

LACore: A Large-Format Vector Accelerator for Linear Algebra Applications

Samuel P. Steffl

Submitted on: May 1st, 2017

Submitted in partial fulfillment of the requirements of the degree of Bachelor of Science with Honors in

Computer Engineering

School of Engineering, Brown University

Prepared under the direction of

Prof. Sherief Reda, Advisor

Prof. R. Iris Bahar, Reader

By signing below, I attest that the undergraduate thesis listed above meets the criteria for Honors, and

has been successfully presented to the faculty at the Undergraduate Research Symposium.

Advisor’s Signature

Reader’s Signature

Honors Chair’s Signature

© Copyright 2017 by Samuel P. Steffl

iii

ABSTRACT

Linear algebra operations are at the heart of scientific computing solvers, machine learning and

artificial intelligence. To achieve high performance, linear algebra operations are typically accelerated

with vector processing units in central processing unit (CPU) and graphics processing unit (GPU) cores or

custom hardware solutions. GPU accelerators are highly successful due to the massive amounts of

parallelism and memory bandwidth that can be achieved. They can reach well into the TFLOP/s for

single-precision performance by scheduling thousands of simultaneous operations across many

lightweight cores. The shortcomings with the GPU approach is that GPUs suffer from coarse-grained

synchronization which can be a bottleneck in vector reduction, have poor single-threaded performance

compared to CPUs, and use a separate device memory that requires separate memory transfers before

and after kernel execution. The other approach, as mentioned, is the custom hardware solution, or

ASIC/FPGA accelerators. These designs typically require either using a High-Level Synthesis tool to

convert MATLAB or C code into an equivalent HDL, such as Verilog, or require the user to handwrite the

HDL. This custom accelerator approach typically achieves very high performance for very specific

applications, but does not generalize well to other computational problems, and has a high

development cost.

In this thesis, LACore, a novel, programmable accelerator architecture for general-purpose

linear algebra applications, is presented. LACore is a Large-Format vector architecture that overcomes

many of these shortcomings of existing HPC hardware through several architectural features including

heterogeneous data-streaming LAMemUnits; a mixed-precision systolic datapath that supports scalar,

vector and multi-stream output modes; and the decoupling and overlapping of memory-accesses and

data-execution. To evaluate the LACore, the architecture was implemented as an extension to the

RISC-V ISA in the gem5 cycle-accurate simulator. In addition, the LACore ISA was implemented in gcc,

and a C-programming software framework, the LACoreAPI, has been developed for high-level

programming of the LACore. Using a modified version of the HPCC benchmark suite, the LACore

architecture is compared against three other platforms: an in-order RISC-V CPU, a superscalar x86 CPU

with SSE2 enabled, and a scaled NVIDIA Fermi GPU. The LACore outperforms the superscalar x86

processor in the HPCC benchmark suite by an average of 3.43x, outperforms the scaled Fermi GPU by an

average of 12.04x, and outperforms the RISC-V CPU by an average of 10.72x.

iv

TABLE OF CONTENTS

Abstract .. iii

Table of Contents ... iv

List of Figures .. vii

List of Tables ... x

1 Introduction .. 1

1.1 The LACore Architecture ... 2

1.1.1 Overview ... 2

1.1.2 Novel Contributions .. 3

1.2 The LACoreAPI Software Framework .. 4

1.3 LACore Evaluation and Results ... 5

2 Motivation ... 6

2.1 Hardware Acceleration for computational problems ... 6

2.2 Why another ISA and microarchitecture? .. 6

2.3 The Power and Utilization Walls ... 7

2.3.1 The Power Wall ... 7

2.3.2 Utilization Wall and Custom Accelerator IP Cores .. 8

2.4 Free and Open Hardware .. 8

3 Related Work .. 9

4 LACore Architecture .. 14

4.1 LACore as a Scalar CPU Extension ... 14

4.2 LACore Microarchitecture Overview .. 15

4.3 The LAExecUnit ... 16

4.3.1 The LAExecUnit Datapath ... 17

4.3.2 LAMemUnit Architecture .. 29

v

4.4 LACfg and LACsrReg Registers ... 36

4.4.1 The LACfg Configuration Registers .. 36

4.4.2 The LACsrReg Control Status Register... 37

4.5 The LACore Scratchpad ... 39

4.6 The LACache .. 43

5 LACore Instruction Set .. 48

5.1 LACore ISA Overview ... 48

5.1.1 Instruction Opcode ... 48

5.1.2 Instruction Size .. 49

5.2 Configuration Instructions .. 50

5.3 Data Transfer Instructions .. 52

5.4 Data Execution Instructions .. 53

6 LACoreAPI Framework .. 56

6.1.1 Configuration API .. 56

6.1.2 Data Movement API .. 56

6.1.3 Execution API .. 57

7 Benchmarks and Evaluation .. 58

7.1 Benchmark Methodology ... 58

7.2 DGEMM ... 60

7.2.1 Implementation .. 60

7.2.2 Results ... 61

7.3 FFT ... 64

7.3.1 Implementation .. 64

7.3.2 Results ... 65

7.4 PTRANS .. 66

7.4.1 Implementation .. 66

vi

7.4.2 Results ... 66

7.5 HPL .. 67

7.5.1 Implementation .. 67

7.5.2 Results ... 69

7.6 Random Access ... 70

7.6.1 Implementation .. 70

7.6.2 Results ... 70

7.7 STREAM-Triad ... 71

7.7.1 Implementation .. 71

7.7.2 Results ... 71

7.8 Sparse DGEMV .. 72

7.8.1 Implementation .. 72

7.8.2 Results ... 75

8 Roofline Model .. 77

8.1 LACore Roofline Model ... 77

8.2 LACore Roofline Analysis... 78

9 Design Area Estimates .. 80

9.1 Area Estimation ... 80

9.2 Area Comparisons ... 81

10 Conclusions and Future Work ... 83

10.1 Conclusions ... 83

10.2 Future Work .. 84

References .. 86

vii

LIST OF FIGURES

Figure 4-1: LACore Microarchitecture Block Level Design. ... 15

Figure 4-2: LAExecUnit with major sub-blocks shown. ... 17

Figure 4-3: LAExecUnit datapath details. .. 20

Figure 4-4: LAExecUnit Multi-stream output, DGEMM example. ... 21

Figure 4-5: VecNode Operation Bypassing. .. 22

Figure 4-6: Coerce Unit used for Simultaneous Dual-Precision .. 24

Figure 4-7: LAExecUnit parameter sweep using DGEMM average performance. 28

Figure 4-8: LAExecUnit parameter sweep using DGEMM peak performance. ... 28

Figure 4-9: LAExecUnit parameter sweep using DTRSM average performance. .. 29

Figure 4-10: LAExecUnit parameter sweep using DTRSM peak performance. ... 29

Figure 4-11: LAMemUnit High-Level Design. .. 30

Figure 4-12: LAMemUnit Vector stride, skip, count config. Image from (Ciricescu, 2003). 31

Figure 4-13: LAMemUnit Sparse Matrix Configuration, with all 6 config fields shown. 32

Figure 4-14: LAMemUnit Generic Stream Interface. .. 33

Figure 4-15: LAMemUnit Can read multiple elements per cache line. ... 35

Figure 4-16: LACfg Detailed View. ... 36

Figure 4-17: LACore Scratchpad Detailed View. ... 40

Figure 4-18: Scratchpad Usage vs Peak DGEMM. ... 42

Figure 4-19: Scratchpad Usage vs Average DTRSM performance. ... 42

Figure 4-20: Scratchpad Usage vs Peak DTRSM performance. ... 42

Figure 4-21: Scratchpad Line-Size vs DGEMM performance. ... 43

Figure 4-22: LACache Detailed View. .. 44

Figure 4-23: LACache configuration vs DGEMM average performance. .. 45

Figure 4-24: LACache configuration vs DGEMM peak performance. ... 45

Figure 4-25: LACache configuration vs DTRSM average performance. .. 46

Figure 4-26: LACache configuration vs DTRSM peak performance. ... 46

Figure 4-27: Cache Line Size vs DGEMM performance. .. 47

Figure 5-1: LACore Instruction Set Overview. ... 48

Figure 5-2: RISC-V Instruction Set Map, Table 9-1 in (Waterman A. a., 2016). .. 49

Figure 5-3: LACore configuration ISA. ... 50

viii

Figure 5-4: LACore configuration instruction examples. .. 52

Figure 5-5: LACore Data Transfer ISA. ... 52

Figure 5-6: LACore Data Movement Instruction examples. .. 53

Figure 5-7: LACore Data Execution ISA. .. 53

Figure 5-8: LACore Data Execution Instruction examples. .. 55

Figure 6-1: LACoreAPI configuration API examples. ... 56

Figure 6-2:LACoreAPI data movement API example. ... 57

Figure 6-3: LACoreAPI execution API examples. ... 57

Figure 7-1: DGEMM matrix transpose sub-routine in C for the LACore. .. 61

Figure 7-2: DGEMM average for LACore, RISC-V, Fermi GPU, x86-GSL and x86-Eigen. 62

Figure 7-3: DGEMM average speedup of LACore over RISC-V, Fermi GPU, x86-GSL and x86-Eigen. 62

Figure 7-4: DGEMM peak for LACore, RISC-V, Fermi GPU, x86-GSL and x86-Eigen. 63

Figure 7-5: DGEMM peak speedup of LACore over RISC-V, Fermi GPU, x86-GSL and x86-Eigen. 63

Figure 7-6: DGEMM worst-case for LACore, RISC-V, Fermi GPU, x86-GSL and x86-Eigen. 63

Figure 7-7: DGEMM worst-case speedup of LACore over RISC-V, Fermi GPU, x86-GSL and x86-Eigen 63

Figure 7-8: LACore FFT Twiddle Factor Pre-Computation. ... 64

Figure 7-9: LACore's two FFT blocking strategies. .. 65

Figure 7-10: FFT Double-Precision on the LACore, RISC-V, Fermi GPU, x86-GSL and x86-FFTW. 66

Figure 7-11: FFT Double-Precision Speedup of LACore over RISC-V, Fermi GPU, x86-GSL and x86-FFTW. 66

Figure 7-12: PTRANS (DP) on LACore, RISC-V, Fermi GPU, and x86 (hand-written, GSL and Eigen). 66

Figure 7-13: PTRANS (DP) Speedup of LACore over RISC-V, GPU, and x86 (hand-written, GSL, Eigen). 66

Figure 7-14: HPL performance when swapping rows (SWAP) vs using a permutation vector (PVEC). 68

Figure 7-15: Elements in matrices A, L and U accessed during an L-iteration in LU decomposition. 68

Figure 7-16: LACore LU-Decomposition L-iteration without using permutation vector. 69

Figure 7-17: HPL Double-Precision on the LACore, RISC-V, x86-GSL and x86-Eigen................................... 69

Figure 7-18: HPL Speedup of LACore over RISC-V, x86-GSL and x86-Eigen. ... 69

Figure 7-19: Random-Access on LACore/RISC-V, Fermi GPU and x86. ... 70

Figure 7-20: Random-Access Speedup of LACore/RISC-V over x86 and Fermi GPU. 70

Figure 7-21: LACore STREAM-Triad Code. .. 71

Figure 7-22: STREAM Triad Bandwidth comparison for LACore, RISC-V, Fermi GPU and x86. 72

Figure 7-23: STREAM Triad, LACore's Bandwidth increase over RISC-V, Fermi GPU and x86. 72

Figure 7-24: Figure 12 1: STREAM Triad GFLOP/s comparison for LACore, RISC-V, Fermi GPU and x86. .. 72

ix

Figure 7-25: STREAM Triad, LACore's GFLOP/s increase over RISC-V, Fermi GPU and x86. 72

Figure 7-26: Sparse DGEMV kernel using LACoreAPI. ... 73

Figure 7-27: Sparse DGEMV (20%) GFLOP/s comparison for LACore, RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-28: Sparse DGEMV (20%), LACore's GFLOP/s speedup over RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-29: Sparse DGEMV (40%) GFLOP/s comparison for LACore, RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-30: Sparse DGEMV (40%), LACore's GFLOP/s speedup over RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-31: Sparse DGEMV (60%) GFLOP/s comparison for LACore, RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-32: Sparse DGEMV (60%), LACore's GFLOP/s speedup over RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-33: Sparse DGEMV (80%) GFLOP/s comparison for LACore, RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-34: Sparse DGEMV (80%), LACore's GFLOP/s speedup over RISC-V, x86-Eigen and x86-GSL. 74

Figure 7-35: Sparse DGEMV, LACore performance vs matrix sparsity. .. 76

Figure 8-1: LACore Roofline Model with selected HPCC applications. ... 77

x

LIST OF TABLES

Table 4-1: LAExecUnit datapath configurations. .. 22

Table 4-2: Dual-Precision Hardware Latencies and Frequencies. ... 23

Table 4-3: Theoretical Latency and Throughput of LAExecUnit datapath. ... 26

Table 4-4: Performance of two NVIDIA GP100 Streaming Multiprocessors (NVIDIA, 2016). 27

Table 4-5: LAMemUnit Possible Configurations. .. 34

Table 4-6: LACfg Configuration Space ... 36

Table 4-7: LACsrReg Error Flags. ... 38

Table 5-1: Configuration Instructions bitfields and arguments. ... 51

Table 5-2: Data Movement Instructions bitfields and arguments. ... 52

Table 5-3: Execution Instructions bitfields and arguments. ... 54

Table 5-4: Deprecated VecNode operations. .. 55

Table 7-1: gem5 and gem5-gpu configurations used for the HPCC benchmark suite. 59

Table 8-1: LACore Roofline Model Parameters. ... 77

Table 8-2: FLOP/Byte calculations for HPCC Applications. ... 78

Table 9-1: Total area estimation of the LAExecUnit's datapath at the 32 nm node................................... 80

Table 9-2: LAExecUnit FIFO area calculations. .. 80

Table 9-3: Area usage of LACore caches and scratchpad at the 32-nm node. ... 81

Table 9-4: Total RISC-V Scalar CPU and LACore Area Breakdown. ... 81

Table 9-5: 2 NVIDIA P100 SMs vs the LACore area and memory usage. .. 82

1

1 INTRODUCTION

 Modern hardware solutions to linear algebra applications include manycore processors such as

GPUs, vector extensions to scalar CPUs such as Intel’s Streaming SIMD Extensions (SSE), and custom

application-specific integrated circuits (ASIC) or Field-programmable gate arrays (FPGA). There are

shortcomings with each of these platforms that the LACore addresses through its novel architecture.

GPU Issues

One issue with GPU usage for HPC applications is that GPU architectures inherently lack the

ability to reduce data without thread synchronization. This can act as a bottleneck for common kernels

such as DGEMM, which is a sequence of many dot-products. An architecture that natively supports

arbitrarily large vector reduction without thread synchronization would have a performance advantage.

Additionally, GPUs are built for parallel processing only, and require a high-performance single-

threaded CPU to handle the sequential portions of applications. Having a single, powerful thread that

can switch between parallel and sequential mode can overcome the inefficiencies in the GPU fork-join

model. Although x86 with SSE extensions may appear to support this model, it does not fully support

arbitrary vector sizes and is not as parallelizable as a GPU.

Finally, GPUs use separate device memory, which requires transfer of data between the host

and device before and after kernel execution. Although the latency can be partially hidden by

overlapping kernel execution with data transfer, an architecture that does not require any data

movement between sequential and parallel execution modes would be advantageous.

Application-Specific Accelerator Issues

Although custom ASIC/FPGA solutions typically provide the highest performance for a particular

application, they are rigid, can have too narrow of scope, and have a high development cost. A better

architecture would offer the same custom hardware benefits as ASICs while still being programmable for

solutions to a wide range of linear algebra applications.

The LACore Solution

 The LACore architecture aims to provide solutions of the above shortcomings through several

features:

2

- Heterogeneous data-streaming LAMemUnits capable of accessing scalar, vector, and sparse

matrix objects in both scratchpad and memory.

- Large-Format Vector support, providing an interface to work with arbitrarily-large vectors and

matrices.

- Systolic Vector-Reduction datapath within the LAExecUnit, implementing up to 24 different

functions on 3 mixed-precision input data-streams.

- Decoupled architecture that overlap data-execution with memory-access during complex

memory-memory instructions.

- Multi-Stream, Vector, and Scalar output modes, with Multi-Stream output mode reducing

multiple sub-vectors within larger input vector streams for enhanced data-execution and

memory-access overlap.

The rest of this introduction will give a brief high-level overview of the proposed LACore

architecture, the software framework that has been developed for it, and the implementation and

benchmarking methodology and results. Chapter 2 will discuss the various sources of motivation for

designing a new computer architecture as well as reasoning for some important design decisions.

Chapter 3 will look at related work. Chapter 4 will discuss the LACore architecture in depth, and

Chapter 5 will discuss the LACore’s instruction set and usage model. Chapter 6 will discuss the

software toolchain for developing applications for the LACore platform and the LACoreAPI, a C-

programming software framework for the LACore. Chapter 7 will discuss the benchmark evaluation of

the LACore vs the RISC-V, x86 and Fermi GPU platforms. Chapter 8 will present and analysis of the

Roofline Model for the LACore, and Chapter 9 will discuss area footprint of the LACore compared to

other platforms. Concluding remarks on the merits and deficiencies of the LACore will be in chapter

10. All software developed for this project is freely available as a git-repository under the Brown

University Scale-Lab account: https://github.com/scale-lab/la-core.

1.1 THE LACORE ARCHITECTURE

1.1.1 Overview

This thesis proposes a new processor architecture called LACore, which stands for “Linear

Algebra Core”, to alleviate the shortcomings of both the manycore chips as well as the shortcomings of

the custom hardware solutions. From a high level, the LACore is a complex, vector-like data-processing

unit embedded inside a normal scalar processor, acting like an on-chip custom accelerator, while being

https://github.com/scale-lab

3

integrated directly into the CPU’s processing pipeline. The LACore extends the scalar CPU’s instruction

set with its own ISA extension, so that a single stream of scalar and LACore instructions can be

efficiently interleaved and executed with low issuing latency and a unified address space. This thesis

chooses the RISC-V processor as the scalar processor to embed the LACore into (Waterman A. a.,

2016). This is done for numerous reasons: RISC-V is a modern architecture addressing most of the

problems faced by previous RISC architectures; RISC-V is rapidly growing and has ubiquitous, open-

source, actively developed tool-chains; and finally, one of RISC-V’s main goals is to proliferate

accelerator-rich architectures by being an easily-extendable ISA, and providing a full-stack toolchain for

developing and verifying hardware accelerators (Asanovic K. A., 2016). Using RISC-V as the base ISA will

therefore ensure that the CPU the LACore is built into will contribute to the LACore’s overall future

usefulness instead of detract from it.

The LACore architecture adds a few physical components to the scalar core. The first is a

multi-port private 64 kB scratchpad for fast access to temporary results. The scratchpad is a design

paradigm found commonly in embedded designs with real-time requirements (Banakar, 2002) and GPU

platforms such as NVIDIA’s lineup (Lindholm, 2008). The LACore also adds a set of configuration

registers for determining the type of input or output (scalar, vector, matrix or sparse matrix), the vector

layout in memory (address, stride, skip, count), and where the input or output should reside

(scratchpad, memory or registers). These registers, called LACfgs, are used to configure the LACore

execution unit. In addition to the scratchpad, the LACore uses its own private L1 Cache, called the

LACache to access the L2Cache instead of using the scalar core’s L1 Data Cache. Finally, the most

important physical piece of the LACore is the novel complex execution unit, which performs all the

memory interactions and vector-like data processing.

1.1.2 Novel Contributions

There are several features in the LACore architecture that set it apart from existing

architectures. The first novel feature is the abstracting of heterogeneous inputs and outputs of the

LACore execution unit as generic streams of data. These streams are not to be confused with CUDA

Streams, which are streams of kernels, not data operated on by kernels (Rennich, 2011). The LACore

data streams are more closely associated with dataflow processing, where a large vector of similar data

is streamed into a fixed, pipelined datapath. Dataflow processing originated with supercomputing in the

1980’s (Dennis, 1980) and is still a very common design paradigm in HPC hardware. As mentioned, the

4

LACore data-streams operate on heterogeneous data types, which means the structure of the input

(scalar, vector, matrix or sparse matrix) and their various layout configuration in memory (i.e. the stride,

count, skip of a vector config) are handled directly in hardware by something called a LAMemUnit. The

LAMemUnit provides the data stream interface to the LACore execution unit while handling the

complex interactions with the scratchpad and LACache modules. The reason this stream-abstraction is

useful, is that it allows a flexible, hardware-supported programming interface for using heterogeneous

data types and data structures at the same time without having to do any conversions or memory

movements. For example, performing DGEMV (a BLAS-2 routine) on a sparse matrix with a vector and

storing the result as a dense matrix can be done in three configuration instruction and one execution

instruction, while the complex index mapping is performed directly in hardware.

 Another novel architectural feature of the LACore is the complex LAExecUnit operating on

three arbitrary-precision input vector streams and producing an arbitrary-precision output stream. The

LACore’s execution unit can perform a wide range of arithmetic functions on the input data, and can

produce either a vector output, a scalar output, or something called a “multi-stream” output, which is

the most powerful operation, and used as the inner kernel in routines such as DGEMM. Additionally, this

execution unit can take in a mix of single-precision and double-precision IEEE floating point input

streams and produce a single-precision or double-precision output stream. The key point is that this is

not just a dual-precision execution unit – it can operate on mixed precision vectors simultaneously,

where the inputs are cast to the output stream type on the fly. This interface is another useful tool to

working with heterogeneous datatypes at the same time.

1.2 THE LACOREAPI SOFTWARE FRAMEWORK

 Modern HPC applications require robust and performant software solutions to take advantage

of the underlying hardware effectively. The LACore is no different: for the hardware to be productively

used by HPC application developers, a gcc/binutils toolchain has been created with full LACore ISA

support. Additionally, a C-programming framework, called the LACoreAPI, was created for increasing

developer productivity and improving application performance. The toolchain and framework have been

used extensively in the development and testing of the LACore architecture in multiple simulators.

 The LACoreAPI exposes three different classes of instructions to the programmer:

ExecInsts, XferInsts, and CfgInsts which respectively do complex vector-like operations on

streams of data, transfer and transform data from one location to another, and configure an LACfg

5

configuration register. Essentially, operations can be broken into execution, data-movement and

configuration, which provides a very complete API for the user to do a wide range of operations on

arbitrary data-sources in memory or the scratchpad.

1.3 LACORE EVALUATION AND RESULTS

 The LACore architecture proposed and elaborated in the paper was successfully implemented

4 times in 2 different simulators: the RISC-V Spike ISA Simulator and gem5. Spike ISA Simulator is

dubbed as the “RISC-V golden model”, and is used as a functional simulator with limited timing accuracy

(Andrew Waterman, 2011). The LACore extension was added to the simulator to verify functional

correctness of implementing the entire LACore ISA. The other simulator, gem5, is an industry-standard

cycle-accurate simulator used by numerous semiconductor companies in industry and research groups

in academia (Binkert, 2011). The main advantage of the gem5 simulator is its ability to accurately model

an entire computing system, including the memory controller, cache hierarchy, and multi-threaded or

multi-core CPU designs. Having the timing-accurate memory interaction is necessary for evaluating the

LACore since one of its main features is a complex memory fetch-and-store unit. Within gem5, the

LACore was implemented as a functional CPU model, a cycle-accurate non-pipelined CPU, and a cycle-

accurate in-order CPU model, and was verified for correctness in all three cases.

 In addition to the architectural simulators, a comprehensive set of C unit-tests were developed

to exercise the functional correctness of any LACore implementation. Specifically, they test all the

data-execution and data-movement operations for all variations of input and output configurations.

These test-suites act as regression tests when changes are made to the LACore ISA or an existing

LACore CPU model, and allow future LACore researchers and developers to have a reference point

for a functional design.

Finally, a set of linear algebra benchmarks were developed targeting the LACore platform, most

of them within the HPCC benchmark suite (Luszczek, 2005). These tests were run on the cycle-accurate

gem5 LACore CPU model and compared to finely-tuned implementations of other platforms and linear

algebra frameworks. All tests on the LACore were verified for correctness against the GNU Scientific

Library (GSL), which provides an API for highly-performant linear algebra operations (Gough, 2009).

Additionally, running both the LACore and GSL on the same gem5 cycle-accurate system allows us to

adjust the simulator benchmark results of the LACore to be more accurate, since we will have GSL

benchmark results on both the simulator and a real-world CPU.

6

2 MOTIVATION

2.1 HARDWARE ACCELERATION FOR COMPUTATIONAL PROBLEMS

 The fundamental problem the LACore is trying to address is solving linear algebra related

applications as efficiently and quickly as possible. The applications the LACore directly targets cover

the broad range of both dense and sparse linear algebra, which are also the foundations of many other

classes of applications as well, such as machine learning and artificial intelligence. Linear algebra

applications are two of the original seven dwarves described in the influential The Landscape of Parallel

Computing Research from Berkeley (Asanovic K. B., 2006), with the other five original dwarves being

FFT, N-Body methods, structured grids, unstructured grids and Monte Carlo calculations.

The seven dwarves represent what the authors saw as the major types of computational

problems in HPC that people generally care about, and the LACore provides a suitable platform to

accelerate at least five of them. Although FFT is not directly targeted by the LACore’s ISA, a specialized

FFT kernel was written for the LACore and outperforms many other architectures, as discussed in the

Benchmarks and Evaluation section. In addition to the FFT carryover on the LACore, structured and

unstructured grids have high overlap with dense and sparse linear algebra applications, so these two

applications can also be accelerated by the LACore. Therefore, in addition to being a general-purpose

linear algebra accelerator, the LACore is an effective accelerator for most other HPC applications that

people generally care about.

2.2 WHY ANOTHER ISA AND MICROARCHITECTURE?

 With the primary motivation for studying the LACore now addressed, the next question is why

develop another radically different architecture, instead of using already existing architectures such as

NVIDIA’s Pascal GPU or Intel’s Xeon Phi architecture? Aside from addressing the various shortcomings

with GPUs discussed in the Introduction section, the LACore provides a platform that is specialized for

a particular domain of applications, unlike GPUs. There is great evidence in literature of the demand for

these specialized architectures for large-scale computing, such as the Anton II supercomputer (Shaw,

2014). Anton II is a custom hardware and software solution targeting molecular dynamics, and has

shown orders-of-magnitude performance improvements over the best software solution running on

7

commodity hardware. For simulations with hundreds of thousands of molecules, this can cut runtimes

from weeks down to minutes or seconds, which allows for faster and more productive research.

 Another example of a processor architecture for a particular domain of applications is Google’s

Tensor Processing Unit (TPU), which is used to accelerate the inference phase of neural networks

(Jouppi, 2017). Their TPU provided an order-of-magnitude improvement in both performance and

power consumption compared to GPUs and CPUs. Additionally, the TPU architecture provided Google’s

users a consistently low and reliable latency that was unachievable with GPUs or CPUs. Since Google

spends a significant amount of money to power datacenters, and Google also services billions of users,

the TPUs multiple advantages outweighed its high cost of development.

Anton II and the TPU are just two of many case studies showing that there can be a large incentive

and large amounts of money invested in even getting an order of magnitude performance increase from

custom hardware solutions for important problems classes, which is why developing the LACore

architecture as a custom solution to linear algebra applications is justified and desirable.

2.3 THE POWER AND UTILIZATION WALLS

2.3.1 The Power Wall

Gordon Moore stated what has famously been coined “Moore’s Law” in a 1965 article, where he

states “The complexity for minimum component costs has increased at a rate of roughly a factor of two

per year” (Moore, 1998), which has been interpreted in modern culture as saying transistor density will

double roughly every year. A more accurate interpretation of Moore’s quote would be that its most cost

effective from a chip manufacturer’s perspective to double the device count every year, which just

correlates company profitability to transistor count per chip over time.

Moore’s law was accurate for many decades. In the early years, the main contributors to

increasing the device count per integrated circuit were increasing the yield and feature miniaturization

(Moore, 1998). Feature miniaturization, also known as Dennard scaling, is what most people associated

with Moore’s law (and some still do), but has recently slowed as we approach the 7nm and 5nm

technology nodes. However, this decline in the rate of scaling has been compensated by numerous

other advances, such as novel architectures, higher yield rates, and new device types, such as the FinFET

transistor (Hisamoto, 2000). The takeaway is that Moore’s Law encompasses more than just device

8

scaling, which is why processors are still delivering more and more each year in terms of performance

and capabilities.

An important side-effect of the extremely small feature sizes used in modern semiconductors, is

that the silicon can get very hot if too much of it is powered at once, so only a fraction of the silicon can

be usable at any given time. Although the transistor size shrinks and more can fit on a given die area, a

smaller percentage of the transistors can be powered at any given time. This unusable silicon area is

called “Dark Silicon” (Taylor, 2012), and the amount of it we cannot utilize is determined by the

“utilization wall”.

2.3.2 Utilization Wall and Custom Accelerator IP Cores

Because only a fraction of the silicon can be used at any given time due to the Utilization wall,

people have found alternative ways to make use of that otherwise-useless silicon. One approach is to

put application-specific accelerators in these dark-silicon areas, and only power them on when they

need to run. This has the benefit of higher application-specific performance while also being overall-

more energy efficient. The paradigm of putting application-specific accelerators in the same silicon as

the scalar CPU core is called “Accelerator-rich architectures” (Esmaeilzadeh, 2011).

The LACore architecture can be thought of as one of these embedded accelerators within the

CPU’s silicon die. The LAExecUnit’s datapath can be powered on and off depending on if it is being

used, and it provides custom hardware for general purpose linear algebra applications. This makes the

LACore a smaller, more energy-efficient, and higher-performance solution to linear algebra

applications than general purpose GPU accelerators.

2.4 FREE AND OPEN HARDWARE

 A final motivation for developing the LACore architecture is to provide a fully free and open

source parallel-computing platform for linear algebra applications. Software is much easier to open-

source due to its lower capital cost of development than hardware (i.e.: no fabrication is required), and

therefore the open-source software community is thriving compared to the open-source hardware

community. Recent attempts to lower the barrier to open-source hardware include the RISC-V ISA,

which is trying to modernize and open up hardware (Asanović, 2014) (Waterman A. , 2016). The RISC-V

platform is a scalar CPU though, so parallel-computation is still relatively locked down by proprietary

platforms. The LACore will fill this void in the open-source parallel-computing hardware space.

9

3 RELATED WORK

The LACore architecture possesses features similar to other existing linear algebra accelerating

architectures. Some of these features show up in several vector-processor architectures such as Cray-1,

Hwacha, and SX-ACE or multimedia-application processors such as RSVP and MOM. The LACore even

possesses some features similar to more exotic architectures such as the Cell processor. In addition to

related processor designs, this thesis presents a methodology for designing and evaluating accelerator

architectures that is related to the methodology presented in gem5-aladdin.

CRAY-1 Supercomputer

The CRAY-1 Supercomputer was one of the original vector-processors (Russell, 1978) (Cray,

2003). It aimed to provide both a high-performance sequential processing mode as well as a high-

performance parallel-processing mode. The vector-processor was a memory-memory architecture, and

it targeted general HPC and supercomputing applications.

There are a handful of similarities between the CRAY-1 vector processor architecture and the

LACore. First, they both have a type of decoupled data-streaming architecture, since the CRAY-1

streams data from vector registers into functional units and can “chain” functional units together,

meaning the outputs of one functional unit flow directly into the inputs of another functional unit.

Second, both architectures provide a mechanism for intermediate result storage, where the LACore

uses a scratchpad and the CRAY-1 uses temporary vector registers. Third, both architectures allow

working with arbitrarily-large sized vectors using a gather-scatter interface.

There are major differences, however. First, the CRAY-1 architecture uses traditional vector

registers for functional unit inputs and outputs, while the LACore uses FIFOs in a more stream-

processing-like paradigm. Second, CRAY-1 does not appear to support the novel multi-stream output

mode that the LACore provides. Finally, CRAY-1 does not support heterogeneous, mixed-precision

data-sources like the LACore.

The Hwacha Vector Processor

The Hwacha Vector processor is RISC-V-based vector accelerator unit (Lee Y. O., 2015). The

Hwacha architecture is an archetypal vector processor, similar to the Cray-1 Supercomputer (Cray,

2003), and it appears to primarily target linear algebra-related applications, similar to the LACore.

10

There are a handful of similarities between the LACore and Hwacha. First, they both use RISC-V as the

primary vehicle for their implementation. Second, both accelerators are integrated into the scalar CPU’s

die, so no memory transfers are needed before and after kernels, like with GPUs. Third, they both allow

working on arbitrarily-large vectors in memory, and can be described as memory-memory architectures.

This leads to the fourth similarity of the LACore and Hwacha both having a decoupled access/execute

architecture to allow simultaneous memory accesses and data execution.

There are major architectural differences though. First, Hwacha is a traditional vector

architecture, and is composed of vector lanes and vector registers to hold operands, while the LACore

has a novel complex datapath and data-streaming FIFOs in place of these two. Second, Hwacha does not

synchronously execute its instruction stream inside the host scalar CPU’s instruction stream, and instead

dispatches commands from the scalar CPU to the Hwacha accelerator over the ROCC interface. This

means that the Hwacha accelerator needs to implement its own redundant scalar CPU in order to

execute its instruction stream. The LACore accelerator, on the other hand, uses the same instruction

stream for both the scalar instructions and the LACore instructions, which simplifies the programming

model and synchronization. Third, Hwacha does not have a scratchpad for intermediate results like the

LACore. Fourth, Hwacha does not provide a mechanism similar to the LACore’s multi-stream output

mode. Finally, Hwacha does not allow working with heterogeneous data sources or sparse matrix

configurations, like the LACore.

NEC SX-ACE Supercomputer

The SX-ACE is a Vector-processing supercomputer (Momose, 2014). Its primary goal is to

improve performance in the broadening range of HPC applications, and its architecture specially

addresses the increasing Bytes/Flop ratio in these newer applications, where memory bandwidth is

increasingly more important than peak computation throughput.

There are a handful of similarities between SX-ACE and the LACore. First, both architectures

support arbitrarily-large vectors using a gather-scatter interface. Second, both architectures provide

hardware support for fast temporary storage for intermediate results. SX-ACE uses what it calls

“Assignable Data Buffers” (ADBs), which are high-bandwidth cache-like memories, while the LACore

uses a scratchpad. Third, both architectures support single-precision and double-precision arithmetic.

Finally, both have a type of data-flow architecture, since the SX-ACE allows chaining functional units

11

within the vector-processing unit, where the outputs of one functional unit flow into the inputs of

another functional unit.

There are major differences, however. First, SX-ACE assumes a traditional vector architecture

with vector-registers, and 16 vector execution pipelines, similar to CRAY-1 and Hwacha, but the LACore

uses FIFOs for input and output data-streams due to its stream-processing architecture. Second, SX-ACE

connects the memory controllers directly to multiple DIMMs, while the LACore uses a cache-based

memory hierarchy. This means the SX-ACE is designed primarily for high-throughput, high-latency

memory operations, but the LACore is designed for high-throughput and potentially low-latency

operations when the workloads are smaller. Third, SX-ACE has separate instructions for loading data into

and out of vector registers, which means it does not efficiently overlap memory access with data

execution for the same operation, like the decoupled access/execute architecture of the LACore.

RSVP (The Reconfigurable Streaming Vector Processor)

RSVP is a vector-like processor targeting multimedia applications (Ciricescu, 2003). Its main

architectural feature is that it is a decoupled stream-processor. The RSVP authors define the stream-

processing paradigm as a high spatial-locality and low temporal-locality paradigm where streams of

elements are identically processed and never used again. An example of this type of computation would

be the STREAM-Triad application in the HPCC benchmark suite (Luszczek, 2005). There are two main

problems with other architectures that are used for these streaming applications. First, traditional SIMD

fixed-size vector extensions, such as Intel’s SSE, are difficult to program since they have a low

programming abstraction, and they offer lower speedups. Second, traditional Vector architectures use

memory-memory operations, but run into memory bandwidth limitations easily. The RSVP addresses

both of these issues with its streaming architecture and high level programming model.

There are a handful of similarities between the LACore and RSVP. The first is that they both

exemplify a decoupled access/execute architecture, where memory access and data execution occur

simultaneously in different sub-processing units, and both sub-processing units are connected by FIFOs.

Second, RSVP provides a gather-scatter vector configuration that is similar to the address,

stride, count, skip vector configuration used by the LACore. Both architectures offer a

higher-level programming model that efficiently utilizes the hardware, and both have a programmable

or reconfigurable datapath. Finally, RSVP instructions run synchronously with host processor, giving the

illusion of a single instruction stream, which is the same as the LACore’s architecture.

12

There are major architectural differences between the LACore and RSVP, however. First, RSVP

primarily targets multimedia applications and is therefore tuned for smaller data sources and simpler

kernels. Second, RSVP’s execution unit is programmed using dataflow graphs, instead of traditional

programming languages. This limits the size of the kernel that can be performed on the data-streams,

unlike the LACore. Third, with RSVP, data is meant to be used once (due to the streaming paradigm),

and there is no optimization for intermediate results, like the scratchpad in the LACore, so more

complex operations are less performant.

MOM (Matrix-Oriented Multimedia-extension)

The MOM ISA is a matrix-oriented ISA used in multimedia applications (Corbal, 1999). Like the

LACore, it is a parallel computing extension to a simple RISC ISA, in this case the Alpha processor. The

MOM architecture targets small multi-media kernels, which have a large overlap with general linear

algebra computing, and many of the examples in the MOM literature use DGEMM as an example

subroutine. This means MOM and LACore both target the same general application domain, but

LACore is generalized and provides a larger feature set than the MOM extension.

There are two main similarities between the LACore and MOM. The first is that MOM supports

instructions that work on small matrices operands. These matrices can be up to 16x8 in dimensions, and

are stored in vector-like registers. The ability to work on matrices instead of just vectors provides the

same functionality as the LACore’s multi-stream output mode, where large input data-streams can be

partitioned into sub-streams and each sub-stream can be used in a separate dot-product

simultaneously. The other similarity between MOM and LACore is that they both support general

strided vector memory accesses, instead of just sequential vector memory accesses. So both support

some version of a gather-scatter interface.

There are a few key differences between the architectures though. First, the MOM authors

clarify that traditional vector processors are more performant that multimedia extensions for arbitrarily

large vector sizes. This means that the LACore inherently scales better with problem size. Second,

MOM is limited to 16x8 matrices as operands, and they must be stored in vector-like registers, while the

LACore streams arbitrarily large matrices in and out of FIFOs. Third, MOM does not support Large-

Format vectors, heterogeneous data-types or sparse-matrix data-sources, like the LACore. Finally, the

MOM architecture provides separate instructions for memory accesses and data execution, since it is a

load-store architecture, and does not provide a decoupled access/execute interface like the LACore.

13

IBM Cell Processor

The Cell processor, from Sony, Toshiba and IBM, is an architecture radically different from

traditional vector processors or scalar processors with multimedia extensions (Williams S. S., 2006). It

has a powerful single-threaded PowerPC core, and 8 smaller parallel-processing cores, and is used in a

range of applications including linear algebra kernels.

Due to the Cell’s unique architecture, it does not share very many architectural features with

the LACore. One major feature it does share, though, is programmer-controlled memory management.

The Cell processor takes this idea to much more extreme levels than the LACore, though, since the

user explicitly manages every single memory operation. The LACore only provides an API for manually

managing the scratchpad-memory and scratchpad-scratchpad memory transfers. This direct memory

management is a feature that allows the application to perform more deterministically, with the

tradeoff of being slightly more cumbersome to program.

There are additional differences between the Cell processor and LACore, however. First, the

Cell is composed of multiple independent processing units, while the LACore is a single processor with

sequential and parallel functional units all included. Second, the Cell does not provide a decoupled

access/execute architecture like the LACore. Third, the Cell does not allow working with

heterogeneous, mixed-precision data-sources, like the LACore. Finally, the Cell does not appear to

support any functionality analogous to the LACore’s multi-stream output mode.

Gem5 Aladdin

gem5-Aladdin is not a computer architecture, but a simulation framework for accelerator-rich

processors (Shao, 2016). This work developed an extension in gem5 for design-space exploration of

fixed-function accelerators that use scratchpad memories. The simulation methodology was similar to

that of the LACore, since both works evaluated accelerator architectures by extending gem5. The

major differences were that the gem5-Aladdin research does not do any functional verification of their

algorithms in gem5 since their primary concern was area and power estimation, and that the fixed-

function accelerators were not tightly coupled to the scalar CPU, which is a major architectural feature

of the LACore. Additionally, datapaths for each specific kernel were instantiated using the Aladdin

framework, which contrasts with the LACore that uses a single general-purpose architecture to

address a variety of linear algebra kernels.

14

4 LACORE ARCHITECTURE

4.1 LACORE AS A SCALAR CPU EXTENSION

In any computer program, there will be a scalar, sequential part of the code and a potentially

parallelizable part of the code. In a paper by Gene Amdahl, it was declared that about 40% of

instructions in typical applications fall into the data management housekeeping category, or the

sequential code (Amdahl, 1967). The result is that 60% of the code can be run in a highly parallel

fashion, costing up to zero runtime, but the overall runtime will end up being dominated by the scalar

40% of instructions. In the wide array of applications, the scalar portion can vary from 20%-40%, but this

fact remains the same.

Amdahl’s law makes the point that the scalar CPU performance is very important, and since the

LACore is mainly designed for parallel execution, a decision had to be made how to integrate the

LACore into a scalar CPU. One option would be to co-design a scalar architecture tightly coupled with

the LACore, effectively creating a full HPC vector processor like the CRAY X1 (CRAY, 1977). An opposite

approach would be to fully decouple the vector part from the scalar CPU and have them communicate

over the PCIe bus, similar to discrete GPU accelerators. An intermediate approach would be to decouple

the scalar part from the vector part on the same piece of silicon, which is exemplified by the Hwacha

vector processor using the RISC-V ROCC accelerator interface (Lee Y. O., 2015), (Asanovic K. A., 2016).

The first approach, following CRAY, would require redesigning a full Out-of-Order (OoO), SMT scalar

processor or something with equivalent or better performance. Since this is already being done in

industry, and gem5 already supports a highly detailed OoO scalar CPU (Binkert, 2011), time spent

reinventing the wheel here would be wasted. The second approach mentioned will lead to a design that

suffers from the same shortcomings as GPUs. The third approach gives us the higher performance of

putting the scalar and vector parts on the same chip, while also providing a clean line of separation

between them. This allows development of the vector implementation without having to worry about

the scalar implementation, which is why this third approach is used by the LACore.

The major difference between the LACore and Hwacha implementations, however, is that from

the CPU’s perspective, the LACore is just a functional unit with variable latency within the CPU’s

execution stage, while the Hwacha vector processor is a different module sitting next to the CPU and

receives instructions over an interface from the CPU. Additionally, it is not clear from the Hwacha

15

architecture manual, but it appears the Hwacha vector processor can execute in parallel with the scalar

CPU, allowing vector and sequential work to be done simultaneously (Lee Y. S., 2015). Assuming some

mechanism for this does exist, this would be a slight advantage of the Hwacha processor over the

LACore processor, since the LACore instructions will block the currently executing hardware thread

until it is complete. This penalty is easily masked using modern OoO SMT processors, though, so

advantage held by Hwacha is most likely negligible.

The LACore architecture was therefore chosen to be an extension to the RISC-V scalar processor

(Waterman A. a., 2016), similar to Hwacha. The choice of RISC-V could be swapped with MIPS, x86 or

ARM with only changes to the ISA and scalar processor’s decoder, and no changes to the actual LACore

implementation. The reason RISC-V was then chosen for this research is that it is a modern, free, and

open-source platform, with robust toolchains for developing both hardware and software. Additionally,

fully tested RTL models exist for a plethora of different CPU models in RISC-V, including one, three and

five-stage single-issue pipelined processors, called the Sodor collection (Celio C. , 2014), as well as a

more complex OoO processor, called BOOM (Celio C. P., 2015). So, the LACore needs to only be

implemented once in gem5 and once in RTL in order to plug it into the many different freely-available

scalar CPU models. This cannot be as easily done with other scalar architectures like x86 or ARM.

4.2 LACORE MICROARCHITECTURE OVERVIEW

Figure 4-1: LACore Microarchitecture Block Level Design.

16

Figure 4-1 illustrates the high-level microarchitecture which consists of a scalar CPU and an

LACore acceleration unit. The gray box represents a single CPU. The white blocks within the CPU are

the components from a typical scalar processor: The Instruction Cache, Data Cache, Decoder, Scalar

ALU, and Register File. For this paper, a RISC-V processor was used as our scalar CPU implementation.

The blue blocks in Figure 4-1 are the part of the LACore’s extension to the base scalar CPU: The

LACore configuration registers (called LACfgs), an LACore execution unit (called the

LAExecUnit), a 64 kB per-core private scratchpad memory, and a high-throughput multi-banked

cache (called the LACache).

The scalar CPU’s Instruction Set is extended with LACore-specific instructions. The LACore’s

instructions are decoded by the scalar Decode Unit, providing configuration for the LACfgs,

LAExecUnit and LAMemUnits. The LACore’s Execution instructions are 4-operand (3 inputs and 1

output) complex memory-memory operations (where memory could be main memory or scratchpad)

and will execute for a variable amount of processor-cycles, concurrently accessing data in memory and

scratchpad through the LAMemUnits, while executing arithmetic operations in the LAExecUnit’s

datapath. The LAMemUnits and the datapath are connected by clock-crossing FIFOs, with the datapath

running in a separate, slower domain from the rest of the LACore.

The LACfgs are large configuration registers that configure how the four LAMemUnits access

data in memory or scratchpad. The LAMemUnits use these configurations to stream data between the

LAExecUnit and the memory or scratchpad. The scratchpad is a low-latency, high-throughput

memory typically used to store temporary intermediate results of multi-instruction operations in the

LAExecUnit. The LACache is a third L1 cache alongside the Data-Cache and the Instruction-Cache,

with multiple ports and banks for the LAMemUnits to more effectively access the memory system.

4.3 THE LAEXECUNIT

The LAExecUnit is a highly-configurable parallel processing unit with three major types of sub-

units: the LAMemUnits, the datapath, and FIFOs connecting them all, as illustrated in Figure 4-2. There

are four LAMemUnits, three which read large-format streams of data from the scratchpad, the

memory or an LACfg, and write them into the datapath’s input FIFOs 𝐴, 𝐵 and 𝐶. The fourth

LAMemUnit reads the datapath’s output FIFO, 𝐷, and writes the resulting large-format data-stream to

the scratchpad or memory. This categorizes the LACore as a Decoupled Access/Execute Architecture

(Smith, 1982), where the memory access and data execution are separate processing units connected by

17

FIFOs, reminiscent of the design presented in (Lee Y. O., 2015). The datapath is composed of 8

VecNodes which support 8 different arithmetic operations, 7 ReduceNodes which support 3

different reduction operations, and an AccumulateNode. For brevity in Figure 4-2, only 3 out of the 8

VecNodes and 3 out of the 7 ReduceNodes are shown. So in reality, the LAExecUnit is about

three times as tall, but still has the same number of LAMemUnits: 3 input LAMemUnits and 1 output

LAMemUnit. Also, take note that the LAExecUnit’s datapath operates on 512-byte SIMD buffers,

which hold either 16 single-precision or 8 double-precision floating-point elements.

Figure 4-2: LAExecUnit with major sub-blocks shown.

4.3.1 The LAExecUnit Datapath

Novel Stream Processing

The configurable datapath performs operations on three input streams and produces a single

output stream. In this sense, the LAExecUnit’s datapath can be thought of as a traditional stream

processing unit or dataflow processing unit. In stream processing, the data flow through fixed execution

units connected by queues, in this way, flow control is automatically performed and execution happens

at maximum possible speed (Beard, 2013). Dataflow processing as a paradigm contrasts control flow

processing (an example is the Von Neumann architecture), where a program counter continually

fetching the next instruction from memory and performing branching and jump operations based on

18

current instruction results. The advantage of using dataflow in the LAExecUnit’s datapath is that it

does not need to operate conditionally based on the input elements or re-implement a whole scalar CPU

for instruction fetching, like the Hwacha processor (Lee Y. O., 2015), but instead performs the same

operation on all inputs data elements. The minor caveat is that the LAExecUnit’s datapath needs to

be configured at the beginning of the current instruction, but then the configuration remains constant

for the remained of the operation.

The three streams of input vectors are labelled 𝐴, 𝐵 and 𝐶 in Figure 4-2. They arrive at the

datapath through FIFO queues. This means the datapath is completely decoupled from the vector

stream generation done by the LAMemUnits. The output vector stream gets put into the 𝐷 FIFO

queue, which is consumed by another LAMemUnit, which handles writing the data back to memory,

scratchpad or a register. The datapath is completely unaware of the shape and location of its input and

output vectors, it is just concerned with execution. Most vector-processor architectures require the

inputs and outputs to go to “vector registers”, such as CRAY and Hwacha (CRAY, 1977) (Lee Y. O., 2015),

but the LAExecUnit instead uses the FIFOs to store the inputs and outputs of the datapath in order to

support a decoupled dataflow model. Another noteworthy architecture that uses a very similar

streaming computation model is the RSVP architecture (Ciricescu, 2003), which connects the memory

system to the execution system through input and output FIFOs. However, the RSVP targets multi-media

applications that operate on smaller batches of data, and therefore has a few major architectural

differences regarding the streaming, which is discussed in the LAMemUnit section.

Since the execution and memory access are fully decoupled, the LAExecUnit represents a

Decoupled Access/Execute Architecture (Smith, 1982). Decoupling the memory access from execution

has been shown to provide performance improvements by allowing individual components to operate at

their own rate all the time. This is especially useful in the LAExecUnit since the latency of all the sub-

blocks within it are variable, and allowing some sub-blocks to proceed many cycles ahead of other sub-

blocks instead of stalling the whole system is a fluid and fine-grained approach. For example, let’s say

LAMemUnit 𝐴 produced 9 elements very quickly, and put them in the queues to the datapath, but the

next 3 items produced a series of cache misses and stalled input 𝐴 for 10 cycles. The latency of the cache

misses in this case is partially hidden by the fact that beforehand, LAMemUnit 𝐴 could run ahead and

place extra elements in the datapath’s input queues. If input 𝐴 and the datapath had to operate

synchronously as 1 unit, then the datapath would have to stall for the same amount of time as 𝐴, and

overall the stalling latency would be larger.

19

Novel Reduction Unit

Another distinguishing feature of the LAExecUnit compared to the datapath of other parallel

processors is the vector reduction unit, composed of the tree of ReduceNodes seen in Figure 4-2. The

CRAY X1 and Hwacha Vector processor do not natively support reduction within a single cycle, so

performing a dot product on vectors of length 𝑁 (with 𝑁 up to 264) will take 𝑂(𝑙𝑜𝑔 𝑁) instructions to

complete, while with the LACore it would take 𝑂(1) instruction to complete. We can see other

mainstream parallel processing platforms suffer the same fate as other processors. For example, on

NVIDIA’s CUDA platform, many lightweight threads can perform the vector-vector multiplication on

independent data instantly, but then the programmer must manually reduce the result using a repeating

pattern of synchronizations and vector-adds (Sanders, 2010). That means that on GPUs, in order to

perform a dot-product on vectors of length 𝑁, 𝑂(𝑙𝑜𝑔 𝑁) thread synchronization calls must happen,

which becomes a performance bottleneck compared to the LAExecUnit’s reduction unit, which

does not need explicit synchronization since only one heavyweight thread is performing the parallel

processing.

The reduction unit inside LAExecUnit has been implemented in fixed-function linear algebra

accelerators, such as (Morris, 2005), but those implementations were rigid, single purpose circuits for

solving specific problems. The LACore takes the reduction unit concept and applies it generically to a

broad range of linear algebra applications.

Novel Vector, Scalar, or Multi-Stream Vector output

In Figure 4-2, the contents of the LAExecUnit’s datapath show there is a set of parallel

nodes, called VecNodes, and a binary tree of nodes called ReduceNodes followed by an

AccumulateNode. A more detailed image is seen in Figure 4-3. All input data flows in parallel through

the VecNodes to produce an output vector of data. This output vector can either be fed to the

ReduceNodes or be fed directly to the output LAMemUnit 𝐷. This allows the execution unit to take 3

input vectors and either produce 1 output vector, a scalar value, or a novel output called a “multi-

stream” vector, depending on the instruction. The latency of a vector output is only the latency of the

VecNode array, while the latency of reducing to a scalar value or a multi-stream vector is the sum of

the VecNode latency in addition to the latencies of each column of ReduceNodes and the

20

AccumulateNode. The machine instruction determines whether to take the VecNode vector output

or the AccumulateNode scalar output by using a MUX before the 𝐷 queue.

Figure 4-3: LAExecUnit datapath details.

When a vector output is configured by the current instruction, the output stream 𝐷 matches up

1-1 with the input streams 𝐴, 𝐵, and 𝐶. This means the first elements produced by 𝐴, 𝐵 and 𝐶 will be

operated on and produce the first element in stream 𝐷, the second element in 𝐴, 𝐵, and 𝐶 will produce

the second element in stream 𝐷, and so forth. When a scalar output is requested, only one element is

produced by the AccumulateNode and consumed by the output LAMemUnit 𝐷. The scalar output is

used in operations like a large vector-vector dot-product, or finding the maximum value in a vector. The

multi-stream output mode is a powerful way to take input streams with 𝑁 elements and reduce them to

an output stream with 𝑀 elements, where 𝑀 divides 𝑁. Multi-stream mode can be thought of as

breaking the input stream into smaller consecutive sub-streams, and reducing each of those sub-

streams to their own scalar. The resulting output stream is then composed of these scalar elements.

21

Figure 4-4: LAExecUnit Multi-stream output, DGEMM example.

An example use case for multi-stream output mode is the double-precision Matrix-Matrix

multiply kernel, also known as DGEMM in the BLAS Library (Lawson, 1979). DGEMM is a core routine

used by many higher-level linear algebra routines. Figure 4-4 shows how DGEMM is executed in the

LAExecUnit’s datapath using the multi-stream output mode, where a single row in matrix 𝐶 is the

result of computing the dot-product of a row in matrix A with each column in B. The advantage of the

multi-stream mode is that it can perform entire complex operations through a single instruction, which

allows even more memory-access and data-execution overlap, without having to reissue instructions

between each dot-product operation. For example, in Figure 4-4, while dot-product for 𝐶00 is being

computed in the datapath, the elements required for the dot-product for 𝐶01 are being fetched from

memory. Additionally, since the datapath is so deep (high-latency) due to the multiple levels of

ReduceNodes, it is necessary to fill the datapath with dot-products of multiple sub-vectors at the

same time for full utilization.

There have been other parallel computers, mostly for multimedia applications, that have

implemented something similar to the LACore’s multi-stream output mode. One example is the

“Matrix Oriented Multimedia” extension (MOM), which provides an instruction set for doing efficient

matrix operations on special registers (Corbal, 1999). However, MOM is a traditional load-store

architecture that requires moving data in and out of registers before operating on them. Furthermore,

MOM is not a vector processor and therefore only operates on matrices up to 16x8 in size, which is a

large limitation for general purpose linear algebra calculations on large matrices – but this was not the

exact target application for MOM anyways.

22

The last major advantage of the multi-streaming mode is that it provides a greater opportunity

to fully utilize the LAExecUnit, especially when using shorter vectors. The LAExecUnit uses

stream-ids as book-keeping for the different sub-streams in multi-streaming mode in order to only

reduce elements within the same stream. This logic has no effect on the VecNodes but it does slightly

complicate the ReduceNodes control circuitry, and can cause stalling if the sub-stream count is not a

multiple of (𝑆𝑖𝑚𝑑𝑊𝑖𝑑𝑡ℎ ∗ 𝑉𝑒𝑐𝑁𝑜𝑑𝑒𝑠).

Eight Unique Vector Operations and Three Unique Reduction Operations

Another unique feature of the LAExecUnit is the ability to perform eight different arithmetic

operations in the VecNodes, and three different operations in the ReduceNodes, which are

itemized in Table 4-1. A total of 24 possible datapath configurations are possible when operating in

single-output or multi-stream-output modes, and eight datapath configurations are possible when

operating in vector-output mode.

VecNode Ops ReduceNode Ops

(A+B)*C (A+B)/C sum(X, Y)

(A-B)*C (A-B)/C min(X, Y)

(A*B)+C (A*B)-C max(X, Y)

(A/B)+C (A/B)-C
Table 4-1: LAExecUnit datapath configurations.

A common configuration of the datapath would be for vector dot-product, in which case the

VecNodes would be configured for (𝐴 ∗ 𝐵) + 0 and the ReduceNodes would be configured for

𝑠𝑢𝑚(𝑋, 𝑌).

Figure 4-5: VecNode Operation Bypassing.

23

Another important feature is called operation bypassing, which can be seen in Figure 4-5, which

is a latency reduction technique that uses inputs to determine if a part of the VecNode operation can

be bypassed altogether. For example, if (𝐴 ∗ 𝐵) + 0 was being computed, it would be a waste of cycles

to compute the floating-point addition of (𝐴 ∗ 𝐵) and 0, so in that case, the datapath control units

(which can be seen at above the VecNodes in Figure 4-2) directly select the output of (𝐴 ∗ 𝐵) using the

MUX after the multiplier/divider. A similar bypassing technique can be used if the user just wants to

perform (𝐴 + 𝐵), in which case 𝐶 would be a constant, 1. The datapath control unit would select (𝐴 +

𝐵) directly in this situation using the MUX after the adder/subtractor in the VecNode, and ignoring the

output of the multiplier/divider. All this latency hiding through bypassing is done transparently by the

datapath control logic, and is not controlled directly by the user. All the user needs to do is specify the

right input values for 𝐴, 𝐵, and 𝐶 for the bypassing to transparently take effect.

Novel Simultaneous Dual-Precision Hardware

To support a diverse range of applications, the LACore supports both single-precision and

double-precision (32-bit and 64-bit) floating point arithmetic, since support for both precisions is

standard in all mainstream hardware vendors nowadays. To maximize the performance while

minimizing hardware redundancy, the LAExecUnit’s datapath is dual-precision. In other words, the

VecNodes, ReduceNodes, and AccumulateNode all support single-precision and double-precision

arithmetic by reusing the same hardware. This results in area reduction and power-reduction while

marginally increasing the latency. For the entire LAExecUnit to be capable of dual-precision

arithmetic, the basic operations that need to be supported in dual precision are add, subtract, multiply,

divide and compare. Implementations for each of these operations have already been presented in

literature, and shown to barely affect latency on the critical path, which means it is optimal to

implement the LAExecUnit using dual-precision components. A summary of these dual-precision

components is found in Table 4-2.

Dual-Precision Operation Latency Frequency Source

Add 5 cycles 1.5 GHz (Akkaş, 2008)

Subtract see Add see Add see Add

Multiply 4 cycles 1 GHz (Jaiswal, 2015)

Divide 15/11 cycles (DP/SP) 1 GHz (Jaiswal, 2016)

Compare see Add see Add see Add
Table 4-2: Dual-Precision Hardware Latencies and Frequencies.

24

Dual-precision hardware can be used for mixed-precision HPC applications such as Iterative

Refinement techniques, which are used to improve the accuracy of the solution to a system of linear

equations (Kurzak, 2016). Since floating point arithmetic has inherent error due to round-off, the result

of solving 𝐴𝑥 = 𝑏 for 𝑥 may have an unacceptably large error. To fix this, iterative refinement can be

applied until 𝑥 converges to an acceptably low error. Kurzak has shown that when using mixed precision,

the initial factorization of 𝑃𝐴 = 𝐿𝑈 during decomposition can be performed in single-precision, while

the iterative refinement can be performed in double-precision, with very little effect on overall accuracy

or performance. The LACore is well suited for this type of application, since it targets linear algebra

applications and supports both single-precision and double-precision arithmetic using the same

hardware. Another useful application of dual-precision hardware is in approximate computing, where

the algorithms are inherently error tolerant, since the input data is noisy (Nepal, 2016). In these

situations, it may be advantageous to also reduce the accuracy of the calculations by using a lower

precision floating point format, something the LACore is again suited for.

The unique contribution to dual-precision hardware that the LACore adds, however, is the

ability to operate on both 32-bit floating point and 64-bit floating point and produce either 32-bit or 64-

bit outputs regardless of input precision. For example, if the current LACore instruction was (𝐴 + 𝐵) ∗

𝐶 = 𝐷, and the inputs 𝐴 and 𝐵 were 32-bit floating point, while input 𝐶 and output 𝐷 were 64-bit

floating point, the LAExecUnit will be able to handle this by coercing the inputs to the output’s

precision using special “coerce units”, which can be seen in Figure 4-3. So, in our current example, inputs

𝐴 and 𝐵 will be coerced to 64-bit streams in hardware right before entering the VecNodes, and the

entire pipeline will operate in 64-bit precision, since this is precision of output stream 𝐷. A more

detailed view of how the coerce unit operates is seen in Figure 4-6, which makes clear that the coerce

unit is a glorified MUX that selects based on the input stream’s type and the output stream’s type.

Figure 4-6: Coerce Unit used for Simultaneous Dual-Precision

25

To knowledge, no other parallel computing architecture allows the seamless usage of both 32-

bit and 64-bit floating point at the same time, and typically require an explicit conversion operation on a

vector to convert it between 32-bit and 64-bit floating point. So, in applications where the need to

quickly switch precisions or use different precisions simultaneously is important, the LACore provides a

unique advantage over other computing platforms.

Packed SIMD stream processing

As seen in Figure 4-3, not only does the LAExecUnit have parallel processing VecNodes and

ReduceNodes, but it also works on packed SIMD data. Packed SIMD is orthogonal to vector processing

and it is a technique typically used when traditional vector processing is not used. For example, Intel’s

Multimedia Extensions (MMX), Streaming SIMD extensions (SSE), and Advanced Vector Extensions (AVX)

are all established packed SIMD instruction sets used for parallel data processing for the x86 platform

(Patterson D. A., 2013). One of the major drawbacks of SIMD-only parallel architectures is that they

define an instruction set for a specific SIMD width, so the result is that new ISAs need to be developed

for each successively larger SIMD width. The LACore does not suffer from this drawback since it is a

Large-Format vector accelerator, and can operate on arbitrarily sized vectors using a few instructions.

The LACore uses combined vector processing with packed-SIMD to maximize the ratio of

control hardware to data-processing hardware and to also improve throughput. For example, instead of

using a 64-byte wide SIMD buffer, if the LAExecUnit had used 64 VecNodes that operated on one 8-

byte input each, then the control circuitry and infrastructure would have to be duplicated for each of the

64 VecNodes. But with the LACore’s combined vector processing and packed SIMD approach, the

control circuitry only needs to be duplicated for each of the 8 VecNodes. Although both approaches

would produce the same results in the end, the packed SIMD approach requires much less control

circuitry, and is therefore more area efficient. Additionally, the LACore’s combined vector processing

and packed-SIMD approach keeps the throughput of the datapath the same, while reducing the latency,

since adding more VecNodes in parallel results in a deeper ReduceNode tree with more layers.

Separate Clock Domain

Industry-leading scalar CPUs like the Intel Xeon E7 are now capable of running over 3-4 GHz

(Intel, 2017), however, the dual-precision functional units listed in Table 4-2 only have been confirmed

to operate in the low 1 GHz range. Additionally, NVIDIA GPUs only operate in the low to mid 1.5 GHz as

well (NVIDIA, 2016). In order to not throttle the scalar CPU and memory system’s frequency due to the

26

slower LAExecUnit datapath, two separate clock domains are used in the processor: 3-4 GHz for the

scalar CPU and 1-1.5 GHz for the LAExecUnit. Another reason for using a slower clock speed in the

LAExecUnit datapath is that it allows the LAMemUnits to stream data at a proportionally higher

rate compared to how fast the LAExecUnit’s datapath is consuming the streams, which is helpful in

allowing the datapath to reach its theoretical peak throughput.

Latency and Throughput

Performance for the LACore’s datapath is summarized in Table 4-3 below. The numbers given

assume an 8 VecNode configuration (4, 16 or 32 VecNodes is also possible), 8-wide SIMD as the

fundamental operand, and Dual-Precision hardware latencies taken from Table 4-2. The scalar CPU is

assumed to be running at 2-3x the clock speed listed in Table 4-3, which is the clock speed of the

LAExecUnit datapath. Although the reduce operations and multi-stream operations have a higher

latency, they result in a higher overall throughput than the vector processor, since they utilize more of

the LAExecUnit’s hardware at any given time.

Performance of LAExecUnit datapath for all configurations using Dual-Precision hardware
latency estimates

Output Type VecNode
config

ReduceNode
config

Datapath
Latency
(cycles)

FLOP/cycle
sustained

Throughput @ 1
GHz sustained

Scalar /
Multi-Stream

(32-bit)

(A+0)*C ALL 19 (4+15) 240 (128+112) 240 GFLOP/s

(A+0)/C ALL 29 (14+15) 240 (128+112) 240 GFLOP/s

(A+B)*C ALL 24 (9+15) 368 (256+112) 368 GFLOP/s

(A+B)/C ALL 34 (19+15) 368 (256+112) 368 GFLOP/s

Scalar/Multi-
Stream (64-

bit)

(A+0)*C ALL 19 (4+15) 120 (64+56) 120 GFLOP/s

(A+0)/C ALL 33 (18+15) 120 (64+56) 120 GFLOP/s

(A+B)*C ALL 24 (9+15) 184 (128+56) 184 GFLOP/s

(A+B)/C ALL 38 (23+15) 184 (128+56) 184 GFLOP/s

Vector
(32-bit)

(A+0)*C - 4 128 128 GFLOP/s

(A+0)/C - 14 128 128 GFLOP/s

(A+B)*C - 9 256 256 GFLOP/s

(A+B)/C - 19 256 256 GFLOP/s

Vector
(64-bit)

(A+0)*C - 4 64 64 GFLOP/s

(A+0)/C - 18 64 64 GFLOP/s

(A+B)*C - 9 128 128 GFLOP/s

(A+B)/C - 23 128 128 GFLOP/s
Table 4-3: Theoretical Latency and Throughput of LAExecUnit datapath.

Again, these performance figures could easily double or halve, depending on how wide the

packed-SIMD is or how many parallel VecNodes there are; the numbers chosen were picked because

27

they provide the best performance for a range of applications while keeping the area footprint as small

as possible. The performance tuning was done with gem5 parameters sweep, which will be discussed

shortly.

For the VecNode config column in Table 4-3, only two out of the eight configurations are

shown, since subtraction has the same latency as multiplication, and the order of the add/subtract and

the multiply/divide does not affect the overall latency. The latencies for scalar-output and multi-stream-

output are the sum of the VecNode latency and the ReduceNode tree latency, corresponding to the

two values in parenthesis in the “Datapath Latency” column. Similarly, FLOP/cycle is the sum of the

VecNode array throughput, and the ReduceNode tree throughput, at either 8-SIMD for double-

precision and 16-SIMD for single-precision. It also must also be stressed that these are the theoretical

peak numbers without respect to the LAMemUnit performance. In other words, the numbers in Table

4-3 are the theoretical upper-bound for performance for a single LACore. In applications with a low

computational complexity, the actual peak performance will be much lower.

NVIDIA GP100 Performance per Streaming Multiprocessor

SMs FP32 CUDA
cores/SM

FP64 CUDA
cores/SM

Clock Peak FP32 GFLOPs
/SM

Peak FP64 GFLOPs
/SM

56 64 32 1.3 GHz 189 95
Table 4-4: Performance of two NVIDIA GP100 Streaming Multiprocessors (NVIDIA, 2016).

It is useful to compare the performance figures in Table 4-3 with leading industry hardware

platforms. One leading platform is NVIDIA’s recent GP100 which uses the Pascal architecture. A

summary of its performance is found in Table 4-4 above. Given that the LACore is roughly equivalent

to two Streaming Multiprocessors in an NVIDIA GPU in terms of area and memory resources used (see

the Design Area Estimates section), it makes sense to compare the LACore’s performance to two

Streaming Multiprocessors. Scaling the LACore can be done by using a multi-core design with tens or

hundreds of LACores on a single chip, which then would be a good time to compare to the GP100’s

overall performance. The performance results from Table 4-3 and Table 4-4 show that the

LAExecUnit’s datapath has roughly the same theoretical throughput as two Streaming

Multiprocessors; the LACore can achieve 368 GFLOP/s single-precision and 184 GFLOP/s double-

precision at theoretical peak-performance, while the two SMs can achieve 378 GFLOP/s single-precision

and 190 GFLOP/s double-precision. So the LACore and the GP100 SMs, two parallel-computing

architectures, have roughly equal area and theoretical performance numbers, but their architectures are

radically different. As we will discuss in the Benchmarks and Evaluation section, the LACore

28

architecture achieves better real-world results than the GPU SMs for a range of HPC applications despite

these similar statistics.

Design Space Optimization Using Parameter Sweeps

The LAExecUnit’s datapath parameters were not arbitrarily chosen, but were selected after

studying the linear algebra applications that were being targeted and finding the hardware configuration

that performed best for all of them. The methodology consisted of selecting a handful of linear algebra

applications and implemented them for the LACore architecture, then implementing the LACore

architecture in the gem5 cycle-accurate simulator (Binkert, 2011), and then determining the parameters

to tune and benchmark the selected applications for each of the parameter configurations.

For the LAExecUnit’s datapath, the relevant parameters were the SIMD width and the

number of VecNodes (which also determines the number of ReduceNodes). The applications chosen

were Double-Precision Matrix-Matrix Multiply (DGEMM), a BLAS-3 kernel (Lawson, 1979), and Double-

Precision Triangular-Solve (DTRSM), which is another BLAS-3 kernel. The reason these two kernels were

selected is because they have been shown to be the minimal set of kernels needed to be implemented

in order to implement the rest of the BLAS-3 routines, as discussed in (Van Zee, 2015). In other words,

we can implement most of complex routines in the BLAS API by only implementing the DGEMM and

DTRSM kernels, and since BLAS is a fundamental API in solving computational linear algebra problems,

this seemed like a simple and effective way to optimize the LAExecUnit’s datapath for most linear

algebra applications.

Figure 4-7: LAExecUnit parameter sweep using DGEMM
average performance.

Figure 4-8: LAExecUnit parameter sweep using DGEMM
peak performance.

The DGEMM benchmark results for the parameter sweep are shown in Figure 4-7 and Figure

4-8. Figure 4-7 shows how the SIMD-width and VecNode count affect the average DGEMM

performance across the four different variations of the DGEMM kernel (the variations just involve

0

4

8

12

16

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

EXEC VS AVE DGEMM GFLOP/S
8VEC/4SIMD 8VEC/8SIMD
16VEC/4SIMD 16VEC/8SIMD

0

8

16

24

32

40

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

EXEC VS PEAK DG EMM G FLOP/S

8VEC/4SIMD 8VEC/8SIMD

16VEC/4SIMD 16VEC/8SIMD

29

transposing input matrices), while Figure 4-8 shows how these parameters affect the peak DGEMM

performance from all the variations. It is evident that the 8-SIMD double-precision (512-byte buffers),

and 8 VecNode configuration is optimal at every matrix size for both peak and average performance.

Figure 4-9: LAExecUnit parameter sweep using DTRSM
average performance.

Figure 4-10: LAExecUnit parameter sweep using DTRSM peak
performance.

The parameter sweep results of the DTRSM average performance are shown in Figure 4-9, while

the peak DTRSM performance is shown in Figure 4-10. There are 16 variations of the DTRSM kernel, and

all of them were tested and averaged to produce the results in Figure 4-9, while the highest-performing

variation is shown in Figure 4-10. Unlike the DGEMM parameter sweep results, the DTRSM results show

that the SIMD-width and VecNode count have little effect on the kernel’s performance on the

LACore. This is dues to DTRSM being a more memory-bound application than DGEMM, so the memory

accesses are the bottleneck and sweeping over the datapath’s parameters will have a negligible effect.

Therefore, there is no reason to use a 16 VecNode configuration, since this would just take up more

area without providing any performance benefits.

To summarize the parameter-sweep findings: using the DGEMM and DTRSM applications for

performance tuning, the configuration of 8-wide double-precision SIMD and 8 VecNodes was deemed

optimal with respect to both performance and area utilization of the LACore.

4.3.2 LAMemUnit Architecture

The LAMemUnits are responsible for taking the wide range of data configurations and

converting them into a universal stream format for the datapath. From Figure 4-11, we can see a more

detailed architecture of an input LAMemUnit, which uses an instruction and an LACfg configuration

register as the only inputs needed to start interacting with the LACache and scratchpad with 128-byte

0

5

10

15

20

25

30

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

EXEC VS AVE DTRSM GFLOPS

8VEC/4SIMD

8VEC/8SIMD

0

5

10

15

20

25

30

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

EXEC VS PEAK DTRSM G FLOP/S

8VEC/4SIMD 8VEC/8SIMD

16VEC/4SIMD 16VEC/8SIMD

30

line-sizes. Internally, the LAMemUnit has three major components: A Next-Address Generator FSM, a

FIFO controller, and a Memory Controller. As mentioned previously, the LAExecUnit datapath runs at

2-3x slower clock speed than the rest of the LACore and scalar CPU since the LAMemUnit must be

able to fetch and write data fast enough to allow the datapath to attain peak performance and the dual-

precision functional units are inherently slower. Additionally, data is written to the FIFOs on both edges

of the CPU’s main clock, and written 2-items at a time. The combination of the above three performance

enhancements allow the LAMemUnit to fill the FIFOs at the maximum theoretical rate the

LAExecUnit’s datapath will consume 8-wide double-precision SIMD blocks or 16-wide single-

precision SIMD blocks. But this maximal rate is only achievable if the LAMemUnit can fetch data that

fast from the LACache or scratchpad, which is only possible in high-spatial locality applications.

Finally, the LAMemUnits support Large-Format data sources, meaning that input and output

vectors/matrices can be arbitrarily large, similar to archetypal vector processors (Cray, 2003). The major

distinction from vector architectures is that in the LACore, data sources are not limited to strided

vectors.

Figure 4-11: LAMemUnit High-Level Design.

Novel Scalar, Vector, Matrix and Sparse Configuration

The LAMemUnit’s Next-Address Generator is a Finite-State-Machine that is capable of

generating the address of arbitrary scalars, vectors, and dense or sparse matrices. For scalars, it simply

31

generates the location of the element, and the Mem-Ctrl within the LAMemUnit will then produce that

scalar repeatedly. For vectors, the FSM generates the next address from a configured base-address,

stride, skip, and count according to the following equation:

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟(𝑖) = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ (𝑖 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ (𝑖/𝑐𝑜𝑢𝑛𝑡))

Here, 𝑆𝐼𝑍𝐸 is four for single-precision and eight for double precision, and 𝑖 is the current offset

within the vector. This general formula for vectors allows the user to specify arbitrary submatrices

within a larger matrix to operate on. Combining this feature with the multi-stream datapath

configuration provides a simple and powerful interface for operating on arbitrarily sized and positioned

dense matrices in memory. An example of the different vector configurations is seen in Figure 4-12. An

additional benefit of being able to express the vector layout as a simple equation using address, stride,

skip and count is that the LAMemUnit can perform pre-fetching ahead of the datapath.

Figure 4-12: LAMemUnit Vector stride, skip, count config. Image from (Ciricescu, 2003).

It should be noted that the address, stride, count vector configuration is implemented in many

existing vector architectures, like Cray X1, Hwacha, and RSVP (CRAY, 1977) (Lee Y. O., 2015) (Ciricescu,

2003), and is more generally known as a gather-scatter interface. However, from the above three, only

32

RSVP appears to provide the additional skip configuration that allows the user to select sub-matrices

from larger matrices in memory.

Figure 4-13: LAMemUnit Sparse Matrix Configuration, with all 6 config fields shown.

The last, and most novel feature of the Next-Address generator FSM in the LAMemUnit is that

it can be configured for sparse matrix input or output, as seen in Figure 4-13. The LAMemUnit only

processes sparse matrices that are similar to the Harwell-Boeing sparse matrix format (Duff, 1989). The

Harwell-Boeing format, also known as Compressed Column Storage format (CCS), requires a column-

pointer, a row-pointer and a data-pointer to arrays in memory. The LAMemUnit generalizes this to

allowing both column-major and row-major matrices in memory, by using pointers called idx_ptr,

jdx_ptr, and data_ptr, which point to the major-index, the minor-index and the data-array

respectively. This generalizes the LAMemUnit to be able to read or write Compressed Column Storage

or the Compressed Row Storage unambiguously.

Additionally, three more parameters need to be specified for the LAMemUnit to be able to

access sparse matrices: idx_count, jdx_count, and data_skip, which provides the rest of

the information needed for the LAMemUnit to interact the sparse matrix with other input streams such

as vectors or scalars, which is described in the next section. The idx_count and jdx_count simply

state the dimensions of the uncompressed matrix, while the data_skip tells the LAMemUnit how

many elements in the uncompressed matrix to skip. Together, these last three configuration parameters

allow multi-core parallelization of processing sparse matrices efficiently, since each LACore can easily

determine the offsets in idx_ptr, jdx_ptr and data_ptr that it needs to skip to when

33

inputting or outputting elements. Also, it is possible for multiple cores to write to different sections of

the sparse matrix in memory with all 6 of these parameters (with proper synchronization of course).

An additional novel feature of the LAMemUnit’s sparse matrix configuration is that it also

allows reading sparse matrices transposed. All the necessary information in the six sparse matrix

configuration parameters give the Next-Address generator FSM enough information to calculate where

the next address is. Being able to read and transpose arbitrary sections of sparse matrices and generate

and abstract stream from the data is a unique feature to the LAMemUnit that, to knowledge, does not

exist in current literature.

Novel Generic Item-Stream Interface

As mentioned above, the LAMemUnit provides a powerful abstraction for turning

heterogeneous vectors and matrices in memory into generic streams of data for the LAExecUnit’s

datapath to operate on. For example, referring to Figure 4-2, the user may want to specify input 𝐴 to be

a single-precision scalar, 𝐵 to be a compressed matrix in column-storage format in memory, and input 𝐶

to be a long vector in the scratchpad, while outputting the result of the LAExecUnit to a double-

precision sub-matrix inside a dense matrix in memory, as in Figure 4-14. This could be the equivalent of

computing a sub-block of an output dense matrix in DGEMM by multiplying an input sparse matrix and

an input dense matrix. With the LACore’s ISA, this is all entirely possible by simply configuring the

input and output LACfgs appropriately and then executing an LACore instruction. No other parallel

computing architecture to knowledge provides a similar interface for turning heterogeneous sets of

scalars, vectors and sparse or dense matrices into generic streams that can easily interoperate.

Figure 4-14: LAMemUnit Generic Stream Interface.

There are a handful of incompatible input and output configurations, which can be seen in Table

4-5 below. It is always safe to use a scalar input stream, but you can only use a scalar output stream if

34

the datapath is configured for a scalar output. For vector and multi-stream output streams, the datapath

must be configured for multi-stream or vector output modes. Finally, when using multi-stream output,

there are further restrictions on the input vectors: there must be a compatible count or idx_count

field for all vectors and sparse matrices, so the datapath knows how many segments to partition the

input streams into. For example, if the datapath was configured for multi-stream, with 100 input

elements and 20 output elements, any input vector must have a count field of 5, and any sparse-matrix

config must have an idx_count field of 5 or a jdx_count of 5 if the input sparse-matrix is

transposed.

Data Format Location Possible Can be Input? Can be Output?

Scalar LACfg Yes Yes Only if scalar-out

Scalar Scratchpad/memory Yes Yes Only if scalar-out

Vector LACfg Yes - -

Vector Scratchpad/memory Always Yes Only if vector-out
or multi-stream

Sparse Matrix LACfg Yes - -

Sparse Matrix Scratchpad/memory Always Yes Only if vector-out
or multi-stream,
AND not
transposed

Table 4-5: LAMemUnit Possible Configurations.

Scratchpad, Register, or Main Memory Location

The LAMemUnit is also capable of reading or writing to 3 different locations: an LACfg holding

a scalar, the private scratchpad, or the main memory via the LACache. A scalar input or output can be

in any of the three locations, where the scratchpad and the LACfg locations have a single-cycle access

latency and the LACache has a potentially higher latency on cache misses. A vector and a sparse matrix

can only be in the scratchpad or main memory. The use of a scratchpad for intermediate results is not a

new concept, and is commonly found in embedded applications and in GPUs (Banakar, 2002) (Lindholm,

2008).

A summary of the possible input and output configurations of the LAMemUnits is given in

Table 4-5. There are a few configurations that will produce an error in the LACsrReg and the data

operation will abort. For example, if the datapath is configured for vector-output but the output

LAMemUnit is configured for a scalar output, this will produce an error. Additionally, trying to read or

write vectors from an LACfg is impossible and will generate an error condition in the LACsrReg.

35

Cache-line Optimizations

As will be discussed in the LACache section later, the cache-line size of the LACore system is

128 bytes (16 double-precision or 32 single-precision elements). In order to take advantage of spatial-

locality of vector-elements within a cache-line, the LAMemUnit’s memory- controller can determine

how many of the next vector stream’s elements are located in the current element’s cache block, and it

can deliver all of them simultaneously to the LAMemUnit’s FIFO-controller.

Figure 4-15: LAMemUnit Can read multiple elements per cache line.

As an example, recall the 𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟 equation used by the Next-Address generator FSM:

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟0 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 0) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 0)/𝑐𝑜𝑢𝑛𝑡))

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟1 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 1)/𝑐𝑜𝑢𝑛𝑡))

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟2 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 2) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 2)/𝑐𝑜𝑢𝑛𝑡))

The LAMemUnit can compute the next series of addresses simultaneously, and then determine

how many consecutive elements are in the current cache-line by simply truncating the low bits and

performing a bitwise-and on the high-bits. Since the cache-line is 128 bytes, the low 7 bits of each

address can be truncated, and the high 57 bits (on a 64-bit address space) need to be equal. Figure 4-15

shows how a vector with a stride of 2 and the current vector element having an address of 0𝑥4020,

could have multiple elements per cache line, and therefore increase the memory throughput by

accessing them all in one cycle.

Scratchpad Optimizations

As will be discussed in the scratchpad section later, the scratchpad has a 128-byte line size, three

8-byte wide read ports and one 8-byte wide write port. Each bank can be accessed simultaneously and

concurrently by all four of the LAMemUnits, by using independent buses for each LAMemUnit and

bank combination. Each LAMemUnit memory-controller uses a similar technique to the cache-line

optimization technique. The LAMemUnit computes the next 32 addresses in parallel, and determines

how many addresses are within the current scratch-pad line, and then it reads or writes all of these

elements to or from the FIFOs connected to the datapath.

36

4.4 LACFG AND LACSRREG REGISTERS

4.4.1 The LACfg Configuration Registers

Figure 4-16: LACfg Detailed View.

The LACore adds eight configuration registers to the CPU in order to configure the

LAMemUnits to read and write a wide range of data structures, layouts and precisions, as seen in

Figure 4-16. These configuration registers are called LACfgs and should not be confused with

traditional vector processor “vector registers”, which are used to hold data before and after the vector

lanes operate on it. The eight LACfgs are connected to the four LAMemUnits by a crossbar which

allows any LACfg to provide configuration for any subset of LAMemUnits at any given time.

 Bits Scalar Config Vector Config Sparse Config

data0 0-63 (64-bit) 32/64-bit scalar or address address data_ptr

data1 64-127 (64-bit) - - idx_ptr

data2 128-191 (64-bit) - - jdx_ptr

layout0 192-223 (32-bit) - stride (signed) idx_count

layout1 224-255 (32-bit) - count (unsigned) jdx_count

layout2 256-287 (32-bit) - skip (signed) data_skip

location 288-289 (2-bit) 0=LACfg, 1=mem,
2=scratch

1=mem, 2=scratch 1=mem, 2=scratch

vector 290 (1-bit) FALSE TRUE TRUE

sparse 291 (1-bit) - FALSE TRUE

transpose 292 (1-bit) - - 1=yes, 0=no

double 293 (1-bit) 1=yes, 0=no 1=yes, 0=no 1=yes, 0=no
Table 4-6: LACfg Configuration Space

37

As seen in Table 4-6, the LACfg has 294 bits of configuration, and it has four classes of fields:

data, layout, location and flags. The data fields (data0, data1, and data2) are used to inform the

LAMemUnit where the start of the data is located or what the value of the data is. The layout fields

(layout0, layout1, and layout2) are used to inform the LAMemUnit how the multi-element data are laid

out in memory. These fields do not apply to scalar data sources, since it only has one element. The

location field informs the LAMemUnit which address space the data are located in. There are currently

three different locations: an LACfg (which only applies to scalars), the scratchpad or the main memory.

A value of 0x3 in the location field will generate an error condition and abort any data operations. The

flags fields are just a collection of Boolean flags that inform the LAMemUnit about which type of data is

present in the register – so it needs to read these flags before processing any of the other fields.

Typically, the four registers for three input streams and one output stream of the LAExecUnit

are configured in four separate instructions before the execution instruction, while the datapath is

configured by the execution instruction itself. So, at most, five instructions need to be issued to

configure and execute on an LACore. One feature of the LACore that helps minimize the number of

instructions needed for configuration is having eight LACfgs to configure only four LAMemUnits. In

any non-trivial application, even DGEMM, it is necessary to issue a handful of different instructions to

the LAExecUnit, each of which require different LAMemUnit configurations. Instead of running

four LACfgs directly to four LAMemUnits, which is the simple solution, an 8-to-4 crossbar is placed in

between the LACfgs and the LAMemUnits, which provides a simple and flexible way for the user to

choose which registers should be used as the three sources and one destination register for any given

operation, which could save multiple cycles of configuration each iteration of tight inner kernels.

4.4.2 The LACsrReg Control Status Register

As touched on in the LAMemUnit and LACfg section, due to the large amount of configuration

freedom given to the user, there are many potential sources of exceptions. In the case of an exception, a

flag in the LACsrReg (the control-status register), is asserted, and the current operation is aborted. No

future operation will be allowed until the user has cleared the LACsrReg with a special instruction.

Additionally, the user should always check the LACsrReg flags after running an application to make

sure no exceptions were generated. A list of the current flags and their bit-positions is given in Table 4-7

below.

38

The LACsrReg is a 64-bit register that can be written to any of the general-purpose registers

using the lxfercsrget command, which is discussed in the ISA section. More flags can be added as

additional features and complexity is added to the LACore, which is why a full 64-bit register was used

instead of 32-bits.

Bit Code Description Bit Code Description

0 badinsn Failed to parse LACore
instruction

10 mstdstreg sparse dest is LACfg

1 memovrflw address outside
scratch/mem range

11 mstsrcreg sparse src is LACfg

2 badregloc reg loc is 0x3 12 srccntzero src count is zero

3 floaterr Floating point arithmetic
error

13 dstcntzero dest count is zero

4 scaldstvec scalar dest but vector output 14 mstdiffcnt count mismatches in multi-
stream

5 scaldstmst scalar dest but multi-stream
output

15 mstbadcnts count % src count != 0 in
multi-stream

6 vecdstscal vector dest but scalar output 16 spvtrnsout sparse dest is transposed

7 spvdstscal sparse dest but scalar output 17 badalign 32/64-bit address not 4/8-byte
aligned

8 vecdstreg vector dest is LACfg 18

9 vecsrcreg vector src is LACfg 19

Table 4-7: LACsrReg Error Flags.

There are a few errors in Table 4-7 that have not been elaborated on yet. The first is badinsn,

which arises when the LACore receives a malformed instruction. This happens when one of the fields

that should be all zeros has a non-zero value, or one of the lfunc fields (discussed in ISA section) has

an invalid value. The second is memovrflow, which is self-explanatory: if the user specifies an address

outside of the scratchpad or main memory’s size, this error is produced. The floaterr flags is

asserted if any of the normal floating point exceptions occur, such as divide by zero. There are a few

errors that have to do with invalid “count” fields on vectors and sparse matrices. The first two,

mstdiffcount and mstbadcnts have been elaborated in the Novel Generic Stream-interface

section. The last two are srccntzero and dstcntzero, which arise when the source or destination

vector or sparse matrix has a count, idx_count, or jdx_count value of zero, which will cause a

divide-by-zero error in the LAMemUnit’s Next-Address Generator. The badalign exception is

caused by configuring a scalar, vector or sparse matrix on an unaligned address.

39

4.5 THE LACORE SCRATCHPAD

Scratchpad Architecture

The LACore’s scratchpad is a single-bank, multi-port, high-throughput, low-latency private

memory with physical addressing disjoint from the main memory address range. The purpose of the

LACore’s scratchpad is to provide temporary storage for intermediate results in multi-instruction

applications. For example, in order to add three vectors, 𝐴, 𝐵, and 𝐶 together, 𝑇 = 𝐴 + 𝐵 must be

computed and then 𝑇 + 𝐶 is computed, where 𝑇 is an intermediate-result vector. It is faster to write 𝑇

to the scratchpad than to dynamically allocate space in memory for 𝑇, store 𝑇 there, and then

immediately reload 𝑇 back into the LAExecUnit

The approach to make two separate address spaces for the scratchpad and main memory is

different than the embedded application approach proposed in (Banakar, 2002), which uses a unified

address space and lets the compiler manage the complex task of mapping data to the scratchpad when

it sees fit. The approach the LACore takes is closer to how IBM’s Cell Processor approaches memory

management: the programmer is given explicit control over the movement of data between the

different memory components of the system (Williams S. S., 2006). The reason this approach was taken

over the intelligent-compiler approach is because the configuration space for the LACore is very large,

and the kernels that execute on the LACore are not lightweight kernels that execute on GPUs or multi-

media application accelerators; therefore, it would be a difficult task to intelligently map resources to

and from the scratchpad over a long-running kernel the way a programmer with a high-level

understanding of the algorithm is able to do. Additionally, the main reasons the scratchpad exists is to

hide latency of memory interactions, overlap data transfer with data execution effectively, and provide

a fast cache for intermediate result. In order to achieve all of these, the programmer must carefully

manage where data is placed, even down to the byte address.

Scratchpad Implementation

The design of the scratchpad is seen in Figure 4-17. The scratchpad is 64 kB, and has three

independent read ports and one independent-write port. The SRAM cell therefore would be something

like a 12-T, with three independent single-ended reads and one double-ended write, a realistic cell in

modern VLSI techniques. For example, a 9-read-port/7-write-port is presented in (Sumita, 2005), and

the Intel Itanium processor utilized 12-read/8-write ports in its integer register file design (Fetzer, 2006).

40

Although these SRAM cells were designed for register-file usage, the idea can be applied to the

scratchpad, which uses just a fraction of the ports, and therefore transistors, per SRAM cell.

Figure 4-17: LACore Scratchpad Detailed View.

The LACore’s scratchpad design contrasts with the NVIDIA GPU shared memory design

(Lindholm, 2008), which uses 32 banks accessed simultaneously by many lightweight threads. The

reason a GPU needs to have highly-banked scratchpads (or shared memory), is to allow independent

threads within a warp to access independent data in the scratchpad at the same time. The LACore

does not have many lightweight threads, instead it has a heavy-weight complex thread that uses four

LAMemUnits to simultaneously access the scratchpad, and since only four simultaneous accesses are

being done at a time, all that is needed a multi-port SRAM cell to provide this functionality. The three

input LAMemUnits will read on the first half of the clock cycle, and the one output LAMemUnit will

write to the scratchpad on the second half of the clock cycle, so all data accesses will remain consistent.

Initially, the LACore design went with a highly-banked scratchpad, similar to the GPU design

discussed here. However, after preliminary results on the benchmarks, it was clear that the scratchpad

was not providing the benefit it should be. After investigating the results further, it became clear that

this poor performance was due to using a scratchpad banking model designed for many lightweight

threads with the LACore, which needed a scratchpad design for a single heavyweight thread.

Optimal Scratchpad Usage

The programmer should try to use consecutively placed elements within the scratchpad as much

as possible. Sometimes, accessing a vector with a strided pattern cannot be avoided, such as during a

matrix transpose, but the programmer should always try to place data in the scratchpad in a way that

will allow sequential reading later in the application. The reason for this, as discussed in the

LAMemUnit section, is because the LAMemUnits have special mechanisms to access multiple items

41

within the same 128 Byte access-line within the same clock cycle. So packing as many consecutive

elements within that 128-Byte address range can potentially improve the memory throughput by up to

16x for double-precision vectors and 32x for single-precision vectors. This can greatly improve the

performance of memory-bound applications.

Design Space Optimization: Scratchpad Usage

Similar to the LAExecUnit’s datapath parameters, the usage of a scratchpad and the

scratchpad’s size and access line-size were not arbitrarily chosen, but were decided upon after extensive

parameter sweeps using common linear algebra applications on gem5 implementations (Binkert, 2011).

Similar to the LAExecUnit parameter sweeps, Double-Precision Matrix-Matrix Multiply (DGEMM), and

Double-Precision Triangular-Solve (DTRSM), which are BLAS-3 kernels, were chosen for evaluating the

optimal scratchpad configuration (Lawson, 1979). These kernels allow us to implement most of complex

routines in the BLAS API with as few lines of code written as possible.

The first parameter sweep involving the scratchpad was testing whether using a scratchpad

even provided any performance benefits. All DGEMM and DTRSM variations were performed both with

and without a scratchpad present, across a range of matrix sizes. The results for the DGEMM sweep are

shown in Figure 4-18, with four different scratchpad configurations shown. “Yes-S” means a scratchpad

was used, while “No-S” means no scratchpad was used. The micro-kernel within DGEMM was either

“STRIDE” or “PANEL”, which were just two variations of the DGEMM kernel that tried to utilize the

LACore hardware in different ways. The “STRIDE” micro-kernel attempts to maximize the length of the

vectors the LACore worked with, while the “PANEL” algorithm attempts to minimize the cache-miss

rate. The results show that, for both “STRIDE” and “PANEL” algorithms, the performance was much

better when a scratchpad is used. As the matrix size grows, the “PANEL” algorithm while using the

scratchpad is the optimal configuration.

42

Figure 4-18: Scratchpad Usage vs Peak DGEMM.

Similar results are seen when evaluating all DTRSM variations with and without the scratchpad.

Figure 4-19 shows that across all matrix sizes and DTRSM variations, using the scratchpad provides a

noticeable performance improvement. Figure 4-20 shows that the peak performance is even more

pronounced when using a scratchpad vs not using a scratchpad. Because both the DGEMM and DTRSM

results indicate that using a scratchpad is optimal for performance, the LACore design chose to use a

scratchpad

Figure 4-19: Scratchpad Usage vs Average DTRSM
performance.

Figure 4-20: Scratchpad Usage vs Peak DTRSM
performance.

Design Space Optimization: Scratchpad Size and Line-Size

After determining that a scratchpad should be used, the next step was to determine the size and

line-size of the scratchpad. These, too, were found using gem5 parameter sweeps using DGEMM. The

scratchpad size was swept across 64 kB – 256 kB, and it had nearly zero effect on the performance of the

application at all matrix sizes. Therefore, the smallest evaluated scratchpad size of 64 kB was chosen.

The scratchpad access line-size was also determined using parameter sweeps. The access line-size is

0

5

10

15

20

25

30

3 2 6 4 1 2 8 2 5 6
G

FL
O

P
/S

MATRIX SIZE

SCRATCH VS AVE. PEAK DGEMM

NO-S,STRIDE NO-S,PANEL

YES-S,STRIDE YES-S,PANEL

0

4

8

12

16

20

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

S PAD VS AVE DT R S M GFLO PS

scratch no_scratch

0

4

8

12

16

20

24

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

S PAD VS PEAK DT R S M GFLO P/S

scratch no_scratch

43

similar to the cache line-size of the main memory system, except it is between the LAMemUnits and

the scratchpad only, and does not necessarily need to be the same size as the cache-line size. The

parameter sweep results are shown in Figure 4-21, with the 128-byte line size clearly outperforming the

32-byte and 64-byte line sizes for all matrix sizes.

Figure 4-21: Scratchpad Line-Size vs DGEMM performance.

To summarize the parameter-sweep findings for the scratchpad: using the DGEMM and DTRSM

applications for performance tuning, it was determined that using the scratchpad provided enough

performance improvement to warrant the increase in design area. The size of the scratchpad and the

access line-size were determined to be 64 kB and 128 Bytes through additional parameter sweeps using

the DGEMM kernel.

4.6 THE LACACHE

Multi-Port, Multi-Bank Architecture

The fourth major sub-block of the LACore processor is the LACache, which is a special 64 kB

cache connecting the LAMemUnits to the memory controller, as seen in Figure 4-2. Similar to the

scratchpad, it has three read ports and one write port, which connect independently to each of the four

LAMemUnits, as seen in Figure 4-22. Similar to the CPU’s data-cache and instruction-cache, the

LACache connects to the higher-level L2 cache.

0

5

10

15

20

25

30

35

3 2 6 4 1 2 8 2 5 6

G
FL

O
P

/S

MATRIX SIZE

SCRATCH -L INE VS AVE. PEAK
DGEMM

32-line 64-line 128-line

44

Figure 4-22: LACache Detailed View.

The LACache has 16 internal 4 KB, non-replicated banks, with cache-block granularity

interleaving. This configuration was chosen after a large amount of manual performance tuning and

system parameter sweeps using gem5 and converging on the highest-throughput configuration. The

performance of multi-ported multi-banked SRAM caches is discussed by (Rivers, 1997), which compared

the throughput of true multi-ported, multi-ported with bank-replication, and true multi-banked caches

with up to 16 banks and ports each. It was reported that all three perform comparably on SPECint

benchmarks and plateau between 8 and 16 ports or banks. The use of multi-ported and multi-banked

caches is common in CPU cache-hierarchies, especially higher-level caches, since multiple-issue multi-

processors can issue up to 16 instructions per clock cycle, requiring high cache-bandwidth (Rivers, 1997)

(Thimmannagari, 2004).

Optimal LACache Usage

Similar to the scratchpad’s optimal usage, the programmer should try to use consecutively

placed elements within memory as much as possible when using the LACache. This allows the

LAMemUnits to access more elements per cache-line access, and reduce the total number of lines that

need to be pulled in the LACache. Reducing the number of lines pulled into the LACache is important

at larger workload sizes, because the four LAMemUnits will begin to start evicting each other’s data

which leads to poor performance due to the increased number of cache misses. This thrashing

phenomenon is clearly visible in almost all of the benchmark results for all cache-based systems (RISC-V,

x86 and LACore) in the Benchmarks and Evaluation section below. This degeneration of performance

due to increase cache-evictions is not something that can be avoided, but can be mitigated with the

LACore if the programmer accesses data in a sequential fashion.

Design Space Optimization: LACache Usage

45

The first question for evaluating the LACache is whether it is necessary, and this was answered by

performing more parameter sweeps using gem5. Similar to the previous parameter sweeps, Double-

Precision Matrix-Matrix Multiply (DGEMM), and Double-Precision Triangular-Solve (DTRSM), which are

BLAS-3 kernels (Lawson, 1979), were chosen for evaluating the optimal scratchpad configuration, using

the same reasoning for their selection. The parameter sweeps tested multiple high-level cache

configurations:

a) Routing all LAMemUnit requests through the L1 Data-cache

b) Using a 1-bank, 4-bank or 16-bank LACache connected directly to the memory controller

c) Using a 1-bank, 4-bank or 16-bank LACache connected directly to the L2-cache

Routing all the LAMemUnit requests to the main memory provided a baseline to compare against

the LACache performance. Additionally, the LACache was evaluated with and without the L2-cache

sitting under it. The Hwacha Vector Processor uses the approach of directly connecting the vector

processing unit to the L2-cache, and skips the L1 cache completely (Lee Y. O., 2015), which is similar to

the approach of connecting the LACache directly to the memory controller. Results are not shown for

the this third configuration where the LACache is directly connected to the memory controller,

because this configuration performed worst across the board for all applications. The remaining two

configurations are examined in the following parameter sweep results.

The parameter sweep results for DGEMM average performance across all four variations is shown in

Figure 4-23, and the results for the peak DGEMM performance is shown in Figure 4-24. In both cases,

the highly-banked LACache design performs better than the Data-Cache design, especially as the

matrix size grows.

Figure 4-23: LACache configuration vs DGEMM average
performance.

Figure 4-24: LACache configuration vs DGEMM peak
performance.

0

3

6

9

12

15

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

C AC H E VS AVE DGEM M GFLO P / S

D$ LA$ (1B) LA$ (4B) LA$ (16B)

0

5

10

15

20

25

30

35

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

C AC H E VS P EAK DGEM M GFLO P / S

D$ LA$ (1B) LA$ (4B) LA$ (16B)

46

Noticeably different results are seen with the DTRSM parameter sweeps, with the Data-cache

design actually performing better than the LACache at small matrix sizes. The average DTRSM

performance across all 16 variations is shown in Figure 4-25, while the peak performance is shown in

Figure 4-26. In both cases, the Data-Cache design performs better for matrix sizes up to 128x128, and

anything larger than that, the LACache design performs much better. The reason that the data-cache

works better at small matrices is because some of the non-LACore-specific instructions may access the

same data as the LACore-specific instructions. If the LAMemUnits route all requests through the

Data-Cache, then both sets of instructions will enjoy cache-hits for that data. However, when the

LAMemUnits route all their requests through the LACache, the non-LACore instructions will suffer

from cache misses for the data that the LAMemUnits just accessed. As the matrix size grows, the data

shared between both sets of instructions shrinks compared to the total data accessed by the

LAMemUnits, and this data-sharing has a negligible effect on performance.

Figure 4-25: LACache configuration vs DTRSM average
performance.

Figure 4-26: LACache configuration vs DTRSM peak
performance.

Design Space Optimization: Cache Line Size

The cache line size was also chosen to be 128-bytes after extensive parameter sweeping with

gem5, with the results shown in Figure 4-27. The advantage of a 32-byte or 64-byte cache-line size is

that there are more entries in a given cache for a fixed cache size, which results in reduced conflicts.

Larger caches, on the other hand, allow for larger bulk transfer of contiguous data, which can improve

performance, especially for vector processing. However, when a larger cache-line size is used,

proportionally larger caches need to be used as well, or else the cache-conflict rate will suffer, as there

are less entries in the cache. The LACache, data-cache, and instruction-cache are all sufficiently sized

for a 128-byte cache-line size according to the results presented in (Patterson D. A., 2013). An

interesting decision was made by CRAY X1 designers to use a small cache-line size of 32-bytes, with the

justification that smaller cache-line sizes are optimized for applications with low spatial locality (CRAY,

0

5

10

15

20

25

30

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

CACHE VS AVE DTRSM GFLOP/S

D$ LA$ (1B) LA$ (4B) LA$ (16B)

0

5

10

15

20

25

30

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

CACHE VS PEAK DTRSM GFLOPS
D$ LA$ (1B) LA$ (4B) LA$ (16B)

47

2016). Parameter sweeps with the LACore in gem5 showed adverse performance when using a 32-byte

or 64-Byte cache line size compared to a 128-byte cache-line size for DGEMM, as shown in Figure 4-27.

Figure 4-27: Cache Line Size vs DGEMM performance.

0

5

10

15

20

25

30

35

3 2 6 4 1 2 8 2 5 6

G
FL

O
P

/S

MATRIX SIZE

CACHE -L INE VS AVE.PEAK
DG EMM

32-line 64-line 128-line

48

5 LACORE INSTRUCTION SET

5.1 LACORE ISA OVERVIEW

 The full LACore extension to the RISC-V Instruction Set (Waterman A. a., 2016) is shown in

Figure 5-1. A total of 68 instructions have been added using the Custom-0 extension space. RISC-V was

chosen as a vehicle for the LACore architecture as opposed to other ISAs such as MIPS, ARM or x86, for

a few reasons:

1) RISC-V is a modern, free, and open-source platform, with robust toolchains for developing both

hardware and software;

2) a gem5 implementation and fully tested RISC-V RTL models exist for many CPU types, through

the Sodor collection and BOOM (Celio C. P., 2015), allowing the LACore to only be

implemented once in gem5 and in RTL to be used in these various models; and

3) RISC-V provides a light-weight scalar CPU footprint, which makes more sense than a

heavyweight superscalar CPU as the LACore scales to manycore chip designs.

Figure 5-1: LACore Instruction Set Overview.

5.1.1 Instruction Opcode

The OpCode field for the RISC-V ISA extension is 0001011, and is composed of two parts – the

Minor OpCode covering bits [6:5], and the Major Opcode covering bits [4:2], both of which are specified

in the RISC-V ISA Manual (Waterman A. a., 2016). Bits [1:0] specify the instruction size, where 11 means

32-bit instruction. Bits [4:2] and Bits [6:5] together form a matrix of op-classes. As seen in Figure 5-2,

there are four op-class spots in the 32-bit ISA space that are dedicated to custom ISA extensions.

49

LACore occupies the custom-0 extension slot, which means the Minor OpCode is 00 and the Major

Opcode is 010. Note that this gives the LACore ISA a 25-bit encoding space.

Figure 5-2: RISC-V Instruction Set Map, Table 9-1 in (Waterman A. a., 2016).

5.1.2 Instruction Size

A design decision was made whether to use a 32-bit instruction space, a larger, 48-bit or 64-bit

instruction space, or a variable length instruction space. Since the LACore ISA is not a typical load-store

ISA, it has some unique instruction requirements that need to be taken into consideration when

choosing a 32-bit, 64-bit, or variable instruction length:

- Instruction Width Vs Number of Instructions: There is a lot of configuration that needs to

happen before a ExecInst or XferInst can start reading and writing data from memory

correctly. The LACore ISA could either use wide instructions to fit all the operands, or use

multiple consecutive, smaller instructions to accomplish the same task. The former option

requires less instructions but complicates the decoder by requiring instruction fetch buffering

(Patterson D. A., 1985), while the latter option has higher latency but is simpler and fits in the

32-bit RISC-V ISA space nicely.

- Operand Layout Parameters: Each input and output vector can be configured as a Scalar,

Vector or Sparse data type. The Scalar type is simply a 32-bit or 64-bit floating point, so

does not require many configuration parameters. The Vector data type requires more

parameters in addition to whether it is a vector of 32-bit or 64-bit floating point values, such as

the start address of the vector, and its stride, count and skip. This is a total of three 5-bit register

indexes and a Boolean flag, so 16 bits are used. Since the ExecInst instructions use three

inputs and one output, this would require 64 bits just for operand configuration, which would

require an instruction size even larger than 64-bits. The problem becomes much worse with the

Sparse data type, which requires six parameters per operand (and would require over 128-bit

instruction).

- Operand Locations: The LACore is mainly used as a memory-memory ISA via the ExecInsts

and XferInsts, but the data-source can also be in the LACfg configuration registers as well.

50

In addition to data stored in memory, there is actually two disjoint address spaces: Private

Scratchpad Memory, and Main Memory. So we need the ISA to specify a location of the input

and output data of the three possible locations in addition to the already large amount of

configuration needed for the Layout Parameters discussed above.

The above discussion support why a multi-instruction configuration sequence is inevitable for the

LACore ISA. It might be feasible to mix in 128-bit instructions with 32-bit instructions, but the decoding

logic becomes more complicated and requires buffering, and the real cost of configuration just moves to

filling a bunch of general purpose registers over many cycles, instead of configuring the LACfgs over a

similar number of cycles.

5.2 CONFIGURATION INSTRUCTIONS

Figure 5-3: LACore configuration ISA.

The 9 configuration instructions, illustrated in Figure 5-3, are called CfgInsts, and are single-

cycle instructions that update a LACfg register specified by lrd with contents from general-purpose

integer or float registers lrxa, lrxb, lrxc, and lrfa. In the RISC-V scalar CPU implementation of the

LACore ISA, lrxa, lrxb and lrxc corresponds to registers x0-x31, and lrfa corresponds to

registers f0-f31 from (Waterman A. a., 2016). The description and usage of each argument is presented

in Table 5-1 below.

In addition to the instruction arguments, there are five configuration bitfields in CfgInsts:

SPV, TNS, DP, VEC and ALT. The SPV bit is 1 if the data-source is a sparse matrix, and is only asserted

during the lcfgvadr{s|t} instructions. The TNS field is 1 if the sparse matrix should be read

transposed, and is only relevant for the lcfgvadr{s|t} instructions. The DP field is 0 to configure a

single-precision data-source, and 1 to configure a double-precision data-source, and this flag applies to

the lcfgsx{s|d}, lcfgf{s|d} and lcfgvlay{s|d} instructions, since the lcfgvadrv and

lcfgvlay{s|d} do not configure the data precision. The VEC field is 1 if the data-source is a vector

or sparse matrix, and 0 if it is a scalar; it applies to every configuration instruction. The ALT field, or

51

“alternate configuration” field, specifies that a scalar should be read from the general-purpose floating

point registers instead of read from scratchpad or memory, OR that the lcfgvlay{s|d} instruction is

run to update the layout fields for a vector or sparse matrix. The description and usage of each bitfield is

also presented in Table 5-1 below.

Field Field Type Description Used in Instructions

LRD Argument Destination LACfg register lr0-lr7
ALL

LRXA Argument Source RISC-V integer register x0-x31

LRXB Argument Source RISC-V integer register x0-x31 lcfgvadr{s|t}

lcfgvlay{s|d} LRXC Argument Source RISC-V integer register x0-x31

LRFA Argument Source RISC-V floating point register f0-f31 lcfgsf{s|d}

SPV Bitfield 1 if sparse, 0 if not sparse lcfgvadrv

lcfgvadr{s|t} TNS Bitfield 1 if sparse is transposed, 0 otherwise

LRDLOC Argument
0x00, 0x01, 0x10 for lrd, (lrd), {lrd}, meaning data-

source is in LACfg, memory, or scratchpad respectively

lcfgsx{s|d}

lcfgsf{s|d}

lcfgvlay{s|d}

DP Bitfield 1 if data-source is double-precision, 0 otherwise

ALL

VEC Bitfield 1 if data-source is vector or sparse matrix, 0 otherwise

ALT Bitfield
1 if data-source is scalar and in float register or

performing the lcfgvlay{s|d} instruction, 0 otherwise

LOP Bitfield LACore sub-opcode, 0x10 for config instructions

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions

Table 5-1: Configuration Instructions bitfields and arguments.

A subset of the scalar and vector configuration instructions are illustrated in Figure 5-4. Curly

braces or parenthesis around lrd mean the data stream is in the scratchpad or memory, respectively;

no braces or parenthesis mean the data stream is a scalar floating point value stored in the LACfg

itself. Additionally, all scalars, vectors or sparse stream configurations can be single or double-precision.

Configuring a scalar is done by either lcfgsx{s|d} to load an address into the LACfg, and

lcfgsf{s|d} to load the floating-point value into the LACfg. Configuring a vector or sparse matrix

takes two instructions: one to configure the addresses, lcfgvadrv or lcfgvadr{s|t}, and one to

configure the layout of the vector or sparse matrix, lcfgvlay{s|d}. Each configured LACfg can be

used by one or multiple LAMemUnits simultaneously during a ExecInst or XferInst.

52

// put x2 addr of 32 - bit float in scratch in LACfg 0.

// put x3 addr of 64 - bit float in mem in LACfg 1.

// put 32 - bit float value in f3 in LACfg 2.

lcfgsxs {lr0}, x2

lcfgsxd (lr1), x3

lcfgsfs lr2, f3

// put addr of 64 - bit float in mem into LACfg 2,

// then put its stride/count/skip into LACfg 2

lcfgvadrv lr2, x3

lcfgvlayd (lr2), x4, x5, x6
Figure 5-4: LACore configuration instruction examples.

An important note is that the scratchpad and memory address spaces are non-unified, so the

address 0x10 in the scratchpad refers to byte offset 0x10 in the scratchpad, while memory addresses

refer to normal memory address space. This means that scratchpad data is not directly accessible to the

programmer, and must be explicitly transferred to memory through either a data-transfer or execution

instruction in order to be used by the scalar CPU instructions.

5.3 DATA TRANSFER INSTRUCTIONS

Figure 5-5: LACore Data Transfer ISA.

Field Field Type Description Used in Instructions

LRD Argument Destination LACfg register lr0-lr7 lxferdata

LRA Argument Source LACfg register lr0-lr7 lxferdata

LRXA Argument

RISC-V integer register x0-x31, holds the ‘count’ for

lxferdata operation and serves as the destination

register for the lxfercsrget instruction

lxferdata

lxfercsrget

CLR Bitfield 1 if clearing the LACsrReg, 0 otherwise

ALL

GET Bitfield 1 if copying LACsrReg to an integer register, 0 otherwise

DAT Bitfield
1 if performing a data transfer from a source LACfg to a

destination LACfg

LOP Bitfield LACore sub-opcode, 0x11 for all data moving instructions

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions

Table 5-2: Data Movement Instructions bitfields and arguments.

53

The three XferInsts, shown in Figure 5-5, copy data-streams between any combination of

memory, scratchpad and an LACfg. The bitfields and arguments for these instructions are shown in Table

5-2 above. The lxferdata instruction moves data from an arbitrary source specified by the LACfgs:

lrd (destination) and lra (source). The total number of elements to copy is specified by general-

purpose integer register lrxa. The lxfercsrget instruction copies the 64-bit LACsrReg (the

control-status register) contents into the general-purpose integer register lrxa. The

lxfercsrclear instruction sets the LACsrReg contents to zero. Figure 5-6 illustrates a subset of

the lxferdata assembly instructions.

// transfer the scalar/vector/matrix in LAReg 1

// to the scalar/vector/matrix in LAReg 0.

// The number of elements to transfer is

// in integer register x2.

laxferdata lr0, lr1, x2
Figure 5-6: LACore Data Movement Instruction examples.

The lxferdata functionality is similar to the memcpy() extension to the RISC-V ISA proposed by

(Mao, 2016), except the LACore version is much more flexible by providing mechanisms to:

1) convert between single-precision and double-precision streams;

2) transform streams between scalars, vectors, and sparse matrices; and

3) move data between scratchpad and memory.

5.4 DATA EXECUTION INSTRUCTIONS

Figure 5-7: LACore Data Execution ISA.

The 56 ExecInsts, illustrated in Figure 5-7, simultaneously configure the LAMemUnits to

stream input and output data into the LAExecUnit’s datapath, and configure the datapath to perform

one of the 24 possible operations on the data streams.

ExecInsts come in three output-modes: vector-output, scalar-output, and multi-stream

output, which have instruction prefixes of ldv, ldr, and ldrm respectively. There are 8 variations of

ldv instructions, and 24 variations of ldr and ldrm instructions each. The variations, seen in the inst

column of Figure 5-7, are used to configure the various muxes and control circuitry in the LAExecUnit

54

for the duration of the instruction. The bitfields names and their functions are described in more detail

in Table 5-3 below. The three input data-streams and one output data-stream are specified by

instruction args lra, lrb, lrc, and lrd respectively, while the total number of input elements to

operate on is specified by integer register lrxa. Note that the total number of output elements is

dependent on whether a vector-output, scalar-output or multi-stream output instruction is selected,

and not directly dependent on the value in lrxa. Figure 5-8 below shows a subset of ExecInsts for

each of the three types of output-modes.

Field Field Type Description Used in Instructions

LRD Argument Destination LACfg register lr0-lr7

ALL

LRA Argument Source A LACfg register lr0-lr7

LRB Argument Source B LACfg register lr0-lr7

LRC Argument Source C LACfg register lr0-lr7

LRXA Argument
RISC-V integer register x0-x31, holds the ‘count’, or

number of input elements from each stream to process

MST Bitfield 1 if multi-stream output, 0 otherwise ALL

RDCT Bitfield 0x00, 0x01, 0x10 for min, max, sum for ReduceNode config
24 ldr* instructions

24 ldrm* instruction

DV Bitfield 1 if divide, 0 if mutliply for VecNode configuration

ALL

SU Bitfield 1 if subtract, 0 if add for VecNode configuration

T2 Bitfield 1 if (A+-B)*/C and 0 if (A*/B)+-C for VecNode config

LOP Bitfield
LACore sub-opcode, 0x00 for scalar and multi-stream

outputs, and 0x01 for vector outputs

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions

Table 5-3: Execution Instructions bitfields and arguments.

The VecNodes in the datapath are configured by the LFUNC3 field in the ExecInst, while the

ReduceNodes are configured by the LFUNC2 field. The RDCT field within the LFUNC2 field is 0x00 if

the ReduceNodes perform sum(X, Y); RDCT is 0x01 if the ReduceNodes perform max(X, Y); RDCT is

0x10 if the ReduceNodes perform min(X, Y). the MST flag is 1 for multi-stream output only.

55

// scalar-output: output len is 1

// lr0 = sum((lr1+lr2)*lr3)

// lr0 = sum((lr1*lr2)-lr3)

ldrmats lr0, lr1, lr2, lr3, x2

ldrmsbs lr0, lr1, lr2, lr3, x2

// multi-stream-output: output length determined by

// x2 value and count field in LARegs 1 ,2 and 3

// lr0 = sum((lr1+lr2)*lr3)

// lr0 = sum((lr1*lr2)-lr3)

ldrmmats lr0, lr1, lr2, lr3, x2

ldrmmsbs lr0, lr1, lr2, lr3, x2

// vector-output: output length in x2

// lr0 = (lr1+lr2)/lr3

// lr0 = (lr1/lr2)-lr3

ldvdat lr0, lr1, lr2, lr3, x2

ldvdsb lr0, lr1, lr2, lr3, x2
Figure 5-8: LACore Data Execution Instruction examples.

The VecNode configuration flags within the LFUNC3 field are DV, SU and T2. DV is 1 for division

and 0 for multiplication, SU is 1 for subtract and 0 for add, and T2, which stands for “multiply/divide first

or second”, is 1 if the multiply/divide operation should be used on the A and B input or on the (A+-B)

and C inputs. Originally, the T2 field stood for “top or bottom”, since the original VecNode operations

were those in Table 5-4. However, as the LACore ISA evolved, the eight VecNode operations in Table

5-4 were replaced by those in Table 4-1.

Deprecated VecNode Ops

(A+B)*C (A+B)/C

(A-B)*C (A-B)/C

A*(B+C) A/(B+C)

A*(B-C) A/(B-C)
Table 5-4: Deprecated VecNode operations.

56

6 LACOREAPI FRAMEWORK

The LACore’s ISA was implemented in gcc, and a C programming, header-only library called the

LACoreAPI was developed to raise the abstraction of programming the LACore from the assembly

level to C. All benchmarks and programs targeting the LACore thus far have been built on top of the

LACoreAPI. The API mimics the underlying assembly instructions fairly closely, providing

configuration, data movement and execution function calls.

6.1.1 Configuration API

The configuration API is summarized in Figure 6-1. Lines 5-7 show how scalar data-streams are

configured for any of the LACfg, scratchpad or memory locations. Lines 10-11 show a subset of the

vector configuration API calls. There are many variations for setting the vector stride, count and skip, or

using sane default values if only the address or the address and sub-vector count need to be specified.

double *value;

LAAddr addr = (LAAddr)value;

// set scalar in an LACfg, scratch, or mem

la_set_scalar_dp_reg(0, *value);

la_set_scalar_dp_sch(1, 0x10);

la_set_scalar_dp_mem(2, addr);

// set vector in mem or scratch

la_set_vec_dp_mem(0, addr, stride, count, skip);

la_set_vec_adr_dp_mem(0, addr);

la_set_vec_adrcnt_dp_sch(0, addr, count);
Figure 6-1: LACoreAPI configuration API examples.

6.1.2 Data Movement API

The LACoreAPI provides a simple API for moving data-streams between memory, scratchpad

and the LACfgs through the la_copy() API call, illustrated in Figure 6-2, which takes a source and

destination LACfg, and the number of elements in the streams to transfer. It blocks for an arbitrary

number of cycles until the transfer has completed, and therefore is not an asynchronous interface call. It

should be apparent from Figure 6-2 that much more sophisticated data movements can be performed,

since the LACfgs can be configured for scratchpad or memory locations, with scalar, vector or sparse

matrix configs, with either single or double-precision floating point elements.

57

// copies src->dst, convert double->float

void copy_d2s(double *src , float *dst , int cnt)

{

 la_vec_adr_dp_mem(0, (LAAddr)src);

 la_vec_adr_sp_mem(1, (LAAddr)dst);

 la_copy(1, 0, cnt);

}
Figure 6-2:LACoreAPI data movement API example.

6.1.3 Execution API

The LACoreAPI provides API calls for all variations of vector-output, scalar-output, and multi-

stream output operations for data-streams of arbitrary length. Each API call takes 5 arguments: the 3

source LACfg indexes, the 1 destination LACfg index, and the number of input elements to operate

on. Vector-output calls have the format la_A<op>B<op>C(...), scalar-output calls have the format

la_A<op>B<op>C_<op2>(...), and multi-stream-output instructions have the format

la_A<op>B<op>C_<op2>_multi(...). In these formats, <op> is either add, sub, mul or div,

which set the LAExecUnit datapath’s VecNode configuration, while <op2> is sum, min or max, which

sets the LAExecUnit datapath’s ReduceNode configuration. Examples of the three variations of

execution API calls are shown in Figure 6-3.

//D = (A+B)*C, vector output

la_AaddBmulC(D, A, B, C, count);

//D = (A/B)-C, scalar output

la_AdivBsubC_sum(D, A, B, C, count);

//D = (A*B)+C, multi - stream output

la_AmulBaddC_sum_multi(D, A, B, C, count);
Figure 6-3: LACoreAPI execution API examples.

58

7 BENCHMARKS AND EVALUATION

7.1 BENCHMARK METHODOLOGY

HPC Challenge benchmark suite (Luszczek, 2005) and the Sparse DGEMV routine were used to

compare the performance of the LACore against three different architectures: a simple in-order

pipelined RISC-V processor, a superscalar x86 processor with SSE2 enabled, and an NVIDIA Fermi GPU

with two Streaming Multiprocessors (SMs). All platforms were simulated on gem5 (Binkert, 2011) in

syscall-emulation mode, with the Fermi GPU simulated with gem5-gpu (J. Power, 2015).

The HPCC benchmark suite was selected to evaluate our platform primarily because it is designed

for high performance linear algebra computations. It contains seven benchmarks that stress

computation throughput, memory bandwidth, and communication bandwidth. Additionally, its

benchmarks test performance with high-and-low spatial-and-temporal localities. We believe these

reasons make the HPCC benchmark suite a strong candidate to holistically evaluate our architecture

across a range of linear algebra applications. In addition to the HPCC benchmark suite, Sparse DGEMV,

which stands for Double-Precision Matrix Vector Multiplication, was also used to evaluate the sparse-

matrix manipulation capabilities of the LACore compared to the other platforms. Sparse DGEMV was

chosen to evaluate the sparse capabilities because it is a common linear algebra routine with a high

arithmetic complexity.

The main motivation for using a cycle-accurate simulator for benchmarking the x86 and GPU

platforms instead of using real hardware is to provide a fairer comparison by removing process

technology, clock speeds and cache configuration as variables, in order to focus on the merits of the

processor architectures. gem5 provides the capability of setting the comparable processor frequencies

and cache sizes, as well as control the workloads more directly than running them on top of an

operating system.

Only a single thread on a single core was used in the LACore, RISC-V and x86 implementations,

even though multithreading and multi-core were options. The reasoning is to compare the raw

performance of a single hardware thread in each of these three platforms. Similarly, the GPU was run

using only a single cluster, with two cores per cluster. Here, cluster is gpgpu-sim’s equivalent of a

collection of NVIDIA Streaming Multiprocessors (A. Bakhoda, 2009). Only two NVIDIA SMs were

modelled since this is a fair comparison to an LACore in terms of area, as discussed in the Design Area

59

Estimates section. The most relevant gem5 configurations for the LACore, RISC-V, x86 and scaled-down

Fermi GPU platforms are shown in Table 7-1.

LACore X86, RISC-V CUDA

Scalar CPU Model In-Order X86 CPU Model Out-of-
Order

Scalar X86 CPU
Model

Out-of-
Order

Scalar CPU Clock 3 GHz RISC-V CPU Model In-Order GPU Model NVIDIA
Fermi

LAExecUnit Clock 1 GHz Scalar CPU Clock 3 GHz Scalar CPU Clock 3 GHz

VecNode Count 8 Cache Line Size 128 Bytes GPU Core Clock 1 GHz

SIMD Width 8 Inst-Cache Size 16 KB Cache Line Size 128 Bytes

Scratchpad Size 64 KB Data-Cache Size 64 KB GPU Clusters 1

Inst-Cache Size 16 KB L2-Cache Size 256 KB GPU Cores-per-
Cluster

2

Data-Cache Size 64 KB L2-Cache Size 1 MB

LACache Size 64 KB

L2-Cache Size 256 KB
Table 7-1: gem5 and gem5-gpu configurations used for the HPCC benchmark suite.

The HPCC benchmarks used for evaluation were DGEMM, FFT, PTRANS, HPL, Random Access,

and STREAM. This covers the four extreme combinations of high-and-low spatial-and-temporal locality.

b_eff was not tested since it primarily evaluates multi-processor communication efficiency, which is not

the focus of this thesis.

The standard HPCC software distribution was not used for the benchmarks. Instead, kernels tailored

for each of the platforms were either hand-written, or used high-performance libraries, such as GNU

Scientific Library, FFTW3, and Eigen (Gough, 2009) (Johnson, 1998) (G. Guennebaud, 2010). There are a

few reasons for not using the standard distribution of HPCC:

1) gem5’s syscall-implementation mode does not cover all syscalls, or all functionality of every ISA

it implements, so many of the compiled x86 benchmarks do not even run

2) LACore and CUDA (NVIDIA’s software framework) are special platforms that don’t have

specially tailored kernels in the HPCC distribution, so they need to be written anyways

3) this paper evaluates single-threaded functionality for x86, RISC-V and LACore, so greater

control is needed over exactly how the benchmarks are internally running

Care was taken to follow the specification for each benchmark described in (Luszczek, 2005) as

closely as possible, in order to provide reproducible results. For all benchmarks, we verified the LACore

results to be correct against correct implementations.

60

7.2 DGEMM

7.2.1 Implementation

Double-Precision Dense Matrix-Matrix multiply is at the heart of many Linear-Algebra

applications, and is a high spatial-and-temporal locality application. The operation count approaches

2𝑛3 for square matrix sizes of 𝑛. For this paper, all 4 variations of 𝐶 = 𝛼 𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽 𝐶 were

evaluated on all platforms.

The RISC-V platform used the GNU Scientific Library (GSL) implementation of DGEMM (Gough,

2009), while the x86 version used both the GSL and Eigen library implementations, with SSE2 enabled

(G. Guennebaud, 2010). The Fermi GPU ran optimized hand-written kernels since cuBLAS was not

available as a static library for NVIDIA Toolkit 3.2 and no good implementations for all four DGEMM

variations that could run without runtime errors on gem5-gpu could be found. The LACore

implementation used a handwritten algorithm leveraging the LACoreAPI framework.

The LACore’s algorithm for solving DGEMM uses a standard paneling technique, where sub-

blocks of matrices 𝐴, 𝐵 and 𝐶 are copied into the scratchpad, and then several dot-products are

performed for each sub-row in 𝐴 with a sub-column in 𝐵 and then updates the element in 𝐶. After all

the dot-products using the LAExecUnit’s custom datapath, the block from 𝐶 is copied back into main

memory. The reason paneling is effective is because it improves temporal and spatial locality on

average, which is important in cache-based memory hierarchies, which the LACore has.

When transposing 𝐴 or 𝐵 is required, as is for three of the four DGEMM variations, the

LACore’s algorithm will first transpose the whole matrix before performing the paneled-DGEMM sub-

algorithm discussed above. The reason that the whole matrix is transposed beforehand is to allow the

highly-optimized paneled-DGEMM kernel to remain the same across all four variations, therefore

requiring the conversion of all inputs to a common format beforehand. Figure 7-1 shows the C-language

transpose sub-routine used in the LACore’s DGEMM kernel, where blocks are copied from memory to

scratchpad to memory using the special LAMemUnit hardware through the la_copy() API call in

the LACoreAPI.

61

//transposes an NxM matrix in src to an MxN matrix in dst

void dtranspose_la_core(double *src, double *dst, IDX N, IDX M) {

 const LACfgIdx src_mem_REG = 0, src_sch_REG = 1;

 const LACfgIdx dst_sch_REG = 0, dst_mem_REG = 1;

 IDX BLOCK = (IDX)(log2((double)SCRATCH_SIZE)/(double)sizeof(double));

 //perform transpose in panels of size (icount x jcount)

 for(IDX i=0; i<N; i+=BLOCK) {

 for(IDX j=0; j<M; j+=BLOCK) {

 IDX icount = MIN(BLOCK, (N - i));

 IDX jcount = MIN(BLOCK, (M - j));

 LAAddr src_addr = (LAAddr)(src + (i+N*j));

 LAAddr dst_addr = (LAAddr)(dst + (j+M*i));

 //configure LACfg with index ‘src_mem_REG’ for

 //source submatrix in memory

 la_set_vec_dp_mem(src_mem_REG, src_addr, 1, icount, (N-icount));

 //configure LACfg with index ‘src_sch_REG’ for

 //source submatrix in the scratchpad

 la_set_vec_dp_sch(src_sch_REG, 0, jcount,

 icount, 1-(jcount*icount));

 //transfer source data from mem to scratchpad

 la_copy(src_sch_REG, src_mem_REG, icount*jcount);

 //configure LACfg with index ‘dst_sch_REG’ for

 //the submatrix we just transferred to the scratchpad

 la_set_vec_dp_sch(dst_sch_REG, 0, 1, jcount, 0);

 //configure LACfg with index ‘dst_mem_REG’ for

 //the submatrix within the dst matrix

 la_set_vec_dp_mem(dst_mem_REG, dst_addr, 1, jcount, (M-jcount));

 //transfer dst data from scratchpad to mem

 la_copy(dst_mem_REG, dst_sch_REG, icount*jcount);

 }

 }

}

Figure 7-1: DGEMM matrix transpose sub-routine in C for the LACore.

7.2.2 Results

The averaged performances of all four DGEMM variations are shown in Figure 7-2. The

LACore’s performance asymptotically increases with the matrix size. At a matrix dimension of 128, the

LACore achieves an average 14.3 GFLOP/s, which is a speedup of 31.7x, 1.6x, 9.8x and 5.73x over RISC-

V, Fermi GPU, x86-GSL and x86-Eigen implementations. At a dimension of 1024, the average speedup is

80.4x, 1.52x, 47.3x and 6.7x respectively, which can be seen in Figure 7-3.

The large speedup over the RISC-V and x86 implementations is expected since DGEMM is a

highly computation-bound application, and the LACore can keep its LAExecUnit constantly busy

since memory accesses are regularly-strided with high localities. Also, the vector sizes that are accessed

depend primarily on the large panel width in the paneling DGEMM algorithm, as opposed to HPL

62

(discussed later), which accesses vectors of size 1, 2, 3, . . . , 𝑛 when performing LU decomposition and

forward/back substitution. This is why DGEMM performs better than HPL on the LACore.

The performance speedup over the Fermi GPU can be explained by the LACore not having to

transfer data to and from device memory, while still benefiting from similar parallelism that the GPU

provides. Additionally, the LACore does not require synchronization during the reduction phase of a

dot-product, since only a single thread is running, and the LAExecUnit has a special reduction unit in

it. The Fermi GPU, on the other hand, requires calls to syncthreads() after each iteration of a dot-

product reduction accessing shared-memory, which causes additional overhead.

Figure 7-2: DGEMM average for LACore, RISC-V, Fermi GPU,
x86-GSL and x86-Eigen.

Figure 7-3: DGEMM average speedup of LACore over RISC-
V, Fermi GPU, x86-GSL and x86-Eigen.

Similar trends can be seen for each platform’s peak performance across all four DGEMM

variations, with the LACore performing even better than in the DGEMM-average case. Figure 7-4

shows that the LACore achieves a peak of 30.5 GFLOP/s at a matrix dimension of 64, which is a

speedup of 50x, 4.8x, 11.7x and 12.2x over RISC-V, Fermi GPU, x86-GSL and x86-Eigen implementations,

as seen in Figure 7-5. The LACore’s peak performance also outperforms all other platforms

asymptotically as the matrix size increases, with a performance of 23.8 GFLOP/s at a matrix dimension of

1024, and a speedup of 86x, 1.5x, 43x and 10x over RISC-V, Fermi GPU, x86-GSL and x86-Eigen

implementations.

The reason the LACore has larger speedups in the peak DGEMM results vs the averaged

DGEMM results is because the matrix transposes required in three of the four DGEMM variations cannot

be performed as efficiently by the LACore as simple matrix-matrix multiplication. So the one DGEMM

variation that does not have any transposes has a much better performance.

0

4

8

12

16

20

24

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

DGEMM-AVE PERFORMANCE

LACore RISC-V GPU
x86-G x86-E

0.1

1.0

10.0

100.0

32 64 128 256 512 1024

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

DGEMM-AVE FLOP/S SPEEDUP

RISC-V GPU x86-G x86-E

63

Figure 7-4: DGEMM peak for LACore, RISC-V, Fermi GPU, x86-
GSL and x86-Eigen.

Figure 7-5: DGEMM peak speedup of LACore over RISC-V,
Fermi GPU, x86-GSL and x86-Eigen.

The worst-case DGEMM performance across all four DGEMM variations has the LACore

performing worse than the Fermi GPU implementation at intermediate matrix dimensions, but

performing better than all the other platforms at small and large matrix dimensions. Figure 7-6 shows

the LACore achieves its best worst-case performance at the largest matrix size tested of 1024, where

it ran at 9.9 GFLOP/s, with a speedup of 455x, 2.8x, 47x and 4.3x over the RISC-V, Fermi GPU, x86-GSL

and x86-Eigen implementations. As seen in Figure 7-7, the x86 and Fermi GPU implementations are

fairly competitive with the LACore’s performance, at low-to-mid matrix sizes.

The poorer performance in the worst-case of the LACore compared to the other platforms is

most likely due to the matrices being small enough to fit in the L1 caches, thus causing the LACore’s

extra transpose sub-routine overhead to not be worth the time investment. If the matrices are small

enough to fit into the caches, then the other implementations don’t suffer any real spatial or temporal

locality penalties when working with transposed matrices, but at larger matrices, this penalty becomes

severe, and the LACore’s transpose sub-routine pays off tremendously, as seen in Figure 7-6.

Figure 7-6: DGEMM worst-case for LACore, RISC-V, Fermi
GPU, x86-GSL and x86-Eigen.

Figure 7-7: DGEMM worst-case speedup of LACore over RISC-
V, Fermi GPU, x86-GSL and x86-Eigen

0
5

10
15
20
25
30
35
40
45

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

DGEMM-PEAK PERFORMANCE
LACore RISC-V GPU
x86-G x86-E

1.0

10.0

100.0

1000.0

32 64 128 256 512 1024

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

DGEMM-PEAK FLOP/S SPEEDUP

RISC-V GPU x86-G x86-E

0

2

4

6

8

10

12

14

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

DGEMM-WORST GFLOP/S

LACore RISC-V GPU
x86-G x86-E

0.1

1.0

10.0

100.0

1000.0

32 64 128 256 512 1024

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

DGEMM-WORST FLOP/S SPEEDUP

RISC-V GPU x86-G x86-E

64

7.3 FFT

7.3.1 Implementation

The complex double-precision FFT tests computational throughput for low spatial-locality, high

temporal-locality applications. The total operation count is 5𝑚 𝑙𝑜𝑔2𝑚 and is measured in GFLOP/s

(Luszczek, 2005). The RISC-V CPU used GSL for FFT (Gough, 2009). The x86 CPU used two different

libraries, GSL and FFTW (Johnson, 1998), both compiled with SSE2 enabled. Since cuFFT was not

available as a static library for NVIDIA Toolkit 3.2, a slightly modified FFT implementation was taken

from the University of Illinois’ Parboil benchmark suite included in the gem5-gpu distribution (J. A.

Stratton, 2012). The LACore implementation was hand-written C code leveraging the LACoreAPI.

The LACore uses an iterative Radix-2 implementation of the Cooley-Tukey algorithm (Tukey, 1965).

The algorithm is composed of 3 steps:

1) precompute all twiddle-factors, which are stride-accessed by the LAMemUnits during the FFT;

2) perform the bit-reverse algorithm; and

3) iteratively solve the FFT.

//’x’ value stored in imag parts of ’data’

//’C’ are the cos polynomial coefficients

void cosines(Complex *data , IDX count) {

 //NOT SHOWN: setup scalars Zero_REG and One_REG ...

 LAAddr in = (LAAddr)&data->im;

 LAAddr out = (LAAddr)&data->re;

 //tw_REG points to the imaginary parts of each item in ‘data’ vector

 la_set_vec_dp_mem(tw_REG, out, 1, 1, 1);

 //X_REG points to the real parts of each item in ‘data’ vector

 la_set_vec_dp_mem(X_REG, in, 1, 1, 1);

 //calculate square of vector: X_REG = X_REG*X_REG (see paper)

 la_AaddBmulC(X_REG, X_REG, Zero_REG, X_REG, count);

 for(IDX i =0; i <8; ++ i) {

 //set the next scalar and then perform

 // tw_REG = (tw_REG+C[i])*(x^2)

 la_set_scalar_dp_reg(Const_REG, C[i]);

 la_AaddBmulC(tw_REG, tw_REG, Const_REG, X_REG, count);

 }

}

Figure 7-8: LACore FFT Twiddle Factor Pre-Computation.

Precomputing the twiddle-factors in step-1 would normally require 𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑖𝑧𝑒/2 𝑠𝑖𝑛() and

𝑐𝑜𝑠() calls, but the LACore implementation actually compute 𝑐𝑜𝑠() using the 18-degree polynomial

coefficients from (Garrett, 2012), as illustrated in Figure 7-8. This approach allows the Twiddle-Factors to

be computed in parallel as opposed to serial calls to 𝑐𝑜𝑠().

65

Figure 7-9: LACore's two FFT blocking strategies.

The second step of performing the bit-reversal for the FFT is done using multiple calls to the

la_copy() function call provided by the LACoreAPI. The LACore’s actual FFT algorithm is

composed of two different algorithms that perform blocks of computation differently depending on how

many iterations have been performed. The current algorithm makes this jump after the 5th iteration,

when the ’solved’ sub-vectors grow to over 32 elements long. The main difference between the two

algorithms is the order in which Twiddle-Factors are accessed and the sub-vector elements are accessed,

mainly to improve spatial locality and maximize the size of the vectors being operated on at all times.

Figure 7-9 demonstrates the pattern that the LACore solves for elements in the FFT: when the current

iteration, 𝑚, is small, solve the first element in each sub-vector at a time (orange elements). When 𝑚 is

large, we solve for consecutive elements in the same vector. For each iteration in the FFT, the Twiddle-

Factors are loaded into the scratchpad, and then a complex double-precision vector multiply is applied

to the sub-vectors, and then the result sub-vectors are updated in memory. In Figure 7-9, this means for

the initial iterations, when 𝑚 is small, a single Twiddle-Factor is loaded in to the scratchpad and

multiplied by each element from different sub-groups.

7.3.2 Results

The complex double-precision FFT results are shown in Figure 7-10, with the LACore

significantly outperforming all other implementations for vector sizes up to 214 (or 16384) elements.

The LACore’s peak double-precision throughput at a vector size of 4096 is 1.88 GFLOP/s, which is a

4.23x, 7.98x, 2.40x and 3.34x speedup over the RISC-V, Fermi GPU, x86-GSL and x86-FFTW

implementations. The throughput asymptotically approaches 0.55 GFLOP/s, which is a 2.1x, 1.36x, 1.56x

and 0.79x speedup of the RISC-V, Fermi GPU, x86-GSL and x86-FFTW implementations. So the LACore

is the optimal architecture for small to medium-sized FFTs and nearly as good as the highly-tuned FFTW

framework at large-sized FFTs, which implements higher-radix transforms than the simplest Radix-2

(Johnson, 1998). The small performance difference at large input vectors can be explained by the higher-

sophistication of the FFTW algorithms than what the LACore was running.

66

Figure 7-10: FFT Double-Precision on the LACore, RISC-V,
Fermi GPU, x86-GSL and x86-FFTW.

Figure 7-11: FFT Double-Precision Speedup of LACore over
RISC-V, Fermi GPU, x86-GSL and x86-FFTW.

7.4 PTRANS

7.4.1 Implementation

Double-Precision Transpose and Add is a high spatial-locality and low temporal-locality

application. The benchmark evaluated is 𝐴 = 𝐴𝑇 + 𝐵, where 𝐴 and 𝐵 are 𝑛-dimension matrices. The

total operations is 𝑛2. The RISC-V platform used the GSL implementation of DGEMM (Gough, 2009),

while the x86 version used three implementations with SSE2 enabled: a hand-written kernel, the GSL

library, and the Eigen library (G. Guennebaud, 2010). The Fermi GPU ran optimized hand-written

kernels, since cuBLAS was not available as a static library for NVIDIA Toolkit 3.2. The LACore ran a

hand-written kernel leveraging the LACoreAPI framework.

7.4.2 Results

Figure 7-12: PTRANS (DP) on LACore, RISC-V, Fermi GPU, and
x86 (hand-written, GSL and Eigen).

Figure 7-13: PTRANS (DP) Speedup of LACore over RISC-V,
GPU, and x86 (hand-written, GSL, Eigen).

0.0

0.4

0.8

1.2

1.6

2.0

2.4

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

G
FL

O
P

/S

VECTOR SIZE (LOG2)

FFT (DP)

LACore RISC-V GPU
x86-G x86-F

0.1

1.0

10.0

100.0

8 9 10 11 12 13 14 15 16 17 18 19 20

LA
C

O
R

E
SP

EE
D

U
P

VECTOR SIZE (LOG2)

FFT THROUGHPUT (DP) SPEEDUP

RISC-V GPU x86-G x86-F

0.0

0.3

0.6

0.9

1.2

1.5

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

PTRANS (DP)

LACore RISC-V GPU

x86-H x86-G x86-E

0.1

1.0

10.0

100.0

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

PTRANS (DP) SPEEDUP

RISC-V GPU x86-H x86-G x86-E

67

The PTRANS absolute performance results are shown in Figure 7-12, with the LACore

outperforming all other implementations at large matrix sizes, asymptotically reaching 150 MFLOP/s. At

this matrix size, the LACore achieves a speedup of 9.72x, 1.52x, 1.98x, 4.14x and 7.48x over the RISC-V,

Fermi GPU, x86-Hand-Written, x86-GSL and x86- Eigen implementations, as seen in Figure 7-13.

7.5 HPL

7.5.1 Implementation

The High-Performance Linpack solves a linear system 𝐴𝑥 = 𝑏, where 𝐴 is a square matrix with

dimension 𝑛, and 𝑥, 𝑏 are column vectors. This is a high temporal and spatial locality application, similar

to DGEMM. The total operations for the partial LU factorization and the linear system solving combined

is
2

3
𝑛3 +

3

2
𝑛2, with the LU factorization portion of the computation dominating for large 𝑛.

The RISC-V platform used the GSL implementation for LU-factorization and Linear-System Solve

(Gough, 2009). The x86 platform used two implementations, GSL and Eigen, both with SSE2 enabled (G.

Guennebaud, 2010). Since cuSOLVER was not available as a static library for NVIDIA Toolkit 3.2, and no

implementations could be found for GPU Linear-System Solve, the scaled Fermi GPU platform was not

evaluated for this benchmark. It is worth noting that the HPL and DGEMM results are highly correlated

(P. R. Luszczek, 2006), and a GPU implementation for DGEMM is provided, so the Fermi GPU HPL

performance can be estimated from that. The LACore uses a hand-written algorithm leveraging the

LACoreAPI library.

The LACore implementation has two algorithms, and which one to run depends on the input

problem size. Figure 7-14 shows that at smaller matrix sizes (less than 128), using the LAMemUnits to

swap rows (SWAP) of 𝐴 in memory during the permutation step is faster than using a permutation

vector (PVEC) for indirection and not physically swapping rows in memory. As the problem size

increases, the cost of swapping rows becomes large, and the PVEC algorithm is more effective. The

reason the PVEC algorithm is slower than SWAP at small problem sizes is because the indirection vector

prevents the LAMemUnits from sequentially accessing items in columns, since each item in a column

could potentially be in a different physical row. Accessing consecutive elements in a row is not a

problem, though, which is why the LACore uses a row-major matrix for HPL.

68

Figure 7-14: HPL performance when swapping rows (SWAP) vs using a
permutation vector (PVEC).

A single 𝐿-iteration of the LU-decomposition step can be used to visualize how the LACore

solves HPL. The 𝑈-iteration, and the forward and back substitution routines are very similar in structure,

so will not be shown. Figure 7-15 shows the elements accessed when solving an 𝐿-iteration, which

solves for the dark-blue column, and accesses all the elements in the light blue columns and rows. The

expression for the elements accessed for each 𝐿𝑖𝑗 is given by equation 1:

 𝐿𝑖𝑗 =
1

𝑈𝑗𝑗
(𝐴𝑖𝑗 − ∑ 𝐿𝑖𝑘𝑈𝑘𝑗

𝑗−1
𝑘=0) (1)

where the 𝑈-vector is looped over and the dot-product with each light blue row in the 𝐿 matrix is

computed. The LACore LU decomposition solves 𝐿 and 𝑈 in place of 𝐴, meaning the dark blue column

is the same physical memory as the light blue column in 𝐴. The actual code used in the HPL benchmark

is shown in Figure 7-16.

Figure 7-15: Elements in matrices A, L and U accessed during an L-iteration in LU
decomposition.

It can be seen from the 𝐿-iteration code that if a permutation vector was used (PVEC), the

loading of the 𝑈 column into the scratchpad would take 𝑘 instructions, since each element in the 𝑈

column would have to be individually located in memory, while the SWAP version only has to issue a

single la_copy() command with the appropriate stride to load the elements into the scratchpad.

Similarly, the entire loop from 𝑖 = 𝑗 + 1 to 𝑖 = 𝑁 in Figure 7-16 can be replaced by a single

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

LACORE HPL: SWAP VS PVEC

SWAP PVEC

69

la_AaddBmulC_sum_multi() command with the SWAP algorithm but not the PVEC algorithm.

These are two of the reasons PVEC performs poorly at small matrix sizes.

//performs L-iteration during LU decomposition on the LACore

void lu_l_iter(double *A , IDX N , IDX j) {

 //NOT SHOWN: load (1 , - U0j .. - Ukj)/Ujj into scratchpad

 for(IDX i=j +1; i <N; ++ i){

 LAAddr Li0 = (LAAddr)&A[N*i];

 LAAddr Lij = (LAAddr)&A[N*i+j];

 //configures input vector Li0 of length j in memory

 la_set_vec_adr_dp_mem(Li0_mem_REG, Li0);

 //configures output scalar Lij in memory

 la_set_scalar_dp_mem(Lij_mem_REG, Lij);

 //performs dot product of length j: Lij = (U0j dot Li0)

 la_AaddBmulC_sum(Lij_mem_REG, U0j_sch_REG, Zero_REG, Li0_mem_REG, j);

 }

}

Figure 7-16: LACore LU-Decomposition L-iteration without using permutation vector.

7.5.2 Results

The HPL results are shown in Figure 7-17, with the LACore outperforming all other

implementations for matrix sizes up to 28 (or 256) elements, at which point, x86- Eigen outperforms the

LACore. The LACore’s peak double-precision throughput at a matrix size of 64 is 2.55 GFLOP/s, which

is a 4.67x, 2.10x, and 2.81x speedup over the RISC-V, x86-GSL and x86-Eigen implementations. The

LACore’s throughput asymptotically increases as the matrix size grows, with a throughput of 1.52

GFLOP/s at a 1024 matrix size, which is a 5.88x, 7.22x and 0.57x speedup of the RISC-V, x86-GSL and x86-

Eigen implementations, as seen in Figure 7-18.

Figure 7-17: HPL Double-Precision on the LACore, RISC-V, x86-
GSL and x86-Eigen.

Figure 7-18: HPL Speedup of LACore over RISC-V, x86-GSL
and x86-Eigen.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

HPL (DP)

LACore RISC-V x86-G x86-E

0.1

1.0

10.0

32 64 128 256 512 1024

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

HPL (DP) SPEEDUP

RISC-V GSL Eigen

70

7.6 RANDOM ACCESS

7.6.1 Implementation

Although Random Access (RA) is a purely integer workload, it was included in the evaluated

benchmarks in order fully test all four combinations of high-and-low temporal-and-spatial localities. RA

tests how architectures perform with low-temporal and low-spatial localities by updating random

locations in a large table in memory. The RISC-V and LACore platforms ran identical code, since the

LACore-specific hardware could not be leveraged for this benchmark. The x86 workload was compiled

with SSE2 enabled, and the Fermi GPU used a hand-written kernel.

7.6.2 Results

Figure 7-19: Random-Access on LACore/RISC-V, Fermi GPU
and x86.

Figure 7-20: Random-Access Speedup of LACore/RISC-V over
x86 and Fermi GPU.

As mentioned, the LACore ran an identical binary to the RISC-V platform, since none of the

LACore-specific hardware could be leveraged. Figure 7-19 shows the absolute results for all four

platforms, while Figure 7-20 shows the relative speedup of the LACore over the other platforms. The

LACore achieves a 1x, 1.6x and 0.5x speedup over the RISC-V, Fermi GPU and x86 platforms at smaller

table sizes, and achieves 1x, 0.7x and 0.3x speedups as the table size grows arbitrarily large.

A large reason x86 performed better than the LACore is due to the x86 running a superscalar

(multiple-issue, out-of-order) CPU model in gem5, while the LACore was only using a single-issue

pipelined CPU model. The Fermi GPU performed better at table sizes between 216 − 218 because its L2-

cache was 1 MB while the LACore’s L2-cache was only 256 kB, and these two cache sizes are the upper

and lower bounds of the region the GPU outperforms the LACore. The table in RA still fits in the whole

L2 cache in the GPU’s case, but not in the LACore’s case within this envelope. Above a 218 table size,

the GPU starts to have L2 cache evictions as well, and its performance starts to match the LACore

again.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

G
U

P
/S

TABLE SIZE (LOG2)

RAN DOM-ACCESS

LACore/RISC-V GPU x86

0.1

1.0

10.0

8 9 10 11 12 13 14 15 16 17 18 19 20

LA
C

O
R

E
SP

EE
D

U
P

TABLE SIZE (LOG2)

RANDOM-ACCESS SPEEDUP

GPU x86

71

7.7 STREAM-TRIAD

7.7.1 Implementation

This benchmark is high-bandwidth workload with high-spatial locality and low-temporal locality,

since each element in the vectors are accessed sequentially one time. The RISC-V and x86 platforms ran

no special libraries for the STREAM Triad benchmark, although the x86 workload was compiled and run

with SSE2 enabled. The Fermi GPU implementation offloaded the vector computation as device kernels.

The LACore implementation made use of the custom LAExecUnit and LAMemUnits for high-

bandwidth memory transfer and vector arithmetic.

The full STREAM Triad C code for the LACore, using the LACoreAPI framework, is shown in

Figure 7-21, and requires only 5 commands for any sized vectors. The first 4 commands configure the

input and output streams, which in this case is a scalar and three vectors. The last instruction runs for

count elements, using the configured LACfgs.

// a(i) = b(i) + q*c(i)

void dstream_triad_la_core(double *A, double *B, double q,

 double *C, IDX count)

{

 //these are the LACfg indexes used by each input or output

 const LACfgIdx A_REG = 0;

 const LACfgIdx B_REG = 1;

 const LACfgIdx C_REG = 2;

 const LACfgIdx q_REG = 3;

 //configure the 3 inputs and 1 output for STREAM

 la_set_scalar_dp_reg(q_REG, q);

 la_set_vec_adr_dp_mem(A_REG, (LaAddr)A);

 la_set_vec_adr_dp_mem(B_REG, (LaAddr)B);

 la_set_vec_adr_dp_mem(C_REG, (LaAddr)C);

 //vector output: A_REG = C_REG*q_REG + B_REG

 la_AmulBaddC(A_REG, C_REG, q_REG, B_REG, count);

}

Figure 7-21: LACore STREAM-Triad Code.

7.7.2 Results

STREAM Triad provides two correlated results: memory bandwidth (Bytes/s) and computation

throughput (FLOP/s). The absolute results for the bandwidth are shown in Figure 7-22. The chart for

GFLOP/s looks nearly identical, so is not shown. The GB/s for Triad is 3 ⋅ 𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑖𝑧𝑒 according to (P. R.

Luszczek, 2006), and the LACore peaks at 103 GB/s for a vector size of 4096, where it has 13x, 47x and

4.3x speedups over RISC-V, Fermi GPU and x86 implementations. As the vector size grows, the LACore

72

asymptotically approaches 7.25 GB/s, with speedups of 5.2x, 2.2x and 5.8x over RISC-V, Fermi GPU and

x86 implementations, as seen in Figure 7-23. Similar results for the GFLOP/s absolute and relative

performances are shown in Figure 7-24 and Figure 7-25 respectively.

Figure 7-22: STREAM Triad Bandwidth comparison for LACore,
RISC-V, Fermi GPU and x86.

Figure 7-23: STREAM Triad, LACore's Bandwidth increase
over RISC-V, Fermi GPU and x86.

Figure 7-24: Figure 12 1: STREAM Triad GFLOP/s comparison
for LACore, RISC-V, Fermi GPU and x86.

Figure 7-25: STREAM Triad, LACore's GFLOP/s increase over
RISC-V, Fermi GPU and x86.

One reason why LACore outperforms the other platforms so significantly in STREAM-Triad is due

to its previously described large-format vector-like architecture with the specialized streaming

LAMemUnits, which can access multiple consecutive elements in a cache-line in the same cycle. In

other words, the LACore can exploit the high spatial-locality of STREAM benchmarks.

7.8 SPARSE DGEMV

7.8.1 Implementation

Sparse DGEMV (SpMV) has an irregular memory-access pattern and a relatively high arithmetic

complexity. It was chosen to evaluate the LACore because the HPCC benchmark suite does not have

0

20

40

60

80

100

120

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

G
B

/S

VECTOR SIZE (LOG2)

STREAM:TRIAD BANDWIDTH

LACore RISC-V GPU x86

0.1

1.0

10.0

100.0

10 11 12 13 14 15 16 17 18 19 20

LA
C

O
R

E
SP

EE
D

U
P

VECTOR SIZE (LOG2)

STREAM:TRIAD BANDWIDTH SPEEDUP

RISC-V GPU x86

0

2

4

6

8

10

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

G
FL

O
P

/S

VECTOR SIZE (LOG2)

STREAM:TRIAD FLOPS

LACore RISC-V GPU x86

0.1

1.0

10.0

100.0

10 11 12 13 14 15 16 17 18 19 20

LA
C

O
R

E
SP

EE
D

U
P

VECTOR SIZE (LOG2)

STREAM:TRIAD FLOPS SPEEDUP

RISC-V GPU x86

73

any sparse applications, and the sparse-matrix data-source configuration is a major feature of the

LAMemUnits. Performance for various matrix sizes and sparsities were collected, with sparsity values

of 20%, 40%, 60% and 80% evaluated, corresponding to matrices that are 20%, 40%, 60% and 80% filled

with non-zeros respectively. The performance of SpMV on the LACore was compared to three other

implementations: a RISC-V in-order CPU using the GSL library, and an x86 with SSE2 enabled using both

Eigen and GSL implementations. Since cuSPARSE was not available as a static library for NVIDIA Toolkit

3.2, and no implementations could be found for GPU Sparse DGEMV, the scaled Fermi GPU platform was

not evaluated for this benchmark. The LACore implementation made use of the custom LAExecUnit

and LAMemUnits for high-bandwidth memory transfer and vector arithmetic. The programming model

for sparse matrices is straightforward with the LACoreAPI, and the full kernel used for the LACore’s

SpMV evaluation is shown in Figure 7-26. The kernel loads the vector 𝑏 into the scratchpad, then

performs the matrix-vector multiplication using the multi-stream output mode, and then stores the

resulting vector, 𝑥, from scratchpad back into memory.

//A in row major, b,x are column vectors

void dgemv_spv_la_core(double *A_data_ptr, uint32_t *A_col_ptr,

 uint32_t *A_row_ptr, double *b, double *x, IDX N, IDX M)

{

 //these are the LACfg indexes used by each scalar, vector or sparse matrix

 const LaRegIdx Zero_REG = 0;

 const LaRegIdx A_mem_REG = 1;

 const LaRegIdx b_mem_REG = 2;

 const LaRegIdx b_sch_REG = 3;

 const LaRegIdx x_mem_REG = 4;

 const LaRegIdx x_sch_REG = 5;

 la_set_scalar_dp_reg(Zero_REG, 0.0);

 //configure the sparse matrix ‘A’ with its 6 fields

 la_set_spv_nrm_dp_mem(A_mem_REG, (LaAddr)A_data_ptr, (LaAddr)A_row_ptr,

 (LaAddr)A_col_ptr, N, M, 0);

 //configure the dense ‘b’ and ‘x’ vectors in scratchpad and memory

 la_set_vec_dp_mem(b_mem_REG, (LaAddr)b, 1, M, 0);

 la_set_vec_dp_sch(b_sch_REG, 0, 1, M, -M);

 la_set_vec_dp_mem(x_mem_REG, (LaAddr)x, 1, N, 0);

 la_set_vec_dp_sch(x_sch_REG, SCRATCH_SIZE/2, 1, N, 0);

 //copy ‘b’ vector from mem to scratchpad, since it is frequently accessed

 la_copy(b_sch_REG, b_mem_REG, M);

 //perform x = A*b, with result x being stored in scratchpad

 la_AmulBaddC_sum_multi(x_sch_REG, A_mem_REG, b_sch_REG, Zero_REG, M*N);

 //copy ‘x’ from scratchpad to memory, now that computation is over

 la_copy(x_mem_REG, x_sch_REG, N);

}
Figure 7-26: Sparse DGEMV kernel using LACoreAPI.

74

Figure 7-27: Sparse DGEMV (20%) GFLOP/s comparison for
LACore, RISC-V, x86-Eigen and x86-GSL.

Figure 7-28: Sparse DGEMV (20%), LACore's GFLOP/s speedup
over RISC-V, x86-Eigen and x86-GSL.

Figure 7-29: Sparse DGEMV (40%) GFLOP/s comparison for
LACore, RISC-V, x86-Eigen and x86-GSL.

Figure 7-30: Sparse DGEMV (40%), LACore's GFLOP/s speedup
over RISC-V, x86-Eigen and x86-GSL.

Figure 7-31: Sparse DGEMV (60%) GFLOP/s comparison for
LACore, RISC-V, x86-Eigen and x86-GSL.

Figure 7-32: Sparse DGEMV (60%), LACore's GFLOP/s speedup
over RISC-V, x86-Eigen and x86-GSL.

Figure 7-33: Sparse DGEMV (80%) GFLOP/s comparison for
LACore, RISC-V, x86-Eigen and x86-GSL.

Figure 7-34: Sparse DGEMV (80%), LACore's GFLOP/s speedup
over RISC-V, x86-Eigen and x86-GSL.

0

4

8

12

16

20

24

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

SP-DGEMV 0 .2 SPARSITY

LACore
RISC-V
x86-E
x86-G

0.1

1

10

100

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

SP-DGEMV 0 .2 SPEEDUP

RISC-V x86-E x86-G

0

3

6

9

12

15

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

SP-DGEMV 0 .4 SPARSITY

LACore

RISC-V

x86-E

x86-G

0.1

1

10

100

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

SP-DGEMV 0 .4 SPEEDUP

RISC-V x86-E x86-G

0

2

4

6

8

10

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

SP-DGEMV 0 .6 SPARSITY

LACore

RISC-V

x86-E

x86-G

0.1

1

10

100

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

SP-DGEMV 0 .6 SPEEDUP

RISC-V x86-E x86-G

0

2

4

6

8

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

SP-DGEMV 0 .8 SPARSITY
LACore
RISC-V
x86-E
x86-G

0.1

1

10

100

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

LA
C

O
R

E
SP

EE
D

U
P

MATRIX SIZE

SP-DGEMV 0 .8 SPEEDUP

RISC-V x86-E x86-G

75

7.8.2 Results

The absolute performance for each platform at sparsities of 20%, 40%, 60% and 80% are shown

in the left column of images above: Figure 7-27, Figure 7-29, Figure 7-31, and Figure 7-33 respectively.

The relative speedups of the LACore over the other platforms for Sparse DGEMV are shown in images

for the corresponding sparsities - Figure 7-28, Figure 7-30, Figure 7-32, and Figure 7-34 respectively.

GFLOP/s were calculated using the equivalent dense matrix sizes. For example, SpMV with a

20% sparsity matrix with side 𝑛, would have a GFLOP/s of 2𝑛3. Same with 40%, 60% and 80% matrices.

At a 20% sparsity, the LACore achieves a peak performance of 17.8 GFLOP/s at a matrix size of 256,

which is a 22.4x, 2.3x and 6.2x speedup over the RISC-V, x86-Eigen and x86-GSL implementations

respectively. After a matrix size of 256, all implementations suffer a substantial drop in throughput due

to the problem size exceeding cache capacity. At a sparsity of 40%, the LACore achieves a peak

performance of 9.8 GFLOP/s at a matrix size of 128, which is a speedup of 18x, 1.6x and 13.8x over the

RISC-V, x86-Eigen and x86-GSL platforms. At a sparsity of 60%, the LACore achieves a peak

performance of 7.0 GFLOP/s at a matrix size of 128, which is a speedup of 28x, 1.6x and 14.6x over the

RISC-V, x86-Eigen and x86-GSL implementations. Finally, at a sparsity of 80% (which is the most-dense of

all 4 sparsities tested), the LACore achieves a peak performance of 6.2 GFLOP/s, which is a 36x, 3.3x,

and 5.8x speedup over the RISC-V, x86-Eigen, and x86-GSL implementations.

The most noticeable trend in all the SpMV results is that the LACore dominates all other

platforms up until the problem size exceeds a threshold determined by the cache size. At this point, all

platforms’ performances drop by up to an order of magnitude, with the LACore and x86-Eigen

asymptotically achieving very similar results, despite x86 eigen being a superscalar processor and

LACore being a single-issue pipelined model in gem5. This severe drop in performance at matrix sizes

of 256 to 512 is surprising because the three vectors accessed in SpMV are simply accessed sequentially

in memory, so it is not immediately clear that this would strain the caches. But a closer analysis suggests

that as the sparse matrix size grows, there will be more accesses to the 𝑑𝑎𝑡𝑎 vector and 𝑗𝑑𝑥 vector for

each access to the 𝑖𝑑𝑥 vector, which could result in the 𝑖𝑑𝑥 elements in the cache to get evicted more

frequently, thus causing more cache misses. In other words, the three vectors making up the

compressed sparse matrix will cause thrashing in the cache since they will be competing for cache-lines

with each other.

 Another view of the SpMV results can be seen in Figure 7-35, which overlays the 20%, 40%, 60%

and 80% sparsity results for the LACore on top of each other. In addition, Figure 7-35 also has the

76

DGEMM averaged results from the HPCC benchmark suite overlaid as well. The relativity results are not

too surprising, with the DGEMM performance being better than all the SpMV performances, and the

performance of the sparse benchmarks improving with lower sparsity, since there are more zeros to skip

over. One interesting observation is that DGEMM appears to scale well with problem size, while SpMV

does not even degrade gracefully with problem size. The analysis for this phenomenon has already been

given though.

Figure 7-35: Sparse DGEMV, LACore performance vs matrix
sparsity.

 The overall sparse DGEMV benchmark results suggest that the LACore is a good platform for

applications involving sparse-matrices, especially for matrix sizes less than 512x512. The LACoreAPI

kernel for sparse DGEMV was demonstrated and clearly showed the high-programmability and simplicity

of dealing with sparse matrices on the LACore.

0

5

10
15

20
25

30

35
40

3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

G
FL

O
P

/S

MATRIX SIZE

DGEMV SPARSITY VS GFLOP/S

0.2 0.4 0.6 0.8 1

77

8 ROOFLINE MODEL

8.1 LACORE ROOFLINE MODEL

A roofline model for the LACore has been created using the results from the HPCC benchmarks

and Sparse DGEMV benchmarks. The roofline model attempts to envelope the upper bound GFLOP/s for

any type of application on a given architecture. The envelope is limited by the maximum floating-point

performance of the hardware at high operational complexity problems, and limited by memory

bandwidth at low computation complexity problems, according to (Williams S. W., 2009), the original

source of the Roofline model.

 Roofline Ridge

Max DP GFLOPs (Scalar) 184 1.78

Max DP GFLOPs (Vec) 128 1.24

STREAM-Triad max GB/s 103
Table 8-1: LACore Roofline Model Parameters.

The LACore’s roofline model is composed from the elements in Table 8-1. The STREAM-Triad

maximum bandwidth occurs at a vector size of 4096 elements, as mentioned in the HPCC results section.

The maximum scalar-output double-precision floating-point performance is 184 GFLOP/s while the

maximum vector-output double-precision floating-point performance is 128 GFLOP/s, as discussed in

the LACore Architecture section. The intersection of the bandwidth envelope and the maximum

hardware GFLOP/s forms the ridge at 1.78 operational complexity for scalar output and 1.24 operational

complexity for vector output.

Figure 8-1: LACore Roofline Model with selected HPCC applications.

N=4096 N=64

N=64

N=4096

0.1

1.0

10.0

100.0

1000.0

0 . 0 0 . 1 1 . 0 1 0 . 0 1 0 0 . 0

G
FL

O
P

/S

FLOPS/BYTE

LACORE ROOFLINE MODEL

ROOF-scalar

ROOF-vector

FFT

HPL

DGEMM

STREAM-Triad

78

The LACore roofline model is presented in Figure 8-1, with the FFT, HPL, DGEMM and Stream-Triad

results included as well. Each point for each benchmark corresponds to a different vector or matrix size,

and the sizes that produced the highest performance for each benchmark were labeled on the chart: FFT

and STREAM GFLOP/s peaked at a vector size of 4096, while DGEMM and HPL GFLOP/s peaked at a

matrix size of 64x64. The applications’ operational complexities were taken from a few sources:

(Ofenbeck, 2014) was used for DGEMM and (Williams S. , 2016) was used for FFT and STREAM. No

derivations for HPL’s operational complexity could be found in literature, so it was derived by hand. The

operational complexities for each benchmark are shown in Table 8-2. The FLOP/BYTE determines the x-

axis position of the results at the given input size. For example, at a matrix size of 32, DGEMM would

have a FLOP/BYTE ratio of 2, but at a matrix size of 128, DGEMM would have a FLOP/BYTE ratio of 8,

which can be seen in the figure above as well. For STREAM-Triad, the FLOP/BYTE is independent of the

problem size, so the plotted results are on a vertical line.

 DGEMM STREAM-Triad HPL FFT-1D

Bytes Moved 32𝑛2 24𝑛2 16𝑛2 48𝑛
FLOP/s 2𝑛2 𝑛2 2

3
𝑛3

5𝑛 log (2𝑛)

FLOP/BYTE 𝑛

16

1

24

𝑛

24

5

48
log (2𝑛)

Table 8-2: FLOP/Byte calculations for HPCC Applications.

8.2 LACORE ROOFLINE ANALYSIS

The roofline model and plotted results reveal a few interesting qualities of the LACore and the

HPCC benchmark implementations. The first observation is that the LACore has a balanced roofline

ridge at 1.24 and 1.78 for vector and scalar output modes. This means that neither the memory

bandwidth of the system nor the theoretical computational performance of the system are the major

limitation. If the memory bandwidth was low compared to the peak hardware performance, the ridge

would be much farther to the right, at a FLOP/Byte of 4, 8 or even higher. This would mean that barely

any applications except for the extremely computational-bound would be able to fully utilize the

computational resource of the system. On the other hand, having a memory bandwidth that was much

better relative to the system’s computational power would result in a roofline peak at a FLOP/Byte of

0.5, 0.25 or even lower, and means that the memory system is never fully utilized, except for the

extremely memory-bound applications. So, the LACore’s balanced roofline ridge means no part of the

overall system was overdesigned, which reduces unnecessary complexity and area cost.

79

Another observation from the Roofline model is that HPL and FFT perform well below the roofline,

which means that it is neither being bound by memory resources or computational resources, and are

actually being limited by poor algorithmic design. DGEMM performs closer to the roofline limit, and

STREAM-Triad actually outperforms the theoretical roofline at a vector size of 4096, which suggests the

roofline model is just a theoretical model and does not impose hard restrictions on application

performance, but mere “soft-envelopes”. The other interpretation would be that the LACore’s

architecture somehow violates some assumptions made by the authors of the roofline model.

80

9 DESIGN AREA ESTIMATES

9.1 AREA ESTIMATION

Dual Mode floating point circuits for Add, Subtract, Compare, Multiply and Divide are used in the

LAExecUnit’s datapath. A 110nm dual-mode Adder, 90nm dual-mode Multiplier, and 90nm dual-

mode 2-stage Divider are presented in (Akkaş, 2008), (Jaiswal, 2015), and (Jaiswal, 2016). Area for each

of these circuits is shown in Table 9-1, along with the instance count of each in the VecNodes,

ReduceNodes and the AccumulateNode. The total area footprint of the LAExecUnit datapath at

the 32-nm technology node is found by multiplying the instance count of the Adders, Multiplier and

Dividers by the scaled-down area of each from the 110 and 90 nm nodes to the 32 nm nodes, and turns

out to be 4.37 mm2.

 Count/SIMD Adders Multipliers Dividers

VecNode 8/8 64 64 64

ReduceNode 7/8 56 0 0

AccumulateNode 1/8 15 0 0

Cycles 5 4 18/14

Fmax (GHz) 1.25 1 1

Node (nm) 110 90 90

Area (mm2) 138300 138000 206701

Area (mm2) 1.58 1.12 1.67

Total Area (mm2) 4.37
Table 9-1: Total area estimation of the LAExecUnit's datapath at the 32 nm node.

Using the design for a clock-crossing FIFO from (Cummings, 2002), the FIFOs in the

LAExecUnit’s datapath were modeled as dual-port RAMs. Then, using the CACTI 5.3 web interface, an

area estimation for a single FIFO was found, from which the total area used by FIFOs in the

LAExecUnit’s datapath could be found. The number of FIFOs and their sizes are tabulated in Table

9-2. Each FIFO is 8 words deep, with 64 lines per word. This is equivalent to a 512-byte RAM, so there

are 20 kB of FIFOs in the LAExecUnit’s datapath.

FIFO depth 8 VecNode input FIFOs 24

FIFO word width 64 bytes ReduceNode input FIFOs 15

FIFO area (mm2) 0.017 AccumulateNode output FIFOs 1

Total FIFO Area (mm2) 0.68 Total datapath FIFOs 40
Table 9-2: LAExecUnit FIFO area calculations.

81

The other components in the LAExecUnit include 48 64- bit multiplexers and 4

LAMemUnits, which will all be grouped into the control portion of the LACore, and a conservative

estimate of 25% of the total area and power of the LACore will be allocated to this control portion.

Area estimates for the caches and scratchpad in the LACore were found using the CACTI 5.3 Web

Interface (D. Tarjan, 2006) for the 32-nm process, and are summarized in Table 9-3. The configuration

for the caches and scratchpad were the same as those shown in the gem5 configuration in Table 7-1.

The scalar CPU area is taken from the design in (B. Keller, 2016), a RISC-V processor with a vector-

extension unit implemented on a 28-nm node. The total area of the Scalar CPU, not including the vector

extension was 0.461 mm2.

Memory Area (mm2)

64 kB LACache 1.58

64 kB Data-Cache 1.58

16 kB Inst-Cache 1.10

256 kB L2-Cache 2.02

64 kB Scratchpad 0.50

Total 6.78
Table 9-3: Area usage of LACore caches and scratchpad at the 32-nm node.

9.2 AREA COMPARISONS

The full LACore area estimation is given in Table 9-4, with the LACore-specific hardware taking

up 60.4% of the total area. The LACore uses 2.62x the area resources as a simple RISCV CPU, including

all the caches and scratchpad. This increase in size is justified by the massive performance

improvements across the board in the HPCC benchmarks, such as an 85.8x improvement in DGEMM, a

5.8x improvement in HPL and up to a 5.8x improvement in FFT. In all cases, it is more area efficient to

use an LACore vs multiple RISC-V cores to achieve the same performance. For example, with DGEMM,

it would take 85 RISC-V cores to achieve the same result as a single LACore at a matrix size of 1024.

 Area (mm2)

RISC-V Scalar 0.46

Inst-Cache/Data-Cache/L2-Cache 4.70

Scalar Total 5.16

LAExecUnit datapath/FIFOs 5.05

LAExecUnit control 1.26

LACache/scratchpad 2.08

LACore Total 13.55

LACore/Scalar Ratio 2.62
Table 9-4: Total RISC-V Scalar CPU and LACore Area Breakdown.

82

A comparison of the LACore’s area to two NVIDIA P100 Streaming Multiprocessors (SMs) can

similarly be drawn by using the statistics in (NVIDIA, 2016) for a single SM. For the global resources, such

as the GPU L2 cache, the value is divided by 28, which is half the number of SMs on the GPU. The

comparison of the LACore with the two SMs is shown in Table 9-5. The P100 SM has a larger area than

the LACore, and also uses more memory resources. The similar area footprints of the two SMs and the

LACore is the main reason why this paper chose to compare HPCC benchmarks for two SMs instead of

the whole GPU. For a fair comparison to the entire P100, a 30-LACore manycore chip would have to be

compared.

 2x P100 SM LACore

Area (mm2) 21.78 13.55

2x P100 SM/LACore Area 1.61

L1-Cache (kB) 0 144

L2-Cache (kB) 146 256

Registers/FIFOs (kB) 512 20

Scratchpad (kB) 128 64

2x P100 SM/LACore Memories 1.62
Table 9-5: 2 NVIDIA P100 SMs vs the LACore area and memory usage.

83

10 CONCLUSIONS AND FUTURE WORK

10.1 CONCLUSIONS

In this thesis, the LACore, a novel large-format vector architecture for linear algebra application

was presented. The LACore architecture is designed to address many of the shortcomings of modern

architectures for HPC linear algebra applications through unique architectural features such as the

highly-configurable Large-Format LAMemUnits which can stream arbitrarily sized vectors and matrices

to and from the scratchpad and memory, and the mixed-precision vector-reduction LAExecUnit,

which can achieve up to 368 FLOP/cycle single-precision performance. Additionally, the LACore

architecture is equipped to handle long-running complex linear algebra kernels with its 64 kB high-

throughput, low-latency scratchpad, used to store intermediate results.

A main goal of the LACore architecture is to provide a medium ground between the too-general-

purpose GPU accelerators, and the too-rigid ASIC/FPGA fixed function accelerators. To achieve this goal

the LACore’s instruction set was carefully crafted to contain 68 powerful instructions for configuration,

data movement and data execution. On top of the ISA, a C-programming framework called the

LACoreAPI, was developed and demonstrated in this paper. The LACoreAPI raises the programming

abstraction for the user and provides a flexible and intuitive interface for programming the LACore.

To provide a mechanism for design space exploration, and to provide a platform to evaluate

benchmarks on, the LACore was implemented in the industry-standard cycle-accurate gem5 simulator

using a single-issue, pipelined RISC-V processor as the scalar CPU. The LACore performance was

evaluated against a RISC-V processor, an x86 processor and a scaled NVIDIA Fermi GPU using the gem5

simulator and the gem5-gpu simulator in the Fermi GPU’s case.

The HPCC benchmark suite and the Sparse DGEMV kernel were used to evaluate the general

purpose linear algebra capabilities and the sparse-matrix capabilities of the LACore. Within the HPCC

benchmark suite, the LACore outperformed all other platforms in STREAM, FFT, HPL, DGEMM and

PTRANS applications for a wide range of problem sizes. Additionally, the LACore outperformed the

RISC-V and x86 platforms substantially in the Sparse DGEMV benchmark for the whole range of matrix

sparsities tested. The LACore is demonstrated to be an optimal architecture for both high-and-low

spatial-and-temporal locality applications through the HPCC and Sparse DGEMV benchmark results.

84

Finally, the LACore’s Roofline model and area footprint were presented. The Roofline model

analysis revealed that the LACore had a balanced design, with neither the memory subsystem or the

computational performance lagging behind the other by a substantial margin. The LACore area

analysis revealed that the LACore used less area and memory resources than a scaled NVIDIA GPU,

while offering higher-performing capabilities for linear algebra applications. This demonstrates that the

LACore architecture can compete with industry-standard hardware in performance per area, which is a

strong indicator in the scalability of the LACore to manycore designs.

10.2 FUTURE WORK

The LACore is a new and novel architecture with many areas of exploration and development

underway. This paper focused mainly on the architecture of a single LACore processor, the initial

design space exploration using gem5, the instruction set and the LACoreAPI programming model, and

the performance of single-threaded applications compared to other platforms. Future and current work

will expand and build on this foundational work.

There are many areas of the LACore architecture that have room for design-space exploration

and performance evaluation, such as the mixed-precision LAExecUnit with the ability to coerce

single-precision and double-precision data-streams to the other format on the fly. Additionally, more

linear algebra applications with sparse-matrix data-sources will be evaluated, such as sparse LU

decomposition and applications involving the transposition of sparse matrices.

Current work has been done to develop and evaluate multi-core and many-core LACore chips. A

C-programming, task-scheduling framework for multi-core LACore designs, called the

LATaskSchedulingAPI, has already been developed to provide a high-level API for programmers to

target these multi-core LACore designs. Additionally, the gem5 simulator has already been modified to

provide support for additional System Calls used by the LATaskSchedulingAPI. Future work will

continue to build upon these pieces in order to explore effective NoC designs and programming patterns

for multi-core LACore designs.

Another area of planned future work is an FPGA implementation of the LACore architecture

discussed in this thesis, which we would then run our benchmarks on and compare to results on other

real-hardware platforms for the RISC-V, x86 and NVIDIA GPU architectures. This will provide

performance and area comparisons of a hardware implementation of the LACore against hardware

85

implementations of modern HPC acceleration hardware. The eventual goal after FPGA implementation

and performance-tuning is an ASIC implementation and tape-out for a single-LACore processor, which

will provide the most accurate area, power and performance numbers compared to other modern HPC

architectures.

 Most of the future work presented so far has discussed the architecture and hardware-related

aspects of future work. However, there is a plethora of work to be done on the software side as well.

There are current plans to develop a fully-BLAS compatible library targeting the LACore, which can

then be linked against to allow running linear algebra frameworks, such as the GNU Scientific Library to

run on the LACore without modification.

 Additionally, kernels for a wider range of application domains will be explored using the

LACoreAPI framework, in order to evaluate the full scope of applications that the LACore is suited

for. There are current plans for implementing multi-layered neural networking algorithms, which we

believe will be able to benefit from the vector-reduction datapath in the LAExecUnit. Additionally,

more complex applications based in linear algebra will be developed, such as fully solving Partial

Differential Equations using stencil computations.

86

REFERENCES

A. Bakhoda, G. L. (2009). Analyzing cuda workloads using a detailed gpu simulator. IEEE International

Symposium on Performance Analysis of Systems and Software, (pp. 163-174).

Akkaş, A. (2008). Dual-mode floating-point adder architectures. Journal of Systems Architecture, 54(12),

1129-1142.

Amdahl, G. M. (1967). Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. Proceedings of the April 18-20, 1967, Spring Joint Computer Conference (pp. 483-

485). ACM.

Andrew Waterman, Y. L. (2011). Spike, a RISC-V ISA Simulator. Retrieved from Github:

https://github.com/riscv/riscv-isa-sim

Asanović, K. &. (2014). Instruction sets should be free: The case for risc-v. . University of California,

Berkeley, Tech. Rep. UCB/EECS-2014-146.

Asanovic, K. A. (2016). The rocket chip generator. EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2016-17.

Asanovic, K. B. (2006). The landscape of parallel computing research: A view from berkeley (Vol. 2).

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

B. Keller, M. C.-F. (2016). Sub-microsecond adaptive voltage scaling in a 28nm fd-soi processor soc.

European Solid-State Circuits Conference, (pp. 269-272).

Banakar, R. S. (2002). Scratchpad memory: design alternative for cache on-chip memory in embedded

systems. Proceedings of the tenth international symposium on Hardware/software codesign (pp.

73-78). ACM.

Beard, J. C. (2013). Analysis of a simple approach to modeling performance for streaming data

applications. Modeling, Analysis & Simulation of Computer and Telecommunication Systems (pp.

345-349). IEEE.

Binkert, N. B. (2011). The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2), (pp. 1-7).

Celio, C. (2014). The Sodor Processor Collection. Retrieved from github.com: https://github.com/ucb-

bar/riscv-sodor

Celio, C. P. (2015). The berkeley out-of-order machine (boom): An industry-competitive, synthesizable,

parameterized risc-v processor. Tech. Rep. UCB/EECS-2015–167, EECS Department, University of

California, Berkeley.

Ciricescu, S. E. (2003). The reconfigurable streaming vector processor (RSVP). Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture (p. 141). IEEE Computer

Society.

Corbal, J. E. (1999). MOM: a matrix SIMD instruction set architecture for multimedia applications.

Proceedings of the 1999 ACM/IEEE conference on Supercomputing (p. 15). ACM.

87

CRAY. (1977). CRAY-1 Computer System Hardware Reference Manual. CRAY RESEARCH, INC.

Cray. (2003). Cray Assembly Language (CAL) for. Seattle, WA.

CRAY. (2016). Optimizing Applications on the Cray X1TM System. Retrieved from docs.cray.com:

http://docs.cray.com/books/S-2315-50/html-S-2315-50/x5129.html

Cummings, C. E. (2002). Simulation and synthesis techniques for asynchronous FIFO design. SNUG 2002

(Synopsys Users Group Conference, San Jose, CA, 2002) User Papers.

D. Tarjan, S. T. (2006). “Cacti 4.0,” Technical Report HPL-2006-86. Palo Alto, Tech. Rep: HP Laboratories .

Dennis, J. B. (1980). Data Flow Supercomputers. IEEE computer, 13(11), pp. 48-56.

Duff, I. S. (1989). Sparse Matrix Test Problems. ACM Trans. Math. Softw., 1-14.

Esmaeilzadeh, H. a. (2011). Dark Silicon and the End of Multicore Scaling. Proceedings of the 38th Annual

International Symposium on Computer Architecture (pp. 365-376). ACM.

Fetzer, E. S. (2006). The Parity protected, multithreaded register files on the 90-nm itanium

microprocessor. IEEE Journal of Solid-State Circuits, 246-255.

G. Guennebaud, B. J. (2010). Eigen v3. Retrieved from http://eigen.tuxfamily.org

Garrett, C. K. (2012). Fast polynomial approximations to sine and cosine.

Gough, B. (2009). GNU scientific library reference manual. Network Theory Ltd.

Hisamoto, D. L. (2000). FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions

on Electron Devices, 47(12), (pp. 2320-2325).

Intel. (2017). Intel Xeon processor E7 v4 Family. Retrieved from ark.intel.com:

https://ark.intel.com/products/96900

J. A. Stratton, C. R.-J.-W.-m. (2012). Parboil: A revised benchmark suite for scientific and commercial

throughput computing. Center for Reliable and High-Performance Computing, vol 127.

J. Power, J. H. (2015). gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture

Letters, vol. 14, no. 1, 34-36.

Jaiswal, M. K. (2015). Dual-mode double precision/two-parallel single precision floating point multiplier

architecture. Very Large Scale Integration (VLSI-SoC), 2015 IFIP/IEEE International Conference

(pp. 213-218). IEEE.

Jaiswal, M. K. (2016). Area-Efficient Architecture for Dual-Mode Double Precision Floating Point Division.

IEEE Transactions on Circuits and Systems I: Regular Papers.

Johnson, M. F. (1998). Fftw: An adaptive software architecture for the fft. IEEE International Conference

on Acoustics, Speech and Signal Processing, vol. 3, (pp. 1381-1384).

Jouppi, N. P. (2017). In-Datacenter Performance Analysis of a Tensor Processing Unit. Retrieved from

arxiv.org: arXiv:1704.04760.

88

Kurzak, A. B. (2016). Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear

Systems. The International Journal of High Performance Computing Applications , 457-466.

Lawson, C. L. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math. Softw.,

308-323.

Lee, Y. O. (2015). The Hwacha Microarchitecture Manual, Version 3.8. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2015-263.

Lee, Y. S. (2015). The Hwacha Vector-Fetch Architecture Manual, Version 3.8. EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2015-262.

Lindholm, E. N. (2008). NVIDIA Tesla: A unified graphics and computing architecture. IEEE micro, 28(2).

Luszczek, P. D. (2005). Introduction to the HPC challenge benchmark suite. Lawrence Berkeley National

Laboratory.

Mao, H. K. (2016). Hardware Acceleration for Memory to Memory Copies.

Momose, S. H. (2014). The brand-new vector supercomputer, SX-ACE. International Supercomputing

Conference (pp. 199-214). Sprint International Publishing.

Moore, G. E. (1998). Cramming more components onto integrated circuits." 86.1 (1998): 82-85.

Proceedings of the IEEE 86(1), (pp. 82-85).

Morris, G. R. (2005). An FPGA-based floating-point Jacobi iterative solver. Parallel Architectures,

Algorithms and Networks, 2005. ISPAN 2005. Proceedings. 8th International Symposium (p. 8).

IEEE.

Nepal, K. H. (2016). Automated High-Level Generation of Low-Power Approximate Computing Circuits.

IEEE Transactions on Emerging Topics in Computing.

NVIDIA. (2016). NVIDIA Tesla P100 Whitepaper. Retrieved from nvidia.com:

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Ofenbeck, G. S. (2014). Applying the roofline model. Performance Analysis of Systems and Software

(ISPASS) (pp. 76-85). IEEE.

P. R. Luszczek, D. H. (2006). The hpc challenge (hpcc) benchmark suite. ACM/IEEE conference on

Supercomputing, (p. 213).

Patterson, D. A. (1985, Jan). Reduced Instruction Set Computers. Commun. ACM, 28(1).

Patterson, D. A. (2013). Computer organization and design: the hardware/software interface. Newnes.

Rennich, S. (2011). CUDA C/C++ Streams and Concurrency. Retrieved from gputechconf.com: http://on-

demand.gputechconf.com/gtc-

express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

Rivers, J. A. (1997). On High-bandwidth Data Cache Design for Multi-issue Processors. Proceedings of the

30th Annual ACM/IEEE International Symposium on Microarchitecture (pp. 46-56). IEEE

Computer Society.

89

Russell, R. M. (1978). The CRAY-1 computer system. Communications of the ACM 21.1, (pp. 63-72).

Sanders, J. (2010). Introduction to CUDA C. Retrieved from nvidia.com:

http://www.nvidia.com/content/gtc-2010/pdfs/2131_gtc2010.pdf

Shao, Y. S. (2016). Co-designing accelerators and soc interfaces using gem5-aladdin. Microarchitecture

(MICRO), 2016 49th Annual IEEE/ACM International Symposium (pp. 1-12). IEEE.

Shaw, D. E. (2014). Anton 2: Raising the Bar for Performance and Programmability in a Special-purpose

Molecular Dynamics Supercomputer. Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (pp. 41-53). IEEE Press.

Smith, J. E. (1982). Decoupled access/execute computer architectures. ACM SIGARCH Computer

Architecture News (Vol. 10, No. 3) (pp. 112-119). IEEE Computer Society Press.

Sumita, M. &. (2005). A 32b 64-word 9-read-port/7-write-port pseudo dual-bank register file using

copied memory cells for a multi-threaded processor. Solid-State Circuits Conference, 2005.

Digest of Technical Papers. ISSCC. 2005 (pp. 384-605). IEEE.

Taylor, M. B. (2012). Is dark silicon useful? Harnessing the four horsemen of the coming dark silicon

apocalypse. Design Automation Conference (DAC) (pp. 1131-1136). IEEE.

Thimmannagari, C. (2004). CPU design: answers to frequently asked questions. Springer Science &

Business Media.

Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. Mathematics of

computation, vol. 19, no. 90, 297-301.

Van Zee, F. G. (2015). BLIS: A framework for rapidly instantiating BLAS functionality. ACM Transactions

on Mathematical Software (TOMS), 41(3).

Waterman, A. (2016). Design of the RISC-V Instruction Set Architecture. EECS Department, University of

California, Berkeley.

Waterman, A. a. (2016). The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1. EECS

Department, University of California, Berkeley.

Williams, S. (2016). Roofline Performance Model. Retrieved from Berkeley Lab Computational Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Williams, S. S. (2006). The potential of the cell processor for scientific computing. In Proceedings of the

3rd conference on Computing frontiers (pp. 9-20). ACM.

Williams, S. W. (2009). Roofline: an insightful visual performance model for multicore architectures.

Communications of the ACM, 52(4), (pp. 65-76).

