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ABSTRACT 

Linear algebra operations are at the heart of scientific computing solvers, machine learning and 

artificial intelligence. To achieve high performance, linear algebra operations are typically accelerated 

with vector processing units in central processing unit (CPU) and graphics processing unit (GPU) cores or 

custom hardware solutions. GPU accelerators are highly successful due to the massive amounts of 

parallelism and memory bandwidth that can be achieved. They can reach well into the TFLOP/s for 

single-precision performance by scheduling thousands of simultaneous operations across many 

lightweight cores. The shortcomings with the GPU approach is that GPUs suffer from coarse-grained 

synchronization which can be a bottleneck in vector reduction, have poor single-threaded performance 

compared to CPUs, and use a separate device memory that requires separate memory transfers before 

and after kernel execution. The other approach, as mentioned, is the custom hardware solution, or 

ASIC/FPGA accelerators. These designs typically require either using a High-Level Synthesis tool to 

convert MATLAB or C code into an equivalent HDL, such as Verilog, or require the user to handwrite the 

HDL. This custom accelerator approach typically achieves very high performance for very specific 

applications, but does not generalize well to other computational problems, and has a high 

development cost.  

In this thesis, LACore, a novel, programmable accelerator architecture for general-purpose 

linear algebra applications, is presented. LACore is a Large-Format vector architecture that overcomes 

many of these shortcomings of existing HPC hardware through several architectural features including 

heterogeneous data-streaming LAMemUnits; a mixed-precision systolic datapath that supports scalar, 

vector and multi-stream output modes; and the decoupling and overlapping of memory-accesses and 

data-execution. To evaluate the LACore, the architecture was implemented as an extension to the 

RISC-V ISA in the gem5 cycle-accurate simulator. In addition, the LACore ISA was implemented in gcc, 

and a C-programming software framework, the LACoreAPI, has been developed for high-level 

programming of the LACore. Using a modified version of the HPCC benchmark suite, the LACore 

architecture is compared against three other platforms: an in-order RISC-V CPU, a superscalar x86 CPU 

with SSE2 enabled, and a scaled NVIDIA Fermi GPU. The LACore outperforms the superscalar x86 

processor in the HPCC benchmark suite by an average of 3.43x, outperforms the scaled Fermi GPU by an 

average of 12.04x, and outperforms the RISC-V CPU by an average of 10.72x. 
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1 INTRODUCTION 

 Modern hardware solutions to linear algebra applications include manycore processors such as 

GPUs, vector extensions to scalar CPUs such as Intel’s Streaming SIMD Extensions (SSE), and custom 

application-specific integrated circuits (ASIC) or Field-programmable gate arrays (FPGA). There are 

shortcomings with each of these platforms that the LACore addresses through its novel architecture. 

GPU Issues 

One issue with GPU usage for HPC applications is that GPU architectures inherently lack the 

ability to reduce data without thread synchronization. This can act as a bottleneck for common kernels 

such as DGEMM, which is a sequence of many dot-products. An architecture that natively supports 

arbitrarily large vector reduction without thread synchronization would have a performance advantage. 

Additionally, GPUs are built for parallel processing only, and require a high-performance single-

threaded CPU to handle the sequential portions of applications. Having a single, powerful thread that 

can switch between parallel and sequential mode can overcome the inefficiencies in the GPU fork-join 

model. Although x86 with SSE extensions may appear to support this model, it does not fully support 

arbitrary vector sizes and is not as parallelizable as a GPU. 

Finally, GPUs use separate device memory, which requires transfer of data between the host 

and device before and after kernel execution. Although the latency can be partially hidden by 

overlapping kernel execution with data transfer, an architecture that does not require any data 

movement between sequential and parallel execution modes would be advantageous. 

Application-Specific Accelerator Issues 

Although custom ASIC/FPGA solutions typically provide the highest performance for a particular 

application, they are rigid, can have too narrow of scope, and have a high development cost. A better 

architecture would offer the same custom hardware benefits as ASICs while still being programmable for 

solutions to a wide range of linear algebra applications. 

The LACore Solution 

 The LACore architecture aims to provide solutions of the above shortcomings through several 

features: 



2 
 

- Heterogeneous data-streaming LAMemUnits capable of accessing scalar, vector, and sparse 

matrix objects in both scratchpad and memory. 

- Large-Format Vector support, providing an interface to work with arbitrarily-large vectors and 

matrices. 

- Systolic Vector-Reduction datapath within the LAExecUnit, implementing up to 24 different 

functions on 3 mixed-precision input data-streams. 

- Decoupled architecture that overlap data-execution with memory-access during complex 

memory-memory instructions. 

- Multi-Stream, Vector, and Scalar output modes, with Multi-Stream output mode reducing 

multiple sub-vectors within larger input vector streams for enhanced data-execution and 

memory-access overlap. 

The rest of this introduction will give a brief high-level overview of the proposed LACore 

architecture, the software framework that has been developed for it, and the implementation and 

benchmarking methodology and results. Chapter 2 will discuss the various sources of motivation for 

designing a new computer architecture as well as reasoning for some important design decisions. 

Chapter 3 will look at related work. Chapter 4 will discuss the LACore architecture in depth, and 

Chapter 5 will discuss the LACore’s instruction set and usage model. Chapter 6 will discuss the 

software toolchain for developing applications for the LACore platform and the LACoreAPI, a C-

programming software framework for the LACore. Chapter 7 will discuss the benchmark evaluation of 

the LACore vs the RISC-V, x86 and Fermi GPU platforms. Chapter 8 will present and analysis of the 

Roofline Model for the LACore, and Chapter 9 will discuss area footprint of the LACore compared to 

other platforms. Concluding remarks on the merits and deficiencies of the LACore will be in chapter 

10. All software developed for this project is freely available as a git-repository under the Brown 

University Scale-Lab account: https://github.com/scale-lab/la-core. 

1.1 THE LACORE ARCHITECTURE 

1.1.1 Overview 

This thesis proposes a new processor architecture called LACore, which stands for “Linear 

Algebra Core”, to alleviate the shortcomings of both the manycore chips as well as the shortcomings of 

the custom hardware solutions. From a high level, the LACore is a complex, vector-like data-processing 

unit embedded inside a normal scalar processor, acting like an on-chip custom accelerator, while being 

https://github.com/scale-lab
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integrated directly into the CPU’s processing pipeline. The LACore extends the scalar CPU’s instruction 

set with its own ISA extension, so that a single stream of scalar and LACore instructions can be 

efficiently interleaved and executed with low issuing latency and a unified address space. This thesis 

chooses the RISC-V processor as the scalar processor to embed the LACore into (Waterman A. a., 

2016). This is done for numerous reasons: RISC-V is a modern architecture addressing most of the 

problems faced by previous RISC architectures; RISC-V is rapidly growing and has ubiquitous, open-

source, actively developed tool-chains; and finally, one of RISC-V’s main goals is to proliferate 

accelerator-rich architectures by being an easily-extendable ISA, and providing a full-stack toolchain for 

developing and verifying hardware accelerators (Asanovic K. A., 2016). Using RISC-V as the base ISA will 

therefore ensure that the CPU the LACore is built into will contribute to the LACore’s overall future 

usefulness instead of detract from it. 

The LACore architecture adds a few physical components to the scalar core. The first is a 

multi-port private 64 kB scratchpad for fast access to temporary results. The scratchpad is a design 

paradigm found commonly in embedded designs with real-time requirements (Banakar, 2002) and GPU 

platforms such as NVIDIA’s lineup (Lindholm, 2008). The LACore also adds a set of configuration 

registers for determining the type of input or output (scalar, vector, matrix or sparse matrix), the vector 

layout in memory (address, stride, skip, count), and where the input or output should reside 

(scratchpad, memory or registers). These registers, called LACfgs, are used to configure the LACore 

execution unit. In addition to the scratchpad, the LACore uses its own private L1 Cache, called the 

LACache to access the L2Cache instead of using the scalar core’s L1 Data Cache. Finally, the most 

important physical piece of the LACore is the novel complex execution unit, which performs all the 

memory interactions and vector-like data processing.  

 

1.1.2 Novel Contributions 

There are several features in the LACore architecture that set it apart from existing 

architectures. The first novel feature is the abstracting of heterogeneous inputs and outputs of the 

LACore execution unit as generic streams of data. These streams are not to be confused with CUDA 

Streams, which are streams of kernels, not data operated on by kernels (Rennich, 2011). The LACore 

data streams are more closely associated with dataflow processing, where a large vector of similar data 

is streamed into a fixed, pipelined datapath. Dataflow processing originated with supercomputing in the 

1980’s (Dennis, 1980) and is still a very common design paradigm in HPC hardware. As mentioned, the 
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LACore data-streams operate on heterogeneous data types, which means the structure of the input 

(scalar, vector, matrix or sparse matrix) and their various layout configuration in memory (i.e. the stride, 

count, skip of a vector config) are handled directly in hardware by something called a LAMemUnit. The 

LAMemUnit provides the data stream interface to the LACore execution unit while handling the 

complex interactions with the scratchpad and LACache modules. The reason this stream-abstraction is 

useful, is that it allows a flexible, hardware-supported programming interface for using heterogeneous 

data types and data structures at the same time without having to do any conversions or memory 

movements. For example, performing DGEMV (a BLAS-2 routine) on a sparse matrix with a vector and 

storing the result as a dense matrix can be done in three configuration instruction and one execution 

instruction, while the complex index mapping is performed directly in hardware. 

 Another novel architectural feature of the LACore is the complex LAExecUnit operating on 

three arbitrary-precision input vector streams and producing an arbitrary-precision output stream. The 

LACore’s execution unit can perform a wide range of arithmetic functions on the input data, and can 

produce either a vector output, a scalar output, or something called a “multi-stream” output, which is 

the most powerful operation, and used as the inner kernel in routines such as DGEMM. Additionally, this 

execution unit can take in a mix of single-precision and double-precision IEEE floating point input 

streams and produce a single-precision or double-precision output stream. The key point is that this is 

not just a dual-precision execution unit – it can operate on mixed precision vectors simultaneously, 

where the inputs are cast to the output stream type on the fly. This interface is another useful tool to 

working with heterogeneous datatypes at the same time. 

1.2 THE LACOREAPI SOFTWARE FRAMEWORK 

 Modern HPC applications require robust and performant software solutions to take advantage 

of the underlying hardware effectively. The LACore is no different: for the hardware to be productively 

used by HPC application developers, a gcc/binutils toolchain has been created with full LACore ISA 

support. Additionally, a C-programming framework, called the LACoreAPI, was created for increasing 

developer productivity and improving application performance. The toolchain and framework have been 

used extensively in the development and testing of the LACore architecture in multiple simulators. 

 The LACoreAPI exposes three different classes of instructions to the programmer: 

ExecInsts, XferInsts, and CfgInsts which respectively do complex vector-like operations on 

streams of data, transfer and transform data from one location to another, and configure an LACfg 
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configuration register. Essentially, operations can be broken into execution, data-movement and 

configuration, which provides a very complete API for the user to do a wide range of operations on 

arbitrary data-sources in memory or the scratchpad. 

1.3  LACORE EVALUATION AND RESULTS 

 The LACore architecture proposed and elaborated in the paper was successfully implemented 

4 times in 2 different simulators: the RISC-V Spike ISA Simulator and gem5. Spike ISA Simulator is 

dubbed as the “RISC-V golden model”, and is used as a functional simulator with limited timing accuracy 

(Andrew Waterman, 2011). The LACore extension was added to the simulator to verify functional 

correctness of implementing the entire LACore ISA. The other simulator, gem5, is an industry-standard 

cycle-accurate simulator used by numerous semiconductor companies in industry and research groups 

in academia (Binkert, 2011). The main advantage of the gem5 simulator is its ability to accurately model 

an entire computing system, including the memory controller, cache hierarchy, and multi-threaded or 

multi-core CPU designs. Having the timing-accurate memory interaction is necessary for evaluating the 

LACore since one of its main features is a complex memory fetch-and-store unit. Within gem5, the 

LACore was implemented as a functional CPU model, a cycle-accurate non-pipelined CPU, and a cycle-

accurate in-order CPU model, and was verified for correctness in all three cases. 

 In addition to the architectural simulators, a comprehensive set of C unit-tests were developed 

to exercise the functional correctness of any LACore implementation. Specifically, they test all the 

data-execution and data-movement operations for all variations of input and output configurations. 

These test-suites act as regression tests when changes are made to the LACore ISA or an existing 

LACore CPU model, and allow future LACore researchers and developers to have a reference point 

for a functional design. 

Finally, a set of linear algebra benchmarks were developed targeting the LACore platform, most 

of them within the HPCC benchmark suite (Luszczek, 2005). These tests were run on the cycle-accurate 

gem5 LACore CPU model and compared to finely-tuned implementations of other platforms and linear 

algebra frameworks. All tests on the LACore were verified for correctness against the GNU Scientific 

Library (GSL), which provides an API for highly-performant linear algebra operations (Gough, 2009). 

Additionally, running both the LACore and GSL on the same gem5 cycle-accurate system allows us to 

adjust the simulator benchmark results of the LACore to be more accurate, since we will have GSL 

benchmark results on both the simulator and a real-world CPU.  
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2 MOTIVATION 

2.1 HARDWARE ACCELERATION FOR COMPUTATIONAL PROBLEMS 

 The fundamental problem the LACore is trying to address is solving linear algebra related 

applications as efficiently and quickly as possible. The applications the LACore directly targets cover 

the broad range of both dense and sparse linear algebra, which are also the foundations of many other 

classes of applications as well, such as machine learning and artificial intelligence. Linear algebra 

applications are two of the original seven dwarves described in the influential The Landscape of Parallel 

Computing Research from Berkeley (Asanovic K. B., 2006), with the other five original dwarves being 

FFT, N-Body methods, structured grids, unstructured grids and Monte Carlo calculations.  

The seven dwarves represent what the authors saw as the major types of computational 

problems in HPC that people generally care about, and the LACore provides a suitable platform to 

accelerate at least five of them. Although FFT is not directly targeted by the LACore’s ISA, a specialized 

FFT kernel was written for the LACore and outperforms many other architectures, as discussed in the 

Benchmarks and Evaluation section. In addition to the FFT carryover on the LACore, structured and 

unstructured grids have high overlap with dense and sparse linear algebra applications, so these two 

applications can also be accelerated by the LACore. Therefore, in addition to being a general-purpose 

linear algebra accelerator, the LACore is an effective accelerator for most other HPC applications that 

people generally care about. 

2.2 WHY ANOTHER ISA AND MICROARCHITECTURE? 

 With the primary motivation for studying the LACore now addressed, the next question is why 

develop another radically different architecture, instead of using already existing architectures such as 

NVIDIA’s Pascal GPU or Intel’s Xeon Phi architecture? Aside from addressing the various shortcomings 

with GPUs discussed in the Introduction section, the LACore provides a platform that is specialized for 

a particular domain of applications, unlike GPUs. There is great evidence in literature of the demand for 

these specialized architectures for large-scale computing, such as the Anton II supercomputer (Shaw, 

2014). Anton II is a custom hardware and software solution targeting molecular dynamics, and has 

shown orders-of-magnitude performance improvements over the best software solution running on 
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commodity hardware. For simulations with hundreds of thousands of molecules, this can cut runtimes 

from weeks down to minutes or seconds, which allows for faster and more productive research.  

 Another example of a processor architecture for a particular domain of applications is Google’s 

Tensor Processing Unit (TPU), which is used to accelerate the inference phase of neural networks 

(Jouppi, 2017). Their TPU provided an order-of-magnitude improvement in both performance and 

power consumption compared to GPUs and CPUs. Additionally, the TPU architecture provided Google’s 

users a consistently low and reliable latency that was unachievable with GPUs or CPUs. Since Google 

spends a significant amount of money to power datacenters, and Google also services billions of users, 

the TPUs multiple advantages outweighed its high cost of development. 

Anton II and the TPU are just two of many case studies showing that there can be a large incentive 

and large amounts of money invested in even getting an order of magnitude performance increase from 

custom hardware solutions for important problems classes, which is why developing the LACore 

architecture as a custom solution to linear algebra applications is justified and desirable.  

2.3 THE POWER AND UTILIZATION WALLS 

2.3.1 The Power Wall 

Gordon Moore stated what has famously been coined “Moore’s Law” in a 1965 article, where he 

states “The complexity for minimum component costs has increased at a rate of roughly a factor of two 

per year” (Moore, 1998), which has been interpreted in modern culture as saying transistor density will 

double roughly every year. A more accurate interpretation of Moore’s quote would be that its most cost 

effective from a chip manufacturer’s perspective to double the device count every year, which just 

correlates company profitability to transistor count per chip over time. 

Moore’s law was accurate for many decades. In the early years, the main contributors to 

increasing the device count per integrated circuit were increasing the yield and feature miniaturization 

(Moore, 1998). Feature miniaturization, also known as Dennard scaling, is what most people associated 

with Moore’s law (and some still do), but has recently slowed as we approach the 7nm and 5nm 

technology nodes. However, this decline in the rate of scaling has been compensated by numerous 

other advances, such as novel architectures, higher yield rates, and new device types, such as the FinFET 

transistor (Hisamoto, 2000). The takeaway is that Moore’s Law encompasses more than just device 
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scaling, which is why processors are still delivering more and more each year in terms of performance 

and capabilities. 

An important side-effect of the extremely small feature sizes used in modern semiconductors, is 

that the silicon can get very hot if too much of it is powered at once, so only a fraction of the silicon can 

be usable at any given time. Although the transistor size shrinks and more can fit on a given die area, a 

smaller percentage of the transistors can be powered at any given time. This unusable silicon area is 

called “Dark Silicon” (Taylor, 2012 ), and the amount of it we cannot utilize is determined by the 

“utilization wall”. 

2.3.2 Utilization Wall and Custom Accelerator IP Cores 

Because only a fraction of the silicon can be used at any given time due to the Utilization wall, 

people have found alternative ways to make use of that otherwise-useless silicon. One approach is to 

put application-specific accelerators in these dark-silicon areas, and only power them on when they 

need to run. This has the benefit of higher application-specific performance while also being overall-

more energy efficient. The paradigm of putting application-specific accelerators in the same silicon as 

the scalar CPU core is called “Accelerator-rich architectures” (Esmaeilzadeh, 2011). 

The LACore architecture can be thought of as one of these embedded accelerators within the 

CPU’s silicon die. The LAExecUnit’s datapath can be powered on and off depending on if it is being 

used, and it provides custom hardware for general purpose linear algebra applications. This makes the 

LACore a smaller, more energy-efficient, and higher-performance solution to linear algebra 

applications than general purpose GPU accelerators. 

2.4 FREE AND OPEN HARDWARE 

 A final motivation for developing the LACore architecture is to provide a fully free and open 

source parallel-computing platform for linear algebra applications. Software is much easier to open-

source due to its lower capital cost of development than hardware (i.e.: no fabrication is required), and 

therefore the open-source software community is thriving compared to the open-source hardware 

community. Recent attempts to lower the barrier to open-source hardware include the RISC-V ISA, 

which is trying to modernize and open up hardware (Asanović, 2014) (Waterman A. , 2016). The RISC-V 

platform is a scalar CPU though, so parallel-computation is still relatively locked down by proprietary 

platforms. The LACore will fill this void in the open-source parallel-computing hardware space. 
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3 RELATED WORK 

The LACore architecture possesses features similar to other existing linear algebra accelerating 

architectures. Some of these features show up in several vector-processor architectures such as Cray-1, 

Hwacha, and SX-ACE or multimedia-application processors such as RSVP and MOM. The LACore even 

possesses some features similar to more exotic architectures such as the Cell processor. In addition to 

related processor designs, this thesis presents a methodology for designing and evaluating accelerator 

architectures that is related to the methodology presented in gem5-aladdin. 

CRAY-1 Supercomputer 

The CRAY-1 Supercomputer was one of the original vector-processors (Russell, 1978) (Cray, 

2003). It aimed to provide both a high-performance sequential processing mode as well as a high-

performance parallel-processing mode. The vector-processor was a memory-memory architecture, and 

it targeted general HPC and supercomputing applications. 

There are a handful of similarities between the CRAY-1 vector processor architecture and the 

LACore. First, they both have a type of decoupled data-streaming architecture, since the CRAY-1 

streams data from vector registers into functional units and can “chain” functional units together, 

meaning the outputs of one functional unit flow directly into the inputs of another functional unit. 

Second, both architectures provide a mechanism for intermediate result storage, where the LACore 

uses a scratchpad and the CRAY-1 uses temporary vector registers. Third, both architectures allow 

working with arbitrarily-large sized vectors using a gather-scatter interface. 

There are major differences, however. First, the CRAY-1 architecture uses traditional vector 

registers for functional unit inputs and outputs, while the LACore uses FIFOs in a more stream-

processing-like paradigm. Second, CRAY-1 does not appear to support the novel multi-stream output 

mode that the LACore provides. Finally, CRAY-1 does not support heterogeneous, mixed-precision 

data-sources like the LACore.  

The Hwacha Vector Processor 

The Hwacha Vector processor is RISC-V-based vector accelerator unit (Lee Y. O., 2015). The 

Hwacha architecture is an archetypal vector processor, similar to the Cray-1 Supercomputer (Cray, 

2003), and it appears to primarily target linear algebra-related applications, similar to the LACore.  
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There are a handful of similarities between the LACore and Hwacha. First, they both use RISC-V as the 

primary vehicle for their implementation. Second, both accelerators are integrated into the scalar CPU’s 

die, so no memory transfers are needed before and after kernels, like with GPUs. Third, they both allow 

working on arbitrarily-large vectors in memory, and can be described as memory-memory architectures. 

This leads to the fourth similarity of the LACore and Hwacha both having a decoupled access/execute 

architecture to allow simultaneous memory accesses and data execution. 

There are major architectural differences though. First, Hwacha is a traditional vector 

architecture, and is composed of vector lanes and vector registers to hold operands, while the LACore 

has a novel complex datapath and data-streaming FIFOs in place of these two. Second, Hwacha does not 

synchronously execute its instruction stream inside the host scalar CPU’s instruction stream, and instead 

dispatches commands from the scalar CPU to the Hwacha accelerator over the ROCC interface. This 

means that the Hwacha accelerator needs to implement its own redundant scalar CPU in order to 

execute its instruction stream. The LACore accelerator, on the other hand, uses the same instruction 

stream for both the scalar instructions and the LACore instructions, which simplifies the programming 

model and synchronization. Third, Hwacha does not have a scratchpad for intermediate results like the 

LACore. Fourth, Hwacha does not provide a mechanism similar to the LACore’s multi-stream output 

mode. Finally, Hwacha does not allow working with heterogeneous data sources or sparse matrix 

configurations, like the LACore. 

NEC SX-ACE Supercomputer 

The SX-ACE is a Vector-processing supercomputer (Momose, 2014). Its primary goal is to 

improve performance in the broadening range of HPC applications, and its architecture specially 

addresses the increasing Bytes/Flop ratio in these newer applications, where memory bandwidth is 

increasingly more important than peak computation throughput. 

There are a handful of similarities between SX-ACE and the LACore. First, both architectures 

support arbitrarily-large vectors using a gather-scatter interface. Second, both architectures provide 

hardware support for fast temporary storage for intermediate results. SX-ACE uses what it calls 

“Assignable Data Buffers” (ADBs), which are high-bandwidth cache-like memories, while the LACore 

uses a scratchpad. Third, both architectures support single-precision and double-precision arithmetic. 

Finally, both have a type of data-flow architecture, since the SX-ACE allows chaining functional units 
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within the vector-processing unit, where the outputs of one functional unit flow into the inputs of 

another functional unit. 

There are major differences, however. First, SX-ACE assumes a traditional vector architecture 

with vector-registers, and 16 vector execution pipelines, similar to CRAY-1 and Hwacha, but the LACore 

uses FIFOs for input and output data-streams due to its stream-processing architecture. Second, SX-ACE 

connects the memory controllers directly to multiple DIMMs, while the LACore uses a cache-based 

memory hierarchy. This means the SX-ACE is designed primarily for high-throughput, high-latency 

memory operations, but the LACore is designed for high-throughput and potentially low-latency 

operations when the workloads are smaller. Third, SX-ACE has separate instructions for loading data into 

and out of vector registers, which means it does not efficiently overlap memory access with data 

execution for the same operation, like the decoupled access/execute architecture of the LACore. 

RSVP (The Reconfigurable Streaming Vector Processor) 

RSVP is a vector-like processor targeting multimedia applications (Ciricescu, 2003). Its main 

architectural feature is that it is a decoupled stream-processor. The RSVP authors define the stream-

processing paradigm as a high spatial-locality and low temporal-locality paradigm where streams of 

elements are identically processed and never used again. An example of this type of computation would 

be the STREAM-Triad application in the HPCC benchmark suite (Luszczek, 2005). There are two main 

problems with other architectures that are used for these streaming applications. First, traditional SIMD 

fixed-size vector extensions, such as Intel’s SSE, are difficult to program since they have a low 

programming abstraction, and they offer lower speedups. Second, traditional Vector architectures use 

memory-memory operations, but run into memory bandwidth limitations easily. The RSVP addresses 

both of these issues with its streaming architecture and high level programming model. 

There are a handful of similarities between the LACore and RSVP. The first is that they both 

exemplify a decoupled access/execute architecture, where memory access and data execution occur 

simultaneously in different sub-processing units, and both sub-processing units are connected by FIFOs. 

Second, RSVP provides a gather-scatter vector configuration that is similar to the address, 

stride, count, skip vector configuration used by the LACore. Both architectures offer a 

higher-level programming model that efficiently utilizes the hardware, and both have a programmable 

or reconfigurable datapath. Finally, RSVP instructions run synchronously with host processor, giving the 

illusion of a single instruction stream, which is the same as the LACore’s architecture.  
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There are major architectural differences between the LACore and RSVP, however. First, RSVP 

primarily targets multimedia applications and is therefore tuned for smaller data sources and simpler 

kernels. Second, RSVP’s execution unit is programmed using dataflow graphs, instead of traditional 

programming languages. This limits the size of the kernel that can be performed on the data-streams, 

unlike the LACore. Third, with RSVP, data is meant to be used once (due to the streaming paradigm), 

and there is no optimization for intermediate results, like the scratchpad in the LACore, so more 

complex operations are less performant. 

MOM (Matrix-Oriented Multimedia-extension) 

The MOM ISA is a matrix-oriented ISA used in multimedia applications (Corbal, 1999). Like the 

LACore, it is a parallel computing extension to a simple RISC ISA, in this case the Alpha processor. The 

MOM architecture targets small multi-media kernels, which have a large overlap with general linear 

algebra computing, and many of the examples in the MOM literature use DGEMM as an example 

subroutine. This means MOM and LACore both target the same general application domain, but 

LACore is generalized and provides a larger feature set than the MOM extension. 

There are two main similarities between the LACore and MOM. The first is that MOM supports 

instructions that work on small matrices operands. These matrices can be up to 16x8 in dimensions, and 

are stored in vector-like registers. The ability to work on matrices instead of just vectors provides the 

same functionality as the LACore’s multi-stream output mode, where large input data-streams can be 

partitioned into sub-streams and each sub-stream can be used in a separate dot-product 

simultaneously. The other similarity between MOM and LACore is that they both support general 

strided vector memory accesses, instead of just sequential vector memory accesses. So both support 

some version of a gather-scatter interface. 

There are a few key differences between the architectures though. First, the MOM authors 

clarify that traditional vector processors are more performant that multimedia extensions for arbitrarily 

large vector sizes. This means that the LACore inherently scales better with problem size. Second, 

MOM is limited to 16x8 matrices as operands, and they must be stored in vector-like registers, while the 

LACore streams arbitrarily large matrices in and out of FIFOs. Third, MOM does not support Large-

Format vectors, heterogeneous data-types or sparse-matrix data-sources, like the LACore. Finally, the 

MOM architecture provides separate instructions for memory accesses and data execution, since it is a 

load-store architecture, and does not provide a decoupled access/execute interface like the LACore. 
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IBM Cell Processor 

The Cell processor, from Sony, Toshiba and IBM, is an architecture radically different from 

traditional vector processors or scalar processors with multimedia extensions (Williams S. S., 2006). It 

has a powerful single-threaded PowerPC core, and 8 smaller parallel-processing cores, and is used in a 

range of applications including linear algebra kernels. 

Due to the Cell’s unique architecture, it does not share very many architectural features with 

the LACore. One major feature it does share, though, is programmer-controlled memory management. 

The Cell processor takes this idea to much more extreme levels than the LACore, though, since the 

user explicitly manages every single memory operation. The LACore only provides an API for manually 

managing the scratchpad-memory and scratchpad-scratchpad memory transfers. This direct memory 

management is a feature that allows the application to perform more deterministically, with the 

tradeoff of being slightly more cumbersome to program. 

There are additional differences between the Cell processor and LACore, however. First, the 

Cell is composed of multiple independent processing units, while the LACore is a single processor with 

sequential and parallel functional units all included. Second, the Cell does not provide a decoupled 

access/execute architecture like the LACore. Third, the Cell does not allow working with 

heterogeneous, mixed-precision data-sources, like the LACore. Finally, the Cell does not appear to 

support any functionality analogous to the LACore’s multi-stream output mode. 

Gem5 Aladdin 

gem5-Aladdin is not a computer architecture, but a simulation framework for accelerator-rich 

processors (Shao, 2016). This work developed an extension in gem5 for design-space exploration of 

fixed-function accelerators that use scratchpad memories. The simulation methodology was similar to 

that of the LACore, since both works evaluated accelerator architectures by extending gem5. The 

major differences were that the gem5-Aladdin research does not do any functional verification of their 

algorithms in gem5 since their primary concern was area and power estimation, and that the fixed-

function accelerators were not tightly coupled to the scalar CPU, which is a major architectural feature 

of the LACore. Additionally, datapaths for each specific kernel were instantiated using the Aladdin 

framework, which contrasts with the LACore that uses a single general-purpose architecture to 

address a variety of linear algebra kernels. 
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4 LACORE ARCHITECTURE 

4.1 LACORE AS A SCALAR CPU EXTENSION 

In any computer program, there will be a scalar, sequential part of the code and a potentially 

parallelizable part of the code. In a paper by Gene Amdahl, it was declared that about 40% of 

instructions in typical applications fall into the data management housekeeping category, or the 

sequential code (Amdahl, 1967). The result is that 60% of the code can be run in a highly parallel 

fashion, costing up to zero runtime, but the overall runtime will end up being dominated by the scalar 

40% of instructions. In the wide array of applications, the scalar portion can vary from 20%-40%, but this 

fact remains the same.  

Amdahl’s law makes the point that the scalar CPU performance is very important, and since the 

LACore is mainly designed for parallel execution, a decision had to be made how to integrate the 

LACore into a scalar CPU. One option would be to co-design a scalar architecture tightly coupled with 

the LACore, effectively creating a full HPC vector processor like the CRAY X1 (CRAY, 1977). An opposite 

approach would be to fully decouple the vector part from the scalar CPU and have them communicate 

over the PCIe bus, similar to discrete GPU accelerators. An intermediate approach would be to decouple 

the scalar part from the vector part on the same piece of silicon, which is exemplified by the Hwacha 

vector processor using the RISC-V ROCC accelerator interface (Lee Y. O., 2015), (Asanovic K. A., 2016). 

The first approach, following CRAY, would require redesigning a full Out-of-Order (OoO), SMT scalar 

processor or something with equivalent or better performance. Since this is already being done in 

industry, and gem5 already supports a highly detailed OoO scalar CPU (Binkert, 2011), time spent 

reinventing the wheel here would be wasted. The second approach mentioned will lead to a design that 

suffers from the same shortcomings as GPUs. The third approach gives us the higher performance of 

putting the scalar and vector parts on the same chip, while also providing a clean line of separation 

between them. This allows development of the vector implementation without having to worry about 

the scalar implementation, which is why this third approach is used by the LACore.  

The major difference between the LACore and Hwacha implementations, however, is that from 

the CPU’s perspective, the LACore is just a functional unit with variable latency within the CPU’s 

execution stage, while the Hwacha vector processor is a different module sitting next to the CPU and 

receives instructions over an interface from the CPU. Additionally, it is not clear from the Hwacha 
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architecture manual, but it appears the Hwacha vector processor can execute in parallel with the scalar 

CPU, allowing vector and sequential work to be done simultaneously (Lee Y. S., 2015). Assuming some 

mechanism for this does exist, this would be a slight advantage of the Hwacha processor over the 

LACore processor, since the LACore instructions will block the currently executing hardware thread 

until it is complete. This penalty is easily masked using modern OoO SMT processors, though, so 

advantage held by Hwacha is most likely negligible.  

The LACore architecture was therefore chosen to be an extension to the RISC-V scalar processor 

(Waterman A. a., 2016), similar to Hwacha. The choice of RISC-V could be swapped with MIPS, x86 or 

ARM with only changes to the ISA and scalar processor’s decoder, and no changes to the actual LACore 

implementation. The reason RISC-V was then chosen for this research is that it is a modern, free, and 

open-source platform, with robust toolchains for developing both hardware and software. Additionally, 

fully tested RTL models exist for a plethora of different CPU models in RISC-V, including one, three and 

five-stage single-issue pipelined processors, called the Sodor collection (Celio C. , 2014), as well as a 

more complex OoO processor, called BOOM (Celio C. P., 2015). So, the LACore needs to only be 

implemented once in gem5 and once in RTL in order to plug it into the many different freely-available 

scalar CPU models. This cannot be as easily done with other scalar architectures like x86 or ARM. 

4.2  LACORE MICROARCHITECTURE OVERVIEW 

 

Figure 4-1: LACore Microarchitecture Block Level Design. 
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Figure 4-1 illustrates the high-level microarchitecture which consists of a scalar CPU and an 

LACore acceleration unit. The gray box represents a single CPU. The white blocks within the CPU are 

the components from a typical scalar processor: The Instruction Cache, Data Cache, Decoder, Scalar 

ALU, and Register File. For this paper, a RISC-V processor was used as our scalar CPU implementation. 

The blue blocks in Figure 4-1 are the part of the LACore’s extension to the base scalar CPU: The 

LACore configuration registers (called LACfgs), an LACore execution unit (called the 

LAExecUnit), a 64 kB per-core private scratchpad memory, and a high-throughput multi-banked 

cache (called the LACache). 

The scalar CPU’s Instruction Set is extended with LACore-specific instructions. The LACore’s 

instructions are decoded by the scalar Decode Unit, providing configuration for the LACfgs, 

LAExecUnit and LAMemUnits. The LACore’s Execution instructions are 4-operand (3 inputs and 1 

output) complex memory-memory operations (where memory could be main memory or scratchpad) 

and will execute for a variable amount of processor-cycles, concurrently accessing data in memory and 

scratchpad through the LAMemUnits, while executing arithmetic operations in the LAExecUnit’s 

datapath. The LAMemUnits and the datapath are connected by clock-crossing FIFOs, with the datapath 

running in a separate, slower domain from the rest of the LACore. 

The LACfgs are large configuration registers that configure how the four LAMemUnits access 

data in memory or scratchpad. The LAMemUnits use these configurations to stream data between the 

LAExecUnit and the memory or scratchpad. The scratchpad is a low-latency, high-throughput 

memory typically used to store temporary intermediate results of multi-instruction operations in the 

LAExecUnit. The LACache is a third L1 cache alongside the Data-Cache and the Instruction-Cache, 

with multiple ports and banks for the LAMemUnits to more effectively access the memory system. 

4.3 THE LAEXECUNIT 

The LAExecUnit is a highly-configurable parallel processing unit with three major types of sub-

units: the LAMemUnits, the datapath, and FIFOs connecting them all, as illustrated in Figure 4-2. There 

are four LAMemUnits, three which read large-format streams of data from the scratchpad, the 

memory or an LACfg, and write them into the datapath’s input FIFOs 𝐴, 𝐵 and 𝐶. The fourth 

LAMemUnit reads the datapath’s output FIFO, 𝐷, and writes the resulting large-format data-stream to 

the scratchpad or memory. This categorizes the LACore as a Decoupled Access/Execute Architecture 

(Smith, 1982), where the memory access and data execution are separate processing units connected by 
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FIFOs, reminiscent of the design presented in (Lee Y. O., 2015). The datapath is composed of 8 

VecNodes which support 8 different arithmetic operations, 7 ReduceNodes which support 3 

different reduction operations, and an AccumulateNode. For brevity in Figure 4-2, only 3 out of the 8 

VecNodes and 3 out of the 7 ReduceNodes are shown. So in reality, the LAExecUnit is about 

three times as tall, but still has the same number of LAMemUnits: 3 input LAMemUnits and 1 output 

LAMemUnit. Also, take note that the LAExecUnit’s datapath operates on 512-byte SIMD buffers, 

which hold either 16 single-precision or 8 double-precision floating-point elements. 

 

Figure 4-2: LAExecUnit with major sub-blocks shown. 

4.3.1 The LAExecUnit Datapath 

Novel Stream Processing 

The configurable datapath performs operations on three input streams and produces a single 

output stream. In this sense, the LAExecUnit’s datapath can be thought of as a traditional stream 

processing unit or dataflow processing unit. In stream processing, the data flow through fixed execution 

units connected by queues, in this way, flow control is automatically performed and execution happens 

at maximum possible speed (Beard, 2013). Dataflow processing as a paradigm contrasts control flow 

processing (an example is the Von Neumann architecture), where a program counter continually 

fetching the next instruction from memory and performing branching and jump operations based on 
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current instruction results. The advantage of using dataflow in the LAExecUnit’s datapath is that it 

does not need to operate conditionally based on the input elements or re-implement a whole scalar CPU 

for instruction fetching, like the Hwacha processor (Lee Y. O., 2015), but instead performs the same 

operation on all inputs data elements. The minor caveat is that the LAExecUnit’s datapath needs to 

be configured at the beginning of the current instruction, but then the configuration remains constant 

for the remained of the operation.  

The three streams of input vectors are labelled 𝐴, 𝐵 and 𝐶 in Figure 4-2. They arrive at the 

datapath through FIFO queues. This means the datapath is completely decoupled from the vector 

stream generation done by the LAMemUnits. The output vector stream gets put into the 𝐷 FIFO 

queue, which is consumed by another LAMemUnit, which handles writing the data back to memory, 

scratchpad or a register. The datapath is completely unaware of the shape and location of its input and 

output vectors, it is just concerned with execution. Most vector-processor architectures require the 

inputs and outputs to go to “vector registers”, such as CRAY and Hwacha (CRAY, 1977) (Lee Y. O., 2015), 

but the LAExecUnit instead uses the FIFOs to store the inputs and outputs of the datapath in order to 

support a decoupled dataflow model. Another noteworthy architecture that uses a very similar 

streaming computation model is the RSVP architecture (Ciricescu, 2003), which connects the memory 

system to the execution system through input and output FIFOs. However, the RSVP targets multi-media 

applications that operate on smaller batches of data, and therefore has a few major architectural 

differences regarding the streaming, which is discussed in the LAMemUnit section. 

Since the execution and memory access are fully decoupled, the LAExecUnit represents a 

Decoupled Access/Execute Architecture (Smith, 1982). Decoupling the memory access from execution 

has been shown to provide performance improvements by allowing individual components to operate at 

their own rate all the time. This is especially useful in the LAExecUnit since the latency of all the sub-

blocks within it are variable, and allowing some sub-blocks to proceed many cycles ahead of other sub-

blocks instead of stalling the whole system is a fluid and fine-grained approach. For example, let’s say 

LAMemUnit 𝐴 produced 9 elements very quickly, and put them in the queues to the datapath, but the 

next 3 items produced a series of cache misses and stalled input 𝐴 for 10 cycles. The latency of the cache 

misses in this case is partially hidden by the fact that beforehand, LAMemUnit 𝐴 could run ahead and 

place extra elements in the datapath’s input queues. If input 𝐴 and the datapath had to operate 

synchronously as 1 unit, then the datapath would have to stall for the same amount of time as 𝐴, and 

overall the stalling latency would be larger. 
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Novel Reduction Unit 

Another distinguishing feature of the LAExecUnit compared to the datapath of other parallel 

processors is the vector reduction unit, composed of the tree of ReduceNodes seen in Figure 4-2. The 

CRAY X1 and Hwacha Vector processor do not natively support reduction within a single cycle, so 

performing a dot product on vectors of length 𝑁 (with 𝑁 up to 264) will take 𝑂(𝑙𝑜𝑔 𝑁) instructions to 

complete, while with the LACore it would take 𝑂(1) instruction to complete. We can see other 

mainstream parallel processing platforms suffer the same fate as other processors. For example, on 

NVIDIA’s CUDA platform, many lightweight threads can perform the vector-vector multiplication on 

independent data instantly, but then the programmer must manually reduce the result using a repeating 

pattern of synchronizations and vector-adds (Sanders, 2010). That means that on GPUs, in order to 

perform a dot-product on vectors of length 𝑁, 𝑂(𝑙𝑜𝑔 𝑁) thread synchronization calls must happen, 

which becomes a performance bottleneck compared to the LAExecUnit’s reduction unit, which 

does not need explicit synchronization since only one heavyweight thread is performing the parallel 

processing. 

The reduction unit inside LAExecUnit has been implemented in fixed-function linear algebra 

accelerators, such as (Morris, 2005), but those implementations were rigid, single purpose circuits for 

solving specific problems. The LACore takes the reduction unit concept and applies it generically to a 

broad range of linear algebra applications. 

 

Novel Vector, Scalar, or Multi-Stream Vector output 

In Figure 4-2, the contents of the LAExecUnit’s datapath show there is a set of parallel 

nodes, called VecNodes, and a binary tree of nodes called ReduceNodes followed by an 

AccumulateNode. A more detailed image is seen in Figure 4-3. All input data flows in parallel through 

the VecNodes to produce an output vector of data. This output vector can either be fed to the 

ReduceNodes or be fed directly to the output LAMemUnit 𝐷. This allows the execution unit to take 3 

input vectors and either produce 1 output vector, a scalar value, or a novel output called a “multi-

stream” vector, depending on the instruction. The latency of a vector output is only the latency of the 

VecNode array, while the latency of reducing to a scalar value or a multi-stream vector is the sum of 

the VecNode latency in addition to the latencies of each column of ReduceNodes and the 
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AccumulateNode. The machine instruction determines whether to take the VecNode vector output 

or the AccumulateNode scalar output by using a MUX before the 𝐷 queue.  

 

Figure 4-3: LAExecUnit datapath details. 

When a vector output is configured by the current instruction, the output stream 𝐷 matches up 

1-1 with the input streams 𝐴, 𝐵, and 𝐶. This means the first elements produced by 𝐴, 𝐵 and 𝐶 will be 

operated on and produce the first element in stream 𝐷, the second element in 𝐴, 𝐵, and 𝐶 will produce 

the second element in stream 𝐷, and so forth. When a scalar output is requested, only one element is 

produced by the AccumulateNode and consumed by the output LAMemUnit 𝐷. The scalar output is 

used in operations like a large vector-vector dot-product, or finding the maximum value in a vector. The 

multi-stream output mode is a powerful way to take input streams with 𝑁 elements and reduce them to 

an output stream with 𝑀 elements, where 𝑀 divides 𝑁. Multi-stream mode can be thought of as 

breaking the input stream into smaller consecutive sub-streams, and reducing each of those sub-

streams to their own scalar. The resulting output stream is then composed of these scalar elements. 
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Figure 4-4: LAExecUnit Multi-stream output, DGEMM example. 

An example use case for multi-stream output mode is the double-precision Matrix-Matrix 

multiply kernel, also known as DGEMM in the BLAS Library (Lawson, 1979). DGEMM is a core routine 

used by many higher-level linear algebra routines. Figure 4-4 shows how DGEMM is executed in the 

LAExecUnit’s datapath using the multi-stream output mode, where a single row in matrix 𝐶 is the 

result of computing the dot-product of a row in matrix A with each column in B. The advantage of the 

multi-stream mode is that it can perform entire complex operations through a single instruction, which 

allows even more memory-access and data-execution overlap, without having to reissue instructions 

between each dot-product operation. For example, in Figure 4-4, while dot-product for 𝐶00 is being 

computed in the datapath, the elements required for the dot-product for 𝐶01 are being fetched from 

memory. Additionally, since the datapath is so deep (high-latency) due to the multiple levels of 

ReduceNodes, it is necessary to fill the datapath with dot-products of multiple sub-vectors at the 

same time for full utilization.  

There have been other parallel computers, mostly for multimedia applications, that have 

implemented something similar to the LACore’s multi-stream output mode. One example is the 

“Matrix Oriented Multimedia” extension (MOM), which provides an instruction set for doing efficient 

matrix operations on special registers (Corbal, 1999). However, MOM is a traditional load-store 

architecture that requires moving data in and out of registers before operating on them. Furthermore, 

MOM is not a vector processor and therefore only operates on matrices up to 16x8 in size, which is a 

large limitation for general purpose linear algebra calculations on large matrices – but this was not the 

exact target application for MOM anyways.  
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The last major advantage of the multi-streaming mode is that it provides a greater opportunity 

to fully utilize the LAExecUnit, especially when using shorter vectors. The LAExecUnit uses 

stream-ids as book-keeping for the different sub-streams in multi-streaming mode in order to only 

reduce elements within the same stream. This logic has no effect on the VecNodes but it does slightly 

complicate the ReduceNodes control circuitry, and can cause stalling if the sub-stream count is not a 

multiple of (𝑆𝑖𝑚𝑑𝑊𝑖𝑑𝑡ℎ ∗ 𝑉𝑒𝑐𝑁𝑜𝑑𝑒𝑠).  

 

Eight Unique Vector Operations and Three Unique Reduction Operations 

Another unique feature of the LAExecUnit is the ability to perform eight different arithmetic 

operations in the VecNodes, and three different operations in the ReduceNodes, which are 

itemized in Table 4-1. A total of 24 possible datapath configurations are possible when operating in 

single-output or multi-stream-output modes, and eight datapath configurations are possible when 

operating in vector-output mode.  

VecNode Ops ReduceNode Ops 

(A+B)*C (A+B)/C sum(X, Y) 

(A-B)*C (A-B)/C min(X, Y) 

(A*B)+C (A*B)-C max(X, Y) 

(A/B)+C (A/B)-C  
Table 4-1: LAExecUnit datapath configurations. 

A common configuration of the datapath would be for vector dot-product, in which case the 

VecNodes would be configured for (𝐴 ∗ 𝐵) + 0  and the ReduceNodes would be configured for 

𝑠𝑢𝑚(𝑋, 𝑌).  

 

Figure 4-5: VecNode Operation Bypassing. 
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Another important feature is called operation bypassing, which can be seen in Figure 4-5, which 

is a latency reduction technique that uses inputs to determine if a part of the VecNode operation can 

be bypassed altogether. For example, if (𝐴 ∗ 𝐵) + 0 was being computed, it would be a waste of cycles 

to compute the floating-point addition of (𝐴 ∗ 𝐵) and 0, so in that case, the datapath control units 

(which can be seen at above the VecNodes in Figure 4-2) directly select the output of (𝐴 ∗ 𝐵) using the 

MUX after the multiplier/divider. A similar bypassing technique can be used if the user just wants to 

perform (𝐴 + 𝐵), in which case 𝐶 would be a constant, 1. The datapath control unit would select (𝐴 +

𝐵) directly in this situation using the MUX after the adder/subtractor in the VecNode, and ignoring the 

output of the multiplier/divider. All this latency hiding through bypassing is done transparently by the 

datapath control logic, and is not controlled directly by the user. All the user needs to do is specify the 

right input values for 𝐴, 𝐵, and 𝐶 for the bypassing to transparently take effect. 

 

Novel Simultaneous Dual-Precision Hardware 

To support a diverse range of applications, the LACore supports both single-precision and 

double-precision (32-bit and 64-bit) floating point arithmetic, since support for both precisions is 

standard in all mainstream hardware vendors nowadays. To maximize the performance while 

minimizing hardware redundancy, the LAExecUnit’s datapath is dual-precision. In other words, the 

VecNodes, ReduceNodes, and AccumulateNode all support single-precision and double-precision 

arithmetic by reusing the same hardware. This results in area reduction and power-reduction while 

marginally increasing the latency. For the entire LAExecUnit to be capable of dual-precision 

arithmetic, the basic operations that need to be supported in dual precision are add, subtract, multiply, 

divide and compare. Implementations for each of these operations have already been presented in 

literature, and shown to barely affect latency on the critical path, which means it is optimal to 

implement the LAExecUnit using dual-precision components. A summary of these dual-precision 

components is found in Table 4-2. 

Dual-Precision Operation Latency Frequency Source 

Add 5 cycles 1.5 GHz (Akkaş, 2008) 

Subtract see Add see Add see Add 

Multiply 4 cycles 1 GHz (Jaiswal, 2015) 

Divide 15/11 cycles (DP/SP) 1 GHz (Jaiswal, 2016) 

Compare see Add see Add see Add 
Table 4-2: Dual-Precision Hardware Latencies and Frequencies. 



24 
 

Dual-precision hardware can be used for mixed-precision HPC applications such as Iterative 

Refinement techniques, which are used to improve the accuracy of the solution to a system of linear 

equations (Kurzak, 2016). Since floating point arithmetic has inherent error due to round-off, the result 

of solving 𝐴𝑥 =  𝑏 for 𝑥 may have an unacceptably large error. To fix this, iterative refinement can be 

applied until 𝑥 converges to an acceptably low error. Kurzak has shown that when using mixed precision, 

the initial factorization of 𝑃𝐴 = 𝐿𝑈 during decomposition can be performed in single-precision, while 

the iterative refinement can be performed in double-precision, with very little effect on overall accuracy 

or performance. The LACore is well suited for this type of application, since it targets linear algebra 

applications and supports both single-precision and double-precision arithmetic using the same 

hardware. Another useful application of dual-precision hardware is in approximate computing, where 

the algorithms are inherently error tolerant, since the input data is noisy (Nepal, 2016). In these 

situations, it may be advantageous to also reduce the accuracy of the calculations by using a lower 

precision floating point format, something the LACore is again suited for. 

The unique contribution to dual-precision hardware that the LACore adds, however, is the 

ability to operate on both 32-bit floating point and 64-bit floating point and produce either 32-bit or 64-

bit outputs regardless of input precision. For example, if the current LACore instruction was (𝐴 + 𝐵) ∗

𝐶 = 𝐷, and the inputs 𝐴 and 𝐵 were 32-bit floating point, while input 𝐶 and output 𝐷 were 64-bit 

floating point, the LAExecUnit will be able to handle this by coercing the inputs to the output’s 

precision using special “coerce units”, which can be seen in Figure 4-3. So, in our current example, inputs 

𝐴 and 𝐵 will be coerced to 64-bit streams in hardware right before entering the VecNodes, and the 

entire pipeline will operate in 64-bit precision, since this is precision of output stream 𝐷. A more 

detailed view of how the coerce unit operates is seen in Figure 4-6, which makes clear that the coerce 

unit is a glorified MUX that selects based on the input stream’s type and the output stream’s type. 

 

Figure 4-6: Coerce Unit used for Simultaneous Dual-Precision 
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To knowledge, no other parallel computing architecture allows the seamless usage of both 32-

bit and 64-bit floating point at the same time, and typically require an explicit conversion operation on a 

vector to convert it between 32-bit and 64-bit floating point. So, in applications where the need to 

quickly switch precisions or use different precisions simultaneously is important, the LACore provides a 

unique advantage over other computing platforms. 

Packed SIMD stream processing 

As seen in Figure 4-3, not only does the LAExecUnit have parallel processing VecNodes and 

ReduceNodes, but it also works on packed SIMD data. Packed SIMD is orthogonal to vector processing 

and it is a technique typically used when traditional vector processing is not used. For example, Intel’s 

Multimedia Extensions (MMX), Streaming SIMD extensions (SSE), and Advanced Vector Extensions (AVX) 

are all established packed SIMD instruction sets used for parallel data processing for the x86 platform 

(Patterson D. A., 2013). One of the major drawbacks of SIMD-only parallel architectures is that they 

define an instruction set for a specific SIMD width, so the result is that new ISAs need to be developed 

for each successively larger SIMD width. The LACore does not suffer from this drawback since it is a 

Large-Format vector accelerator, and can operate on arbitrarily sized vectors using a few instructions. 

The LACore uses combined vector processing with packed-SIMD to maximize the ratio of 

control hardware to data-processing hardware and to also improve throughput. For example, instead of 

using a 64-byte wide SIMD buffer, if the LAExecUnit had used 64 VecNodes that operated on one 8-

byte input each, then the control circuitry and infrastructure would have to be duplicated for each of the 

64 VecNodes. But with the LACore’s combined vector processing and packed SIMD approach, the 

control circuitry only needs to be duplicated for each of the 8 VecNodes. Although both approaches 

would produce the same results in the end, the packed SIMD approach requires much less control 

circuitry, and is therefore more area efficient. Additionally, the LACore’s combined vector processing 

and packed-SIMD approach keeps the throughput of the datapath the same, while reducing the latency, 

since adding more VecNodes in parallel results in a deeper ReduceNode tree with more layers. 

Separate Clock Domain 

Industry-leading scalar CPUs like the Intel Xeon E7 are now capable of running over 3-4 GHz 

(Intel, 2017), however, the dual-precision functional units listed in Table 4-2 only have been confirmed 

to operate in the low 1 GHz range. Additionally, NVIDIA GPUs only operate in the low to mid 1.5 GHz as 

well (NVIDIA, 2016). In order to not throttle the scalar CPU and memory system’s frequency due to the 
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slower LAExecUnit datapath, two separate clock domains are used in the processor: 3-4 GHz for the 

scalar CPU and 1-1.5 GHz for the LAExecUnit. Another reason for using a slower clock speed in the 

LAExecUnit datapath is that it allows the LAMemUnits to stream data at a proportionally higher 

rate compared to how fast the LAExecUnit’s datapath is consuming the streams, which is helpful in 

allowing the datapath to reach its theoretical peak throughput. 

Latency and Throughput 

Performance for the LACore’s datapath is summarized in Table 4-3 below. The numbers given 

assume an 8 VecNode configuration (4, 16 or 32 VecNodes is also possible), 8-wide SIMD as the 

fundamental operand, and Dual-Precision hardware latencies taken from Table 4-2. The scalar CPU is 

assumed to be running at 2-3x the clock speed listed in Table 4-3, which is the clock speed of the 

LAExecUnit datapath. Although the reduce operations and multi-stream operations have a higher 

latency, they result in a higher overall throughput than the vector processor, since they utilize more of 

the LAExecUnit’s hardware at any given time.  

Performance of LAExecUnit datapath for all configurations using Dual-Precision hardware 
latency estimates 

Output Type VecNode 
config 

ReduceNode 
config 

Datapath 
Latency 
(cycles) 

FLOP/cycle 
sustained 

Throughput @ 1 
GHz sustained 

Scalar / 
Multi-Stream 

(32-bit) 

(A+0)*C ALL 19 (4+15) 240 (128+112) 240 GFLOP/s 

(A+0)/C ALL 29 (14+15) 240 (128+112) 240 GFLOP/s 

(A+B)*C ALL 24 (9+15) 368 (256+112) 368 GFLOP/s 

(A+B)/C ALL 34 (19+15) 368 (256+112) 368 GFLOP/s 

Scalar/Multi-
Stream (64-

bit) 

(A+0)*C ALL 19 (4+15) 120 (64+56) 120 GFLOP/s 

(A+0)/C ALL 33 (18+15) 120 (64+56) 120 GFLOP/s 

(A+B)*C ALL 24 (9+15) 184 (128+56) 184 GFLOP/s 

(A+B)/C ALL 38 (23+15) 184 (128+56) 184 GFLOP/s 

Vector 
(32-bit) 

(A+0)*C - 4 128 128 GFLOP/s 

(A+0)/C - 14 128 128 GFLOP/s 

(A+B)*C - 9 256 256 GFLOP/s 

(A+B)/C - 19 256 256 GFLOP/s 

Vector 
(64-bit) 

(A+0)*C - 4 64 64 GFLOP/s 

(A+0)/C - 18 64 64 GFLOP/s 

(A+B)*C - 9 128 128 GFLOP/s 

(A+B)/C - 23 128 128 GFLOP/s 
Table 4-3: Theoretical Latency and Throughput of LAExecUnit datapath. 

Again, these performance figures could easily double or halve, depending on how wide the 

packed-SIMD is or how many parallel VecNodes there are; the numbers chosen were picked because 
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they provide the best performance for a range of applications while keeping the area footprint as small 

as possible. The performance tuning was done with gem5 parameters sweep, which will be discussed 

shortly. 

For the VecNode config column in Table 4-3, only two out of the eight configurations are 

shown, since subtraction has the same latency as multiplication, and the order of the add/subtract and 

the multiply/divide does not affect the overall latency. The latencies for scalar-output and multi-stream-

output are the sum of the VecNode latency and the ReduceNode tree latency, corresponding to the 

two values in parenthesis in the “Datapath Latency” column. Similarly, FLOP/cycle is the sum of the 

VecNode array throughput, and the ReduceNode tree throughput, at either 8-SIMD for double-

precision and 16-SIMD for single-precision. It also must also be stressed that these are the theoretical 

peak numbers without respect to the LAMemUnit performance. In other words, the numbers in Table 

4-3 are the theoretical upper-bound for performance for a single LACore. In applications with a low 

computational complexity, the actual peak performance will be much lower. 

NVIDIA GP100 Performance per Streaming Multiprocessor 

SMs FP32 CUDA 
cores/SM 

FP64 CUDA 
cores/SM 

Clock Peak FP32 GFLOPs 
/SM 

Peak FP64 GFLOPs 
/SM 

56 64 32 1.3 GHz 189 95 
Table 4-4: Performance of two NVIDIA GP100 Streaming Multiprocessors (NVIDIA, 2016). 

It is useful to compare the performance figures in Table 4-3 with leading industry hardware 

platforms. One leading platform is NVIDIA’s recent GP100 which uses the Pascal architecture. A 

summary of its performance is found in Table 4-4 above. Given that the LACore is roughly equivalent 

to two Streaming Multiprocessors in an NVIDIA GPU in terms of area and memory resources used (see 

the Design Area Estimates section), it makes sense to compare the LACore’s performance to two 

Streaming Multiprocessors. Scaling the LACore can be done by using a multi-core design with tens or 

hundreds of LACores on a single chip, which then would be a good time to compare to the GP100’s 

overall performance. The performance results from Table 4-3 and Table 4-4 show that the 

LAExecUnit’s datapath has roughly the same theoretical throughput as two Streaming 

Multiprocessors; the LACore can achieve 368 GFLOP/s single-precision and 184 GFLOP/s double-

precision at theoretical peak-performance, while the two SMs can achieve 378 GFLOP/s single-precision 

and 190 GFLOP/s double-precision. So the LACore and the GP100 SMs, two parallel-computing 

architectures, have roughly equal area and theoretical performance numbers, but their architectures are 

radically different. As we will discuss in the Benchmarks and Evaluation section, the LACore 
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architecture achieves better real-world results than the GPU SMs for a range of HPC applications despite 

these similar statistics. 

Design Space Optimization Using Parameter Sweeps 

The LAExecUnit’s datapath parameters were not arbitrarily chosen, but were selected after 

studying the linear algebra applications that were being targeted and finding the hardware configuration 

that performed best for all of them. The methodology consisted of selecting a handful of linear algebra 

applications and implemented them for the LACore architecture, then implementing the LACore 

architecture in the gem5 cycle-accurate simulator (Binkert, 2011), and then determining the parameters 

to tune and benchmark the selected applications for each of the parameter configurations.  

For the LAExecUnit’s datapath, the relevant parameters were the SIMD width and the 

number of VecNodes (which also determines the number of ReduceNodes). The applications chosen 

were Double-Precision Matrix-Matrix Multiply (DGEMM), a BLAS-3 kernel (Lawson, 1979), and Double-

Precision Triangular-Solve (DTRSM), which is another BLAS-3 kernel. The reason these two kernels were 

selected is because they have been shown to be the minimal set of kernels needed to be implemented 

in order to implement the rest of the BLAS-3 routines, as discussed in (Van Zee, 2015). In other words, 

we can implement most of complex routines in the BLAS API by only implementing the DGEMM and 

DTRSM kernels, and since BLAS is a fundamental API in solving computational linear algebra problems, 

this seemed like a simple and effective way to optimize the LAExecUnit’s datapath for most linear 

algebra applications. 

 
Figure 4-7: LAExecUnit parameter sweep using DGEMM 
average performance. 

 
Figure 4-8: LAExecUnit parameter sweep using DGEMM 
peak performance. 

The DGEMM benchmark results for the parameter sweep are shown in Figure 4-7 and Figure 

4-8. Figure 4-7 shows how the SIMD-width and VecNode count affect the average DGEMM 

performance across the four different variations of the DGEMM kernel (the variations just involve 
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transposing input matrices), while Figure 4-8 shows how these parameters affect the peak DGEMM 

performance from all the variations. It is evident that the 8-SIMD double-precision (512-byte buffers), 

and 8 VecNode configuration is optimal at every matrix size for both peak and average performance. 

 
Figure 4-9: LAExecUnit parameter sweep using DTRSM 
average performance. 

 
Figure 4-10: LAExecUnit parameter sweep using DTRSM peak 
performance. 

The parameter sweep results of the DTRSM average performance are shown in Figure 4-9, while 

the peak DTRSM performance is shown in Figure 4-10. There are 16 variations of the DTRSM kernel, and 

all of them were tested and averaged to produce the results in Figure 4-9, while the highest-performing 

variation is shown in Figure 4-10. Unlike the DGEMM parameter sweep results, the DTRSM results show 

that the SIMD-width and VecNode count have little effect on the kernel’s performance on the 

LACore. This is dues to DTRSM being a more memory-bound application than DGEMM, so the memory 

accesses are the bottleneck and sweeping over the datapath’s parameters will have a negligible effect. 

Therefore, there is no reason to use a 16 VecNode configuration, since this would just take up more 

area without providing any performance benefits. 

To summarize the parameter-sweep findings: using the DGEMM and DTRSM applications for 

performance tuning, the configuration of 8-wide double-precision SIMD and 8 VecNodes was deemed 

optimal with respect to both performance and area utilization of the LACore. 

 

4.3.2 LAMemUnit Architecture 

The LAMemUnits are responsible for taking the wide range of data configurations and 

converting them into a universal stream format for the datapath. From Figure 4-11, we can see a more 

detailed architecture of an input LAMemUnit, which uses an instruction and an LACfg configuration 

register as the only inputs needed to start interacting with the LACache and scratchpad with 128-byte 
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line-sizes. Internally, the LAMemUnit has three major components: A Next-Address Generator FSM, a 

FIFO controller, and a Memory Controller. As mentioned previously, the LAExecUnit datapath runs at 

2-3x slower clock speed than the rest of the LACore and scalar CPU since the LAMemUnit must be 

able to fetch and write data fast enough to allow the datapath to attain peak performance and the dual-

precision functional units are inherently slower. Additionally, data is written to the FIFOs on both edges 

of the CPU’s main clock, and written 2-items at a time. The combination of the above three performance 

enhancements allow the LAMemUnit to fill the FIFOs at the maximum theoretical rate the 

LAExecUnit’s datapath will consume 8-wide double-precision SIMD blocks or 16-wide single-

precision SIMD blocks. But this maximal rate is only achievable if the LAMemUnit can fetch data that 

fast from the LACache or scratchpad, which is only possible in high-spatial locality applications.  

Finally, the LAMemUnits support Large-Format data sources, meaning that input and output 

vectors/matrices can be arbitrarily large, similar to archetypal vector processors (Cray, 2003). The major 

distinction from vector architectures is that in the LACore, data sources are not limited to strided 

vectors. 

 

Figure 4-11: LAMemUnit High-Level Design. 

Novel Scalar, Vector, Matrix and Sparse Configuration 

The LAMemUnit’s Next-Address Generator is a Finite-State-Machine that is capable of 

generating the address of arbitrary scalars, vectors, and dense or sparse matrices. For scalars, it simply 
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generates the location of the element, and the Mem-Ctrl within the LAMemUnit will then produce that 

scalar repeatedly. For vectors, the FSM generates the next address from a configured base-address, 

stride, skip, and count according to the following equation: 

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟(𝑖) = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ (𝑖 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ (𝑖/𝑐𝑜𝑢𝑛𝑡)) 

Here, 𝑆𝐼𝑍𝐸 is four for single-precision and eight for double precision, and 𝑖 is the current offset 

within the vector. This general formula for vectors allows the user to specify arbitrary submatrices 

within a larger matrix to operate on. Combining this feature with the multi-stream datapath 

configuration provides a simple and powerful interface for operating on arbitrarily sized and positioned 

dense matrices in memory. An example of the different vector configurations is seen in Figure 4-12. An 

additional benefit of being able to express the vector layout as a simple equation using address, stride, 

skip and count is that the LAMemUnit can perform pre-fetching ahead of the datapath.  

 

Figure 4-12: LAMemUnit Vector stride, skip, count config. Image from (Ciricescu, 2003). 

It should be noted that the address, stride, count vector configuration is implemented in many 

existing vector architectures, like Cray X1, Hwacha, and RSVP (CRAY, 1977) (Lee Y. O., 2015) (Ciricescu, 

2003), and is more generally known as a gather-scatter interface. However, from the above three, only 
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RSVP appears to provide the additional skip configuration that allows the user to select sub-matrices 

from larger matrices in memory.  

 

Figure 4-13: LAMemUnit Sparse Matrix Configuration, with all 6 config fields shown. 

The last, and most novel feature of the Next-Address generator FSM in the LAMemUnit is that 

it can be configured for sparse matrix input or output, as seen in Figure 4-13. The LAMemUnit only 

processes sparse matrices that are similar to the Harwell-Boeing sparse matrix format (Duff, 1989). The 

Harwell-Boeing format, also known as Compressed Column Storage format (CCS), requires a column-

pointer, a row-pointer and a data-pointer to arrays in memory. The LAMemUnit generalizes this to 

allowing both column-major and row-major matrices in memory, by using pointers called idx_ptr, 

jdx_ptr, and data_ptr, which point to the major-index, the minor-index and the data-array 

respectively. This generalizes the LAMemUnit to be able to read or write Compressed Column Storage 

or the Compressed Row Storage unambiguously.  

Additionally, three more parameters need to be specified for the LAMemUnit to be able to 

access sparse matrices: idx_count, jdx_count, and data_skip, which provides the rest of 

the information needed for the LAMemUnit to interact the sparse matrix with other input streams such 

as vectors or scalars, which is described in the next section. The idx_count and jdx_count simply 

state the dimensions of the uncompressed matrix, while the data_skip tells the LAMemUnit how 

many elements in the uncompressed matrix to skip. Together, these last three configuration parameters 

allow multi-core parallelization of processing sparse matrices efficiently, since each LACore can easily 

determine the offsets in idx_ptr, jdx_ptr and data_ptr that it needs to skip to when 
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inputting or outputting elements. Also, it is possible for multiple cores to write to different sections of 

the sparse matrix in memory with all 6 of these parameters (with proper synchronization of course). 

An additional novel feature of the LAMemUnit’s sparse matrix configuration is that it also 

allows reading sparse matrices transposed. All the necessary information in the six sparse matrix 

configuration parameters give the Next-Address generator FSM enough information to calculate where 

the next address is. Being able to read and transpose arbitrary sections of sparse matrices and generate 

and abstract stream from the data is a unique feature to the LAMemUnit that, to knowledge, does not 

exist in current literature. 

Novel Generic Item-Stream Interface 

As mentioned above, the LAMemUnit provides a powerful abstraction for turning 

heterogeneous vectors and matrices in memory into generic streams of data for the LAExecUnit’s 

datapath to operate on. For example, referring to Figure 4-2, the user may want to specify input 𝐴 to be 

a single-precision scalar, 𝐵 to be a compressed matrix in column-storage format in memory, and input 𝐶 

to be a long vector in the scratchpad, while outputting the result of the LAExecUnit to a double-

precision sub-matrix inside a dense matrix in memory, as in Figure 4-14. This could be the equivalent of 

computing a sub-block of an output dense matrix in DGEMM by multiplying an input sparse matrix and 

an input dense matrix. With the LACore’s ISA, this is all entirely possible by simply configuring the 

input and output LACfgs appropriately and then executing an LACore instruction. No other parallel 

computing architecture to knowledge provides a similar interface for turning heterogeneous sets of 

scalars, vectors and sparse or dense matrices into generic streams that can easily interoperate. 

 

Figure 4-14: LAMemUnit Generic Stream Interface. 

There are a handful of incompatible input and output configurations, which can be seen in Table 

4-5 below. It is always safe to use a scalar input stream, but you can only use a scalar output stream if 



34 
 

the datapath is configured for a scalar output. For vector and multi-stream output streams, the datapath 

must be configured for multi-stream or vector output modes. Finally, when using multi-stream output, 

there are further restrictions on the input vectors: there must be a compatible count or idx_count 

field for all vectors and sparse matrices, so the datapath knows how many segments to partition the 

input streams into. For example, if the datapath was configured for multi-stream, with 100 input 

elements and 20 output elements, any input vector must have a count field of 5, and any sparse-matrix 

config must have an idx_count field of 5 or a jdx_count of 5 if the input sparse-matrix is 

transposed. 

Data Format Location Possible Can be Input? Can be Output? 

Scalar LACfg Yes Yes Only if scalar-out 

Scalar Scratchpad/memory Yes Yes Only if scalar-out 

Vector LACfg Yes - - 

Vector Scratchpad/memory Always Yes Only if vector-out 
or multi-stream 

Sparse Matrix LACfg Yes - - 

Sparse Matrix Scratchpad/memory Always Yes Only if vector-out 
or multi-stream, 
AND not 
transposed 

Table 4-5: LAMemUnit Possible Configurations. 

Scratchpad, Register, or Main Memory Location 

The LAMemUnit is also capable of reading or writing to 3 different locations: an LACfg holding 

a scalar, the private scratchpad, or the main memory via the LACache. A scalar input or output can be 

in any of the three locations, where the scratchpad and the LACfg locations have a single-cycle access 

latency and the LACache has a potentially higher latency on cache misses. A vector and a sparse matrix 

can only be in the scratchpad or main memory. The use of a scratchpad for intermediate results is not a 

new concept, and is commonly found in embedded applications and in GPUs (Banakar, 2002) (Lindholm, 

2008).  

A summary of the possible input and output configurations of the LAMemUnits is given in 

Table 4-5. There are a few configurations that will produce an error in the LACsrReg and the data 

operation will abort. For example, if the datapath is configured for vector-output but the output 

LAMemUnit is configured for a scalar output, this will produce an error. Additionally, trying to read or 

write vectors from an LACfg is impossible and will generate an error condition in the LACsrReg. 
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Cache-line Optimizations 

As will be discussed in the LACache section later, the cache-line size of the LACore system is 

128 bytes (16 double-precision or 32 single-precision elements). In order to take advantage of spatial-

locality of vector-elements within a cache-line, the LAMemUnit’s memory- controller can determine 

how many of the next vector stream’s elements are located in the current element’s cache block, and it 

can deliver all of them simultaneously to the LAMemUnit’s FIFO-controller.  

 

Figure 4-15: LAMemUnit Can read multiple elements per cache line. 

As an example, recall the 𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟 equation used by the Next-Address generator FSM: 

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟0 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 0) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 0)/𝑐𝑜𝑢𝑛𝑡)) 

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟1 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 1)/𝑐𝑜𝑢𝑛𝑡)) 

𝑁𝑒𝑥𝑡𝐴𝑑𝑑𝑟2 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟 + 𝑆𝐼𝑍𝐸 ∗ ((𝑖 + 2) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑘𝑖𝑝 ∗ ((𝑖 + 2)/𝑐𝑜𝑢𝑛𝑡)) 

The LAMemUnit can compute the next series of addresses simultaneously, and then determine 

how many consecutive elements are in the current cache-line by simply truncating the low bits and 

performing a bitwise-and on the high-bits. Since the cache-line is 128 bytes, the low 7 bits of each 

address can be truncated, and the high 57 bits (on a 64-bit address space) need to be equal. Figure 4-15 

shows how a vector with a stride of 2 and the current vector element having an address of 0𝑥4020, 

could have multiple elements per cache line, and therefore increase the memory throughput by 

accessing them all in one cycle.  

Scratchpad Optimizations 

As will be discussed in the scratchpad section later, the scratchpad has a 128-byte line size, three 

8-byte wide read ports and one 8-byte wide write port. Each bank can be accessed simultaneously and 

concurrently by all four of the LAMemUnits, by using independent buses for each LAMemUnit and 

bank combination. Each LAMemUnit memory-controller uses a similar technique to the cache-line 

optimization technique. The LAMemUnit computes the next 32 addresses in parallel, and determines 

how many addresses are within the current scratch-pad line, and then it reads or writes all of these 

elements to or from the FIFOs connected to the datapath. 
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4.4 LACFG AND LACSRREG REGISTERS 

4.4.1 The LACfg Configuration Registers 

 

Figure 4-16: LACfg Detailed View. 

The LACore adds eight configuration registers to the CPU in order to configure the 

LAMemUnits to read and write a wide range of data structures, layouts and precisions, as seen in 

Figure 4-16. These configuration registers are called LACfgs and should not be confused with 

traditional vector processor “vector registers”, which are used to hold data before and after the vector 

lanes operate on it. The eight LACfgs are connected to the four LAMemUnits by a crossbar which 

allows any LACfg to provide configuration for any subset of LAMemUnits at any given time. 

 Bits Scalar Config Vector Config Sparse Config 

data0 0-63 (64-bit) 32/64-bit scalar or address address data_ptr 

data1 64-127 (64-bit) - - idx_ptr 

data2 128-191 (64-bit) - - jdx_ptr 

layout0 192-223 (32-bit) - stride (signed) idx_count 

layout1 224-255 (32-bit) - count (unsigned) jdx_count 

layout2 256-287 (32-bit) - skip (signed) data_skip 

location 288-289 (2-bit) 0=LACfg, 1=mem, 
2=scratch 

1=mem, 2=scratch 1=mem, 2=scratch 

vector 290 (1-bit) FALSE TRUE TRUE 

sparse 291 (1-bit) - FALSE TRUE 

transpose 292 (1-bit) - -  1=yes, 0=no 

double 293 (1-bit) 1=yes, 0=no 1=yes, 0=no 1=yes, 0=no 
Table 4-6: LACfg Configuration Space 
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As seen in Table 4-6, the LACfg has 294 bits of configuration, and it has four classes of fields: 

data, layout, location and flags. The data fields (data0, data1, and data2) are used to inform the 

LAMemUnit where the start of the data is located or what the value of the data is. The layout fields 

(layout0, layout1, and layout2) are used to inform the LAMemUnit how the multi-element data are laid 

out in memory. These fields do not apply to scalar data sources, since it only has one element. The 

location field informs the LAMemUnit which address space the data are located in. There are currently 

three different locations: an LACfg (which only applies to scalars), the scratchpad or the main memory. 

A value of 0x3 in the location field will generate an error condition and abort any data operations. The 

flags fields are just a collection of Boolean flags that inform the LAMemUnit about which type of data is 

present in the register – so it needs to read these flags before processing any of the other fields.  

Typically, the four registers for three input streams and one output stream of the LAExecUnit 

are configured in four separate instructions before the execution instruction, while the datapath is 

configured by the execution instruction itself. So, at most, five instructions need to be issued to 

configure and execute on an LACore. One feature of the LACore that helps minimize the number of 

instructions needed for configuration is having eight LACfgs to configure only four LAMemUnits. In 

any non-trivial application, even DGEMM, it is necessary to issue a handful of different instructions to 

the LAExecUnit, each of which require different LAMemUnit configurations. Instead of running 

four LACfgs directly to four LAMemUnits, which is the simple solution, an 8-to-4 crossbar is placed in 

between the LACfgs and the LAMemUnits, which provides a simple and flexible way for the user to 

choose which registers should be used as the three sources and one destination register for any given 

operation, which could save multiple cycles of configuration each iteration of tight inner kernels. 

4.4.2 The LACsrReg Control Status Register 

As touched on in the LAMemUnit and LACfg section, due to the large amount of configuration 

freedom given to the user, there are many potential sources of exceptions. In the case of an exception, a 

flag in the LACsrReg (the control-status register), is asserted, and the current operation is aborted. No 

future operation will be allowed until the user has cleared the LACsrReg with a special instruction. 

Additionally, the user should always check the LACsrReg flags after running an application to make 

sure no exceptions were generated. A list of the current flags and their bit-positions is given in Table 4-7 

below. 
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The LACsrReg is a 64-bit register that can be written to any of the general-purpose registers 

using the lxfercsrget command, which is discussed in the ISA section. More flags can be added as 

additional features and complexity is added to the LACore, which is why a full 64-bit register was used 

instead of 32-bits.  

Bit Code Description Bit Code Description 

0 badinsn Failed to parse LACore 
instruction 

10 mstdstreg sparse dest is LACfg 

1 memovrflw address outside 
scratch/mem range 

11 mstsrcreg sparse src is LACfg 

2 badregloc reg loc is 0x3 12 srccntzero src count is zero 

3 floaterr Floating point arithmetic 
error 

13 dstcntzero dest count is zero 

4 scaldstvec scalar dest but vector output 14 mstdiffcnt count mismatches in multi-
stream 

5 scaldstmst scalar dest but multi-stream 
output 

15 mstbadcnts count % src count != 0 in 
multi-stream 

6 vecdstscal vector dest but scalar output 16 spvtrnsout sparse dest is transposed 

7 spvdstscal sparse dest but scalar output 17 badalign 32/64-bit address not 4/8-byte 
aligned 

8 vecdstreg vector dest is LACfg 18   

9 vecsrcreg vector src is LACfg 19   

Table 4-7: LACsrReg Error Flags. 

There are a few errors in Table 4-7 that have not been elaborated on yet. The first is badinsn, 

which arises when the LACore receives a malformed instruction. This happens when one of the fields 

that should be all zeros has a non-zero value, or one of the lfunc fields (discussed in ISA section) has 

an invalid value. The second is memovrflow, which is self-explanatory: if the user specifies an address 

outside of the scratchpad or main memory’s size, this error is produced. The floaterr flags is 

asserted if any of the normal floating point exceptions occur, such as divide by zero. There are a few 

errors that have to do with invalid “count” fields on vectors and sparse matrices. The first two, 

mstdiffcount and mstbadcnts have been elaborated in the Novel Generic Stream-interface 

section. The last two are srccntzero and dstcntzero, which arise when the source or destination 

vector or sparse matrix has a count, idx_count, or jdx_count value of zero, which will cause a 

divide-by-zero error in the LAMemUnit’s Next-Address Generator. The badalign exception is 

caused by configuring a scalar, vector or sparse matrix on an unaligned address. 
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4.5 THE LACORE SCRATCHPAD 

Scratchpad Architecture 

The LACore’s scratchpad is a single-bank, multi-port, high-throughput, low-latency private 

memory with physical addressing disjoint from the main memory address range. The purpose of the 

LACore’s scratchpad is to provide temporary storage for intermediate results in multi-instruction 

applications. For example, in order to add three vectors, 𝐴, 𝐵, and 𝐶 together, 𝑇 = 𝐴 + 𝐵 must be 

computed and then 𝑇 + 𝐶 is computed, where 𝑇 is an intermediate-result vector. It is faster to write 𝑇 

to the scratchpad than to dynamically allocate space in memory for 𝑇, store 𝑇 there, and then 

immediately reload 𝑇 back into the LAExecUnit 

The approach to make two separate address spaces for the scratchpad and main memory is 

different than the embedded application approach proposed in (Banakar, 2002), which uses a unified 

address space and lets the compiler manage the complex task of mapping data to the scratchpad when 

it sees fit. The approach the LACore takes is closer to how IBM’s Cell Processor approaches memory 

management: the programmer is given explicit control over the movement of data between the 

different memory components of the system (Williams S. S., 2006). The reason this approach was taken 

over the intelligent-compiler approach is because the configuration space for the LACore is very large, 

and the kernels that execute on the LACore are not lightweight kernels that execute on GPUs or multi-

media application accelerators; therefore, it would be a difficult task to intelligently map resources to 

and from the scratchpad over a long-running kernel the way a programmer with a high-level 

understanding of the algorithm is able to do. Additionally, the main reasons the scratchpad exists is to 

hide latency of memory interactions, overlap data transfer with data execution effectively, and provide 

a fast cache for intermediate result. In order to achieve all of these, the programmer must carefully 

manage where data is placed, even down to the byte address. 

 

Scratchpad Implementation 

The design of the scratchpad is seen in Figure 4-17. The scratchpad is 64 kB, and has three 

independent read ports and one independent-write port. The SRAM cell therefore would be something 

like a 12-T, with three independent single-ended reads and one double-ended write, a realistic cell in 

modern VLSI techniques. For example, a 9-read-port/7-write-port is presented in (Sumita, 2005), and 

the Intel Itanium processor utilized 12-read/8-write ports in its integer register file design (Fetzer, 2006). 
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Although these SRAM cells were designed for register-file usage, the idea can be applied to the 

scratchpad, which uses just a fraction of the ports, and therefore transistors, per SRAM cell. 

 

Figure 4-17: LACore Scratchpad Detailed View. 

The LACore’s scratchpad design contrasts with the NVIDIA GPU shared memory design 

(Lindholm, 2008), which uses 32 banks accessed simultaneously by many lightweight threads. The 

reason a GPU needs to have highly-banked scratchpads (or shared memory), is to allow independent 

threads within a warp to access independent data in the scratchpad at the same time. The LACore 

does not have many lightweight threads, instead it has a heavy-weight complex thread that uses four 

LAMemUnits to simultaneously access the scratchpad, and since only four simultaneous accesses are 

being done at a time, all that is needed a multi-port SRAM cell to provide this functionality. The three 

input LAMemUnits will read on the first half of the clock cycle, and the one output LAMemUnit will 

write to the scratchpad on the second half of the clock cycle, so all data accesses will remain consistent. 

Initially, the LACore design went with a highly-banked scratchpad, similar to the GPU design 

discussed here. However, after preliminary results on the benchmarks, it was clear that the scratchpad 

was not providing the benefit it should be. After investigating the results further, it became clear that 

this poor performance was due to using a scratchpad banking model designed for many lightweight 

threads with the LACore, which needed a scratchpad design for a single heavyweight thread. 

Optimal Scratchpad Usage 

The programmer should try to use consecutively placed elements within the scratchpad as much 

as possible. Sometimes, accessing a vector with a strided pattern cannot be avoided, such as during a 

matrix transpose, but the programmer should always try to place data in the scratchpad in a way that 

will allow sequential reading later in the application. The reason for this, as discussed in the 

LAMemUnit section, is because the LAMemUnits have special mechanisms to access multiple items 
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within the same 128 Byte access-line within the same clock cycle. So packing as many consecutive 

elements within that 128-Byte address range can potentially improve the memory throughput by up to 

16x for double-precision vectors and 32x for single-precision vectors. This can greatly improve the 

performance of memory-bound applications. 

 

Design Space Optimization: Scratchpad  Usage  

Similar to the LAExecUnit’s datapath parameters, the usage of a scratchpad and the 

scratchpad’s size and access line-size were not arbitrarily chosen, but were decided upon after extensive 

parameter sweeps using common linear algebra applications on gem5 implementations (Binkert, 2011). 

Similar to the LAExecUnit parameter sweeps, Double-Precision Matrix-Matrix Multiply (DGEMM), and 

Double-Precision Triangular-Solve (DTRSM), which are BLAS-3 kernels, were chosen for evaluating the 

optimal scratchpad configuration (Lawson, 1979). These kernels allow us to implement most of complex 

routines in the BLAS API with as few lines of code written as possible. 

The first parameter sweep involving the scratchpad was testing whether using a scratchpad 

even provided any performance benefits. All DGEMM and DTRSM variations were performed both with 

and without a scratchpad present, across a range of matrix sizes. The results for the DGEMM sweep are 

shown in Figure 4-18, with four different scratchpad configurations shown. “Yes-S” means a scratchpad 

was used, while “No-S” means no scratchpad was used. The micro-kernel within DGEMM was either 

“STRIDE” or “PANEL”, which were just two variations of the DGEMM kernel that tried to utilize the 

LACore hardware in different ways. The “STRIDE” micro-kernel attempts to maximize the length of the 

vectors the LACore worked with, while the “PANEL” algorithm attempts to minimize the cache-miss 

rate. The results show that, for both “STRIDE” and “PANEL” algorithms, the performance was much 

better when a scratchpad is used. As the matrix size grows, the “PANEL” algorithm while using the 

scratchpad is the optimal configuration. 
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Figure 4-18: Scratchpad Usage vs Peak DGEMM. 

 

Similar results are seen when evaluating all DTRSM variations with and without the scratchpad. 

Figure 4-19 shows that across all matrix sizes and DTRSM variations, using the scratchpad provides a 

noticeable performance improvement. Figure 4-20 shows that the peak performance is even more 

pronounced when using a scratchpad vs not using a scratchpad. Because both the DGEMM and DTRSM 

results indicate that using a scratchpad is optimal for performance, the LACore design chose to use a 

scratchpad 

 
Figure 4-19: Scratchpad Usage vs Average DTRSM 
performance. 

 
Figure 4-20: Scratchpad Usage vs Peak DTRSM 
performance. 

 

Design Space Optimization: Scratchpad Size and Line-Size 

After determining that a scratchpad should be used, the next step was to determine the size and 

line-size of the scratchpad. These, too, were found using gem5 parameter sweeps using DGEMM. The 

scratchpad size was swept across 64 kB – 256 kB, and it had nearly zero effect on the performance of the 

application at all matrix sizes. Therefore, the smallest evaluated scratchpad size of 64 kB was chosen. 

The scratchpad access line-size was also determined using parameter sweeps. The access line-size is 
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similar to the cache line-size of the main memory system, except it is between the LAMemUnits and 

the scratchpad only, and does not necessarily need to be the same size as the cache-line size. The 

parameter sweep results are shown in Figure 4-21, with the 128-byte line size clearly outperforming the 

32-byte and 64-byte line sizes for all matrix sizes. 

 

Figure 4-21: Scratchpad Line-Size vs DGEMM performance. 

 

To summarize the parameter-sweep findings for the scratchpad: using the DGEMM and DTRSM 

applications for performance tuning, it was determined that using the scratchpad provided enough 

performance improvement to warrant the increase in design area. The size of the scratchpad and the 

access line-size were determined to be 64 kB and 128 Bytes through additional parameter sweeps using 

the DGEMM kernel. 

4.6 THE LACACHE 

Multi-Port, Multi-Bank Architecture 

The fourth major sub-block of the LACore processor is the LACache, which is a special 64 kB 

cache connecting the LAMemUnits to the memory controller, as seen in Figure 4-2. Similar to the 

scratchpad, it has three read ports and one write port, which connect independently to each of the four 

LAMemUnits, as seen in Figure 4-22. Similar to the CPU’s data-cache and instruction-cache, the 

LACache connects to the higher-level L2 cache.  
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Figure 4-22: LACache Detailed View. 

The LACache has 16 internal 4 KB, non-replicated banks, with cache-block granularity 

interleaving. This configuration was chosen after a large amount of manual performance tuning and 

system parameter sweeps using gem5 and converging on the highest-throughput configuration. The 

performance of multi-ported multi-banked SRAM caches is discussed by (Rivers, 1997), which compared 

the throughput of true multi-ported, multi-ported with bank-replication, and true multi-banked caches 

with up to 16 banks and ports each. It was reported that all three perform comparably on SPECint 

benchmarks and plateau between 8 and 16 ports or banks. The use of multi-ported and multi-banked 

caches is common in CPU cache-hierarchies, especially higher-level caches, since multiple-issue multi-

processors can issue up to 16 instructions per clock cycle, requiring high cache-bandwidth (Rivers, 1997) 

(Thimmannagari, 2004).  

Optimal LACache Usage 

Similar to the scratchpad’s optimal usage, the programmer should try to use consecutively 

placed elements within memory as much as possible when using the LACache. This allows the 

LAMemUnits to access more elements per cache-line access, and reduce the total number of lines that 

need to be pulled in the LACache. Reducing the number of lines pulled into the LACache is important 

at larger workload sizes, because the four LAMemUnits will begin to start evicting each other’s data 

which leads to poor performance due to the increased number of cache misses. This thrashing 

phenomenon is clearly visible in almost all of the benchmark results for all cache-based systems (RISC-V, 

x86 and LACore) in the Benchmarks and Evaluation section below. This degeneration of performance 

due to increase cache-evictions is not something that can be avoided, but can be mitigated with the 

LACore if the programmer accesses data in a sequential fashion. 

Design Space Optimization: LACache Usage 
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The first question for evaluating the LACache is whether it is necessary, and this was answered by 

performing more parameter sweeps using gem5. Similar to the previous parameter sweeps, Double-

Precision Matrix-Matrix Multiply (DGEMM), and Double-Precision Triangular-Solve (DTRSM), which are 

BLAS-3 kernels (Lawson, 1979), were chosen for evaluating the optimal scratchpad configuration, using 

the same reasoning for their selection. The parameter sweeps tested multiple high-level cache 

configurations:  

a) Routing all LAMemUnit requests through the L1 Data-cache 

b) Using a 1-bank, 4-bank or 16-bank LACache connected directly to the memory controller 

c) Using a 1-bank, 4-bank or 16-bank LACache connected directly to the L2-cache 

Routing all the LAMemUnit requests to the main memory provided a baseline to compare against 

the LACache performance. Additionally, the LACache was evaluated with and without the L2-cache 

sitting under it. The Hwacha Vector Processor uses the approach of directly connecting the vector 

processing unit to the L2-cache, and skips the L1 cache completely (Lee Y. O., 2015), which is similar to 

the approach of connecting the LACache directly to the memory controller. Results are not shown for 

the this third configuration where the LACache is directly connected to the memory controller, 

because this configuration performed worst across the board for all applications. The remaining two 

configurations are examined in the following parameter sweep results.  

The parameter sweep results for DGEMM average performance across all four variations is shown in 

Figure 4-23, and the results for the peak DGEMM performance is shown in Figure 4-24. In both cases, 

the highly-banked LACache design performs better than the Data-Cache design, especially as the 

matrix size grows. 

 
Figure 4-23: LACache configuration vs DGEMM average 
performance. 

 
Figure 4-24: LACache configuration vs DGEMM peak 
performance. 
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Noticeably different results are seen with the DTRSM parameter sweeps, with the Data-cache 

design actually performing better than the LACache at small matrix sizes. The average DTRSM 

performance across all 16 variations is shown in Figure 4-25, while the peak performance is shown in 

Figure 4-26. In both cases, the Data-Cache design performs better for matrix sizes up to 128x128, and 

anything larger than that, the LACache design performs much better. The reason that the data-cache 

works better at small matrices is because some of the non-LACore-specific instructions may access the 

same data as the LACore-specific instructions. If the LAMemUnits route all requests through the 

Data-Cache, then both sets of instructions will enjoy cache-hits for that data. However, when the 

LAMemUnits route all their requests through the LACache, the non-LACore instructions will suffer 

from cache misses for the data that the LAMemUnits just accessed. As the matrix size grows, the data 

shared between both sets of instructions shrinks compared to the total data accessed by the 

LAMemUnits, and this data-sharing has a negligible effect on performance. 

 
Figure 4-25: LACache configuration vs DTRSM average 
performance. 

 
Figure 4-26: LACache configuration vs DTRSM peak 
performance. 

Design Space Optimization: Cache Line Size 

The cache line size was also chosen to be 128-bytes after extensive parameter sweeping with 

gem5, with the results shown in Figure 4-27. The advantage of a 32-byte or 64-byte cache-line size is 

that there are more entries in a given cache for a fixed cache size, which results in reduced conflicts. 

Larger caches, on the other hand, allow for larger bulk transfer of contiguous data, which can improve 

performance, especially for vector processing. However, when a larger cache-line size is used, 

proportionally larger caches need to be used as well, or else the cache-conflict rate will suffer, as there 

are less entries in the cache. The LACache, data-cache, and instruction-cache are all sufficiently sized 

for a 128-byte cache-line size according to the results presented in (Patterson D. A., 2013). An 

interesting decision was made by CRAY X1 designers to use a small cache-line size of 32-bytes, with the 

justification that smaller cache-line sizes are optimized for applications with low spatial locality (CRAY, 
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2016). Parameter sweeps with the LACore in gem5 showed adverse performance when using a 32-byte 

or 64-Byte cache line size compared to a 128-byte cache-line size for DGEMM, as shown in Figure 4-27. 

 
Figure 4-27: Cache Line Size vs DGEMM performance. 
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5 LACORE INSTRUCTION SET 

5.1 LACORE ISA OVERVIEW 

  The full LACore extension to the RISC-V Instruction Set (Waterman A. a., 2016) is shown in 

Figure 5-1. A total of 68 instructions have been added using the Custom-0 extension space. RISC-V was 

chosen as a vehicle for the LACore architecture as opposed to other ISAs such as MIPS, ARM or x86, for 

a few reasons:  

1) RISC-V is a modern, free, and open-source platform, with robust toolchains for developing both 

hardware and software; 

2) a gem5 implementation and fully tested RISC-V RTL models exist for many CPU types, through 

the Sodor collection and BOOM (Celio C. P., 2015), allowing the LACore to only be 

implemented once in gem5 and in RTL to be used in these various models; and 

3) RISC-V provides a light-weight scalar CPU footprint, which makes more sense than a 

heavyweight superscalar CPU as the LACore scales to manycore chip designs. 

 

Figure 5-1: LACore Instruction Set Overview. 

5.1.1 Instruction Opcode 

The OpCode field for the RISC-V ISA extension is 0001011, and is composed of two parts – the 

Minor OpCode covering bits [6:5], and the Major Opcode covering bits [4:2], both of which are specified 

in the RISC-V ISA Manual (Waterman A. a., 2016). Bits [1:0] specify the instruction size, where 11 means 

32-bit instruction. Bits [4:2] and Bits [6:5] together form a matrix of op-classes. As seen in Figure 5-2, 

there are four op-class spots in the 32-bit ISA space that are dedicated to custom ISA extensions. 
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LACore occupies the custom-0 extension slot, which means the Minor OpCode is 00 and the Major 

Opcode is 010. Note that this gives the LACore ISA a 25-bit encoding space. 

 

Figure 5-2: RISC-V Instruction Set Map, Table 9-1 in (Waterman A. a., 2016). 

5.1.2 Instruction Size 

A design decision was made whether to use a 32-bit instruction space, a larger, 48-bit or 64-bit 

instruction space, or a variable length instruction space. Since the LACore ISA is not a typical load-store 

ISA, it has some unique instruction requirements that need to be taken into consideration when 

choosing a 32-bit, 64-bit, or variable instruction length: 

- Instruction Width Vs Number of Instructions: There is a lot of configuration that needs to 

happen before a ExecInst or XferInst can start reading and writing data from memory 

correctly. The LACore ISA could either use wide instructions to fit all the operands, or use 

multiple consecutive, smaller instructions to accomplish the same task. The former option 

requires less instructions but complicates the decoder by requiring instruction fetch buffering 

(Patterson D. A., 1985), while the latter option has higher latency but is simpler and fits in the 

32-bit RISC-V ISA space nicely. 

- Operand Layout Parameters: Each input and output vector can be configured as a Scalar, 

Vector or Sparse data type. The Scalar type is simply a 32-bit or 64-bit floating point, so 

does not require many configuration parameters. The Vector data type requires more 

parameters in addition to whether it is a vector of 32-bit or 64-bit floating point values, such as 

the start address of the vector, and its stride, count and skip. This is a total of three 5-bit register 

indexes and a Boolean flag, so 16 bits are used. Since the ExecInst instructions use three 

inputs and one output, this would require 64 bits just for operand configuration, which would 

require an instruction size even larger than 64-bits. The problem becomes much worse with the 

Sparse data type, which requires six parameters per operand (and would require over 128-bit 

instruction).  

- Operand Locations: The LACore is mainly used as a memory-memory ISA via the ExecInsts 

and XferInsts, but the data-source can also be in the LACfg configuration registers as well. 
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In addition to data stored in memory, there is actually two disjoint address spaces: Private 

Scratchpad Memory, and Main Memory. So we need the ISA to specify a location of the input 

and output data of the three possible locations in addition to the already large amount of 

configuration needed for the Layout Parameters discussed above. 

The above discussion support why a multi-instruction configuration sequence is inevitable for the 

LACore ISA. It might be feasible to mix in 128-bit instructions with 32-bit instructions, but the decoding 

logic becomes more complicated and requires buffering, and the real cost of configuration just moves to 

filling a bunch of general purpose registers over many cycles, instead of configuring the LACfgs over a 

similar number of cycles. 

5.2 CONFIGURATION INSTRUCTIONS 

 

Figure 5-3: LACore configuration ISA. 

The 9 configuration instructions, illustrated in Figure 5-3, are called CfgInsts, and are single-

cycle instructions that update a LACfg register specified by lrd with contents from general-purpose 

integer or float registers lrxa, lrxb, lrxc, and lrfa. In the RISC-V scalar CPU implementation of the 

LACore ISA, lrxa, lrxb and lrxc corresponds to registers x0-x31, and lrfa corresponds to 

registers f0-f31 from (Waterman A. a., 2016). The description and usage of each argument is presented 

in Table 5-1 below. 

In addition to the instruction arguments, there are five configuration bitfields in CfgInsts: 

SPV, TNS, DP, VEC and ALT. The SPV bit is 1 if the data-source is a sparse matrix, and is only asserted 

during the lcfgvadr{s|t} instructions. The TNS field is 1 if the sparse matrix should be read 

transposed, and is only relevant for the lcfgvadr{s|t} instructions. The DP field is 0 to configure a 

single-precision data-source, and 1 to configure a double-precision data-source, and this flag applies to 

the lcfgsx{s|d}, lcfgf{s|d} and lcfgvlay{s|d} instructions, since the lcfgvadrv and 

lcfgvlay{s|d} do not configure the data precision. The VEC field is 1 if the data-source is a vector 

or sparse matrix, and 0 if it is a scalar; it applies to every configuration instruction. The ALT field, or 
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“alternate configuration” field, specifies that a scalar should be read from the general-purpose floating 

point registers instead of read from scratchpad or memory, OR that the lcfgvlay{s|d} instruction is 

run to update the layout fields for a vector or sparse matrix. The description and usage of each bitfield is 

also presented in Table 5-1 below. 

Field Field Type Description Used in Instructions 

LRD Argument Destination LACfg register lr0-lr7 
ALL 

LRXA Argument Source RISC-V integer register x0-x31 

LRXB Argument Source RISC-V integer register x0-x31 lcfgvadr{s|t} 

lcfgvlay{s|d} LRXC Argument Source RISC-V integer register x0-x31 

LRFA Argument Source RISC-V floating point register f0-f31 lcfgsf{s|d} 

SPV Bitfield 1 if sparse, 0 if not sparse lcfgvadrv 

lcfgvadr{s|t} TNS Bitfield 1 if sparse is transposed, 0 otherwise 

LRDLOC Argument 
0x00, 0x01, 0x10 for lrd, (lrd), {lrd}, meaning data-

source is in LACfg, memory, or scratchpad respectively 

lcfgsx{s|d} 

lcfgsf{s|d} 

lcfgvlay{s|d} 

DP Bitfield 1 if data-source is double-precision, 0 otherwise 

ALL 

VEC Bitfield 1 if data-source is vector or sparse matrix, 0 otherwise 

ALT Bitfield 
1 if data-source is scalar and in float register or 

performing the lcfgvlay{s|d} instruction, 0 otherwise 

LOP Bitfield LACore sub-opcode, 0x10 for config instructions 

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions 

Table 5-1: Configuration Instructions bitfields and arguments. 

A subset of the scalar and vector configuration instructions are illustrated in Figure 5-4. Curly 

braces or parenthesis around lrd mean the data stream is in the scratchpad or memory, respectively; 

no braces or parenthesis mean the data stream is a scalar floating point value stored in the LACfg 

itself. Additionally, all scalars, vectors or sparse stream configurations can be single or double-precision. 

Configuring a scalar is done by either lcfgsx{s|d} to load an address into the LACfg, and 

lcfgsf{s|d} to load the floating-point value into the LACfg. Configuring a vector or sparse matrix 

takes two instructions: one to configure the addresses, lcfgvadrv or lcfgvadr{s|t}, and one to 

configure the layout of the vector or sparse matrix, lcfgvlay{s|d}. Each configured LACfg can be 

used by one or multiple LAMemUnits simultaneously during a ExecInst or XferInst.  
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// put x2 addr of 32 - bit float in scratch in LACfg 0. 

// put x3 addr of 64 - bit float in mem in LACfg 1. 

// put 32 - bit float value in f3 in LACfg 2. 

lcfgsxs {lr0}, x2 

lcfgsxd (lr1), x3 

lcfgsfs lr2, f3 

 

// put addr of 64 - bit float in mem into LACfg 2, 

// then put its stride/count/skip into LACfg 2 

lcfgvadrv lr2, x3 

lcfgvlayd (lr2), x4, x5, x6 
Figure 5-4: LACore configuration instruction examples. 

An important note is that the scratchpad and memory address spaces are non-unified, so the 

address 0x10 in the scratchpad refers to byte offset 0x10 in the scratchpad, while memory addresses 

refer to normal memory address space. This means that scratchpad data is not directly accessible to the 

programmer, and must be explicitly transferred to memory through either a data-transfer or execution 

instruction in order to be used by the scalar CPU instructions. 

5.3 DATA TRANSFER INSTRUCTIONS 

 

Figure 5-5: LACore Data Transfer ISA. 

Field Field Type Description Used in Instructions 

LRD Argument Destination LACfg register lr0-lr7 lxferdata 

LRA Argument Source LACfg register lr0-lr7 lxferdata 

LRXA Argument 

RISC-V integer register x0-x31, holds the ‘count’ for 

lxferdata operation and serves as the destination 

register for the lxfercsrget instruction 

lxferdata 

lxfercsrget 

CLR Bitfield 1 if clearing the LACsrReg, 0 otherwise 

ALL 

 

 

GET Bitfield 1 if copying LACsrReg to an integer register, 0 otherwise 

DAT Bitfield 
1 if performing a data transfer from a source LACfg to a 

destination LACfg 

LOP Bitfield LACore sub-opcode, 0x11 for all data moving instructions 

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions 

Table 5-2: Data Movement Instructions bitfields and arguments. 
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The three XferInsts, shown in Figure 5-5, copy data-streams between any combination of 

memory, scratchpad and an LACfg. The bitfields and arguments for these instructions are shown in Table 

5-2 above. The lxferdata instruction moves data from an arbitrary source specified by the LACfgs: 

lrd (destination) and lra (source). The total number of elements to copy is specified by general-

purpose integer register lrxa. The lxfercsrget instruction copies the 64-bit LACsrReg (the 

control-status register) contents into the general-purpose integer register lrxa. The 

lxfercsrclear instruction sets the LACsrReg contents to zero. Figure 5-6 illustrates a subset of 

the lxferdata assembly instructions. 

// transfer the scalar/vector/matrix in LAReg 1 

// to the scalar/vector/matrix in LAReg 0. 

// The number of elements to transfer is 

// in integer register x2. 

laxferdata lr0, lr1, x2 
Figure 5-6: LACore Data Movement Instruction examples. 

The lxferdata functionality is similar to the memcpy() extension to the RISC-V ISA proposed by 

(Mao, 2016), except the LACore version is much more flexible by providing mechanisms to: 

1) convert between single-precision and double-precision streams; 

2) transform streams between scalars, vectors, and sparse matrices; and 

3) move data between scratchpad and memory. 

5.4 DATA EXECUTION INSTRUCTIONS 

 

Figure 5-7: LACore Data Execution ISA. 

The 56 ExecInsts, illustrated in Figure 5-7, simultaneously configure the LAMemUnits to 

stream input and output data into the LAExecUnit’s datapath, and configure the datapath to perform 

one of the 24 possible operations on the data streams. 

ExecInsts come in three output-modes: vector-output, scalar-output, and multi-stream 

output, which have instruction prefixes of ldv, ldr, and ldrm respectively. There are 8 variations of 

ldv instructions, and 24 variations of ldr and ldrm instructions each. The variations, seen in the inst 

column of Figure 5-7, are used to configure the various muxes and control circuitry in the LAExecUnit 
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for the duration of the instruction. The bitfields names and their functions are described in more detail 

in Table 5-3 below. The three input data-streams and one output data-stream are specified by 

instruction args lra, lrb, lrc, and lrd respectively, while the total number of input elements to 

operate on is specified by integer register lrxa. Note that the total number of output elements is 

dependent on whether a vector-output, scalar-output or multi-stream output instruction is selected, 

and not directly dependent on the value in lrxa. Figure 5-8 below shows a subset of ExecInsts for 

each of the three types of output-modes. 

Field Field Type Description Used in Instructions 

LRD Argument Destination LACfg register lr0-lr7 

ALL 

LRA Argument Source A LACfg register lr0-lr7 

LRB Argument Source B LACfg register lr0-lr7 

LRC Argument Source C LACfg register lr0-lr7 

LRXA Argument 
RISC-V integer register x0-x31, holds the ‘count’, or 

number of input elements from each stream to process 

MST Bitfield 1 if multi-stream output, 0 otherwise ALL 

RDCT Bitfield 0x00, 0x01, 0x10 for min, max, sum for ReduceNode config 
24 ldr* instructions 

24 ldrm* instruction 

DV Bitfield 1 if divide, 0 if mutliply for VecNode configuration 

ALL 

SU Bitfield 1 if subtract, 0 if add for VecNode configuration 

T2 Bitfield 1 if (A+-B)*/C and 0 if (A*/B)+-C for VecNode config 

LOP Bitfield 
LACore sub-opcode, 0x00 for scalar and multi-stream 

outputs, and 0x01 for vector outputs 

OPCODE Bitfield LACore opcode, 0x0001011 for config instructions 

Table 5-3: Execution Instructions bitfields and arguments. 

 

The VecNodes in the datapath are configured by the LFUNC3 field in the ExecInst, while the 

ReduceNodes are configured by the LFUNC2 field. The RDCT field within the LFUNC2 field is 0x00 if 

the ReduceNodes perform sum(X, Y); RDCT is 0x01 if the ReduceNodes perform max(X, Y); RDCT is 

0x10 if the ReduceNodes perform min(X, Y). the MST flag is 1 for multi-stream output only. 
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// scalar-output: output len is 1 

// lr0 = sum( (lr1+lr2)*lr3 ) 

// lr0 = sum( (lr1*lr2)-lr3 ) 

ldrmats lr0, lr1, lr2, lr3, x2 

ldrmsbs lr0, lr1, lr2, lr3, x2 

// multi-stream-output: output length determined by 

// x2 value and count field in LARegs 1 ,2 and 3 

// lr0 = sum( (lr1+lr2)*lr3 ) 

// lr0 = sum( (lr1*lr2)-lr3 ) 

ldrmmats lr0, lr1, lr2, lr3, x2 

ldrmmsbs lr0, lr1, lr2, lr3, x2 

// vector-output: output length in x2 

// lr0 = (lr1+lr2)/lr3 

// lr0 = (lr1/lr2)-lr3 

ldvdat lr0, lr1, lr2, lr3, x2 

ldvdsb lr0, lr1, lr2, lr3, x2 
Figure 5-8: LACore Data Execution Instruction examples. 

The VecNode configuration flags within the LFUNC3 field are DV, SU and T2. DV is 1 for division 

and 0 for multiplication, SU is 1 for subtract and 0 for add, and T2, which stands for “multiply/divide first 

or second”, is 1 if the multiply/divide operation should be used on the A and B input or on the (A+-B) 

and C inputs. Originally, the T2 field stood for “top or bottom”, since the original VecNode operations 

were those in Table 5-4. However, as the LACore ISA evolved, the eight VecNode operations in Table 

5-4 were replaced by those in Table 4-1. 

Deprecated VecNode Ops 

(A+B)*C (A+B)/C 

(A-B)*C (A-B)/C 

A*(B+C) A/(B+C) 

A*(B-C) A/(B-C) 
Table 5-4: Deprecated VecNode operations. 
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6 LACOREAPI FRAMEWORK  

The LACore’s ISA was implemented in gcc, and a C programming, header-only library called the 

LACoreAPI was developed to raise the abstraction of programming the LACore from the assembly 

level to C. All benchmarks and programs targeting the LACore thus far have been built on top of the 

LACoreAPI. The API mimics the underlying assembly instructions fairly closely, providing 

configuration, data movement and execution function calls. 

6.1.1 Configuration API 

The configuration API is summarized in Figure 6-1. Lines 5-7 show how scalar data-streams are 

configured for any of the LACfg, scratchpad or memory locations. Lines 10-11 show a subset of the 

vector configuration API calls. There are many variations for setting the vector stride, count and skip, or 

using sane default values if only the address or the address and sub-vector count need to be specified. 

double *value; 

LAAddr addr = (LAAddr)value; 

 

// set scalar in an LACfg, scratch, or mem 

la_set_scalar_dp_reg(0, *value); 

la_set_scalar_dp_sch(1, 0x10); 

la_set_scalar_dp_mem(2, addr); 

 

// set vector in mem or scratch 

la_set_vec_dp_mem(0, addr, stride, count, skip); 

la_set_vec_adr_dp_mem(0, addr); 

la_set_vec_adrcnt_dp_sch(0, addr, count); 
Figure 6-1: LACoreAPI configuration API examples. 

6.1.2 Data Movement API 

The LACoreAPI provides a simple API for moving data-streams between memory, scratchpad 

and the LACfgs through the la_copy() API call, illustrated in Figure 6-2, which takes a source and 

destination LACfg, and the number of elements in the streams to transfer. It blocks for an arbitrary 

number of cycles until the transfer has completed, and therefore is not an asynchronous interface call. It 

should be apparent from Figure 6-2 that much more sophisticated data movements can be performed, 

since the LACfgs can be configured for scratchpad or memory locations, with scalar, vector or sparse 

matrix configs, with either single or double-precision floating point elements. 
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// copies src->dst, convert double->float 

void copy_d2s(double *src , float *dst , int cnt) 

{ 

  la_vec_adr_dp_mem(0, (LAAddr)src); 

  la_vec_adr_sp_mem(1, (LAAddr)dst); 

  la_copy(1, 0, cnt); 

} 
Figure 6-2:LACoreAPI data movement API example. 

6.1.3 Execution API 

The LACoreAPI provides API calls for all variations of vector-output, scalar-output, and multi-

stream output operations for data-streams of arbitrary length. Each API call takes 5 arguments: the 3 

source LACfg indexes, the 1 destination LACfg index, and the number of input elements to operate 

on. Vector-output calls have the format la_A<op>B<op>C(...), scalar-output calls have the format 

la_A<op>B<op>C_<op2>(...), and multi-stream-output instructions have the format 

la_A<op>B<op>C_<op2>_multi(...). In these formats, <op> is either add, sub, mul or div, 

which set the LAExecUnit datapath’s VecNode configuration, while <op2> is sum, min or max, which 

sets the LAExecUnit datapath’s ReduceNode configuration. Examples of the three variations of 

execution API calls are shown in Figure 6-3. 

//D = (A+B)*C, vector output 

la_AaddBmulC(D, A, B, C, count); 

 

//D = (A/B)-C, scalar output 

la_AdivBsubC_sum(D, A, B, C, count); 

 

//D = (A*B)+C, multi - stream output 

la_AmulBaddC_sum_multi(D, A, B, C, count); 
Figure 6-3: LACoreAPI execution API examples. 
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7 BENCHMARKS AND EVALUATION 

7.1 BENCHMARK METHODOLOGY 

HPC Challenge benchmark suite (Luszczek, 2005) and the Sparse DGEMV routine were used to 

compare the performance of the LACore against three different architectures: a simple in-order 

pipelined RISC-V processor, a superscalar x86 processor with SSE2 enabled, and an NVIDIA Fermi GPU 

with two Streaming Multiprocessors (SMs). All platforms were simulated on gem5 (Binkert, 2011) in 

syscall-emulation mode, with the Fermi GPU simulated with gem5-gpu (J. Power, 2015).  

The HPCC benchmark suite was selected to evaluate our platform primarily because it is designed 

for high performance linear algebra computations. It contains seven benchmarks that stress 

computation throughput, memory bandwidth, and communication bandwidth. Additionally, its 

benchmarks test performance with high-and-low spatial-and-temporal localities. We believe these 

reasons make the HPCC benchmark suite a strong candidate to holistically evaluate our architecture 

across a range of linear algebra applications. In addition to the HPCC benchmark suite, Sparse DGEMV, 

which stands for Double-Precision Matrix Vector Multiplication, was also used to evaluate the sparse-

matrix manipulation capabilities of the LACore compared to the other platforms. Sparse DGEMV was 

chosen to evaluate the sparse capabilities because it is a common linear algebra routine with a high 

arithmetic complexity. 

The main motivation for using a cycle-accurate simulator for benchmarking the x86 and GPU 

platforms instead of using real hardware is to provide a fairer comparison by removing process 

technology, clock speeds and cache configuration as variables, in order to focus on the merits of the 

processor architectures. gem5 provides the capability of setting the comparable processor frequencies 

and cache sizes, as well as control the workloads more directly than running them on top of an 

operating system. 

Only a single thread on a single core was used in the LACore, RISC-V and x86 implementations, 

even though multithreading and multi-core were options. The reasoning is to compare the raw 

performance of a single hardware thread in each of these three platforms. Similarly, the GPU was run 

using only a single cluster, with two cores per cluster. Here, cluster is gpgpu-sim’s equivalent of a 

collection of NVIDIA Streaming Multiprocessors (A. Bakhoda, 2009). Only two NVIDIA SMs were 

modelled since this is a fair comparison to an LACore in terms of area, as discussed in the Design Area 
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Estimates section. The most relevant gem5 configurations for the LACore, RISC-V, x86 and scaled-down 

Fermi GPU platforms are shown in Table 7-1. 

LACore X86, RISC-V CUDA 

Scalar CPU Model In-Order X86 CPU Model Out-of-
Order 

Scalar X86 CPU 
Model 

Out-of-
Order 

Scalar CPU Clock 3 GHz RISC-V CPU Model In-Order GPU Model NVIDIA 
Fermi 

LAExecUnit Clock 1 GHz Scalar CPU Clock 3 GHz Scalar CPU Clock 3 GHz 

VecNode Count 8 Cache Line Size 128 Bytes GPU Core Clock 1 GHz 

SIMD Width 8 Inst-Cache Size 16 KB Cache Line Size 128 Bytes 

Scratchpad Size 64 KB Data-Cache Size 64 KB GPU Clusters 1 

Inst-Cache Size 16 KB L2-Cache Size 256 KB GPU Cores-per-
Cluster 

2 

Data-Cache Size 64 KB   L2-Cache Size 1 MB 

LACache Size 64 KB     

L2-Cache Size 256 KB     
Table 7-1: gem5 and gem5-gpu configurations used for the HPCC benchmark suite. 

The HPCC benchmarks used for evaluation were DGEMM, FFT, PTRANS, HPL, Random Access, 

and STREAM. This covers the four extreme combinations of high-and-low spatial-and-temporal locality. 

b_eff was not tested since it primarily evaluates multi-processor communication efficiency, which is not 

the focus of this thesis. 

The standard HPCC software distribution was not used for the benchmarks. Instead, kernels tailored 

for each of the platforms were either hand-written, or used high-performance libraries, such as GNU 

Scientific Library, FFTW3, and Eigen (Gough, 2009) (Johnson, 1998) (G. Guennebaud, 2010). There are a 

few reasons for not using the standard distribution of HPCC:  

1) gem5’s syscall-implementation mode does not cover all syscalls, or all functionality of every ISA 

it implements, so many of the compiled x86 benchmarks do not even run 

2) LACore and CUDA (NVIDIA’s software framework) are special platforms that don’t have 

specially tailored kernels in the HPCC distribution, so they need to be written anyways 

3) this paper evaluates single-threaded functionality for x86, RISC-V and LACore, so greater 

control is needed over exactly how the benchmarks are internally running 

Care was taken to follow the specification for each benchmark described in (Luszczek, 2005) as 

closely as possible, in order to provide reproducible results. For all benchmarks, we verified the LACore 

results to be correct against correct implementations. 
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7.2 DGEMM 

7.2.1 Implementation 

Double-Precision Dense Matrix-Matrix multiply is at the heart of many Linear-Algebra 

applications, and is a high spatial-and-temporal locality application. The operation count approaches 

2𝑛3 for square matrix sizes of 𝑛. For this paper, all 4 variations of 𝐶 = 𝛼 𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽 𝐶 were 

evaluated on all platforms. 

The RISC-V platform used the GNU Scientific Library (GSL) implementation of DGEMM (Gough, 

2009), while the x86 version used both the GSL and Eigen library implementations, with SSE2 enabled 

(G. Guennebaud, 2010). The Fermi GPU ran optimized hand-written kernels since cuBLAS was not 

available as a static library for NVIDIA Toolkit 3.2 and no good implementations for all four DGEMM 

variations that could run without runtime errors on gem5-gpu could be found. The LACore 

implementation used a handwritten algorithm leveraging the LACoreAPI framework. 

The LACore’s algorithm for solving DGEMM uses a standard paneling technique, where sub-

blocks of matrices 𝐴, 𝐵 and 𝐶 are copied into the scratchpad, and then several dot-products are 

performed for each sub-row in 𝐴 with a sub-column in 𝐵 and then updates the element in 𝐶. After all 

the dot-products using the LAExecUnit’s custom datapath, the block from 𝐶 is copied back into main 

memory. The reason paneling is effective is because it improves temporal and spatial locality on 

average, which is important in cache-based memory hierarchies, which the LACore has. 

When transposing 𝐴 or 𝐵 is required, as is for three of the four DGEMM variations, the 

LACore’s algorithm will first transpose the whole matrix before performing the paneled-DGEMM sub-

algorithm discussed above. The reason that the whole matrix is transposed beforehand is to allow the 

highly-optimized paneled-DGEMM kernel to remain the same across all four variations, therefore 

requiring the conversion of all inputs to a common format beforehand. Figure 7-1 shows the C-language 

transpose sub-routine used in the LACore’s DGEMM kernel, where blocks are copied from memory to 

scratchpad to memory using the special LAMemUnit hardware through the la_copy() API call in 

the LACoreAPI. 
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//transposes an NxM matrix in src to an MxN matrix in dst 

void dtranspose_la_core(double *src, double *dst, IDX N, IDX M) { 

  const LACfgIdx src_mem_REG = 0, src_sch_REG = 1; 

  const LACfgIdx dst_sch_REG = 0, dst_mem_REG = 1; 

  IDX BLOCK = (IDX)(log2((double)SCRATCH_SIZE)/(double)sizeof(double)); 

 

  //perform transpose in panels of size (icount x jcount) 

  for(IDX i=0; i<N; i+=BLOCK) { 

    for(IDX j=0; j<M; j+=BLOCK) { 

      IDX icount = MIN(BLOCK, (N - i)); 

      IDX jcount = MIN(BLOCK, (M - j)); 

 

      LAAddr src_addr = (LAAddr)(src + (i+N*j)); 

      LAAddr dst_addr = (LAAddr)(dst + (j+M*i)); 

 

      //configure LACfg with index ‘src_mem_REG’ for  

      //source submatrix in memory 

      la_set_vec_dp_mem(src_mem_REG, src_addr, 1, icount, (N-icount));  

      //configure LACfg with index ‘src_sch_REG’ for  

      //source submatrix in the scratchpad 

      la_set_vec_dp_sch(src_sch_REG, 0, jcount,  

                        icount, 1-(jcount*icount)); 

      //transfer source data from mem to scratchpad 

      la_copy(src_sch_REG, src_mem_REG, icount*jcount); 

 

      //configure LACfg with index ‘dst_sch_REG’ for  

      //the submatrix we just transferred to the scratchpad 

      la_set_vec_dp_sch(dst_sch_REG, 0, 1, jcount, 0);  

      //configure LACfg with index ‘dst_mem_REG’ for  

      //the submatrix within the dst matrix 

      la_set_vec_dp_mem(dst_mem_REG, dst_addr, 1, jcount, (M-jcount));  

      //transfer dst data from scratchpad to mem 

      la_copy(dst_mem_REG, dst_sch_REG, icount*jcount); 

    } 

  } 

} 

Figure 7-1: DGEMM matrix transpose sub-routine in C for the LACore. 

7.2.2 Results 

The averaged performances of all four DGEMM variations are shown in Figure 7-2. The 

LACore’s performance asymptotically increases with the matrix size. At a matrix dimension of 128, the 

LACore achieves an average 14.3 GFLOP/s, which is a speedup of 31.7x, 1.6x, 9.8x and 5.73x over RISC-

V, Fermi GPU, x86-GSL and x86-Eigen implementations. At a dimension of 1024, the average speedup is 

80.4x, 1.52x, 47.3x and 6.7x respectively, which can be seen in Figure 7-3. 

The large speedup over the RISC-V and x86 implementations is expected since DGEMM is a 

highly computation-bound application, and the LACore can keep its LAExecUnit constantly busy 

since memory accesses are regularly-strided with high localities. Also, the vector sizes that are accessed 

depend primarily on the large panel width in the paneling DGEMM algorithm, as opposed to HPL 
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(discussed later), which accesses vectors of size 1, 2, 3, . . . , 𝑛 when performing LU decomposition and 

forward/back substitution. This is why DGEMM performs better than HPL on the LACore. 

The performance speedup over the Fermi GPU can be explained by the LACore not having to 

transfer data to and from device memory, while still benefiting from similar parallelism that the GPU 

provides. Additionally, the LACore does not require synchronization during the reduction phase of a 

dot-product, since only a single thread is running, and the LAExecUnit has a special reduction unit in 

it. The Fermi GPU, on the other hand, requires calls to syncthreads() after each iteration of a dot-

product reduction accessing shared-memory, which causes additional overhead. 

 
Figure 7-2: DGEMM average for LACore, RISC-V, Fermi GPU, 
x86-GSL and x86-Eigen. 

 
Figure 7-3: DGEMM average speedup of LACore over RISC-
V, Fermi GPU, x86-GSL and x86-Eigen. 

Similar trends can be seen for each platform’s peak performance across all four DGEMM 

variations, with the LACore performing even better than in the DGEMM-average case. Figure 7-4 

shows that the LACore achieves a peak of 30.5 GFLOP/s at a matrix dimension of 64, which is a 

speedup of 50x, 4.8x, 11.7x and 12.2x over RISC-V, Fermi GPU, x86-GSL and x86-Eigen implementations, 

as seen in Figure 7-5. The LACore’s peak performance also outperforms all other platforms 

asymptotically as the matrix size increases, with a performance of 23.8 GFLOP/s at a matrix dimension of 

1024, and a speedup of 86x, 1.5x, 43x and 10x over RISC-V, Fermi GPU, x86-GSL and x86-Eigen 

implementations.  

The reason the LACore has larger speedups in the peak DGEMM results vs the averaged 

DGEMM results is because the matrix transposes required in three of the four DGEMM variations cannot 

be performed as efficiently by the LACore as simple matrix-matrix multiplication. So the one DGEMM 

variation that does not have any transposes has a much better performance.  
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Figure 7-4: DGEMM peak for LACore, RISC-V, Fermi GPU, x86-
GSL and x86-Eigen. 

 
Figure 7-5: DGEMM peak speedup of LACore over RISC-V, 
Fermi GPU, x86-GSL and x86-Eigen. 

The worst-case DGEMM performance across all four DGEMM variations has the LACore 

performing worse than the Fermi GPU implementation at intermediate matrix dimensions, but 

performing better than all the other platforms at small and large matrix dimensions. Figure 7-6 shows 

the LACore achieves its best worst-case performance at the largest matrix size tested of 1024, where 

it ran at 9.9 GFLOP/s, with a speedup of 455x, 2.8x, 47x and 4.3x over the RISC-V, Fermi GPU, x86-GSL 

and x86-Eigen implementations. As seen in Figure 7-7, the x86 and Fermi GPU implementations are 

fairly competitive with the LACore’s performance, at low-to-mid matrix sizes. 

The poorer performance in the worst-case of the LACore compared to the other platforms is 

most likely due to the matrices being small enough to fit in the L1 caches, thus causing the LACore’s 

extra transpose sub-routine overhead to not be worth the time investment. If the matrices are small 

enough to fit into the caches, then the other implementations don’t suffer any real spatial or temporal 

locality penalties when working with transposed matrices, but at larger matrices, this penalty becomes 

severe, and the LACore’s transpose sub-routine pays off tremendously, as seen in Figure 7-6. 

 
Figure 7-6: DGEMM worst-case for LACore, RISC-V, Fermi 
GPU, x86-GSL and x86-Eigen. 

 
Figure 7-7: DGEMM worst-case speedup of LACore over RISC-
V, Fermi GPU, x86-GSL and x86-Eigen 
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7.3 FFT 

7.3.1 Implementation 

The complex double-precision FFT tests computational throughput for low spatial-locality, high 

temporal-locality applications. The total operation count is 5𝑚 𝑙𝑜𝑔2𝑚 and is measured in GFLOP/s 

(Luszczek, 2005). The RISC-V CPU used GSL for FFT (Gough, 2009). The x86 CPU used two different 

libraries, GSL and FFTW (Johnson, 1998), both compiled with SSE2 enabled. Since cuFFT was not 

available as a static library for NVIDIA Toolkit 3.2, a slightly modified FFT implementation was taken 

from the University of Illinois’ Parboil benchmark suite included in the gem5-gpu distribution (J. A. 

Stratton, 2012). The LACore implementation was hand-written C code leveraging the LACoreAPI. 

The LACore uses an iterative Radix-2 implementation of the Cooley-Tukey algorithm (Tukey, 1965). 

The algorithm is composed of 3 steps: 

1) precompute all twiddle-factors, which are stride-accessed by the LAMemUnits during the FFT; 

2) perform the bit-reverse algorithm; and 

3) iteratively solve the FFT. 

//’x’ value stored in imag parts of ’data’ 

//’C’ are the cos polynomial coefficients 

void cosines(Complex *data , IDX count) { 

  //NOT SHOWN: setup scalars Zero_REG and One_REG ... 

  LAAddr in = (LAAddr)&data->im; 

  LAAddr out = (LAAddr)&data->re;  

  //tw_REG points to the imaginary parts of each item in ‘data’ vector 

  la_set_vec_dp_mem(tw_REG, out, 1, 1, 1);  

  //X_REG points to the real parts of each item in ‘data’ vector 

  la_set_vec_dp_mem(X_REG, in, 1, 1, 1);  

  //calculate square of vector: X_REG = X_REG*X_REG (see paper) 

  la_AaddBmulC(X_REG, X_REG, Zero_REG, X_REG, count); 

   

  for(IDX i =0; i <8; ++ i) { 

    //set the next scalar and then perform 

    //  tw_REG = (tw_REG+C[i])*(x^2) 

    la_set_scalar_dp_reg(Const_REG, C[i]); 

    la_AaddBmulC(tw_REG, tw_REG, Const_REG, X_REG, count); 

  } 

} 

Figure 7-8: LACore FFT Twiddle Factor Pre-Computation. 

Precomputing the twiddle-factors in step-1 would normally require 𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑖𝑧𝑒/2 𝑠𝑖𝑛() and 

𝑐𝑜𝑠() calls, but the LACore implementation actually compute 𝑐𝑜𝑠() using the 18-degree polynomial 

coefficients from (Garrett, 2012), as illustrated in Figure 7-8. This approach allows the Twiddle-Factors to 

be computed in parallel as opposed to serial calls to 𝑐𝑜𝑠(). 



65 
 

 
Figure 7-9: LACore's two FFT blocking strategies. 

The second step of performing the bit-reversal for the FFT is done using multiple calls to the 

la_copy() function call provided by the LACoreAPI. The LACore’s actual FFT algorithm is 

composed of two different algorithms that perform blocks of computation differently depending on how 

many iterations have been performed. The current algorithm makes this jump after the 5th iteration, 

when the ’solved’ sub-vectors grow to over 32 elements long. The main difference between the two 

algorithms is the order in which Twiddle-Factors are accessed and the sub-vector elements are accessed, 

mainly to improve spatial locality and maximize the size of the vectors being operated on at all times. 

Figure 7-9 demonstrates the pattern that the LACore solves for elements in the FFT: when the current 

iteration, 𝑚, is small, solve the first element in each sub-vector at a time (orange elements). When 𝑚 is 

large, we solve for consecutive elements in the same vector. For each iteration in the FFT, the Twiddle-

Factors are loaded into the scratchpad, and then a complex double-precision vector multiply is applied 

to the sub-vectors, and then the result sub-vectors are updated in memory. In Figure 7-9, this means for 

the initial iterations, when 𝑚 is small, a single Twiddle-Factor is loaded in to the scratchpad and 

multiplied by each element from different sub-groups. 

7.3.2 Results 

The complex double-precision FFT results are shown in Figure 7-10, with the LACore 

significantly outperforming all other implementations for vector sizes up to 214 (or 16384) elements. 

The LACore’s peak double-precision throughput at a vector size of 4096 is 1.88 GFLOP/s, which is a 

4.23x, 7.98x, 2.40x and 3.34x speedup over the RISC-V, Fermi GPU, x86-GSL and x86-FFTW 

implementations. The throughput asymptotically approaches 0.55 GFLOP/s, which is a 2.1x, 1.36x, 1.56x 

and 0.79x speedup of the RISC-V, Fermi GPU, x86-GSL and x86-FFTW implementations. So the LACore 

is the optimal architecture for small to medium-sized FFTs and nearly as good as the highly-tuned FFTW 

framework at large-sized FFTs, which implements higher-radix transforms than the simplest Radix-2 

(Johnson, 1998). The small performance difference at large input vectors can be explained by the higher-

sophistication of the FFTW algorithms than what the LACore was running. 
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Figure 7-10: FFT Double-Precision on the LACore, RISC-V, 
Fermi GPU, x86-GSL and x86-FFTW. 

 
Figure 7-11: FFT Double-Precision Speedup of LACore over 
RISC-V, Fermi GPU, x86-GSL and x86-FFTW. 

7.4 PTRANS 

7.4.1 Implementation 

Double-Precision Transpose and Add is a high spatial-locality and low temporal-locality 

application. The benchmark evaluated is 𝐴 = 𝐴𝑇 + 𝐵, where 𝐴 and 𝐵 are 𝑛-dimension matrices. The 

total operations is 𝑛2. The RISC-V platform used the GSL implementation of DGEMM (Gough, 2009), 

while the x86 version used three implementations with SSE2 enabled: a hand-written kernel, the GSL 

library, and the Eigen library (G. Guennebaud, 2010). The Fermi GPU ran optimized hand-written 

kernels, since cuBLAS was not available as a static library for NVIDIA Toolkit 3.2. The LACore ran a 

hand-written kernel leveraging the LACoreAPI framework. 

7.4.2 Results 

 
Figure 7-12: PTRANS (DP) on LACore, RISC-V, Fermi GPU, and 
x86 (hand-written, GSL and Eigen). 

 
Figure 7-13: PTRANS (DP) Speedup of LACore over RISC-V, 
GPU, and x86 (hand-written, GSL, Eigen). 
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The PTRANS absolute performance results are shown in Figure 7-12, with the LACore 

outperforming all other implementations at large matrix sizes, asymptotically reaching 150 MFLOP/s. At 

this matrix size, the LACore achieves a speedup of 9.72x, 1.52x, 1.98x, 4.14x and 7.48x over the RISC-V, 

Fermi GPU, x86-Hand-Written, x86-GSL and x86- Eigen implementations, as seen in Figure 7-13. 

7.5 HPL 

7.5.1 Implementation 

The High-Performance Linpack solves a linear system 𝐴𝑥 = 𝑏, where 𝐴 is a square matrix with 

dimension 𝑛, and 𝑥, 𝑏 are column vectors. This is a high temporal and spatial locality application, similar 

to DGEMM. The total operations for the partial LU factorization and the linear system solving combined 

is 
2

3
𝑛3 +

3

2
𝑛2, with the LU factorization portion of the computation dominating for large 𝑛. 

The RISC-V platform used the GSL implementation for LU-factorization and Linear-System Solve 

(Gough, 2009). The x86 platform used two implementations, GSL and Eigen, both with SSE2 enabled (G. 

Guennebaud, 2010). Since cuSOLVER was not available as a static library for NVIDIA Toolkit 3.2, and no 

implementations could be found for GPU Linear-System Solve, the scaled Fermi GPU platform was not 

evaluated for this benchmark. It is worth noting that the HPL and DGEMM results are highly correlated 

(P. R. Luszczek, 2006), and a GPU implementation for DGEMM is provided, so the Fermi GPU HPL 

performance can be estimated from that. The LACore uses a hand-written algorithm leveraging the 

LACoreAPI library. 

The LACore implementation has two algorithms, and which one to run depends on the input 

problem size. Figure 7-14 shows that at smaller matrix sizes (less than 128), using the LAMemUnits to 

swap rows (SWAP) of 𝐴 in memory during the permutation step is faster than using a permutation 

vector (PVEC) for indirection and not physically swapping rows in memory. As the problem size 

increases, the cost of swapping rows becomes large, and the PVEC algorithm is more effective. The 

reason the PVEC algorithm is slower than SWAP at small problem sizes is because the indirection vector 

prevents the LAMemUnits from sequentially accessing items in columns, since each item in a column 

could potentially be in a different physical row. Accessing consecutive elements in a row is not a 

problem, though, which is why the LACore uses a row-major matrix for HPL. 
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Figure 7-14: HPL performance when swapping rows (SWAP) vs using a 
permutation vector (PVEC). 

A single 𝐿-iteration of the LU-decomposition step can be used to visualize how the LACore 

solves HPL. The 𝑈-iteration, and the forward and back substitution routines are very similar in structure, 

so will not be shown. Figure 7-15 shows the elements accessed when solving an 𝐿-iteration, which 

solves for the dark-blue column, and accesses all the elements in the light blue columns and rows. The 

expression for the elements accessed for each 𝐿𝑖𝑗 is given by equation 1: 

 𝐿𝑖𝑗 =
1

𝑈𝑗𝑗
(𝐴𝑖𝑗 − ∑ 𝐿𝑖𝑘𝑈𝑘𝑗

𝑗−1
𝑘=0 ) (1) 

where the 𝑈-vector is looped over and the dot-product with each light blue row in the 𝐿 matrix is 

computed. The LACore LU decomposition solves 𝐿 and 𝑈 in place of 𝐴, meaning the dark blue column 

is the same physical memory as the light blue column in 𝐴. The actual code used in the HPL benchmark 

is shown in Figure 7-16. 

 
Figure 7-15: Elements in matrices A, L and U accessed during an L-iteration in LU 
decomposition. 

It can be seen from the 𝐿-iteration code that if a permutation vector was used (PVEC), the 

loading of the 𝑈 column into the scratchpad would take 𝑘 instructions, since each element in the 𝑈 

column would have to be individually located in memory, while the SWAP version only has to issue a 

single la_copy() command with the appropriate stride to load the elements into the scratchpad. 

Similarly, the entire loop from 𝑖 = 𝑗 + 1 to 𝑖 = 𝑁 in Figure 7-16 can be replaced by a single 
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la_AaddBmulC_sum_multi() command with the SWAP algorithm but not the PVEC algorithm. 

These are two of the reasons PVEC performs poorly at small matrix sizes. 

//performs L-iteration during LU decomposition on the LACore 

void lu_l_iter(double *A , IDX N , IDX j) { 

  //NOT SHOWN: load (1 , - U0j .. - Ukj )/Ujj into scratchpad 

 

  for(IDX i=j +1; i <N; ++ i){ 

    LAAddr Li0 = (LAAddr)&A[N*i]; 

    LAAddr Lij = (LAAddr)&A[N*i+j]; 

     

    //configures input vector Li0 of length j in memory 

    la_set_vec_adr_dp_mem(Li0_mem_REG, Li0);  

    //configures output scalar Lij in memory 

    la_set_scalar_dp_mem(Lij_mem_REG, Lij);  

    //performs dot product of length j: Lij = (U0j dot Li0) 

    la_AaddBmulC_sum(Lij_mem_REG, U0j_sch_REG, Zero_REG, Li0_mem_REG, j); 

  } 

} 

Figure 7-16: LACore LU-Decomposition L-iteration without using permutation vector. 

7.5.2 Results 

The HPL results are shown in Figure 7-17, with the LACore outperforming all other 

implementations for matrix sizes up to 28 (or 256) elements, at which point, x86- Eigen outperforms the 

LACore. The LACore’s peak double-precision throughput at a matrix size of 64 is 2.55 GFLOP/s, which 

is a 4.67x, 2.10x, and 2.81x speedup over the RISC-V, x86-GSL and x86-Eigen implementations. The 

LACore’s throughput asymptotically increases as the matrix size grows, with a throughput of 1.52 

GFLOP/s at a 1024 matrix size, which is a 5.88x, 7.22x and 0.57x speedup of the RISC-V, x86-GSL and x86-

Eigen implementations, as seen in Figure 7-18. 

 
Figure 7-17: HPL Double-Precision on the LACore, RISC-V, x86-
GSL and x86-Eigen. 

 
Figure 7-18: HPL Speedup of LACore over RISC-V, x86-GSL 
and x86-Eigen. 
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7.6 RANDOM ACCESS 

7.6.1 Implementation 

Although Random Access (RA) is a purely integer workload, it was included in the evaluated 

benchmarks in order fully test all four combinations of high-and-low temporal-and-spatial localities. RA 

tests how architectures perform with low-temporal and low-spatial localities by updating random 

locations in a large table in memory. The RISC-V and LACore platforms ran identical code, since the 

LACore-specific hardware could not be leveraged for this benchmark. The x86 workload was compiled 

with SSE2 enabled, and the Fermi GPU used a hand-written kernel. 

7.6.2 Results 

 
Figure 7-19: Random-Access on LACore/RISC-V, Fermi GPU 
and x86. 

 
Figure 7-20: Random-Access Speedup of LACore/RISC-V over 
x86 and Fermi GPU. 

As mentioned, the LACore ran an identical binary to the RISC-V platform, since none of the 

LACore-specific hardware could be leveraged. Figure 7-19 shows the absolute results for all four 

platforms, while Figure 7-20 shows the relative speedup of the LACore over the other platforms. The 

LACore achieves a 1x, 1.6x and 0.5x speedup over the RISC-V, Fermi GPU and x86 platforms at smaller 

table sizes, and achieves 1x, 0.7x and 0.3x speedups as the table size grows arbitrarily large. 

A large reason x86 performed better than the LACore is due to the x86 running a superscalar 

(multiple-issue, out-of-order) CPU model in gem5, while the LACore was only using a single-issue 

pipelined CPU model. The Fermi GPU performed better at table sizes between 216 − 218 because its L2-

cache was 1 MB while the LACore’s L2-cache was only 256 kB, and these two cache sizes are the upper 

and lower bounds of the region the GPU outperforms the LACore. The table in RA still fits in the whole 

L2 cache in the GPU’s case, but not in the LACore’s case within this envelope. Above a 218 table size, 

the GPU starts to have L2 cache evictions as well, and its performance starts to match the LACore 

again. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

G
U

P
/S

TABLE SIZE (LOG2)

RAN DOM-ACCESS

LACore/RISC-V GPU x86

0.1

1.0

10.0

8 9 10 11 12 13 14 15 16 17 18 19 20

LA
C

O
R

E 
SP

EE
D

U
P

TABLE SIZE (LOG2)

RANDOM-ACCESS SPEEDUP

GPU x86



71 
 

7.7 STREAM-TRIAD 

7.7.1 Implementation 

This benchmark is high-bandwidth workload with high-spatial locality and low-temporal locality, 

since each element in the vectors are accessed sequentially one time. The RISC-V and x86 platforms ran 

no special libraries for the STREAM Triad benchmark, although the x86 workload was compiled and run 

with SSE2 enabled. The Fermi GPU implementation offloaded the vector computation as device kernels. 

The LACore implementation made use of the custom LAExecUnit and LAMemUnits for high-

bandwidth memory transfer and vector arithmetic. 

The full STREAM Triad C code for the LACore, using the LACoreAPI framework, is shown in 

Figure 7-21, and requires only 5 commands for any sized vectors. The first 4 commands configure the 

input and output streams, which in this case is a scalar and three vectors. The last instruction runs for 

count elements, using the configured LACfgs. 

// a(i) = b(i) + q*c(i) 

void dstream_triad_la_core(double *A, double *B, double q,  

                           double *C, IDX count) 

{ 

  //these are the LACfg indexes used by each input or output 

  const LACfgIdx A_REG = 0; 

  const LACfgIdx B_REG = 1; 

  const LACfgIdx C_REG = 2; 

  const LACfgIdx q_REG = 3; 

 

  //configure the 3 inputs and 1 output for STREAM 

  la_set_scalar_dp_reg(q_REG, q); 

  la_set_vec_adr_dp_mem(A_REG, (LaAddr)A); 

  la_set_vec_adr_dp_mem(B_REG, (LaAddr)B); 

  la_set_vec_adr_dp_mem(C_REG, (LaAddr)C); 

 

  //vector output: A_REG = C_REG*q_REG + B_REG 

  la_AmulBaddC(A_REG, C_REG, q_REG, B_REG, count); 

} 

Figure 7-21: LACore STREAM-Triad Code. 

7.7.2 Results 

STREAM Triad provides two correlated results: memory bandwidth (Bytes/s) and computation 

throughput (FLOP/s). The absolute results for the bandwidth are shown in Figure 7-22. The chart for 

GFLOP/s looks nearly identical, so is not shown. The GB/s for Triad is 3 ⋅ 𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑖𝑧𝑒 according to (P. R. 

Luszczek, 2006), and the LACore peaks at 103 GB/s for a vector size of 4096, where it has 13x, 47x and 

4.3x speedups over RISC-V, Fermi GPU and x86 implementations. As the vector size grows, the LACore 
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asymptotically approaches 7.25 GB/s, with speedups of 5.2x, 2.2x and 5.8x over RISC-V, Fermi GPU and 

x86 implementations, as seen in Figure 7-23. Similar results for the GFLOP/s absolute and relative 

performances are shown in Figure 7-24 and Figure 7-25 respectively. 

 
Figure 7-22: STREAM Triad Bandwidth comparison for LACore, 
RISC-V, Fermi GPU and x86. 

 
Figure 7-23: STREAM Triad, LACore's Bandwidth increase 
over RISC-V, Fermi GPU and x86. 

 
Figure 7-24: Figure 12 1: STREAM Triad GFLOP/s comparison 
for LACore, RISC-V, Fermi GPU and x86. 

 
Figure 7-25: STREAM Triad, LACore's GFLOP/s increase over 
RISC-V, Fermi GPU and x86. 

 

One reason why LACore outperforms the other platforms so significantly in STREAM-Triad is due 

to its previously described large-format vector-like architecture with the specialized streaming 

LAMemUnits, which can access multiple consecutive elements in a cache-line in the same cycle. In 

other words, the LACore can exploit the high spatial-locality of STREAM benchmarks. 

7.8 SPARSE DGEMV 

7.8.1 Implementation 

Sparse DGEMV (SpMV) has an irregular memory-access pattern and a relatively high arithmetic 

complexity. It was chosen to evaluate the LACore because the HPCC benchmark suite does not have 
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any sparse applications, and the sparse-matrix data-source configuration is a major feature of the 

LAMemUnits. Performance for various matrix sizes and sparsities were collected, with sparsity values 

of 20%, 40%, 60% and 80% evaluated, corresponding to matrices that are 20%, 40%, 60% and 80% filled 

with non-zeros respectively. The performance of SpMV on the LACore was compared to three other 

implementations: a RISC-V in-order CPU using the GSL library, and an x86 with SSE2 enabled using both 

Eigen and GSL implementations.  Since cuSPARSE was not available as a static library for NVIDIA Toolkit 

3.2, and no implementations could be found for GPU Sparse DGEMV, the scaled Fermi GPU platform was 

not evaluated for this benchmark. The LACore implementation made use of the custom LAExecUnit 

and LAMemUnits for high-bandwidth memory transfer and vector arithmetic. The programming model 

for sparse matrices is straightforward with the LACoreAPI, and the full kernel used for the LACore’s 

SpMV evaluation is shown in Figure 7-26. The kernel loads the vector 𝑏 into the scratchpad, then 

performs the matrix-vector multiplication using the multi-stream output mode, and then stores the 

resulting vector, 𝑥, from scratchpad back into memory. 

//A in row major, b,x are column vectors 

void dgemv_spv_la_core(double *A_data_ptr, uint32_t *A_col_ptr,  

  uint32_t *A_row_ptr, double *b, double *x, IDX N, IDX M) 

{ 

  //these are the LACfg indexes used by each scalar, vector or sparse matrix 

  const LaRegIdx Zero_REG  = 0; 

  const LaRegIdx A_mem_REG = 1; 

  const LaRegIdx b_mem_REG = 2; 

  const LaRegIdx b_sch_REG = 3; 

  const LaRegIdx x_mem_REG = 4; 

  const LaRegIdx x_sch_REG = 5; 

 

  la_set_scalar_dp_reg(Zero_REG, 0.0); 

  //configure the sparse matrix ‘A’ with its 6 fields 

  la_set_spv_nrm_dp_mem(A_mem_REG, (LaAddr)A_data_ptr, (LaAddr)A_row_ptr,  

                                   (LaAddr)A_col_ptr, N, M, 0);  

  //configure the dense ‘b’ and ‘x’ vectors in scratchpad and memory 

  la_set_vec_dp_mem(b_mem_REG, (LaAddr)b,      1, M, 0); 

  la_set_vec_dp_sch(b_sch_REG, 0,              1, M, -M); 

  la_set_vec_dp_mem(x_mem_REG, (LaAddr)x,      1, N, 0); 

  la_set_vec_dp_sch(x_sch_REG, SCRATCH_SIZE/2, 1, N, 0); 

   

  //copy ‘b’ vector from mem to scratchpad, since it is frequently accessed 

  la_copy(b_sch_REG, b_mem_REG, M);  

  //perform x = A*b, with result x being stored in scratchpad 

  la_AmulBaddC_sum_multi(x_sch_REG, A_mem_REG, b_sch_REG, Zero_REG, M*N);  

  //copy ‘x’ from scratchpad to memory, now that computation is over 

  la_copy(x_mem_REG, x_sch_REG, N); 

} 
Figure 7-26: Sparse DGEMV kernel using LACoreAPI. 
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Figure 7-27: Sparse DGEMV (20%) GFLOP/s comparison for 
LACore, RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-28: Sparse DGEMV (20%), LACore's GFLOP/s speedup 
over RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-29: Sparse DGEMV (40%) GFLOP/s comparison for 
LACore, RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-30: Sparse DGEMV (40%), LACore's GFLOP/s speedup 
over RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-31: Sparse DGEMV (60%) GFLOP/s comparison for 
LACore, RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-32: Sparse DGEMV (60%), LACore's GFLOP/s speedup 
over RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-33: Sparse DGEMV (80%) GFLOP/s comparison for 
LACore, RISC-V, x86-Eigen and x86-GSL. 

 
Figure 7-34: Sparse DGEMV (80%), LACore's GFLOP/s speedup 
over RISC-V, x86-Eigen and x86-GSL. 
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7.8.2 Results 

The absolute performance for each platform at sparsities of 20%, 40%, 60% and 80% are shown 

in the left column of images above: Figure 7-27, Figure 7-29, Figure 7-31, and Figure 7-33 respectively. 

The relative speedups of the LACore over the other platforms for Sparse DGEMV are shown in images 

for the corresponding sparsities - Figure 7-28, Figure 7-30, Figure 7-32, and Figure 7-34 respectively.  

GFLOP/s were calculated using the equivalent dense matrix sizes. For example, SpMV with a 

20% sparsity matrix with side 𝑛, would have a GFLOP/s of 2𝑛3. Same with 40%, 60% and 80% matrices. 

At a 20% sparsity, the LACore achieves a peak performance of 17.8 GFLOP/s at a matrix size of 256, 

which is a 22.4x, 2.3x and 6.2x speedup over the RISC-V, x86-Eigen and x86-GSL implementations 

respectively. After a matrix size of 256, all implementations suffer a substantial drop in throughput due 

to the problem size exceeding cache capacity. At a sparsity of 40%, the LACore achieves a peak 

performance of 9.8 GFLOP/s at a matrix size of 128, which is a speedup of 18x, 1.6x and 13.8x over the 

RISC-V, x86-Eigen and x86-GSL platforms. At a sparsity of 60%, the LACore achieves a peak 

performance of 7.0 GFLOP/s at a matrix size of 128, which is a speedup of 28x, 1.6x and 14.6x over the 

RISC-V, x86-Eigen and x86-GSL implementations. Finally, at a sparsity of 80% (which is the most-dense of 

all 4 sparsities tested), the LACore achieves a peak performance of 6.2 GFLOP/s, which is a 36x, 3.3x, 

and 5.8x speedup over the RISC-V, x86-Eigen, and x86-GSL implementations. 

The most noticeable trend in all the SpMV results is that the LACore dominates all other 

platforms up until the problem size exceeds a threshold determined by the cache size. At this point, all 

platforms’ performances drop by up to an order of magnitude, with the LACore and x86-Eigen 

asymptotically achieving very similar results, despite x86 eigen being a superscalar processor and 

LACore being a single-issue pipelined model in gem5. This severe drop in performance at matrix sizes 

of 256 to 512 is surprising because the three vectors accessed in SpMV are simply accessed sequentially 

in memory, so it is not immediately clear that this would strain the caches. But a closer analysis suggests 

that as the sparse matrix size grows, there will be more accesses to the 𝑑𝑎𝑡𝑎 vector and 𝑗𝑑𝑥 vector for 

each access to the 𝑖𝑑𝑥 vector, which could result in the 𝑖𝑑𝑥 elements in the cache to get evicted more 

frequently, thus causing more cache misses. In other words, the three vectors making up the 

compressed sparse matrix will cause thrashing in the cache since they will be competing for cache-lines 

with each other. 

 Another view of the SpMV results can be seen in Figure 7-35, which overlays the 20%, 40%, 60% 

and 80% sparsity results for the LACore on top of each other. In addition, Figure 7-35 also has the 
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DGEMM averaged results from the HPCC benchmark suite overlaid as well. The relativity results are not 

too surprising, with the DGEMM performance being better than all the SpMV performances, and the 

performance of the sparse benchmarks improving with lower sparsity, since there are more zeros to skip 

over. One interesting observation is that DGEMM appears to scale well with problem size, while SpMV 

does not even degrade gracefully with problem size. The analysis for this phenomenon has already been 

given though.  

 

Figure 7-35: Sparse DGEMV, LACore performance vs matrix 
sparsity. 

 The overall sparse DGEMV benchmark results suggest that the LACore is a good platform for 

applications involving sparse-matrices, especially for matrix sizes less than 512x512. The LACoreAPI 

kernel for sparse DGEMV was demonstrated and clearly showed the high-programmability and simplicity 

of dealing with sparse matrices on the LACore. 
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8 ROOFLINE MODEL 

8.1 LACORE ROOFLINE MODEL 

A roofline model for the LACore has been created using the results from the HPCC benchmarks 

and Sparse DGEMV benchmarks. The roofline model attempts to envelope the upper bound GFLOP/s for 

any type of application on a given architecture. The envelope is limited by the maximum floating-point 

performance of the hardware at high operational complexity problems, and limited by memory 

bandwidth at low computation complexity problems, according to (Williams S. W., 2009), the original 

source of the Roofline model. 

  Roofline Ridge 

Max DP GFLOPs (Scalar) 184 1.78 

Max DP GFLOPs (Vec) 128 1.24 

STREAM-Triad max GB/s 103 
Table 8-1: LACore Roofline Model Parameters. 

The LACore’s roofline model is composed from the elements in Table 8-1. The STREAM-Triad 

maximum bandwidth occurs at a vector size of 4096 elements, as mentioned in the HPCC results section. 

The maximum scalar-output double-precision floating-point performance is 184 GFLOP/s while the 

maximum vector-output double-precision floating-point performance is 128 GFLOP/s, as discussed in 

the LACore Architecture section. The intersection of the bandwidth envelope and the maximum 

hardware GFLOP/s forms the ridge at 1.78 operational complexity for scalar output and 1.24 operational 

complexity for vector output. 

 

Figure 8-1: LACore Roofline Model with selected HPCC applications. 
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The LACore roofline model is presented in Figure 8-1, with the FFT, HPL, DGEMM and Stream-Triad 

results included as well. Each point for each benchmark corresponds to a different vector or matrix size, 

and the sizes that produced the highest performance for each benchmark were labeled on the chart: FFT 

and STREAM GFLOP/s peaked at a vector size of 4096, while DGEMM and HPL GFLOP/s peaked at a 

matrix size of 64x64. The applications’ operational complexities were taken from a few sources: 

(Ofenbeck, 2014) was used for DGEMM and (Williams S. , 2016) was used for FFT and STREAM. No 

derivations for HPL’s operational complexity could be found in literature, so it was derived by hand. The 

operational complexities for each benchmark are shown in Table 8-2. The FLOP/BYTE determines the x-

axis position of the results at the given input size. For example, at a matrix size of 32, DGEMM would 

have a FLOP/BYTE ratio of 2, but at a matrix size of 128, DGEMM would have a FLOP/BYTE ratio of 8, 

which can be seen in the figure above as well. For STREAM-Triad, the FLOP/BYTE is independent of the 

problem size, so the plotted results are on a vertical line. 

 DGEMM STREAM-Triad HPL FFT-1D 

Bytes Moved 32𝑛2 24𝑛2 16𝑛2 48𝑛 
FLOP/s 2𝑛2 𝑛2 2

3
𝑛3 

5𝑛 log (2𝑛) 

FLOP/BYTE 𝑛

16
 

1

24
 

𝑛

24
 

5

48
log (2𝑛) 

Table 8-2: FLOP/Byte calculations for HPCC Applications. 

8.2 LACORE ROOFLINE ANALYSIS 

The roofline model and plotted results reveal a few interesting qualities of the LACore and the 

HPCC benchmark implementations. The first observation is that the LACore has a balanced roofline 

ridge at 1.24 and 1.78 for vector and scalar output modes. This means that neither the memory 

bandwidth of the system nor the theoretical computational performance of the system are the major 

limitation. If the memory bandwidth was low compared to the peak hardware performance, the ridge 

would be much farther to the right, at a FLOP/Byte of 4, 8 or even higher. This would mean that barely 

any applications except for the extremely computational-bound would be able to fully utilize the 

computational resource of the system. On the other hand, having a memory bandwidth that was much 

better relative to the system’s computational power would result in a roofline peak at a FLOP/Byte of 

0.5, 0.25 or even lower, and means that the memory system is never fully utilized, except for the 

extremely memory-bound applications. So, the LACore’s balanced roofline ridge means no part of the 

overall system was overdesigned, which reduces unnecessary complexity and area cost. 
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Another observation from the Roofline model is that HPL and FFT perform well below the roofline, 

which means that it is neither being bound by memory resources or computational resources, and are 

actually being limited by poor algorithmic design. DGEMM performs closer to the roofline limit, and 

STREAM-Triad actually outperforms the theoretical roofline at a vector size of 4096, which suggests the 

roofline model is just a theoretical model and does not impose hard restrictions on application 

performance, but mere “soft-envelopes”. The other interpretation would be that the LACore’s 

architecture somehow violates some assumptions made by the authors of the roofline model. 

 

  



80 
 

9 DESIGN AREA ESTIMATES 

9.1 AREA ESTIMATION 

Dual Mode floating point circuits for Add, Subtract, Compare, Multiply and Divide are used in the 

LAExecUnit’s datapath. A 110nm dual-mode Adder, 90nm dual-mode Multiplier, and 90nm dual-

mode 2-stage Divider are presented in (Akkaş, 2008), (Jaiswal, 2015), and (Jaiswal, 2016). Area for each 

of these circuits is shown in Table 9-1, along with the instance count of each in the VecNodes, 

ReduceNodes and the AccumulateNode. The total area footprint of the LAExecUnit datapath at 

the 32-nm technology node is found by multiplying the instance count of the Adders, Multiplier and 

Dividers by the scaled-down area of each from the 110 and 90 nm nodes to the 32 nm nodes, and turns 

out to be 4.37 mm2. 

 Count/SIMD Adders Multipliers Dividers 

VecNode 8/8 64 64 64 

ReduceNode 7/8 56 0 0 

AccumulateNode 1/8 15 0 0 

Cycles 5 4 18/14 

Fmax (GHz) 1.25 1 1 

Node (nm) 110 90 90 

Area (mm2) 138300 138000 206701 

Area (mm2) 1.58 1.12 1.67 

Total Area (mm2) 4.37 
Table 9-1: Total area estimation of the LAExecUnit's datapath at the 32 nm node. 

Using the design for a clock-crossing FIFO from (Cummings, 2002), the FIFOs in the 

LAExecUnit’s datapath were modeled as dual-port RAMs. Then, using the CACTI 5.3 web interface, an 

area estimation for a single FIFO was found, from which the total area used by FIFOs in the 

LAExecUnit’s datapath could be found. The number of FIFOs and their sizes are tabulated in Table 

9-2. Each FIFO is 8 words deep, with 64 lines per word. This is equivalent to a 512-byte RAM, so there 

are 20 kB of FIFOs in the LAExecUnit’s datapath. 

FIFO depth 8 VecNode input FIFOs 24 

FIFO word width 64 bytes ReduceNode input FIFOs 15 

FIFO area (mm2) 0.017 AccumulateNode output FIFOs 1 

Total FIFO Area (mm2) 0.68 Total datapath FIFOs 40 
Table 9-2: LAExecUnit FIFO area calculations. 
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The other components in the LAExecUnit include 48 64- bit multiplexers and 4 

LAMemUnits, which will all be grouped into the control portion of the LACore, and a conservative 

estimate of 25% of the total area and power of the LACore will be allocated to this control portion. 

Area estimates for the caches and scratchpad in the LACore were found using the CACTI 5.3 Web 

Interface (D. Tarjan, 2006) for the 32-nm process, and are summarized in Table 9-3. The configuration 

for the caches and scratchpad were the same as those shown in the gem5 configuration in Table 7-1. 

The scalar CPU area is taken from the design in (B. Keller, 2016), a RISC-V processor with a vector-

extension unit implemented on a 28-nm node. The total area of the Scalar CPU, not including the vector 

extension was 0.461 mm2. 

Memory Area (mm2) 

64 kB LACache 1.58 

64 kB Data-Cache 1.58 

16 kB Inst-Cache 1.10 

256 kB L2-Cache 2.02 

64 kB Scratchpad 0.50 

Total 6.78 
Table 9-3: Area usage of LACore caches and scratchpad at the 32-nm node. 

9.2 AREA COMPARISONS 

The full LACore area estimation is given in Table 9-4, with the LACore-specific hardware taking 

up 60.4% of the total area. The LACore uses 2.62x the area resources as a simple RISCV CPU, including 

all the caches and scratchpad. This increase in size is justified by the massive performance 

improvements across the board in the HPCC benchmarks, such as an 85.8x improvement in DGEMM, a 

5.8x improvement in HPL and up to a 5.8x improvement in FFT. In all cases, it is more area efficient to 

use an LACore vs multiple RISC-V cores to achieve the same performance. For example, with DGEMM, 

it would take 85 RISC-V cores to achieve the same result as a single LACore at a matrix size of 1024.  

 Area (mm2) 

RISC-V Scalar 0.46 

Inst-Cache/Data-Cache/L2-Cache 4.70 

Scalar Total 5.16 

LAExecUnit datapath/FIFOs 5.05 

LAExecUnit control 1.26 

LACache/scratchpad 2.08 

LACore Total 13.55 

LACore/Scalar Ratio 2.62 
Table 9-4: Total RISC-V Scalar CPU and LACore Area Breakdown. 
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A comparison of the LACore’s area to two NVIDIA P100 Streaming Multiprocessors (SMs) can 

similarly be drawn by using the statistics in (NVIDIA, 2016) for a single SM. For the global resources, such 

as the GPU L2 cache, the value is divided by 28, which is half the number of SMs on the GPU. The 

comparison of the LACore with the two SMs is shown in Table 9-5. The P100 SM has a larger area than 

the LACore, and also uses more memory resources. The similar area footprints of the two SMs and the 

LACore is the main reason why this paper chose to compare HPCC benchmarks for two SMs instead of 

the whole GPU. For a fair comparison to the entire P100, a 30-LACore manycore chip would have to be 

compared. 

 2x P100 SM LACore 

Area (mm2) 21.78 13.55 

2x P100 SM/LACore Area 1.61 

L1-Cache (kB) 0 144 

L2-Cache (kB) 146 256 

Registers/FIFOs (kB) 512 20 

Scratchpad (kB) 128 64 

2x P100 SM/LACore Memories 1.62 
Table 9-5: 2 NVIDIA P100 SMs vs the LACore area and memory usage. 
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10 CONCLUSIONS AND FUTURE WORK 

10.1 CONCLUSIONS 

In this thesis, the LACore, a novel large-format vector architecture for linear algebra application 

was presented. The LACore architecture is designed to address many of the shortcomings of modern 

architectures for HPC linear algebra applications through unique architectural features such as the 

highly-configurable Large-Format LAMemUnits which can stream arbitrarily sized vectors and matrices 

to and from the scratchpad and memory, and the mixed-precision vector-reduction LAExecUnit, 

which can achieve up to 368 FLOP/cycle single-precision performance. Additionally, the LACore 

architecture is equipped to handle long-running complex linear algebra kernels with its 64 kB high-

throughput, low-latency scratchpad, used to store intermediate results.  

A main goal of the LACore architecture is to provide a medium ground between the too-general-

purpose GPU accelerators, and the too-rigid ASIC/FPGA fixed function accelerators. To achieve this goal 

the LACore’s instruction set was carefully crafted to contain 68 powerful instructions for configuration, 

data movement and data execution. On top of the ISA, a C-programming framework called the 

LACoreAPI, was developed and demonstrated in this paper. The LACoreAPI raises the programming 

abstraction for the user and provides a flexible and intuitive interface for programming the LACore.  

To provide a mechanism for design space exploration, and to provide a platform to evaluate 

benchmarks on, the LACore was implemented in the industry-standard cycle-accurate gem5 simulator 

using a single-issue, pipelined RISC-V processor as the scalar CPU. The LACore performance was 

evaluated against a RISC-V processor, an x86 processor and a scaled NVIDIA Fermi GPU using the gem5 

simulator and the gem5-gpu simulator in the Fermi GPU’s case.  

The HPCC benchmark suite and the Sparse DGEMV kernel were used to evaluate the general 

purpose linear algebra capabilities and the sparse-matrix capabilities of the LACore. Within the HPCC 

benchmark suite, the LACore outperformed all other platforms in STREAM, FFT, HPL, DGEMM and 

PTRANS applications for a wide range of problem sizes. Additionally, the LACore outperformed the 

RISC-V and x86 platforms substantially in the Sparse DGEMV benchmark for the whole range of matrix 

sparsities tested. The LACore is demonstrated to be an optimal architecture for both high-and-low 

spatial-and-temporal locality applications through the HPCC and Sparse DGEMV benchmark results.  
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Finally, the LACore’s Roofline model and area footprint were presented. The Roofline model 

analysis revealed that the LACore had a balanced design, with neither the memory subsystem or the 

computational performance lagging behind the other by a substantial margin. The LACore area 

analysis revealed that the LACore used less area and memory resources than a scaled NVIDIA GPU, 

while offering higher-performing capabilities for linear algebra applications. This demonstrates that the 

LACore architecture can compete with industry-standard hardware in performance per area, which is a 

strong indicator in the scalability of the LACore to manycore designs. 

10.2 FUTURE WORK 

The LACore is a new and novel architecture with many areas of exploration and development 

underway. This paper focused mainly on the architecture of a single LACore processor, the initial 

design space exploration using gem5, the instruction set and the LACoreAPI programming model, and 

the performance of single-threaded applications compared to other platforms. Future and current work 

will expand and build on this foundational work. 

There are many areas of the LACore architecture that have room for design-space exploration 

and performance evaluation, such as the mixed-precision LAExecUnit with the ability to coerce 

single-precision and double-precision data-streams to the other format on the fly. Additionally, more 

linear algebra applications with sparse-matrix data-sources will be evaluated, such as sparse LU 

decomposition and applications involving the transposition of sparse matrices. 

Current work has been done to develop and evaluate multi-core and many-core LACore chips. A 

C-programming, task-scheduling framework for multi-core LACore designs, called the 

LATaskSchedulingAPI, has already been developed to provide a high-level API for programmers to 

target these multi-core LACore designs. Additionally, the gem5 simulator has already been modified to 

provide support for additional System Calls used by the LATaskSchedulingAPI. Future work will 

continue to build upon these pieces in order to explore effective NoC designs and programming patterns 

for multi-core LACore designs. 

Another area of planned future work is an FPGA implementation of the LACore architecture 

discussed in this thesis, which we would then run our benchmarks on and compare to results on other 

real-hardware platforms for the RISC-V, x86 and NVIDIA GPU architectures. This will provide 

performance and area comparisons of a hardware implementation of the LACore against hardware 
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implementations of modern HPC acceleration hardware. The eventual goal after FPGA implementation 

and performance-tuning is an ASIC implementation and tape-out for a single-LACore processor, which 

will provide the most accurate area, power and performance numbers compared to other modern HPC 

architectures. 

 Most of the future work presented so far has discussed the architecture and hardware-related 

aspects of future work. However, there is a plethora of work to be done on the software side as well. 

There are current plans to develop a fully-BLAS compatible library targeting the LACore, which can 

then be linked against to allow running linear algebra frameworks, such as the GNU Scientific Library to 

run on the LACore without modification.  

 Additionally, kernels for a wider range of application domains will be explored using the 

LACoreAPI framework, in order to evaluate the full scope of applications that the LACore is suited 

for. There are current plans for implementing multi-layered neural networking algorithms, which we 

believe will be able to benefit from the vector-reduction datapath in the LAExecUnit. Additionally, 

more complex applications based in linear algebra will be developed, such as fully solving Partial 

Differential Equations using stencil computations. 
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