again

we normalize runtimes to the all-enabled firmware option. In the figure, we compare

the normalized runtime of each benchmark under the optimal configuration of the sub-

cluster it belongs to and its own individual optimal configuration (determined by brute-

force search). We observe that the average runtimes of the workloads under optimal sub-

cluster level firmware configurations are only 5% higher than under individually optimal

configurations.

6.4.3 Evaluation of On-line Mapping Methods

In this subsection, we evaluate the on-line mode of FXplore, where incoming workloads

from a scheduler get mapped to sub-clusters that are statically pre-programmed with dif-

ferent firmware configurations. For this mode, we leverage some of the existing ML tech-

niques in workload mapping [42, 17, 50]. For high statistical confidence, we employ

leave-one-out cross validation of the workloads. Accordingly, we use the offline mode

of FXplore for all but one workload to determine the sub-clusters and their optimal con-

figurations. Then, we use the PMC-based feature vector of the isolated workload to map

it to the sub-clusters using different ML techniques such as DT and SVM, which have

been tested in [42] as well as NN, which is used in FXplore. We repeat this process to

isolate every workload in our test set. Our results presented in Table 6.3 show that NN

works as well as any other classifier and there is no best mapping algorithm. Overall using

NN-based online mapping and four sub-clusters, we find that there is an average of 3%
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runtime (×) runtime (×)
Classification Method Optimal

name NN (FXplore) SVM DT

BT 0.982 1.371 1.371 0.982
CG 0.937 2.101 2.101 0.937
EP 0.982 0.982 1.547 0.982
FT 1.000 1.000 1.010 1.000
IS 0.962 1.359 1.359 0.962
LU 0.629 0.629 0.629 0.629
MG 0.968 1.116 1.116 0.968
SP 1.029 1.029 0.879 0.879

HOP 1.043 1.043 1.292 0.999
KM 1.161 2.242 2.242 0.908

SVM 0.711 0.711 0.982 0.711
UM 0.999 1.103 1.096 0.999
RS 1.000 1.000 1.514 1.000

SPC 0.789 0.789 1.038 0.789

Average 0.942 1.177 1.298 0.910

Table 6.3: Effectiveness of different machine-learning algorithms in mapping new work-
loads to sub-clusters

discrepancy in runtime compared to the optimal.
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Figure 6.11: The average of co-located workloads under different firmware configurations,
normalized to their average runtime under the baseline configuration.
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6.4.4 Results with workload co-location

In this subsection, we show that FXplore works for mixture of workloads allocated on the

same server. Note that we do not propose workload co-location or scheduling algorithm.

But, rather we study the impact of FXplore-based mapping and firmware configuration

when we have a mixture of workloads running on a server. To simulate co-located work-

loads in a realistic setting, we configure each benchmark to occupy four threads per server.

Since the first step is to run a co-runner interference algorithm to identify good pairings,

we profiled all possible combinations of NPB benchmarks to find, for each benchmark,

which other benchmark offers least interference when co-located on the same server. By

profiling all possible pairs, we identify the optimal pairs and reduce the “noise” that can

be introduced in the experiment if a heuristic interference method is used. We have 8 pairs

of benchmarks and run them on all the firmware configurations to evaluate the ability of

FXplore to deal with a mixture of workloads. Figure 6.11 gives the average normalized

runtime of the two co-located workloads under different firmware configurations, normal-

ized to the runtime of benchmarks co-running under the baseline firmware configuration.

The results show that FXplore-S can always find the optimal settings. If four subclusters

are desired, then FXplore-SC results in only a 4.4% increase in runtime compared to the

optimal case when each pair gets their own optimal configuration.

Compared to the case of a single workload, we have found that FXplore tends to

enable more firmware settings when there are co-runners. The reason is that optimal

pairing usually pairs workloads that have distinct characteristics to reduce interference;

for example, a co-runner pair might include a CPU-intensive application and a memory-

intensive application to reduce competition for hardware resources and have minimum

interference with each other. However, pairing the workloads in this way will average

their performance characteristics and make the combination of them both CPU-intensive
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and memory-intensive, which leads to enabling more firmware options. However, in many

cases, there are possibly subtle interactions between the firmware setting preferences and

co-location interference. For example, it might be better to run a workload under its own

optimal configuration with a sub-optimal co-runner, instead of scheduling it together with

an optimal co-runner on a server with a sub-optimal configuration. A future direction is to

find the best matching between servers and workloads after creating the heterogeneity.

6.5 Summary

Heterogeneity is a powerful capability in a cluster of servers. It allows workloads to fully

exploit the potential of hardware. Unfortunately, commodity servers are expected to han-

dle a diverse range of workloads, which makes it infeasible to customize hardware on these

servers such that every workload’s performance and energy-efficiency is maximized. In

this paper, we demonstrated that firmware options provide relatively strong knobs to intro-

duce soft heterogeneity in a cluster of servers. We showed that both the performance and

energy consumption of workloads can be highly sensitive to the firmware settings. How-

ever, determining the optimal configuration is not an easy task, because of the exponential

complexity in the number of configurations. Thus, we proposed FXplore to intelligently

explore the firmware configuration design space and reach the optimal configuration with

a fast exploration time. Our methodology involves two modes of operation: (1) a one-time

offline mode that requires multiple server reboots to explore firmware settings and deter-

mine the server sub-clusters and (2) online mapping mode, where incoming workloads

from a scheduler get profiled using PMCs and mapped to the sub-clusters wherein a group

of servers share the same optimal firmware settings. We demonstrate that FXplore can

improve runtimes by 11% and energy efficiencies by 15% in average, compared to base-

line firmware configurations. It can accelerate firmware configuration exploration by 2.2×
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compared to brute-force exploration, which is expected to be substantially higher as the

number of options increase in emerging server. We also showed how FXplore can identify

optimal configurations when co-runners are used. Furthermore, we evaluated the online

mapping mode of ML techniques that map new incoming workloads, without requiring a

reboot of any server, to existing sub-clusters with pre-determined firmware configurations.

Although some CPU-related hardware settings can be set through the OS and VMMs,

many memory and storage related options could usually only be set from firmware. In this

paper, we wanted to highlight that there is an opportunity beyond OS tuning to achieve

heterogeneity in servers through the firmware. The fact that we can control some of the

hardware-software options via the OS and VMMs makes our work even more relevant be-

cause we can get rid of some of the reboot overheads during the offline mode of FXplore.

The overall algorithm, however, remains intact even when changing options through the

OS or VMMs. Thus, FXplore brings us one step closer to realizing a heterogeneous clus-

ter of servers out of an originally homogeneous set of servers with no additional costs or

management overheads generally associated with equivalent hardware changes.
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Chapter 7

Summary and Future Extensions

This dissertation presents several energy-efficiency optimization techniques for computing

clusters. We proposed optimal solutions for cluster power budgeting, in both centralized

and distributed fashion, addressing both computing power and cooling power. Substantial

improvements are demonstrated with a large set of experiments. We also motivated novel

computing cluster optimization opportunities such as layout planning and soft heterogene-

ity. Optimal and close-to-optimal algorithms for solving these problems are presented and

evaluated. Section 7.1 summarizes our contributions. We discuss the potential future ex-

tensions in Section 7.2.

7.1 Summary of the Dissertation

In Chapter 3, we proposed an algorithm to find the optimal partition of the total power

budget between the computing and the cooling power and accelerated it with heat cross-

interference coefficient matrix. With a given computing power budget, we proposed an
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optimal power budgeting algorithm for servers hosting heterogeneous workloads. The

computing power budgeting algorithm allocates power cap to servers such that many sys-

tem performance metrics can be efficiently optimized. The power budgeting system for

heterogeneous workload makes decisions according to the workload characteristics. A

throughput predictor is proposed to estimate the changes in throughput as function of

potential changes to allocated power caps. The throughput predictor provides accurate

throughput predictions under power cap. The optimal computing power budgeting algo-

rithm, which is based on multiple-choice knapsack algorithm, can efficiently optimize the

SNP of the cluster. A computing cluster with thousand nodes is simulated with our exper-

imental setup. We demonstrate that our proposed method improves SNP and slowdown

norm by 4.1% over previous methods. When considering fairness, our method achieves

51.7% improvement to uniform method and 90.0% improvement to greedy method.

In Chapter 4, we extend the computing power budgeting problem into very large-scale

computing clusters with the power budget constraint, where the centralized method is

not scalable and reliable. We proposed DiBA, a fully distributed framework to optimally

allocate the computing power budget for each node locally. Each node exchanges its power

consumption state to the neighboring nodes within a defined communication topology.

The communication is very light-weighted and the algorithm converges fast. We evaluate

DiBA with simulations. DiBA finds the optimal power allocation as well as the state of art

centralized method, while outperforms the uniform power allocation by 14.5% in average.

We simulated clusters with up to 6400 nodes and demonstrate that DiBA always converges

in milliseconds which is 272× faster than centralized method. For large scale clusters,

the fast convergence and fully scalable feature of DiBA is particularly ideal for dynamic

workloads as well as dynamic power budget with fast time scales.

Besides workload heterogeneity, server heterogeneity also can be exploited to improve
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the system energy-efficiency. In Chapter 5, we motivated and formulated a novel opti-

mization problem: the computing cluster rack layout planning problem for heterogeneous

clusters. Heterogeneous racks offer different performance- power specifications. The ob-

jective is to identify the optimal positions of the server racks during the planning phase

of the cluster such that the expected cooling power is minimized. Utilization patterns

of servers and job scheduling mechanisms can significantly impact the minimum cooling

power. We reformulated the rack layout planning problem to probabilistically identify the

optimal layout that minimizes cooling power under different operating conditions. We

solve the optimization problem using integer linear programming. For the experimen-

tal results, we devised a realistic model for clusters using state-of-the-art CFD modeling

tools and demonstrated that our methods lead to significant improvements in the thermal

characteristics and cooling power. We demonstrate the effectiveness of our approach in

reducing total cooling power between 15.5%−38.5% based on the cluster utilizations with

an average of 23.3%

Heterogeneity allows job scheduler to fully exploit the characteristics of server hard-

ware and workloads. Unfortunately, commodity servers are expected to handle a diverse

range of workloads, which makes it infeasible to customize hardware on these servers to

optimize the computing cluster energy-efficiency. The workload might change periodi-

cally so that the static customization is not flexible to adapt to new workloads. In Chapter

6, we motivated a novel approach of introducing soft heterogeneity through firmware re-

configuration. Firmware options provide configurable knobs to customize servers for tar-

get application in clusters. Both the performance and energy consumption of workloads

can be highly sensitive to the firmware options. Firmware configurations can impact the

runtime for 43% and power for 16% for given applications. We proposed FXplore to effi-

ciently explore the firmware configuration design space. FXplore finds the optimal config-

uration with minimum amount of profiling. In this work, we demonstrated the advantage
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in exploration time using five firmware options across a range of workloads. We show

that FXplore can improve runtimes by 11% and energy efficiencies by 15% in average,

compared to baseline firmware configurations. It can accelerate firmware configuration

exploration by 2.2× compared to brute-force exploration, which is expected to be sub-

stantially higher as the number of options increase in emerging server. We also proposed

techniques to manage heterogeneity by partitioning the cluster as desired in subclusters,

each with its own unique firmware configuration. We showed how FXplore can identify

optimal firmware configurations when co-runners are used. Furthermore, we evaluated

machine learning techniques that can map new incoming workloads into existing subclus-

ters based on similarity with training workloads.

7.2 Possible Research Extensions

There are many other optimization problems in computing clusters. Along the domain

of energy-efficiency optimization, two main categories of optimizations are natural exten-

sions of our work. First, in this dissertation, we consider mainly the HPC workloads. The

other important workload is latency-critical workload. Web service datacenters consists

of multiple layers where each has different functionality and provides different services.

Minimizing the power consumption of this type of infrastructure is a challenging prob-

lems. This is because, 1) the server nodes have various functionalities and have perfor-

mance dependency with each others, modifying the status of one server will impact the

performance of others; 2) the performance metrics, such as service level agreement (SLA),

are much harder to be modeled as a function of power consumption. Secondly, incorpo-

rating energy-efficiency with job scheduling under many practical constraints forms more

complex optimization problems. For example, in an heterogeneous cluster, scheduling

jobs onto right server node to maximize the performance under power cap is an interest-
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ing problem. As approximation techniques becomes widely used in various applications,

coordinating the performance, power and quality of results would be an important opti-

mization problem to investigate.
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