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Abstract of “Approximate Computing Techniques For Accuracy-Energy Trade-offs” by
Soheil Hashemi, Ph.D., Brown University, May 2018

Power efficiency has emerged as one of the main concerns in many digital design do-

mains ranging from embedded and battery operated systems to data centers. As a result,

in recent years, many different approaches have been aimed at lowering the power and

resource footprints of computing systems. Approximate computing is one such emerg-

ing technique targeting error resilient applications and offering promising benefits. Ap-

proximate computing introduces design accuracy as a third orthogonal dimension to the

conventional power/performance trade-offs. The underlying principal of such approach

is that with relaxing the full accuracy requirement on the output, one can benefit from

significant savings in hardware design metrics, such as power consumption, design area,

and critical path delay. This paradigm, however, is only applicable to applications where

an inherent tolerance to small and insignificant errors exists. Applications in domains of

media processing, machine learning, and data mining are a few examples. Interestingly,

with the recent growth in the number of data intensive and machine learning applications,

the relevance of approximate computing has only increased.

This thesis makes the following contributions toward the advance of approximate com-

puting techniques in different computing systems. First, we propose and evaluate a novel

methodology for design of approximate arithmetic blocks, namely multipliers and di-

viders. Our methodology benefits from a dynamic truncation scheme, where the most

important bits are guaranteed to be selected, as well as an unbiasing scheme, where the

error distribution in balanced around zero to ensure both positive and negative errors. We

show that our methodology can achieve up to 71.45% in power savings for an average

error of 1.47%, and up to 70.81% in power savings for and average error of 3.08%, for the

approximate multiplier and the approximate divider, respectively. Second, using Boolean

matrix factorization (BMF), we devise an approximate synthesis methodology, where any

ix



circuit can be reduced to an approximate variant in an automated fashion. We devise a

BMF algorithm to give more weight to approximations on higher bit indices compared to

their least significant counterparts. We evaluate our proposed methodology on six differ-

ent circuits and show benefits of up to 47.55% in power reduction for a tight error bound

of 5%. Next, and to showcase the applicability of approximate computing techniques to

complex computing pipelines, we explore such techniques for case studies from two dif-

ferent application domains. Here, we first explore the energy-accuracy trade-offs while

using different bit precisions and quantization techniques for deep learning applications.

We devise training time techniques to minimize the accuracy degradation as a result of

lower precisions. We also propose the utilization of augmented network topologies to

claim back the accuracy degradation while still offering significant hardware benefits. As

one data point, and for CIFAR-10 dataset, we report energy savings of up to 36% for an

augmented network based on powers-of-two weight, and while maintaining classification

accuracy. Finally, we evaluate the accuracy-performance frontiers of a biometric security

system (more specifically an iris recognition system) by identifying approximation knobs

throughout the processing pipeline and exploring the resulting design space. We deploy

an end-to-end system, where images are captured using an infrared camera and processed

through a HW/SW co-designed pipeline implemented on an FPGA board. Our introduced

approximations result in 48× speedup in runtime compared on an already hardware accel-

erated design while maintaining industry standard levels of accuracy.
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Chapter 1

Introduction

1.1 Problem Characterization

Historically, with the advance of fabrication technology, more and more computational

power has been available for the same hardware real estate. This trend based on the scal-

ing in the fabrication technology size, enables larger numbers of computation elements

for the same chip size. Established in 1965 by Gordon Moore, Moore’s law states that

the number of transistors in an integrated circuit is roughly doubled every 18 month [61].

In addition, in the performance and power efficiency domain, as the transistors decrease

in size, the switching speed and power consumption both improve. Moore’s law was

derived by empirical data and while slowing in down in the recent years, has stayed

relevant for decades. In 1974, Robert Dennard, complemented Moore’s law for metal-

oxide-semiconductor field-effect transistors (MOSFETs), by stating that along with the

scaling in transistor size, both voltage and current scale proportionately to the length of

the transistors, while power density stayed roughly constant [18]. Dennard scaling offered
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the manufacturers the possibility of increasing the clock frequency significantly, therefore

achieving significant performance improvements for similar power budgets.

While these laws have provided a roadmap for the semiconductor industry for decades,

in recent years, the scaling of the fabrication technology has been less than ideal. While

the number of transistors are still increasing in similar chip footprints, the rate of scaling

has slowed down to doubling approximately every 2.5 to 3 years [13]. In addition, un-

foreseen difficulties with deep submicron process nodes, such as increased leakage power

and thermal runaway issues, have put a halt on the Dennard scaling. These issues have

limited the increase in the clock frequency effectively curbing the single core advances

and pushing the manufacturers toward multicore architectures. Since 2006, multicore and

manycore architectures have provided performance improvements by exploiting the par-

allelism in applications and multiple contexts [20]. Lack of parallelism as well as thermal

considerations lingering from the single core era, however, have once again slowed the

computing performance gain initially offered by multicore.

In addition to power density and thermal issues, which has come to be known as the

power wall, the widespread utilization of battery operated devices has created yet another

motive for low power high efficiency designs. The significance of low-power design in

such embedded systems is especially boldened by the reality that power consumption di-

rectly maps to battery life and, therefore, to longer operation time between charges [72].

As the multicore paradigm, due to scalability, appears to be a temporary solution for the

power issues, and with higher efficiency requirement due to broad adoption of hand held

devices, a shift toward dark silicon, system on chip (SoC), and emerging low-power de-

sign paradigms has been the hardware design community’s response to the aforementioned

thermal and power issues.

One such emerging energy-efficient design paradigm is approximate computing. Ap-
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proximate computing proposes to intentionally introduce small and insignificant amounts

of inaccuracies into the computational pipeline, in favor of significant reductions in design

area, design complexity, power consumption, or critical path delay. Such approximations

are only appealing if deployed in applications where the introduction of inaccuracies in

the result will not significantly degrade the quality of service (QoS). Many applications,

by their own nature, are prime candidate for such techniques. Examples of error tolerant

applications include applications with results interpreted by human perception, lacking a

global best result, using noisy input, or with redundancies in the input data [29]. Further-

more, with the exponential growth in machine learning and data oriented applications, the

number of applications amenable to approximate computing has only increased. The ben-

efits of approximate computing also stem from the fact that they offer benefits in many dif-

ferent aspects of the hardware design simultaneously. Approximate computing techniques

have been proposed and utilized in different components of the design stack ranging from

application level [73, 21, 87], down to architectural [26, 42, 44, 54, 65, 91] and device

level [12, 24, 46, 67].

One specific aspect of architectural approximate computing which has attracted a lot

of attention is approximate arithmetic design [27, 42, 45, 52, 54, 62]. The promise of

approximate arithmetic is that by design of efficient and flexible approximate arithmetic

(such as adders, multipliers and dividers), one can readily utilize these designs as building

blocks for many different applications from different domains or as part of an approxi-

mate ALU in a CPU or GPU. As an example, an approximate multiplier can simply be

plugged in, instead of the the accurate counterpart, in many different applications ranging

from communication applications, digital signal processing (DSP) applications, computer

vision applications, or machine learning applications without requiring any tailoring for

each individual application.

Another direction to approximate logic design is approximate synthesis for arbitrary
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logic circuits. Here, the research has focused on developing methodologies that can

approximate any input circuit into an approximate variant and in an automated fash-

ion [65, 88, 91]. Such methodologies do not require circuit specific knowledge and offer

the flexibility of operating on different circuits with different characteristics.

Finally, while approximate computing subcircuits have shown promising benefits with

small reductions in result accuracy, end-to-end evaluation of approximate components in

a complete pipeline can provide great insights into the applicability of such approximate

computing techniques in real world applications. Such end-to-end systems have been con-

sidered and evaluated previously [69] and show immense potential for reducing the design

footprint of different hardware pipelines albeit at the cost of small accuracy degradations.

Next, a summary of the contributions made in this thesis is provided.

1.2 Major Contributions of This Thesis

In this section, we summarize our contributions, as they relate to different components of

approximate computing and low-power design paradigm.

1. A Novel Dynamic Methodology for Design of Approximate Multipliers and Di-

viders: In this thesis, in Chapter 3, we propose a novel truncation-based method-

ology for design of approximate arithmetic logic. We exploit the fact that in binary

operations not all bits of a input operand are equally significant. Therefore, we pro-

posed to devise steering logic that can detect and forward the most important bits of

each operand to a smaller, hence less expensive, accurate arithmetic core. We design

our hardware to use leading one detectors resulting in a dynamic approach, where

our approximate methodology can always capture the most relevant components of
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each input operand. Further, to improve the result accuracy, for each arithmetic op-

eration we ensure a zero-centered error distribution, therefore enabling the errors to

cancel each other out instead of accumulate in typical multiply-accumulate opera-

tions. In addition, we explore the degree of dynamic truncation as a design time

approximation parameter offering a wide range of trade-offs between accuracy and

design metrics. We fully implement and evaluate our approach for two of the most

computationally expensive arithmetic operations, namely multiplication and divi-

sion. Extensive experiments are performed and the approximate arithmetic logic is

evaluated in terms of both accuracy and design metrics such as design area, total

power consumption, and critical path delay. We showcase designs with power sav-

ings of up to 71.45% for an average absolute error of 1.47%, for the case of the

approximate multiplier, and power savings of up to 70.81% for an average absolute

error of 3.08% for the approximate divider. Finally, to show the applicability of such

methodology in real world applications, we evaluate each approximate operation on

three different benchmarks from domains of signal processing, computer vision, and

machine learning. Applications results highlight significant benefits while introduc-

ing negligible accuracy degradations.

2. Automated Boolean Level Approximate Logic Synthesis: Non-negative matrix

factorization (NNMF) is an algorithm where an input matrix (M) is factorized into

two matrices (B and C) with smaller dimensions, where all elements of the three

matrices are non-negative and such that M ≈ BC. Boolean matrix factorization

(BMF), as a special case of NNMF, further restricts the elements to be of Boolean

representation, allowing only ‘1’s and ‘0’s. A wide range of applications in domains

of language processing, and data mining, to name a few, utilize BMF algorithms

where a low-dimensional representation of the data is required. In this case, B

encodes the available classes, or groups, while each element of C represents the

existence (or non-existence) of the corresponding element in an specific input. In
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this thesis, in Chapter 4, we propose to utilize BMF to reduce a complex arbitrary

circuit into an approximate variant in an automated fashion. Our technique maps

the input circuit to its corresponding truth table and feeds the truth table to the BMF

algorithm, effectively breaking the input circuit into a cascade of a compressor and

a decompressor circuit. Our methodology benefits from significant flexibility in

accuracy-design metric trade-offs as the latent dimension (i.e. the factorization de-

gree) behaves as an approximation knob, enabling different trade-offs. To navigate

the complex design space of different approximation degrees, we devise a simple

heuristic where the best combination of approximation degrees for different circuit

components are found in an automated fashion. We implement and evaluate our

methodology on a broad range of combinational logic and show significant benefits

of up to 47.55% in total power consumption for an average error bound of 5%.

3. Application Case Study 1: Deep neural networks produce the state of the art results

in many complicated machine learning and computer vision applications. While

heavily reliant on simple arithmetic, neural networks show the characteristics of an

error tolerant application as, in many cases, they operate on noisy inputs and have

an abundance of data redundancy in the intermediate layers. As a case study of

the approximate computing techniques in complex computing systems, we investi-

gate the design space of the deep learning applications using different bit precision

and quantization schemes. We evaluate a comprehensive range of precisions, from

floating point arithmetic, to multiple fixed-point, powers-of-two quantization, and

binary and trinary network architectures. For each design point, we evaluate the

design on three different network architectures and datasets, namely LeNet [47] on

MNIST, ConvNet [77] on SVHN, and ALEXNet [41] on CIFAR-10. In addition,

we investigate training time techniques for reducing the accuracy degradation as a

result of lower precision. Finally, to show the benefits achievable using lower preci-

sion, we also propose use of augmented networks, i.e. slightly larger networks, with
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lower precision delivering significant energy savings while increasing the accuracy

qualities back to full precision levels. Our precision exploration along with the aug-

mented network methodology, in the case of CIFAR-10, offers energy savings of up

to 36% while maintaining classification accuracy.

4. Application Case Study 2: As another case study, we explore the accuracy en-

ergy trade-offs offered by approximate computing for a biometric security system.

Biometric authentication applications have been present in daily life of millions of

people where finger prints, iris signatures, and facial recognition systems have been

intensively used in mobile phones, as well as many other security and identifica-

tion applications. All such biometric identification applications rely on the scarcity

of false positive (in the range of one in millions) while false negatives are not as

catastrophic. Among the existing biometric methodologies, one of the most secure

is iris recognition; where in a typical system false positive rate is a mere one in 1.5

billion. Here, we introduce and explore a wide range of approximation knobs in the

computation pipeline, where signature accuracy can effectively be traded for energy

and runtime benefits. We explore our methodologies in an end-to-end system where

the images captured from an infrared camera sensor are passed through a pipeline

with three different and computationally heavy processing components. In addition,

for an effective design space exploration methodology we devise an algorithm based

on reinforcement learning. We show runtime benefits of up to 48× due to the in-

troduction of the approximations, while adhering to the industry standard levels of

accuracy.

The remainder of this thesis is organized as follows. Chapter 2 briefly presents the

required background in digital circuit low-power design, provides an overview of cur-

rent low-power design techniques, and presents an introducing to approximate computing.

Here, we also summarize some of the previous work in approximate computing as they
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relate to the work in this thesis. Next, Chapter 3 presents our methodology for approxi-

mate arithmetic design specifically for the case of approximate multipliers and dividers. In

Chapter 4, we provide an in-depth description of our Boolean matrix factorization (BMF)

based approximate logic synthesis along with our results. Two detailed case studies for

exploring the energy-accuracy trade-offs of neural networks and biometric iris recognition

systems are described, in detail, in Chapters 5 and 6, respectively. For each case study, we

also provide a brief background for the computational pipeline. Finally, in Chapter 7, we

highlight the main finding of these thesis and suggest new directions for research exten-

sions to this work.
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Chapter 2

Background

2.1 Low-Power Hardware Design

Power consumption of a large-scale digital chip can be divided into two components,

namely dynamic power and static power. Dynamic power is the power consumed in a chip

due to its switching activity in the transistors and interconnects. While dynamic power

can further be divided into two contributing factor, namely logic activity power a short

circuit power, here we neglect the short circuit power as it is overwhelmingly dominated

by the logic activity power. Dynamic power can depend on intrinsic characteristics of the

circuit, the runtime activity, or the operation circumstances. Formally, dynamic power is

formulated as

Pdynamic =
1

2
αCV 2

ddf, (2.1)
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where α denotes the switching activity, C denotes the effective switching capacitance of

the circuit, Vdd denotes the supply voltage, and f denotes the clocking frequency. As

evident from the equation, one can reduce the dynamic power by reducing either of the

switching activity, effective capacitance, supply voltage, or clock frequency. Furthermore,

in typical operating conditions, frequency has a linear dependence to supply voltage.

Therefore, in order for the circuit to switch faster, higher supply voltages are required.

As such, supply voltage, Vdd, and the operating frequency, f , are the two main factors in

dynamic power.

The second component in VLSI power is the static power. Static power is the leakage

power that the transistors have even when the circuit does not switch or is not in use. The

leakage power can further be divided to three main components, gate leakage, drain junc-

tion leakage, and sub-threshold leakage, where sub-threshold leakage is the dominating

factor. Leakage power has exponential dependence on threshold voltage and temperature.

The leakage power is given by,

Pstatic = Vdd × Istatic, (2.2)

where Istatic is formulated as,

Istatic = Ise
VGS−Vth
nkT/q

(
1− e

VDS
kT/q

)
. (2.3)

Here, Is is a constant dependent on transistor’s dimensions and the process node, q is

the electrical carrier charge, n denotes the subthreshold slope factor, k denotes the Boltz-

mann constant, T denotes the transistor’s junction temperature, Vth denotes the transistor’s
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threshold voltage, and VGS and VDS denote the gate-source and drain-source voltages, re-

spectively. Therefore, for a given technology node and transistor geometry, static power

can be controlled by modifying the supply voltage, or the operating temperature.

Furthermore, while initially dynamic power overwhelmingly dominated the total power

consumption, with the aggressive scaling in sub-100 nm technology nodes the contribu-

tion of the leakage power has constantly increased, such that controlling subthreshold

current is considered one of the main challenges in MOSFET scaling in future technology

nodes [66]. While many novel approaches have been introduces to reduce the leakage

power (including the introduction of FinFETs), static power is expected to remain a major

contributor to total power consumption necessitating the introducing of new directions for

low-power design.

In low-power design, all available techniques effectively reduce one (or both) of these

components. More specifically, for a given technology and process node, recent tech-

niques aim to reduce one of the main contributing factors, namely capacitance, switch-

ing activity, operation frequency, supply voltage, or operation temperature. As an ex-

ample, dynamic voltage and frequency scaling (DVFS) is a popular technique where the

frequency and the supply voltage of a processor can be altered as needed based on the

workload conditions. Here, as evident from the name, benefits in power can be achieved

by dynamically reducing the voltage and the frequency when the application demands are

not high. Note that DVFS offers benefits for both the static and the dynamic power. Power

gating, as an alternative, suggests the isolation of the logic from the supply voltage rails

when the subcircuit is not in use, effectively eliminating the static power [19]. Similarly,

clock gating provides benefits in dynamic power by gating the clock of the logic to reduce

the switching activity. Finally, multi-threshold designs have also been investigated.

While all these methods can provide significant improvements in energy efficiency,
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power remains the main problem prohibiting more computational power or battery life.

This fact, necessitates the exploration of novel and unexpected techniques to further im-

prove the efficiency of computing systems. One such technique is approximate computing.

Approximate computing has the benefit that it can provide improvement on many differ-

ent aspects of the hardware design including static power, dynamic power, timing, design

area and design complexity. Next, we will provide a detailed discussion of approximate

computing as well as a summary of current techniques.

2.2 Approximate Computing

Approximate computing has emerged as a new paradigm in design of low-power comput-

ing systems, where the underlying application benefits from inherent tolerance to insignif-

icant degrees of error. Approximate computing has been approached from many different

directions and applied on many different layers of the computing stack. On the highest

level, approximations into software programs have been proposed to reduce the runtime

and complexity of applications with error resilience [63, 80]. To this end, techniques such

as loop perforation [78], relaxation of data dependencies [56], and selectively skipping

less important computation [6] have been proposed. Alternatively, Baek. et al. proposed

a technique where computationally expensive functions are replaced with cost efficient

variants [3]. Furthermore, Esmaeilzadeh et al. proposed a methodology in which a code

segment deemed error resilient is transformed into an approximate version implemented

using a neural network trained to mimic the original software [22].

Approximate instruction set architectures (ISA) have also been proposed. In this ap-

proach, generally, a generic processor is designed where a subset of operations can be

mapped to approximate assembly level instructions. An instruction set architecture with
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approximate operation support in proposed by Sampson et al. where the programmer can

provide type annotations [73]. On a similar approach, an ISA that relies on the compiler

to detect operations suitable for approximation is proposed by Esmaeilzadeh et al.. In

this work, a high level microarchitecture supporting dual-voltage is also proposed where

higher voltage is used for accurate operations while a lower voltage is used for approxi-

mate ones [21]. Venkataramani et al. introduced a quality programmable vector processor,

with hardware support managing to translate instruction-level quality requirements into

energy benefits [87].

On lower levels, approximate logic architectures have also been investigated [27, 42,

45, 52, 54, 62]. These methodologies aim at delivering power benefits by reducing the

logic complexity of the design through removing a less prominent portion of the logic.

Therefore, in this approach, the approximation error is added and controlled by construc-

tion. In addition, while in the approximate computing paradigm, these techniques have

mostly focused on reducing power consumption, they commonly also deliver benefits in

design area, critical path delays, and memory footprint.

One major subset of research in this area in approximate arithmetic design. Here, ef-

ficient approximate arithmetic logic, e.g. adders, multipliers, dividers, etc., are designed

where these designs can later serve as the building blocks of more complicated logic cir-

cuits. Many approximate adders have been proposed [5, 26, 34, 39]. Gupta et al. proposed

several approximate adder designs that, by removing some of the logic used in a traditional

mirror adder, achieved improved power, area, and performance [27].

Furthermore, design of approximate multipliers has been investigated intensively [36,

52, 95]. Mahdiani et al. propose a bio-inspired approach, where the addition results within

the multiplier were approximated by using OR gates for the lower part of the inputs [54].

Babic et al. [2] proposed a pipelined log-based approximation where the classical Mitchell
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multiplier [60] is utilized in an iterative approach to improve its accuracy. An error-tolerant

multiplier design is proposed in [45] where the multiplication is divided into accurate

(multiplication based) and inaccurate (non-multiplication based) parts. Liu et al. [52] pro-

posed an approximate multiplier with configurable error recovery using fast approximate

adders for partial product addition stage. Kulkarni et al. proposed an under-designed

2×2 approximate multiplier block to generate partial products, where larger multipliers

are built using the inaccurate block to calculate the partial products which are then added

together to generate the final result [42]. Narayanamoorthy et al. proposed a static trunca-

tion based approach where the higher, middle, or lower portions of the inputs are used to

approximately calculate the result [62].

While the majority of research in approximate arithmetic, due to their higher utiliza-

tion, has been focused on adders and multipliers, other building blocks have also been

investigated. Approximate subtractor cells [9, 8] and approximate dividers [96, 85, 93]

are a few examples.

A different prospective to changing the underlying architectures, is approximate logic

synthesis. In this paradigm, methodologies for automated design of approximate logic

from arbitrary accurate counterparts are investigated [65, 88, 91, 70, 90, 57, 86]. In

SALSA, a systematic approach for approximate circuit synthesis is proposed [88]. The

idea is to create a difference circuit that compares the QoR between the original circuit

and the approximated circuit. The don’t cares of the outputs of the approximate circuit –

which are internal nodes in the difference circuit – with respect to outputs of the differ-

ence circuit can be used to simplify the approximate circuit using regular logic synthesis

techniques. This approach has been extended in ASLAN [70] to model error arising over

multiple cycles. ASLAN also uses a circuit block exploration method that identifies the

impact of approximating the combinational blocks and then uses a gradient-descent ap-

proach to find good approximations for the entire circuit. In SASIMI [90], a technique
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is proposed to identify similar signals, such that their values agree over a large number

of input test cases, and then substitute one for the other, simplifying the logic. A logic

synthesis formulation proposed by Miao et al. uses a two-level logic synthesis approach

that incorporates constraints on error deviation, and then a heuristic is used to solve the

synthesis formulation [57]. Evolutionary techniques have been also explored [86]. Fur-

ther, ABACUS seeks to generate variants of an input high-level Verilog description file

by applying a set of possible transformations, such as bit width truncation, operand sim-

plification and variable-to-constant substitution, to generate a set of mutant approximate

circuit variants [65]. A multi-objective design space exploration technique is used to iden-

tify the best set of approximate variants. Recently, a new technique is proposed to raise the

level of abstraction by synthesizing approximate circuit directly from C descriptions [50].

High-level synthesis in conjunction with approximations on the critical path can yield

additional savings through voltage scaling [64, 50].

From a different prospective, in recent years, design and exploration of approximate

memory subsystems has also been proposed [35]. Sampson et al. proposed a technique

for approximate multi-level cells by reducing the number of programming pulses required

for writing the data [74]. A methodology for construction of quality aware DRAMs using

sub-optimal refresh rates is proposed by Raha et al. [68].

Approximation techniques on circuit level have been also proposed. One of the main

approaches is voltage over-scaling (VOS) where the supply voltage is reduced to below

safe working threshold in an attempt to save power [12, 24, 46, 67]. Inaccuracies are

introduced into the circuit as the lower voltage results in timing violations in the circuit.

While voltage over-scaling offers the benefit of flexibility on using the same hardware

component in accurate or approximate modes, resulting timing errors occur on the most

critical paths of the circuit. In arithmetic logic, these paths usually compute the most

significant bits, therefore, VOS can result in significant and nondeterministic errors.
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While many advances have been made in the approximate computing paradigm, most

of the work evaluate the quality-energy trade-offs of a single module or algorithm in iso-

lation. Optimal benefits in an end-to-end system can only be explored if the approximate

computing techniques utilize all parts of the system pipeline where trade-offs are evaluated

in connection with each other. Recently, Raha et al. proposed a full-system approximate

design using a smart camera system as a case study [69]. In their system, approxima-

tions are introduced using camera resolution scaling, reducing memory refresh rate, and

computation skipping.
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Chapter 3

Dynamic Approximate Arithmetic Logic

3.1 Introduction

We describe our technique for design of low cost, low power, approximate multipliers and

dividers in this chapter. Our technique targets error resilient applications and maintains

desirable features that will facilitate its utilization in a broad range of applications. Our

technique achieves significant savings in design metrics while introducing small amounts

of error. Our work, as presented in this thesis, has previously been published in [31]

and [32]. We summarize our contributions in this chapter as follows.

1. We devise a dynamic methodology where the most important bits of each of the

operands are selected and the arithmetic complexity is reduced significantly by dis-

carding the lower, less significant bits, as well as the leading zeros.

2. For both arithmetic operations, our proposed methodology provides a wide range

of fine-grain trade-offs between accuracy and design metric by introducing a design
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time approximation parameter. This enables the adaptation of the methodology for

specific application requirements.

3. Our methodology utilizes a smaller accurate arithmetic block at its core, therefore it

offers the flexibility to use any arithmetic implementation as necessitated by other

design factors.

4. Our methodology ensures a zero balanced error distribution for approximate arith-

metic, effectively preventing the accumulation of errors when the operation is per-

formed repeatedly. In other words, our approximate design produces both positive

and negative errors providing the opportunity of errors canceling each other out.

The rest of this chapter is organized as follows. In Section 3.2, we describe our

methodology for design of the approximate arithmetic blocks and the intuition behind

our approach. Later, in Section 3.3 we thoroughly evaluate the accuracy and design char-

acteristics of the proposed approximate arithmetic blocks. Here, and for each operation,

we initially, focus on an standalone approximate operator, and then, we report the benefit

in the context of real world applications. Finally, we summarize this chapter’s contribution

in Section 3.4.

3.2 Approximate Arithmetic Methodology

The approximate methodology proposed in this chapter exploits the realization that not all

bits of a number, in our case a binary number, have similar significance. For example in

an 16-bit unsigned number a ‘1’ in most significant bit (MSB) has a value of 215 while a

‘1’ in the least significant bit (LSB) adds a value of 20 or 1. Further, as demonstrated in

the example, this significance grows exponentially as we move to higher index bits. Our
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Figure 3.1: The general methodology proposed in this chapter. Here, each operand is dy-
namically approximated and the computation is performed accurately on the approximate
operands.

methodology proposes to take advantage of this fact and limit the number of bits used for

actual computation. In other words, the approximate methodology selects a subset of bits

most representative of each operand and forwards them to the accurate core arithmetic.

Within such framework, the main question is how to select the best possible bits for

computation. Here, we advocate a dynamic approach where we utilize leading on detectors

(LOD) to zoom in on the most important bits of each operand. More specifically, we

propose to select a chunk of each operand starting from the leading one. Regardless of

input values, such an approach has the benefit that the maximum error can be bounded.

The basic idea of our methodology is demonstrated in Figure 3.1. Here, Â and B̂ represent

approximated operands A and B respectively, while F (·, ·) represents the operation.

On the other hand, in hardware implementation domain, our method proposes to de-

sign an approximate arithmetic building block by reducing a large and expensive arith-

metic operation to some steering logic (responsible for finding and routing the most impor-
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Figure 3.2: The generic schematic of the proposed methodology. ̂F (A,B) represents the
approximate result.

tant bits) and a significantly smaller exact arithmetic (responsible for the actual calculation

of the approximate operands). Such methodology is justified in any arithmetic or combi-

national logic where the overhead of the routing logic is significantly less demanding than

processing the entire operands.

Figure 3.2 shows the generic schematic of such an implementation. The hardware

design is composed of two parts: a steering logic and an arithmetic logic. The steering

logic is responsible for dynamically selecting the right range of the input operands (e.g. ka

and kb bits) and feeding them to the arithmetic logic, and afterwards shifting the calculated

result from the arithmetic core to the right index. Therefore, the steering logic is comprised

of LOD blocks, encoders, multiplexers, and a barrel shifter, while the arithmetic core is

simply an accurate, smaller implementation of the arithmetic operation.

In our implementation, each input operand is first fed to a LOD circuit where the

location of the leading one is identified. The output of the LOD block is an one hot
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encoded number indicating the location of the most significant one. Next, the encoder

components translate the detected locations to binary representations. These numbers are

then used to select the relevant bits from each operand using multiplexers as well as to

calculate the number of shifts required. The selected bits for each operand are then fed

to the accurate computation core to generate the partial result. One key benefit of our

architecture is that it does not restrict the designer from using their own preferred design

as the smaller core arithmetic. Finally, a barrel shifter shifts the output of the arithmetic

core to the correct index based on the location of the leading ones. For each operand, if the

input operand is small enough to be represented with ka(or kb) bit without approximation,

the steering logic simply forwards the input exactly as is to the core arithmetic.

To further improve the accuracy, one can ensure an unbiased error distribution. Unbi-

ased here means that the error distribution is centered around ‘0’, generating both negative

and positive errors. The main benefit of an unbiased approximate logic is that some errors

can potentially cancel each other out rather than accumulate. For both our approximate

designs and based on the operation, we slightly adjust our bit selection scheme to maintain

an unbiased error distribution. As the unbiasing method is operation dependent, we will

further discuss our approach later on.

Furthermore, another important benefit of this methodology is that as the input size

grows, the dynamic nature of our approach, while maintaining accuracy, leads to more

design savings. This results in an approximate methodology that is highly scalable to

higher input widths. In the proposed design, and for the operations considered, while the

complexity of the steering logic grows as a factor of the input size, to maintain accuracy,

the core arithmetic does not need to grow. Therefore, as we move to higher input widths,

within the same accuracy bounds, the power and area benefits only increase. Table 3.1

summarizes the relationship between the steering and the arithmetic logic area and the

size of the input using O(·) notation for the proposed design. In Section 6.4.2 we will
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Table 3.1: Area growth as a function of n and k for the proposed designs compared against
accurate designs.

Multiplier Steering Arithmetic k
Logic Logic

Accurate Arithmetic (n) - O(n2) -
Poprosed Methodology(k,n) O(n log n) O(k2) k ∼ Const.

provide experimental data supporting our argument.

As previously discussed, the arithmetic operation being approximated needs to be

complex enough for savings in the core arithmetic to justify the steering logic. There-

fore, a dynamic approach, as discussed in this chapter, is not suitable for simpler logic

such as adders and subtractors. Multiplier and dividers on the other hand, offer signif-

icant enough benefits to justify our methodology. While the general approach for both

approximate multiplier and the approximate divider is as previously described, for each

implementation we introduce slight modifications to the algorithm to improve the results

based on the characteristics of the operations. Next, we will discuss specifics of each

arithmetic operation, including the bit selection and unbiasing.

3.2.1 Approximate Multiplier Design

In this subsection, we provide the details of the proposed method when deployed as an

approximate multiplier. In this operation, assuming each operand has n bits, our design

uses two Leading One Detector (LOD) circuit blocks to dynamically locate the most sig-

nificant ‘1’ in each of the two operands as illustrated in Figure 3.3. For each operand, the

location of the most significant ‘1’ is then used to select the following k − 2 consecutive

number of bits based on the required accuracy. Here, k is a designer-defined value which

specifies the bandwidth used in the core accurate multiplier.
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Figure 3.3: The input operand approximation for the proposed approximate multiplication.
The red ‘1’s show the unbiasing bits and Â and B̂ represent the approximated operands.

As mentioned before, in the case of the approximate multiplier and to improve the er-

ror characteristics, for each operand we deploy an unbiasing bit to ensure a zero-centered

(balanced) error distribution. In order to do so we modify our bit selection scheme slightly

to approximate the value of the truncated bits by their expected value. Thus, we unbias

each approximate operand by reducing the lower bits to a ‘1’ at the most significant lower

bits index (shown in red in the figure) and ‘0’s for the rest. Finally, to generate the ap-

proximate operands, the tailing ‘0’s are truncated resulting in k-bit approximate operands.

These k-bit operands are then forwarded to the inputs of a k× k accurate multiplier. Note

that as a multiplier has commutative property and the operands are treated equally, in our

approach we approximated them similarly as well.

Figure 3.4 illustrates a numerical example of the approximate multiplication with in-

put size 16 and k = 6. In this figure, bold numbers represent the selected bits that will be

routed to the arithmetic logic as they are while the red bits are used in the unbiasing pro-

cess. In this example, the unbiasing results in significant improvements in accuracy at no

overhead. Using the unbiasing bit, the relative error is 0.27%, while an approximate mul-

tiplier with the same size core multiplier without the unbinding bit (therefore approximate
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𝐴: 000𝟏, 𝟎𝟏𝟏𝟏, 0100,1101

𝐵: 0000,000𝟏, 𝟎𝟏𝟎𝟏, 1010

መ𝐴: 10,1111

𝐵: 10,1011

መ𝐴 ∗ 𝐵: 0111,1110,0101

𝐴∗𝐵 ∶ 0000,0000,0001,1111,1001,0100,0000,0000

𝐴 ∗ 𝐵 ∶ 0000,0000,0001,1111,0111,1110,0001,0010

𝐼𝑛𝑝𝑢𝑡 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝐶𝑜𝑟𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑅𝑒𝑠𝑢𝑙𝑡

Figure 3.4: A numerical example demonstrating the operation of the approximate multi-
plier with a relative error of 0.27%. The unbiasing is shown in red, while the selected bits
are shown in bold.

the lower bits with zero) has a 1.86% relative error.

3.2.2 Approximate Divider Design

In this subsection, we describe, in more detail, the workings of our proposed approximate

divider. In order to be consistent with literature, we maintain a 2/1 ratio between the

dividend and the divisor. Therefore, in our divider design, we represent the dividend

with n bits while representing the divisor with n/2 bits. While this ratio is kept constant

throughout this chapter, the proposed approximate methodology can be readily used to

implement dividers with any random input widths without restriction.

As in the case of approximate multiplier, for designing approximate dividers LODs

are utilized to locate the indices of the leading ones and to select the most important bits

of each operand accordingly. In the case of the divider, however, multiplexers select k bits

and k/2 bits from the dividend and the divisor respectively. In the case of approximate

divider, however, in contrast to the approximate multiplier underestimating both operands

can result in both underestimation and overestimation of the result. Therefore simple

truncation of lower bits, leads to an unbiased error distribution. Therefore, we opt to
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Figure 3.5: The input operand approximation for the proposed approximate divider. The
lower bits are simply truncated. Â and B̂ represent the approximated operands.

𝐴: 000𝟏, 𝟎𝟏𝟏𝟏, 𝟎𝟏𝟎0,1101

𝐵: 00𝟏𝟏, 𝟎𝟎10

መ𝐴: 1011,1010

𝐵: 1100

መ𝐴 ÷ 𝐵: 1111

𝐴÷𝐵 ∶ 0111,1000

𝐴 ÷ 𝐵 ∶ 0111,0111

𝐼𝑛𝑝𝑢𝑡 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝐶𝑜𝑟𝑒 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑅𝑒𝑠𝑢𝑙𝑡

Figure 3.6: A numerical example demonstrating the operation of the approximate divider
with a relative error of -0.84%. The truncated bits are shown in red, while the selected bits
are shown in bold.

use this scheme as it allows for one more operand bit to be forward to the accurate core.

Figure 3.5 shows the divider steering logic in action.

Figure 3.6 illustrates a numeric example demonstrating the operation of the proposed

approximate divider with input size 16/8 and k = 8. Here, bold numbers represent the

selected bits that will be routed to the arithmetic logic as they are while the red bits are

simply truncated. In this example, the approximate result has a relative error of -0.84%.
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3.2.3 Support for Negative Arithmetic

While in this chapter we focus on unsigned operations, our proposed approximate design

can support signed operation with a straight-forward extension. For this purpose, pre-

processing logic can be added in order to convert the signed operands to unsigned inputs

using twos complement before forwarding them to an unsigned approximate arithmetic

block. Furthermore, in the applications with enough error tolerance, the two’s comple-

ment method can be replaced by simple bit inversion to skip the long carry chain of the

needed addition by ‘1’ and improve the delay. The sign signal for the result is then cal-

culated separately and the output will be negated if necessary. These scheme adds small

area and power overheads and therefore should only be deployed if necessitated by the

application.

3.3 Experimental Results

In this section, we thoroughly evaluate our proposed methodology on both the approxi-

mate multiplier and the approximate divider. For our empirical evaluations we consider

both computational accuracy as well as hardware design metrics such as design area and

power consumption. All designs are coded in Verilog and synthesized using an industry

strength 65-nm standard cell library in the typical operation corner. We use Synopsys De-

sign Compiler for synthesis and MentorGraphics Modelsim for accuracy simulations. For

both arithmetic, we evaluate the design both as an standalone hardware block and as an

arithmetic block integrated within multiple applications from different domains.

For the standalone results, two sets of randomly and uniformly generated input vectors

are used to evaluate computational accuracy results. The accuracy performance is reported
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in respect to an accurate arithmetic counterpart. For reporting error on standalone appli-

cation, we define maximum error distance as,

Max ED =Maxi∈I(|App(A,B)− Acc(A,B)|) (3.1)

where App(A,B) represents the approximate result, Acc(A,B) represents the accurate

result, and I denotes the testset. We define average absolute error as,

Average Absolute Error =
1

Size(I)

∑
i∈I

|App(A,B)− Acc(A,B)|
Acc(A,B)

(3.2)

and error bias as,

Error Bias =
1

Size(I)

∑
i∈I

App(A,B)− Acc(A,B)

Acc(A,B)
. (3.3)

We also report the standard deviation for each design. For application analysis, on

the other hand, we use application specific quality metrics. Next, we report the results

obtained for each approximate design first as an standalone unit, and later as part of a

complex datapath.
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Table 3.2: Accuracy results for standalone approximate multiplier using different k (n =
16).

range
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Max. Error % 56.25 26.56 12.86 6.31 3.1 1.54
Average Abs. Error % 11.90 5.89 2.94 1.47 0.73 0.37

Error Bias % 2.08 0.53 -0.14 -0.04 0.01 0.01
Standard Deviation % 14.75 7.26 3.61 1.80 0.90 0.45

3.3.1 The Approximate Multiplier

Standalone Multiplier Results

As mentioned in Section 3.2, the proposed methodology offers a range of trade-offs be-

tween accuracy and design benefits by changing the number of bits forwarded to the ac-

curate core (k). Therefore, k is a design time approximation knob which should be deter-

mined based on the application requirements. Furthermore, theoretically, the number of

bits selected can vary from 1 to n, therefore offering a wide range of trade-offs to choose

from.

Here, as a first set of experiments we fix the value of n (n = 16) and evaluate the

performance of the multiplier as a factor of k. The results are summarized in Table 3.2.

Here, we provide maximum error, average absolute error, error bias, and standard devia-

tion. Note that, here, to provide a better sense of significance the maximum error distance

is normalized by the accurate value. As expected, with increase in the value of k all error

metrics decrease. Furthermore, the error follows an interesting trend where the errors are

roughly halved for each bit increase in the value of k.

Figure 3.7 shows the design savings offered by approximation methodology for the

same experiment. Here, we show the total power (including both static power and dynamic
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Figure 3.7: Total power and area savings as a function of k for the standalone approximate
multiplier. (n = 16)

power), and the total design area. Again, as expected, the design area and power consump-

tion increase as a factor of k. As demonstrated, significant savings can be achieved while

introducing insignificant amounts of error. As an example, with an average absolute error

of 1.47%, k = 6 offers up to 61% in area savings and up to 71% in power savings.

Figure 3.8 shows the fitted Gaussian error distribution of the proposed multiplier,with

n = 16, and for different values of k. As shown in the plot, our approximate multiplier

shows a Gaussian like error distribution, resulting from the unbiasing bit. Therefore, our

unbiased error distribution will compensate for some of the error when utilized within real

applications as will be demonstrated in next section.

Next, we consider the impact of the input size on the performance of the approximate

multiplier. Table 3.3 summarizes the accuracy results for three different cases, namely

n = 16, n = 24, and n = 32. In these experiments we chose k = 6 to demonstrate

the behavior of the approximate design solely as a factor of n. It can be seen from the

table that the dynamic nature of our approach prevents the error from degrading as the

input size is increased. As a result, when moving to larger multipliers, for the same error
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Figure 3.8: The fitted error distributions for the proposed multiplier for different k (n =
16).

Table 3.3: Standalone approximate multiplier accuracy for different input size (k = 6).

multiplier size
n = 16 n = 24 n = 32

Max. Error % 6.31 6.31 6.31
Average Abs. Error % 1.466 1.467 1.467

Error Bias % -0.043 -0.033 -0.033
Standard Deviation % 1.803 1.803 1.803

characteristics the design benefits only increase rendering our approach highly scalable.

Figure 3.9 shows the benefits achievable in hardware metrics while changing the value of

n.

Table 3.4 highlights the significance of the design parameter benefits obtained while

introducing small errors into the results. In this table we also include the total power, de-

sign area, and the critical path delay values for both the accurate and approximate designs.

Here, for k = 6 savings of more that 70% in area and power are achieved with a mere

1.47% average absolute error. We also report the critical path delay of both accurate and

approximate multipliers and show a speedup of 1.89×.
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Figure 3.9: Area and power savings as a function of input size for the standalone approxi-
mate multiplier (k=6).

Table 3.4: Design Comparison of the proposed multiplier to other published work.

Multiplier Max. Average Error Area Power Area Power Critical
Design ED Abs. Error Bias (um2) (mW ) Savings Savings Path (ns)

Accurate - - - 2165 1.04 - - 3.61
Approximate 6.31% 1.47% -0.04% 649.4 0.296 70% 71.45% 1.91

Multiplier Application Results

As demonstrated in the previous subsection, the proposed methodology offers significant

benefits as an standalone multiplier. The degree of benefits and errors, however, can sig-

nificantly differ when the multiplier is utilized within an application. Furthermore, in

approximate arithmetic with a biased distribution, errors can accumulate further degrad-

ing the application QoR. In this section, we evaluate our approximate divider within ap-

plications. We will also show how the introduction of the unbiasing ‘1’ can eliminate

accumulating errors and therefore improve the accuracy performance of the multiplier.

We evaluate the proposed multiplier using three applications from different domains.

Our chosen applications are image filtering and JPEG compression from image processing
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Gaussian filtering results for different values of k. (a) Input image; (b)
Filtered with accurate multiplier; (c) k = 3, PSNR = 34.58 dB; (d) k = 4, PSNR =
34.39 dB; (e) k = 5, PSNR = 42.36 dB; (f) k = 6, PSNR = 54.57 dB.

domain and a perceptron classifier from the data classification domain. As before, we use

Verilog to implement the applications and DC compiler for synthesis. For accuracy results,

we model the applications and the multipliers in MATLAB using fixed point simulations.

As our first application, an image is convolved by a Gaussian-based smoothing kernel.

We use a 7 × 7 kernel and use 16-bit fixed point arithmetic in the processing pipeline.

The input image is a 200×200 greyscale image with 16-bit pixels and the approximate

multiplier is used to replace all the multipliers in the convolution accelerator.

We visualize the approximate output resulting from different values of k. Figure 3.10

shows input image, the accurate result, and the approximate results from k = 3 to k = 6.

As demonstrated, using different values for k, our methodology enables a wide range

of quality energy trade-offs. Here, the accuracy metric is computed in reference to the
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(a) (b)

Figure 3.11: JPEG compression algorithm. (a) Compressed using accurate multiplier,
PSNR = 26.17dB; (b) Compressed using k = 6, PSNR = 26.03dB.

accurate output.

We also utilize our approximate multiplier in a JPEG compression pipeline. Fig-

ure 3.11 compares, visually, the result of the proposed approximated design, with k = 6, to

an accurate multiplier on a test image when using 20 coefficients with a 0.53% degradation

in PSNR. As demonstrated in the figure, the quality reduction is barely noticeable.

Finally, we evaluate the performance of the proposed approximate multiplier when

utilized within a perceptron classifier. We use a simple classification task where 1000

two-dimensional point from classes {-1,1} are classified. The error rate (ER) is defined as

the percentage of mismatch between classification output and the ground truth. The results

are shown in Figure 3.12. In reference to the accurate multiplier, the proposed approximate

design fails to classify four points (out of 1000) correctly while excelling in classifying

three other points (out of 1000). The ER for the accurate and approximate multipliers are

15.0% and 15.1% respectively. As before, we use k = 6 for the approximate multiplier.

Table 3.5 summarizes the design area and power consumption of each application

when using both accurate multipliers and approximate multipliers proposed in this chapter.

Here, we also report the area and power benefits achieved in reference to the accurate
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Figure 3.12: Classification Application. (a) The input data set of classes -1,1. (red=1);
(b) The outputs of accurate and approximate multipliers. (dots:matching classification,
crosses:mismatch. red:Additional detection, black:False alarm.)

Table 3.5: Design area and power savings for application implementations.

Application Accurate Design Approximate Design Savings
area comb. area comb. area power

(um2) power (um2) power (%) (%)
(mW) (mW)

Image Filtering 253982 15.55 186964 6.48 26.4 58.3
JPEG Compression 1862116 14.11 1357863 10.97 27.1 22.3

Perceptron Classifier 25022 2.24 19786 1.00 20.9 55.3

design. Note that we only report the total power for the combinational logic and the

memory units are excluded from the analysis. Based on the application requirements we

use 16×16, 32×32, and 16×32 input widths for image filtering, JPEG compression and

perceptron classifier respectively. As expected, the achieved benefits strongly depend on

the proportion of the total design dedicated to multipliers. As a result, power savings

here range from 22%, in the case of JPEG compression algorithm, to over 50% for image

filtering and the perceptron classifier.
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Table 3.6: Accuracy results for the standalone divider for different values of k (n = 16).

range
k = 4 k = 6 k = 8 k = 10 k = 12

Max. ED 64 44 26 13 6
Average Abs. Error % 13.57 6.37 3.08 1.42 0.59

Error Bias % -1.78 -1.49 -0.93 -0.48 -0.23
Standard Deviation % 17.16 8.55 4.60 2.56 1.50

3.3.2 The Approximate Divider Results

Standalone Divider Results

In this Subsection, we evaluate the accuracy, power consumption, and design area charac-

teristics of our approximate divider and compare these characteristics against those of an

accurate divider. As before, first, in this subsection, we evaluate the approximate divider

as an standalone divider design and report its behavior as a factor of k and n.

As discussed in Section 3.2.2, our divider is highly configurable. However, in the case

of the divider, and as to maintain the 2/1 ratio, k can range from 2 to n while assuming

even numbers. As it was the case for the multiplier experiments, we first examine the

impact of k on the divider performance. For this experiment, we fix n to n = 16. Table 3.6

summarizes the accuracy results with respect to the accurate design and for values of k = 4

to k = 12. As one would expect, the accuracy improves for all the evaluated accuracy

metrics as we move to higher values of k.

Figure 3.13 shows the total power and design area savings offered for our approximate

divider for different k values and in respect to an accurate divider. As expected a wide

range of trade-offs are offered ranging from 29% to 90% in power savings with average

absolute errors of 0.59% to 13%, respectively.
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Figure 3.13: Area & power savings as a function of k.

Furthermore, we plot the error distance and the relative error distributions for a divider

with n = 16 and k = 8. Figures 3.14(a) and 3.14(b) show the empirical error distribu-

tions. As illustrated in the figures, the biggest portion of the results are close to 0 in both

distributions such that more than 99.5% of the relative error are within 15% error bound.

The results in Figure 3.14(a) also show that the relative error is rather balanced around 0

resulting in lower error rates in applications where results of different divide operations

are added together to generate the final result.

Next, we evaluate the performance of the approximate divider on different input sizes

(n). We consider three input sizes, 16/8, 24/12, and 32/16. The accuracy results are

summarized in Table 3.7, and the design benefits are plotted in Figure 3.15. These results

further support the benefits of our dynamic approach where the benefits only increase for

higher divider widths while the errors stay within the same bounds.

Table 3.8 summarizes the accuracy performance, total power, design area, and the

critical path delay values for both the accurate and approximate dividers. As an example,

for k = 8, with 3.08% average absolute error, our proposed methodology can achieve
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Figure 3.14: The error distributions, evaluated as a standalone divider.

Table 3.7: Accuracy for the standalone divider for different input sizes (k = 8).

divider size
n = 16 n = 24 n = 32

Max ED 26 420 6772
Average Abs. Error % 3.03 3.09 3.09

Error Bias % -0.97 -0.84 -0.84
Standard Deviation % 4.6 3.84 3.77

savings of more that 41% and 70% in design area and total power, respectively. The

critical path delay is also improved by 1.77× compared to an accurate divider.

Table 3.8: Design Comparison of the proposed divider to other published work.

Divider Max. Average Error Area Power Area Power Critical
Design ED Abs. Error Bias (um2) (mW ) Savings Savings Path (ns)

Accurate - - - 1354.32 90.58 - - 8.39
Approximate 26 3.08 -0.93 787.58 26.44 41.85 70.81 4.75
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Figure 3.15: Area & power savings as a function of n.

Divider Application Results

In this subsection, we deploy the approximate divider based on our proposed methodology

within three applications from the image processing domain. The evaluated applications

are image change detection, JPEG compression and foreground extraction. We chose

these applications as they have inherent tolerance to error and utilize division as part of

their computational pipeline.

In change detection, two input images are compared and the output is an image of

similar size highlighting the coordinates of changes. In a basic implementation of change

detection, pixels of one images are divide by the respective pixels of the other image

after pre-processing. A threshold is then used to classify each pixel to “changed” or “not-

changed”. We use images from a change detection dataset publicly available [92].

The results are visualized in Figure 3.16. For both sample sets, Figures 3.16.a and

Figures 3.16.b show the input images, while Figures 3.16.c and Figures 3.16.d show the

results for accurately and approximately (k = 8) computed results. As shown, the dif-
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a. Input Image 1 b. Input Image 2 c. Accurate Output d. Approximate Output

a. Input Image 1 b. Input Image 2 c. Accurate Output d. Approximate Output

Figure 3.16: Change detection results for two sets of input images. (a) Input image 1;
(b) Input image 2; (c) Detected using accurate divider; (d) Detected using approximate di-
vider. PSNRs of 25.78 dB and 26.76 dB for driveway and highway input sets, respectively.

ference in the output image is not noticeable with PSNRs of 25.78 dB and 26.76 dB for

driveway and highway input sets in reference to the accurately computed output image.

For our second application, we evaluate a JPEG compression algorithm. The proposed

approximate divider replaces the accurate dividers used in the quantization step. More

specifically, the output of the discrete cosine transform (DCT) is mapped to 16-bits while

the quantization divisor is mapped to 8-bits. Figure 3.17 shows the JPEG output using

(a) (b)

Figure 3.17: JPEG compression using accurate and approximate dividers. (a) Com-
pressed image using accurate divider; (b) Compressed image using Approximate divider.
PSNR = 24.82 dB.
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(a) Input Image (b) Estimated Background

(c) Accurate Output (d) Approximate Output

Figure 3.18: Foreground extraction using accurate and approximate dividers. (a) Input
image; (b) Estimated background image; (c) Enhanced image using accurate divider; (d)
Enhanced image using approximate divider. PSNR = 23.96 dB.

k = 8 for the approximate divider module. The similarity of the output images again

highlights the sufficiency of the quality of service.

Finally, we evaluate our divider when utilized in a foreground extraction algorithm.

Foreground extraction is commonly used as a pre-processing step for images with uneven

illumination. In this application the input image is divided by an estimated background

image effectively removing the background. The input images as well as the accurate

and approximate (k = 8) results are showcased in Figure 3.18. Again, as observed, the

approximate divider generates satisfactory results when compared to the accurate output.

Finally, the hardware metrics of all the applications for both the accurate and approxi-

mate counterparts are summarized in Table 3.9. Compared to the implementations utiliz-

ing accurate dividers, the designs with approximate counterparts offer significant savings

in both design area and power consumption, ranging from 14% to 75%.
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Table 3.9: Design area and power savings for application implementations.

Application Accurate Design Approximate Design Savings
area comb. area comb. area power

(um2) power (um2) power (%) (%)
(mW) (mW)

Change Detection 17361 1.69 10328 0.41 40.51 75.86
JPEG Compression 1291474 9.10 1102510 6.44 14.63 29.23

Foreground Extraction 9193 0.63 7511 0.23 18.30 64.02

3.4 Conclusions

In this chapter, we described our proposed dynamic arithmetic approximation scheme

based on truncation, where the design automatically zooms in on the most important bits

of each operand and does the computation accurately over a subset of each input. We fur-

ther proposed to devise approximate arithmetic with zero-centered (unbiased) error distri-

bution to further improve the accuracy. We explored and evaluated the performance of the

approximate methodology on two resource heavy arithmetic, namely multiplier and di-

vider. As demonstrated, the methodology delivers significant savings in hardware metrics

such as design area and power consumption while introducing tolerable errors for both

standalone and in application use.
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Chapter 4

Approximate Synthesis using Boolean

Matrix Factorization

4.1 Introduction

This chapter seeks to devise a new direction for approximate Boolean-level circuit syn-

thesis. Our inspiration comes from Non-Negative Matrix Factorization (NNMF), which

is a factorization technique that factors a non-negative matrix into two non-negative ma-

trices [49]. The non-negativity constraints on the factorization arise in physical domains,

such as computer vision and document clustering [94]. Recent advances in the math-

ematical community extends NNMF techniques to Boolean matrices, where matrix op-

erations are carried in GF (2) (Galois field of two elements), such that multiplications

are performed using logical AND, and additions are performed using logical OR (for

Boolean semi-ring implementations) and logical XOR (for Boolean field implementa-

tions) [58, 59]. The use of BMF as a technique for logic synthesis is a new direction in the
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field, and we show that it provides a solid foundation for approximate logic synthesis. We

summarize our contributions as follows.

• We propose a novel methodology for BMF-based Logic Approximate SYnthesiS

(BLASYS) that is based on solid mathematical foundations, where Boolean Ma-

trix Factorization (BMF) is used to generate approximate circuits with controllable

trade-off between accuracy and circuit complexity.

• We modify existing BMF algorithms to incorporate the ability to work with different

quality-of-results (QoR) functions, instead of the standard L2 norm. Specifically, we

introduce a weighted QoR function, as is the case in the binary representation.

• To scale the factorization method to large circuits, we propose a circuit decomposi-

tion method to break down a given circuit into manageable subcircuits with limited

number of inputs and outputs. We propose a design-space exploration heuristic to

order the subcircuits and identify a good sequence for generating their approximate

variants. Our technique results in a very smooth trade-off between accuracy and

circuit complexity.

• We implement our approach and test it on a number of application circuits that are

typically used in approximate computing domains. We show that our approach is

able to trade-off accuracy with circuit area and power consumption as evaluated by

an industry-strength synthesis tool.

The organization of this chapter is as follows. We discuss the details of our proposed

method in Section 4.2, where we describe the basic idea of using BMF algorithms to

approximate logic circuits, and then show how to scale our proposed method to larger

circuits. We provide comprehensive results of our method’s performance together with a
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comparison against a previous technique in Section 4.3. Finally, we summarize our main

contributions and findings in Section 4.4.

4.2 Proposed Methodology

Non-negative matrix factorization (NNMF) is a factorization technique where a k×mma-

trix M is factored into two non-negative matrices: a k×f matrix B, and an f×mmatrix C,

such that M ≈ BC [49]. The non-negativity constraints on the factorization enables the

utilization of the factorization algorithm in physical domains, such as computer vision and

document clustering. NNMF essentially compresses the data in an approximate manner

depending on the factorization degree (f ) [94]. In the mathematical statistics commu-

nity, the factorization degree determines the number of “feature” that are computed [58].

Therefore, f , clearly represents a trade-off between quality of factorization and storage

amount. Recently, NNMF has been extended to Boolean matrices where elements of all

matrices are restricted to Boolean values. In this case, multiplications can be performed

using logical AND, and additions are performed using logical OR (for Boolean semi-ring

implementations) and logical XOR (for Boolean field implementations) [58, 59]. For-

mally, the BMF problem can be formulated as,

argmin
B,C
|M⊕ (B ◦C)| =

∑
i,j

|mi,j − (B ◦C)i,j|,

3 ∀i,jmi,j, bi,j, ci,j ∈ {0, 1}

(4.1)

where⊕ denotes the XOR operation, and B◦C denotes the Boolean matrix multiplication.

BMF in an NP-Hard problem and current solutions are based on heuristics [58].
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Figure 4.1: Boolean NNMF example.

A classic example of such an application is document characterization as utilized in

knowledge discovery applications. More specifically, matrix M can represent a document-

word relation, where each column of the matrix corresponds to a document and each row

corresponds to a word in the dictionary. In such a representation, a 1 in index i, j of

matrix M illustrates the presence of word i in document j. The BMF algorithm, therefore,

divides the document-word matrix to a word-category matrix, matrix B, where words

are effectively mapped to categories, and a category-document matrix, matrix C, where

elements indicate the connection between the categories and the document. One benefit

of the BMF is the reduction in storage requirements while maintaining the more critical

information. Next, we will discuss how this methodology can be adopted for approximate

circuit synthesis. Figure 4.1 provides an example of NNMF over GF(2).

4.2.1 Circuit Approximation using BMF

In our proposed approach, a multi-output logic circuit with k inputs and m outputs is first

evaluated to generate its truth table. The truth table, represented by M, is then given as

input to a BMF algorithm together with the target factorization degree 1 ≤ f < m, to

produce the two factor matrices B and C. Matrix B is then given as the input truth table

to a logic synthesis tool to generate a k input, f output circuit, which we refer to as the
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Figure 4.2: Generating approximate circuits using BMF.

compressor circuit. Note that the compressor matrix is simply the truth table of a circuit

with the same number of inputs as the original circuit but with fewer (f to be exact) output

signals. Therefore, it can easily be mapped to logic. These f outputs from the compressor

circuit are then combined by the decompressor circuit according to the C matrix using a

network of OR gates (for Boolean semi-ring implementations) or XOR gates (for Boolean

field implementations), to generate the approximate m outputs. More specifically, a 1 in

the (i, j) index of the decompressor matrix represents the existence of the fi intermediate

signal in the j-th output, effectively mapping each one to a OR (or XOR) gate. Using this

methodology, any arbitrary circuit can be approximated by forcing the circuit to compress

as much information as possible in f intermediate signals and then decompress them using

simple OR (or XOR) gates. Figure 4.2 illustrates the proposed approach.

Figure 4.3 provides an illustrative example of a 4-input, 4-output arbitrary logic circuit.

First, we present the original circuit with its truth table, and we synthesize it with Synopsys

Design Compiler (DC) using 65 nm library. We then provide approximate variants for the

circuit with f = 1, f = 2, and f = 3. We computed the truth tables for the compressor and
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Figure 4.3: Results of proposed approximation method with various f on a simple cir-
cuit for illustration purposes. Circuits are synthesized using Synopsys DC using 65 nm
technology library. A semi-ring implementation is used for Boolean NNMF.

decompressor using the ASSO NNMF algorithm [58, 59]. We provide both the quality of

results as measured by the Hamming distance between the truth table of the original circuit

and the approximate circuit as well as the design area reported by DC. For instance, when

f = 3, we reduce the area of the circuit by 14.3%, while compromising the quality of

results (QoR) by only 4.6% since the Hamming distance between the original and the

approximate truth tables is equal to 3; that is out of the 64 entries in the truth table, only 3

entries flipped in the approximate circuit. With f = 2 and f = 1, we can reduce the area

by 27.3% and 57.8% while compromising the QoR by 9.3% and 20.3% respectively.
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Our approach leads to a new paradigm for creating approximate logic circuits in a

controlled fashion that are based on solid mathematical foundations. There are two main

challenges:

1. NNMF algorithms use the L2 norm to measure the quality of factorization. For

Boolean matrices, L2 translates to Hamming distance. In addition, we need to iden-

tify methods to factorize for other QoR metrics that are relevant for approximate

applications.

2. The basic idea is limited in scalability since the complexity of generating the truth

table grows exponentially as a function of the number of circuit’s inputs. Thus, we

need to create factorization methods that can scale up for large circuits.

4.2.2 Factorization for Arbitrary QoR

The goal of the BMF algorithm is to minimize ||M−BC||2, which translates to Hamming

distance in GF (2). However, not all applications or circuits necessarily use this metric to

assess QoR. For instance, in the case of circuit design, if anm bit signal is to be interpreted

as an m bit number, Hamming distance is not really an accurate representation of the

inaccuracies as mismatches in different bit indices contribute differently to the actual error.

To take into account the non-equal nature of bit significance, we propose to modify the

NNMF algorithms in the literature to account for bit indices. More specifically, instead of

minimizing ||M−BC||2, we propose minimizing ||(M−BC)w||2, where w is a constant

weight vector. For example, if numerical difference is the target QoR, then the w vector

will be based on powers-of-two (e.g., 8, 4, 2, 1) therefore reflecting the fact that different

bit positions lead to different numerical weights. In this work, we modify the ASSO [59]
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algorithm as such to penalize mismatches on the higher bit locations more than on the

less significant bits. In Section 4.3.1, we demonstrate how such weighting scheme can

improve the results compared to the uniformly weighted standard BMF algorithms.

4.2.3 Scaling Up for Large Circuits

Calculating the BMF is limited by computational complexity as one needs to generate the

truth table for every possible input and state combination. Furthermore, BMF is a NP-hard

problem, and most algorithms in the literature are heuristics [49, 58, 59]. We propose a

simple approach to scale BMF calculations for larger circuits. The basic idea is to decom-

pose a large circuit into a number of subcircuits each with a maximum of k inputs and

m outputs as afforded by the runtime of the factorization algorithm and memory require-

ments. Note that this approach is reminiscent but yet fundamentally different than FPGA

mapping algorithms, where the goal is to map a circuit into logic elements, each with lim-

ited number of inputs [14]. Our motivation for decomposition is different because (1) we

are mapping to subcircuits purely to address computational complexity, and (2) we apply

the BMF on the truth tables of the subcircuits, and then we synthesize the factored circuits

into any target ASIC or FPGA technology. Instead of using classical k-cut algorithms,

e.g. [14], we propose to use k × m-cut algorithms (e.g., KL algorithm [55]) to identify

subcircuits with a maximum input of k and maximum output of m. Note that k and m are

design choices mostly determined by the runtime and memory budgets.

Decomposing a large circuit into subcircuits of size k ×m requires changing the way

we evaluate the QoR. In particular one cannot evaluate the QoR of a subcircuit in isolation

from the rest of the circuit, since a small error in the output of the subcircuit can propagate

leading to larger errors. Thus, instead of evaluating the QoR of an original subcircuit

against its approximate version, we have to evaluate QoR of the entire circuit Cir(si →
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Algorithm 1: BLASYS: Boolean Level Approximate Circuit Synthesis
Input : Accurate Circuit ACir, Error Threshold
Output: Approximate Circuit Cir

1 subcircuits=Decompose input circuit using k ×m decomposition
2 // Factorization profiling Phase
3 for each subcircuit si with mi ≤ m outputs do
4 M=Construct truth table of si
5 // profile for every possible factorization degree
6 for f=1 to mi-1 do
7 [B,C] = BMF(M, f )
8 Tsi,f=Construct truth table of BC

9 end
10 end
11 // Circuit Space Exploration Phase
12 Cir=ACir;
13 Let fi = mi for all subcircuits si
14 while QoR(Cir) < threshold do
15 for each subcircuit si with fi > 1 do
16 Cir′=Cir(si → Tsi,fi−1)
17 ∆erri = QoR(Cir′)−QoR(Cir)

18 end
19 b = arg mini(∆erri)
20 Cir = Cir(sb → Tsb,fb−1)
21 fb = fb − 1

22 end
23 Cir=Synthesize Best new Design
24 return Cir

Tsi,fi), where Cir(si → Tsi,fi) represents the approximate circuit created by substituting

an accurate subcircuit, si, with its approximate version, Tsi,fi , using a fi factorization

degree. As evaluating the entire circuit for all possible inputs is infeasible, we use Monte

Carlo sampling to estimate the QoR of the approximate version of the entire circuit.

In addition, the order of processing the subcircuits and the target factorization degree

for each subcircuit is an important consideration. We devise Algorithm 1 to gradually

approximate the circuit as guided by circuit accuracy. After identifying the subcircuits

(Line 1), the first stage of the algorithm (lines 3-10) calculates the potential approximate

versions for each subcircuit under various factorization degrees. The next stage (lines

12-22) seeks to explore the space of potential approximate subcircuits to identify a good

approximation order. Lines 15-18 assess the reduction in accuracy of the entire circuit if

the degree of factorization of each subcircuit is decremented. The subcircuit that leads
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to the smallest error is then chosen (line 19), and its more approximated version is then

substituted in the main circuit (lines 20-21). The process is then repeated until the error is

above the set threshold or all subcircuits are approximated to the highest degree possible.

4.3 Experimental Results

In this section we evaluate our proposed BMF based approximation methodology. Sim-

ilar to previous work [88, 70], we consider a number of arithmetic circuits (adder and

multiplier) and a number of application circuits that are amenable for approximate com-

puting such as a multiply-accumulate circuit (MAC), a butterfly network (BUT), a sum

of absolute differences (SAD) circuit and finite impulse response (FIR) circuit. Table 4.1

summarizes the characteristics of the evaluated applications. Here we also give the num-

ber of input and output pins, and the design metrics of the accurate design. To evaluate

design area and power consumption, we use Synopsys design compiler with an industrial

65 nm technology library in typical processing corner.

For all our experiments, as discussed in 4.2.3, we first decompose each circuit to k×m-

cut subcircuits and then perform factorization. In our experiments we chose both k = 10

and m = 10. These numbers are simply chosen as they provide a balanced trade-off

between truth table complexity and number of subcircuits. We use the modified ASSO

algorithm for BMF [58, 59]. Further, for each subcircuit we perform a sweep on the fac-

torization threshold in order to get the best accuracy. In order to evaluate the accuracy on

the evaluated applications, we use a Monte Carlo simulation using one million randomly
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Table 4.1: The list of benchmarks evaluated using the proposed NNMF methodology.

Accurate Design Metrics
Name Function I/O Area Power Delay

(um2) (uW ) (ns)
Adder32 32-bit Adder 64/33 320.8 81.1 3.23

Mult8 8-bit Multiplier 16/16 1731.6 263.5 2.03
BUT Butterfly Structure 16/18 297.4 80.6 1.79
MAC Multiply and Accumulate

with 32-bit Accumulator 48/33 6013.1 470.5 2.36
SAD sum of absolute

difference 48/33 1446.5 195.1 2.43
FIR 4-Tap FIR Filter 64/16 8568.0 466.3 1.56

generated input test cases. We define average relative error as,

Average Relative Error =
1

N

N∑
i=1

|Ri −R′
i|

Ri

, (4.2)

and average absolute error as,

Average Absolute Error =
1

N

N∑
i=1

|Ri −R′
i|, (4.3)

where N is the size of the test case, and R and R′ are accurate and approximate results

respectively.

Next, in the first subsection we show the impact of enabling arbitrary QoR functions,

when compared to standard L2 metric used in Boolean matrix factorization. In the second

subsection, we show the trade-offs and Pareto Frontiers offered by our methodology for

our applications. We also compare the results of our work to previous work.
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Figure 4.4: Comparison of the trade-offs offered using the proposed weighted QoR vs. the
original factorization algorithm.

4.3.1 Evaluation of QoR Impact

As described in Section 4.2, we modify the Boolean NNMF factorization algorithm, ASSO

in this case, to enable weighted cost functions, where a bit error on higher bit indices

results in a higher penalty compared to disparities on the lower significance bits.

Figure 4.4 shows the accuracy vs. design area trade-offs offered for the approximate

Mult8 design when comparing a factorization algorithm using standard L2 QoR with uni-

form bit weighting against the proposed weighted QoR. We provide the trends in average

relative error, normalized average absolute error, and the normalized Hamming distance.

The results obtained from the weighted QoR (WQoR) are shown with solid lines while the

dashed lines show the results for the original uniform algorithm (UQoR).

As shown in the figure, compared to the original algorithm, the weighted scheme pro-

vides consistent benefits in accuracy for the same design complexity for all three accuracy

metrics. This result confirms the benefit of modifying the BMF algorithm to differentiate
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among inaccuracies in different indices. Furthermore, this figure highlights the necessity

of an algorithm guiding the approximation process in the right direction as suboptimal

points are commonly encountered. Next, we evaluate the trade-offs offered for all of our

application circuits using our heuristic design space exploration and compare our results

against SALSA [88].

4.3.2 Application Results

As previously described, for each application, first the circuit is decomposed into subcir-

cuits with reduced number of inputs and outputs. Then, for each subcircuit and various

values of f , each subcircuit is approximated and the approximate characteristics are stored.

Next, the heuristic proposed in Algorithm 1 iteratively approximates the subcircuits while

assessing the impact on the whole circuit.

Figure 4.5 shows the trade-offs offered by BLASYS for each of our six benchmarks.

In our experiments as the inner workings of accuracy among different blocks is more

difficult to model, we simulate the whole circuit while modeling the design metric. More

specifically, for design space exploration purposes, we assume the design metric, e.g.

design area or power, of the large circuit is the sum of design metrics of the k × m-cut

subcircuits. For our experiments in order to simplify our design metric model, we use

design area as it has less variation compared to power consumption when assembling the

subcircuits into the larger circuit. Furthermore, our design area model is only a function

of the subcircuit blocks being approximated, while registers and control paths are not

considered. We plot the normalized combinational design area utilization as a function

of average relative error (black plot and using the bottom x axis) and average normalized

absolute error (red plot and using the top x axis). In the case of average absolute error, we

normalize the values to the highest output possible. Further, to better show the trend, the
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Figure 4.5: The trade-offs offered for each application. (a) Adder32, (b) Mult8, (c) BUT,
(d) MAC, (e) SAD, and (f) FIR.
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average absolute error is plotted in log scale.

As shown in the figure, the proposed methodology enables the designer to choose

among a wide range of fine-grain trade-offs. Intuitively, our design space exploration

heuristic aims to find the lowest error possible for a specific degree of approximation

where the degree of approximation is incremented by one in each generation. This insight

explains the smooth trend of trade-offs for larger circuits while the smaller circuits can

change in performance significantly in one iteration. Furthermore, note that while reduc-

ing the number of intermediate signals (f ) generally reduces the complexity of the circuit,

there are cases where the number of literals in the logic representation for one output can

increase. This phenomenon, explains the temporary increases in design area observed in

some of the trends.

The overall runtime of the algorithm is dominated by the accuracy simulation of the

intermediate points. Therefore, the runtime is dictated by the Monte Carlo sample size,

the threshold set for accuracy, and the tool chain utilized. For example, in our experiments

and in the case of the Adder32, the simulation takes about 11 Seconds (using 1 million

samples) for each design point, while the BMF algorithm for all the subcircuits takes 0.35

seconds. The runtimes are reported for a workstation with core-i7 clocked at 4GHz and

with 16GB of memory.

Table 4.2 summarizes all the design metrics of our 6 testcases and for two accuracy

thresholds as synthesized at the end of the design space exploration. As shown in the

table, significant reductions in design metrics are possible while insignificant errors are

introduced to the circuit. Based on the application, benefits of approximately 8%-47%

can be achieved for average relative errors of 5%.

We also compare our proposed methodology against the previous work SALSA [88].
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Table 4.2: The hardware characteristics of the approximate testcases for two accuracy
thresholds, namely 5% and 25%.

Accuracy Area Power Delay
Design Thershold Savings (%) Savings (%) Reduction (%)

Adder32
5% 44.78 63.79 12.07

25% 48.15 69.35 17.03

Mult8
5% 28.77 26.87 12.32

25% 63.18 68.93 41.38

BUT
5% 7.87 11.25 2.23

25% 26.39 35.14 5.03

MAC
5% 47.55 55.58 64.41

25% 65.86 75.13 69.07

SAD
5% 32.80 41.47 69.14

25% 38.08 55.07 77.37

FIR
5% 19.52 22.26 12.18

25% 34.00 33.84 16.03

Table 4.3: The design area savings at error thresholds 5% and 25% for the applications
evaluated with comparison to SALSA [88].

Threshold 5% Threshold 25%
Area Savings (%) Area Savings (%)

BLASYS SALSA BLASYS SALSA
Adder32 44.9 20.5 48.2 23.2

Mult8 28.8 1.8 63.2 8.9
BUT 7.9 5.0 26.4 24.7
MAC 47.6 1.7 65.9 8.2
SAD 32.8 3.3 38.1 15.8
FIR 19.5 3.2 34.0 15.8

Table 4.3 compares the results obtained using BLASYS against SALSA for given thresh-

olds of 5% and 25%. As it can be seen from the table, in all cases, BLASYS delivers

significant improvements in design area. We attribute the benefits to BLASYS’ ability to

approximate multiple outputs, up to m outputs, simultaneously, whereas SALSA approx-

imates each output bit individually.
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4.4 Conclusions

In this chapter we proposed a new direction for approximate logic synthesis using Boolean

matrix factorization. Our proposed methodology, BLASYS, leads to a systematic ap-

proach to trade-off accuracy with circuit complexity. To scale our approach into larger

circuits, we proposed a circuit decomposition heuristic together with a processing order

for the subcircuits. Our algorithm results in a very smooth way to trade-off the complexity

of entire large circuits with accuracy. We also investigated ways to incorporate different

QoR metrics into the circuit factorization algorithm. Our experimental results show solid

improvements over state-of-the-art techniques. On applications explored, BLASYS offers

benefits ranging from 11% to 63% in power savings with an average error of 5% while

offering up to 75% in power savings for a more relaxed threshold of 25%.
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Chapter 5

Accuracy-Energy Trade-offs in Deep

Neural Networks

5.1 Introduction

In this chapter, we discuss one of case studies considering application of approximate com-

puting techniques on complex machine learning applications, more specifically energy-

efficient deep learning. Deep neural networks (DNN) have provided state-of-the-art re-

sults in many different applications specifically related to computer vision and machine

learning. One dominant feature of neural networks is their high demand in terms of mem-

ory and computational power thereby limiting solutions based on these networks to high

power GPUs and data centers. In addition, such high demands have led to the investigation

of low power application-specific integrated circuit (ASIC) accelerators where designers

are free to assign dedicated resources to increase the throughput. However, memory ac-

cesses and data transfer overheads play an important part in the total computation time
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and energy. When using accelerators, as a solution to data transfer overheads, specialized

buffers have been introduced, thereby isolating the data transfer from the computation

and enabling the memory subsystem to load the new data while the computation core is

processing the previously loaded data.

Neural networks show inherent resilience to small and insignificant errors within their

calculations, therefore making such networks ideal candidates for approximate computing

techniques. In addition, the training nature of deep learning applications, where errors

can be mitigated (or reduced) by relearning and fine tuning the parameters, further fits

the approximate computing paradigm. In this light, techniques proposed by approximate

computing, such as approximate arithmetic, are an attractive option to lower the power

consumption and design complexity in neural networks accelerators. Here we pursue a

unified approach to evaluation of deep learning applications using different bit precisions.

We have previously published our work in [30]. More specifically, we summarize our

contributions as follows.

• We perform a detailed evaluation of a broad range of networks precisions, from bi-

nary weights to single precision floating-points, as well as several points in between.

• We utilize learning techniques to improve the lost accuracy by taking advantage of

the training process to increase the accuracy.

• We evaluate our designs for both accuracy and hardware specific metrics, such as

design area, power consumption, and delay, and demonstrate the results on a Pareto

Frontier, enabling better evaluation of the available trade-offs.

• Exploiting the benefits of lower precisions, we propose increasing the network size

to compensate for accuracy degradation. Our results showcase low precision net-

works capable of achieving equivalent accuracy compared to smaller floating-point
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Figure 5.1: The structure of a typical deep neural networks.

networks while offering significant improvements in energy consumption and de-

sign area.

The rest of the chapter is organized as follows. In Section 5.2, we briefly summarize

the basics of neural networks as well as providing a short review of related work. Then,

in Section 5.3, we describe various precisions and network training techniques used in

our evaluations and argue for increasing network size to recoup accuracy loss in lower

precision networks. The results from our evaluations are provided in Section 5.4. Finally,

in Section 5.5, we summarize our finding and the contributions of this chapter.

5.2 Background and Previous Work

Typically, deep neural networks are organized in layers where each layer is only connected

to the layers immediately before and after it. Each layer gets its input from the previous

layer and feeds it to the next layer after some layer-specific processing. Figure 5.1 shows

the general structure and connectivity of the layers. As shown in the figure, each layer

consists of several channels. Deep Neural networks, in general, consist of a combination

of three main layer types: convolutional layers, pooling layers, and fully connected layers.
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In typical neural networks the dominant portion of the computation is performed in the

convolution layers and fully connected layers, while pooling layers simply down-sample

the data. More specifically, channels in convolutional and fully connected layers are com-

prised of neuron units where each neuron performs a weighted sum of its inputs before

feeding the result to a nonlinearity function. The intermediate values between layers are

called feature maps, as they each abstract some structure in the input image. From a data

perspective, neural networks operate on two main set of parameters: input data and inter-

mediate feature maps, and network parameters (or weights). Since inputs and feature maps

are treated similarly by the network, similar precisions are used for their representation.

However, numerical precision of the network parameters can be changed independently of

the input precision.

While the input data is assumed to be given for each network, the flexibility of neural

networks arises from their ability to adapt their response to a specific input by training the

network parameters. More specifically, use of neural networks comprises two phases, a

training process during which the network parameters are learned, and a test phase which

performs the inference and classification of the test data. In the training phase, neural

networks usually utilize a backpropagation algorithm during which the classification error

is propagated backwards using partial gradients. Network parameters are then updated

using stochastic gradient descent. After training and in the test phase, the learned network

is utilized in the forward phase to classify the test data. As discussed later, the main

complexity of using lower precision in these networks arises due to the learning process.

The high demand of DNNs, in terms of complexity and energy consumption, has

shifted attention to low-power accelerators. Many works have proposed implementing

neural networks on FPGAs [25, 23], or as an ASIC accelerator [40, 83]. In all these

works, different precisions have been utilized with little or no justification for the chosen

bit-width.

62



Chen et al. proposed Eyeriss, a spatial architecture along with a dataflow aimed at

minimizing the movement energy overhead using data reuse [11]. For their implemen-

tation, a 16-bit fixed-point precision is utilized. Sankaradas et al. empirically determine

an acceptable precision for their application [75] and reduce the precision to 16-bit fixed-

point for inputs and intermediate values while maintaining 20-bit precision for weights.

A FPGA-based accelerator is proposed by Zhang et al., where single precision floating-

point arithmetic has been utilized [98]. While this work offers a brief comparison between

resources required for floating-point and fixed-point arithmetic logic in FPGAs, no dis-

cussion of accuracy is provided. Chakradhar et al. proposed a configurable co-processor

where input and output values are represented using 16 bits while intermediate values use

48 bits [7].

Many works have successfully integrated techniques commonly used in approximate

computing to lower the computation and energy demands of neural networks. A feed-

forward neural network is proposed by Kung et al., where approximations are introduced

to lower-impact synapses [43]. Venkataramani et al. proposed an approximate design

where error-resilient neurons are replaced with lower-precision neurons and an incremen-

tal training process is used to compensate for some of the added error [89]. However, no

specifications for the bit precision range used in the experiments are provided. Tann et

al. proposed an incremental training process during which most of the network can be

turned off to save power [82]. The neurons are then turned on during run-time if deemed

necessary for correct classification. In this work, 32-bit floating-point representation was

used.

As demonstrated by Chen et al. [10] and Tann et al. [82], the dominant portion of

power and energy of hardware neural network accelerators is consumed in the memory

subsystem, limiting the scope of arithmetic approximation. While many accelerators have

been proposed using different bit-precisions, most of these studies have been ad-hoc and
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give little to no explanation for choosing the specific precision. In this light, one particu-

larly effective solution is reducing the bit-width required to represent the data. While the

use of limited precision in neural networks has been proposed before [51, 15, 71], there

exists no comprehensive exploration of their effect on energy consumption and computa-

tion time in reference to network accuracy. A recent publication by Gysel et al. provides

an analysis of precision on network accuracy; however, the design parameters are not eval-

uated [28]. Our objective is to precisely quantify the effect of each numerical precision or

quantization on all aspects of the networks focusing specially on hardware metrics.

5.3 Methodology

Here, first in Section 5.3.1, we discuss the range of precisions and quantizations considered

in our evaluation. We also briefly discuss the network training techniques used to minimize

the accuracy degradation due to the limited precision. Finally, in Section 5.3.2 we propose

two expanded network architectures to compensate for the accuracy drop.

5.3.1 Evaluated Precisions and Train-Time Techniques

We consider a broad range of numerical precisions and quantizations, from 32-bit floating-

point arithmetic to binary nets, as well as several precision points in between. We summa-

rize them below:
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Floating-Point Arithmetic

This is the most commonly used precision as it generates the state-of-the-art results in

accuracy. However, floating-point arithmetic requires complicated circuitry for the com-

putational logic such as adders and multipliers as well as large bit-width, necessitating

ample memory usage. As a result, this precision is not suitable for low-power and embed-

ded devices.

Fixed-Point Arithmetic

Fix-point arithmetic is less computationally demanding as it simplifies the logic by fixing

the location of the radix point. This arithmetic also provides the flexibility of a wide range

of accuracy-power trade-offs by changing the number of bits used in the representation. In

this work, we evaluate 4-, 8-, 16- and 32-bit precisions. To improve accuracy, we allow a

different radix point location between data and parameters [28]. However, we refrain from

evaluating bit precisions that are not powers of 2 since they result in inefficient memory

usage that might nullify the benefits.

Power-of-Two Quantization

Multipliers are the most demanding computational unit for neural networks. As proposed

by Lin [51], limiting the weights to be in the form of 2i, enables the network to replace ex-

pensive, frequent, and power-hungry multiplications with much smaller and less complex

shifts. In our evaluations, we consider power of two quantization of the weights while

representing the inputs with 16-bit fixed-point arithmetic.
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Binary Representation

Recent work suggests that neural networks can generate acceptable results using just 1-

bit weight representation [16]. While work by Courbariaux suggests binarizing activation

between network layers, it does not binarize the input layer [15]. For this reason, our

accelerator would still need to support multi-bit inputs. Thus, we evaluate the binary net

using one bit for weights, while using 16-bit fixed-point representation for the inputs and

feature maps.

Hardware Accelerator: For our experiments, we adopt a tile-based hardware accel-

erator similar to DianNao [10]. We implement 16 neuron processing units each with 16

synapses. Figure 5.2 shows our hardware implementation. As illustrated in the figure,

three separate memory subsystems are used to store the intermediate values and outputs

and buffer the inputs and weights. These subsystems are comprised of an SRAM buffer

array, a DMA, and control logic responsible for ensuring that the data is loaded into the

buffers and made available to the neural functional unit (NFU) at the appropriate clock

cycle without additional latency. The NFU pipelines the computation into three stages,

weight blocks (WB), adder tree, and non-linearity function. As shown in Figure 5.2, the

weight blocks will be modified to accommodate for different precisions and quantizations

as needed. In the case of binary precision, we merge the first two pipeline stages, effec-

tively leading to a two stage NFU, in order to reduce the runtime. Furthermore, the size of

all buffers and the control logic are modified according to the precision.

Training Time Techniques: We include a training phase in our experiments to enable

the network to determine appropriate weights and adapt to the lower precision. Training

processes, in nature, require high precision in order to converge to a good minima as the

increments made to the parameters can be extremely small. On the other hand, if the

network is made aware of its inference restrictions (in our case, the limited precision),
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Figure 5.2: The hardware model used for our experiments. The first stage (WB) has
different variants for (a) floating-point and fixed-point arithmetic, (b) powers of two quan-
tization, and (c) binary network.

the training process can potentially compensate for some of the errors by fine-tuning the

parameters and therefore improve the accuracy at no extra cost.

While the effects of reduced precision are analytically complicated to formulate as part

of the training process [26], intuitive techniques can be utilized to improve the test phase

accuracy. One approach proposed in [82] is to utilize a set of full precision weights, trained

independently, as the starting point of a re-training process, in which the weights and

inputs are restricted to the specified precision. This approach assumes that by using lower

precisions, close to optimal performance can be obtained if a local search is performed

around the optimal set of parameters as learned with full precision.

67



A second approach for improving the accuracy is to utilize weights with different pre-

cisions in different parts of the training process, as proposed by Courbariaux et al. [16].

They solve the zero-gradient issue by keeping two sets of weights: one in full precision

and one in the selected lower precision. The network is then trained using the full preci-

sion values during backward propagation and parameter updates, while approximating and

using low precision values for forward passes. This approach allows for the accumulation

of small gradient updates to eventually cause incremental updates in the lower precision.

In our approach, we train all of the low precision networks using a combination of the

first and second approaches. We initialize the parameters for lower precision training from

the floating point counterpart. Once initialized, we train by keeping two sets of weights.

5.3.2 Expanded Network Architectures

While significant savings in power, area, and computation time can be achieved using

lower precisions, even a small degradation in accuracy can prohibit their use in many ap-

plications. However, we observe that, due to the nature of neural networks, the benefits

obtainable by using lower precisions are disproportionately larger than the resulting accu-

racy degradation. This opens a new and intriguing dimension, where the accuracy can be

boosted by increasing the number of computations while still consuming less energy. We

therefore propose increasing the number of operations by increasing the network size, as

needed to maintain accuracy while spending significantly less for each operation.

In this light, in Section 6.4.2, we showcase two significantly larger networks and

demonstrate that even by significantly increasing the size of the network, low precision

can still result in improvements in energy consumption while eliminating the accuracy

degradation. We discuss the specifications of the two larger networks in Section 6.4.2.
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Table 5.1: Benchmark Networks Architecture Descriptions.

MNIST SVHN CIFAR-10
LeNet [47] ConvNet [77] ALEX [41]
28×28×1 32×32×3 32×32×3

conv 5×5×20 conv 5×5×16 conv 5×5×32
maxpool 2×2 maxpool 2×2 maxpool 3×3
conv 5×5×50 conv 7×7×512 conv 5×5×32
maxpool 2×2 maxpool 2×2 avgpool 3×3

innerproduct 500 innerproduct 20 conv 5×5×64
innerproduct 10 innerproduct 10 avgpool 3×3

innerproduct 10

5.4 Experimental Results

5.4.1 Experimental Setup

We evaluate our designs both in terms of accuracy and design metrics (i.e., power, en-

ergy, memory requirements, design area). To measure accuracy, we adopt Ristretto [28],

a Caffe-based framework [37] extended to simulate fixed-point operation. We modify

Ristretto to accommodate our techniques, as needed. In different experiments, we ensure

that all design parameters except for the bit precision are the same. This is critical to

ensure the isolation of the effects of bit precision from any other factor.

We compile our designs using Synopsys Design Compiler using a 65 nm industry

strength technology node library. We use a 250 MHz clock frequency and synthesize in

nominal processing corner. We design our accelerator to have a zero timing slack for the

full-precision accurate design. We confirm the functionality of our hardware implementa-

tion with extensive simulations. As before, we ensure that all other network parameters,

including the frequency, are kept constant across different precision experiments.

Benchmarks: We consider three well-recognized neural network architectures utilized

with three different datasets, MNIST [48] using the LeNet [47] architecture, SVHN using
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Table 5.2: ALEX Larger Network Architecture Descriptions.

CIFAR-10
ALEX+ ALEX++

32×32×3 32×32×3
conv 5×5×64 conv 3×3×64
maxpool 3×3 maxpool 2×2
conv 5×5×64 conv 3×3×128
avgpool 3×3 maxpool 2×2

conv 5×5×128 conv 3×3×256
avgpool 3×3 maxpool 2×2

innerproduct 10 innerproduct 512
innerproduct 10

CONVnet [77], and CIFAR-10 [41] using the network described by Alex Krizhevsky [41]

(here we refer to this network as ALEX). For all cases, we randomly select 10% of each

classification category from the original test set as our validation set. To showcase the

benefits from increasing the network size while using lower precision, we evaluate two

networks as summarized in Table 5.2. Here, we focus on CIFAR-10 since MNIST and

SVHN do not provide a large range in accuracy differences between various precisions

and quantizations. As summarized in Table 5.2, we evaluate two larger variations of the

ALEX network: (1) ALEX+, where the number of channels in each convolutional layer

is doubled, and (2) ALEX++, where the number of channels is doubled when the feature

size is halved [79]. As shown in Section 5.4.2, this methodology results in significant

improvements in accuracy while still delivering significant savings in energy.

5.4.2 Results

Figure 5.3 shows the breakdown of power and area for the accelerator in the cases inves-

tigated. Values shown as (w, in) represent the number of bits required for representing

weight and input values, respectively. Note, that these graphs do not reflect the power

consumption of the main memory. As shown in the figure, the majority of the resources,
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Figure 5.3: The breakdown of design area and power consumption using different preci-
sions.

both in power and design area, are utilized in the memory buffers necessary for seam-

less operation of the computational logic. To be more specific, in our experiments, the

buffers consume between 75%-93% of the total accelerator power, while using 76%-96%

of the total design area. These values highlight the necessity of approximation approaches

targeting the memory footprint.

Table 5.3 summarizes the design metrics of the accelerator for each of the numerical

precisions considered. In order to maintain a fair comparison, we keep all the other param-

eters, such as the frequency, number of hardware neurons, etc., constant among different

precisions. Changing the frequency or the accelerator parameters (other than precision)
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Table 5.3: Design metrics of the evaluated numerical precisions and quantizations.

Design Power Area Power
Area Cons. Saving Saving

Precision (w, in) (mm2) (mW ) (%) (%)
Floating-Point (32,32) 16.74 1379.60 0 0
Fixed-Point (32,32) 14.13 1213.40 15.56 12.05
Fixed-Point (16,16) 6.88 574.75 58.92 58.34
Fixed-Point (8,8) 3.36 219.87 79.94 84.06
Fixed-Point (4,4) 1.66 111.17 90.07 91.94
Powers of Two (6,16) 3.05 209.91 81.78 84.78
Binary Net (1,16) 1.21 95.36 92.73 93.08

adds another dimension to the design space exploration which is out of the scope of our

work.

We evaluate the accuracy of the networks, as well as energy requirements for process-

ing each image for each of our benchmarks. Table 5.4 summarizes the results for MNIST

and SVHN datasets. We were able to achieve little to no accuracy drop for all but one of

the network precisions in the MNIST classification. In the case of SVHN, however, while

keeping the network architecture constant, the 4-bit fixed-point and binary representations

failed to converge. For SVHN dataset, for instance in the case of powers of two network,

we are able to achieve more than 84% energy saving with an accuracy drop of approxi-

mately 2%. Note that as we keep the frequency constant the processing time per image

changes very marginally among different precisions. Additional runtime savings can be

achieved by increasing the frequency or changing the accelerator specification which is

not explored in this work.

The reduction in precision also reduced the required memory capacity for network pa-

rameters, as well as the input data. We quantify our memory requirements for all the net-

work architectures using different bit precisions. In our experiments, for the full-precision

design, network parameters require approximately 1650KB, and 2150KB, and 350KB of

memory for LeNet, CONVnet, and ALEX, respectively. Since there is a direct correla-
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Table 5.4: The Accuracy, per image inference energy, and the energy savings achievable
using each of the evaluated precisions. For each dataset, energy savings are in reference
to the full-precision implementation.

MNIST SVHN
Class. Energy Energy Class. Energy Energy

Precision (w, in) Acc. (%) (uJ) Sav. (%) Acc. (%) (uJ) Sav. (%)
Floating-Point (32,32) 99.20 60.74 0 86.77 754.18 0
Fixed-Point (32,32) 99.22 52.93 12.86 86.78 663.01 12.09
Fixed-Point (16,16) 99.21 24.60 59.50 86.77 314.05 58.36
Fixed-Point (8,8) 99.22 8.86 85.41 84.03 120.14 84.07
Fixed-Point (4,4) 95.76 4.31 92.90 NA NA NA
Powers of Two (6,16) 99.14 8.42 86.13 84.85 114.70 84.79
Binary Net (1,16) 99.40 3.56 94.13 19.57 52.11 93.09

tion between bit precision and network memory requirements, the memory footprint of

each network reduces from 2× to 32× for different bit precisions. Note, we do not utilize

any of recent parameter encoding and compression techniques, and such techniques are

orthogonal to our work.

As discussed in Section 5.3.2, we propose that a portion of the benefits from using

low precision arithmetic can be exploited to boost the accuracy to match that of the float-

ing point network while spending some portion of the energy savings by increasing the

network size. Here, we showcase the benefits from our proposed methodology on CIFAR-

10 dataset. The summary of the performances for the ALEX as well as the two larger

networks (ALEX+ and ALEX++) is provided in Table 5.5. Here, we do not report the

results for fixed-point (32,32) for ALEX+ and ALEX++ as its energy saving is not com-

petitive compared to other precisions. Also, the fixed-point (4,4) fails to converge for all

three networks on CIFAR-10 and the respective rows have been removed from the table.

Furthermore, we find that the accuracy for fixed-point++ (8,8) is lower in comparison to

the other networks with the same precision. We observe that for this network, there is a

significant difference in the range of parameter and feature map values and as a result, 8

bits fails to capture the necessary range of the numbers.
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Table 5.5: Network performance for different precision on CIFAR-10 dataset and us-
ing ALEX, ALEX+, and ALEX++. Energy savings are in reference to the ALEX full-
precision implementation.

CIFAR-10
Class. Energy Energy

Precision (w, in) Acc. (%) (uJ) Sav. (%)
Floating-Point (32,32) 81.22 335.68 0
Fixed-Point (32,32) 79.71 293.90 12.45
Fixed-Point (16,16) 79.77 136.61 59.30
Fixed-Point+ (16,16) 81.86 491.32 1.5×More
Fixed-Point++ (16,16) 82.26 628.17 1.9×More
Fixed-Point (8,8) 77.99 49.22 85.34
Fixed-Point+ (8,8) 78.71 177.02 47.27
Fixed-Point++ (8,8) 75.03 226.32 32.59
Powers of Two (6,16) 77.03 46.77 86.07
Powers of Two+ (6,16) 77.34 168.21 49.89
Powers of Two++ (6,16) 81.26 215.05 35.93
Binary Net (1,16) 74.84 19.79 94.10
Binary Net+ (1,16) 77.91 71.18 78.80
Binary Net++ (1,16) 80.52 91.00 72.89

As shown in the table, lower precision networks can outperform the baseline design

in accuracy while still delivering savings in terms of energy. The parameter memory

requirements for the full-precision networks are roughly 350KB, 1250KB, and 9400KB

for ALEX, ALEX+, and ALEX++ respectively. As discussed previously, the memory

footprint reduces linearly with parameter precision when reducing the precision.

The available trade-offs in terms of accuracy and energy using different precisions

and expanded networks are plotted in Figure 5.4 for the CIFAR-10 testbench. The fig-

ure highlights the previous argument that a wide range of power and energy savings are

possible using different precisions while maintaining acceptable accuracy. Further, when

operating in low precision/quantization, a portion of the obtained energy benefits can be

re-appropriated to recoup the lost accuracy by increasing the network size. As shown

in the Figure 5.4, this methodology can eliminate the accuracy drop (for example in the

case of Power of Two++ (6,16)) while still delivering energy savings of 35.93%. The fig-

ure highlights that larger networks with lower precision can dominate the full-precision
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Figure 5.4: The Pareto Frontier plot of the evaluated design point for CIFAR-10 testcase.
The x axis is plotted in logarithmic scale to cover the energy range of all the designs. Here,
the black point indicates the initial full-precision design, the blue points indicate the lower
precision points, while the red and green points show the results from the larger networks.

baseline design in both accuracy and energy requirements.

5.5 Conclusions

In this chapter, we perform an analysis of numerical precisions and quantizations in neural

networks. We evaluate a broad range of numerical approximations in terms of accuracy,

as well as design metrics such as area, power consumption, and energy requirements.

We study floating-point arithmetic, different precisions of fixed-point arithmetic, quanti-

zations of weights to be of powers of two, and finally binary nets where the weights are

limited to one bit values. We also demonstrate that lower-precision, larger networks can

be utilized which outperform the smaller full-precision counterparts in both energy and

accuracy.
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Chapter 6

Accuracy-Energy Trade-offs in Iris

Recognition

6.1 Introduction

In this chapter, we provide our second case study for end-to-end approximate systems. We

observe that biometric security is another ideal candidate field for the application of ap-

proximate computing techniques. Biometric security applications include: finger printing,

iris scanners and face identifications to name a few. These applications are ideal for two

main reasons: (1) the biometrics are data rich, (2) they operate on noisy inputs as captured

from a sensor, and (3) the difference in biometric signatures of different individuals are

large, and as a result signatures from the same individual are considered equivalent even if

there are minor differences in them. For instance, the industry standards for iris scanning,

e.g., ISO/IEC 19794-6, consider an iris encoding, which is represented by 2048 bits, as

high quality even if the quality drops by 25% compared to the ideal case, because there
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is 1 in 13 billion chance to have a Hamming distance less than 25% between the irises of

two different individuals [17].

In this work, we propose an end-to-end biometric security system with an approximate

SW/HW pipeline. Using an iris recognition application we showcase how approximate

computing methodologies can be effectively implemented on an end-to-end system that is

widely deployed. This Chapter has previously been published in [33]. More specifically,

this chapter makes the following contributions.

• We propose biometric security systems as a novel direction where approximate com-

puting techniques can be readily applied, and we showcase the benefits of such ap-

proximations on an iris scanning system, which is a prime method for biometric

identification.

• We develop an end-to-end accurate system with approximate SW/HW processing

pipelining for iris scanning systems. The complex pipeline consists of four major

algorithms, where we identified in total eight knobs to trade-off accuracy of inter-

mediate computations with runtime and energy consumption. We show that while

controlled inaccuracies are added in the pipeline, the end encoding outcomes follow

the guidelines set in the industry for guaranteed security.

• To explore the design space of the approximate knobs, we utilize a design explo-

ration methodology enabling us to navigate the non-convex design space toward

optimal points.

• We fully implement our methodology on an FPGA-based SoC using a camera with

infrared sensor as input. We evaluate the performance of our system using both

standard datasets and live feeds directly from the camera. We demonstrate that

significant benefits can be achieved on an accurate end-to-end system using approx-
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imate pipeline. We report benefits of up to 48× in runtime while maintaining 100%

accuracy on the datasets and live feed.

The rest of this chapter is organized as follows. In Section 6.2, we provide a back-

ground of iris recognition and its pipeline. In Section 6.3, we describe our SW/HW pro-

posed methodology, our approximation knobs and our design space exploration methodol-

ogy. We discuss our experimental setup, as well as our experimental results in Section 6.4.

Finally, Section 6.5 summarizes our results and the contribution of this chapter.

6.2 Background

Employment of iris recognition systems as a biometric identification system has grown

exponentially in the security application domain. These systems can be utilized for iden-

tification purposes, where one instance is compared against the whole database, or for

verification purposes, where one instance is compared against one reference. While many

other biometric features sets have been proposed for identification purposes, iris recogni-

tion provides a wide gap between the inter-class and intra-class. In addition, compared to

other biometric features such as person’s face, which vary over time or due to different

poses, the iris is independent of age or external factors [17].

Figure 6.1 shows the flowchart of commercial iris recognition systems. These systems

use a pipeline consisting of four major components that takes input images from a camera

and produce as output the 2048 bit encoding of the iris.

1. At the front-end, a camera with an infrared sensitive sensor captures multiple frames

of an iris illuminated with infrared LEDs as given in Figure 6.1.a.
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Figure 6.1: The components of an iris recognition system.

2. The focus assessment stage assesses the focus of the captured frames and picks the

sharpest image for subsequent processing as illustrated in Figure 6.1.b. The degree

of focus for each frame is computed using a convolutional kernel that calculates the

energy of the images as described in [17].

3. Next, the iris image is segmented and the center points for the iris and the pupil

as well as their radii are computed as illustrated in Figure 6.1.c. Here, solutions

based on integrodifferential algorithm [17] and circular hough transform (CHT) [84]

have been proposed. In this work, the integrodifferential algorithm is utilized. In

integrodifferential algorithm, the whole image is first scanned for candidate pixels,

and each candidate pixel is then evaluated using a circular differential methodology

while the radius is changed fromRmin toRmax. Next, the candidate pixel with the

maximum value is passed to a fine-grain search where a small window around the

candidate is evaluated in a similar manner, resulting in the iris coordinates. Finally,

and in a similar step, a small window around the iris center point is investigated for

best match for pupil.

4. The output of the segmentation algorithm is then fed to the normalization algorithm

where the iris pixels are subsampled and organized in a Cartesian coordination sys-

tem. This is achieved by simply spacing the angular resolution and the radial reso-

lution equally, based on the segmentation results. Figure 6.1.d and 6.1.e show the
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subsampling process and the resulting 2-D output of the normalization respectively.

Finally, the normalized pixels are encoded into 2048 bits using a 2-D Gabor demod-

ulation [17] as shown in Figure 6.1.f. These 2048 bits form the signature of the

iris.

6.3 Methodology

Our goal is to minimize the response time to the user from the time of image capture to

the encoding of the iris, under the constraints that (1) the encoding is accurate by industry

standards, and (2) the resultant SoC can fit within the given resources of our logic device.

We describe next our novel methodologies for approximate computing for iris scan-

ning that achieve our goal. First, in Subsection 6.3.1, we explain our methodology for the

partitioning of the pipeline flow between the hardware accelerators and the soft processor.

Next, in Subsection 6.3.2, we summarize the approximation knobs that we have identified

and explored in this work. Finally, Subsection 6.3.3 discusses the methodologies used to

explore the design space created by the approximate knobs. Here, we discuss our novel

methodology for approximations where a RNN is utilized to find the optimal knob set-

tings. In this section, we also briefly discuss our methodology for computing the runtime

and the accuracy of each design point.

6.3.1 Proposed SW/HW Partitioning

As an initial step, we profile the pipeline to measure the runtime of its different algo-

rithmic components. To minimize the runtime, we synthesize the most computational
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Figure 6.2: Percentage of runtime used by various algorithms in the iris scanning pipeline.

intensive modules into hardware accelerators. The pie chart in Figure 6.2 summarizes the

runtime profiling results when running the flow in software. As shown in the graph, the

overwhelming majority of the runtime is spent in the focus assessment and the segmenta-

tion components, while the encoding component takes less than 1% of the total runtime.

Therefore, we choose to map these two components into custom hardware accelerators.

Here, for the focus assessment, we deploy a full-fledged accelerator with complex buffer-

ing to take advantage of data locality. On the other hand, for the iris segmentation, we

leave the control sequence in software and move the computationally intensive integrod-

ifferential computation to a hardware accelerator. More specifically, candidate points are

located in software and then passed to the accelerator, along with Rmin and Rmax, for

the computation of the maximum integrodifferential value.

Next, we provide some details on the accelerators implemented, based on the profiling,

and show the final system.
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Focus Assessment Accelerator

The main operation in the focus assessment component is the energy computation, which

is essentially a convolutional operation of the input image with a fixed kernel. Figure 6.3

shows the architecture of our hardware module for an 8×8 filter size. For each image,

the data is fetched from a DDR3 memory and fed into a series of FIFO to maintain the

consistency between the rows of the frame. At every clock cycle, the column of FIFO that

receives the data from the data port is updated with a new pixel data, and the convolution

module produces one output. For this reason, it requires an interface that exploits the

second column of FIFO that feeds the module every clock cycle. The energy computed by

the accelerator is 64 bits wide.

Integro-differential Accelerator

A fine-grain profiling of the pipeline flow algorithm timing shows that the runtime required

for the segmentation part overwhelmingly dominates the total runtime. More specifically,

the computations of the line integral consume more than 55% of the total runtime as shown
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in Figure 6.2. For this reason, we develop a hardware accelerator for fast calculation of

the Integro-differential operator. For HW/SW division of the flow, the software running

on MicroBlaze scans and detects possible candidates for center points as suggested by

Dougman et al. [17]. More specifically for each pixel in the image, the pixel is assumed to

be candidate if it is a local minima with intensity value lower than a predefined threshold.

If a pixel is deemed a candidate, its coordinates are passed to the accelerator and the start

signal is asserted. The hardware accelerator directly interfaces the memory in order to

speed up the movement of the data.

Figure 6.4 shows the structure for the accelerator implementation. The hardware unit

consists of two main components, namely curve integral unit and radius iterator, and a

gaussian filter unit as an intermediate component. For each input candidate center point,

the radius iterator iterates through all the radii from rmin to rmax, which are predefined

for irises and pupils. The unit then passes the radius signal r to the curve integral unit to-

gether with required control signals. The curve integral unit then generates the line integral

of the curve for a given center coordinates and radius. This component has direct access

to the on board DDR3 memory component and can initiate memory requests as needed.

The results from this unit are passed to the Gaussian filter unit where a shift register is

used to the differential operations between two consecutive radii. The differential results

are then smoothed using a 1D Gaussian filter as described by Dougman et al. [17]. The

smoothed differential results are then passed to the Radius Iterator which stores and finds

the maximum differential and the corresponding radius. The radius with the maximum

differential results is then produced as output of the accelerator.
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Figure 6.4: Architecture of the Accelerator Unit used in the Integro-differential Operator.

System Overview

Figure 6.5 shows the integration of various system components. Here a Microblaze soft-

core processor along with multiple accelerators and interface units are implemented on

the FPGA fabrics. The software and control portions of the iris recognition pipeline are

executed on the processor while other computational demanding parts run on the acceler-

ators. The processor communicates different commands to accelerator and interface units

through an AXI-4 Lite interconnect. Data and instruction caches for the processor are

implemented using the block RAM resources on the FPGA. For data read-write, the ac-

celerators and interface components communicate with the on-board DDR3 memory via

the AXI-4 interconnect and a memory controller block.

With HW/SW pipeline fully determined, we explore next the possible approximation

“knobs” of the system, whether in software or hardware. The runtime speedups and the

hardware resource utilization are then reported in Section 6.4.2.
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6.3.2 Proposed Approximation Knobs

We propose eight approximation knobs in our SoC iris scanning pipeline, where changing

these knobs effectively trades accuracy for runtime benefits. Therefore, we refrain from

introducing knobs that do not offer runtime benefits.

• Focus assessment: As the energy of each frame is computed as a convolution of

a kernel filter with the image, one obvious accuracy trade-off is the kernel size of

the filter. Furthermore, instead of computing the focus assessment on entire frames,

we can only compute the energy for a subset of the image; i.e., a region of interest

(ROI), to further reduce the runtime.

• Iris segmentation: We identify six more accuracy knobs in iris segmentation stage.

Here, Npoints in the number of points used to compute the differential in each circle;

Scale is the resizing factor used to reduce the segmentation image resolution; Thresh

represents the threshold beyond which a point is considered to be dark enough to be

a candidate; Rmin and Rmax define the range of radii for which the integration is

performed; and Search Window Size gives the size of the window around which the

local iris and pupil searches are performed.

85



Table 6.1: The list of approximation knobs evaluated in the design space exploration.
Values in brackets show the possible values.

Pipeline Real.
Accelerator Approximation Knobs [List of values] in
Focus Kernel Size [8, 6, 4] HW
Assessment RoI [1, 0.78, 0.50, 0.33, 0.20] SW
Iris Npoints [600, 400, 200, 150, 100, 75, 50] SW
Segmentation Scale [1, 0.85, 0.75, 0.50, 0.25, 0.20] SW

Thresh [102, 90, 77, 64, 51, 35, 26] SW
Rmin [45, 55, 65, 75, 85, 95, 100] HW
Rmax [180, 170, 160, 150, 140, 130, 120] HW
Search Window Size [11× 11, 7× 7, 3× 3] SW

• Normalization and Encoding: Lastly, in this step, as the design knobs providing

accuracy vs. runtime trade-offs also affect the signature specification, in order to

stay consistent, we refrain from introducing any knobs.

Table 6.1 summarizes the design knobs evaluated in our design space exploration as

well as their possible value sets. Here, we also list the component in which each of these

knobs are realized based on our SW/HW partitioning. The proposed design knobs result in

approximate design space of 648, 270 design corners. Clearly a brute force exploration of

the design space in not possible and a design space methodology is required for effective

exploration. Section 6.3.3, shows our work in addressing this issue.

6.3.3 Design Space Exploration Methodology

Before we can explore the design space to identify the best settings, we need to quantify

the accuracy and runtime of different sets of design knobs.
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Table 6.2: The formulation used to model the runtime behavior as a function of the design
knobs. Note that as we do not modify any knobs in the encoding components, we consider
its runtime as a constant.

Pipeline Component Runtime Model
Focus Assessment ∝ RoI2.KernelSize2

Iris Segmentation = RCoarse +RIris +RPupil

–Coarse Search ∝ Scale3.Thresh.Npoints.(Rmax−Rmin)
–Iris Local Search ∝ WindowSize2.Npoints.(Rmax−Rmin)
–Pupil Local Search ∝ WindowSize2.Npoints.rIris
Total = RFocusAssessment +RResize+

RSegmentation +REncoding

Accuracy and Runtime Measurements and Modeling

As evaluating all of the corners on hardware is infeasible, we simulate and formulate the

accuracy and the runtime respectively. Since the accuracy performance of one component

in the pipeline greatly affects the other components and the final results, we have to es-

timate the accuracy of a set of knobs using the entire flow through simulation. Thus, to

compute the accuracy for each set of design knobs, we run a SW/HW co-simulation of the

entire flow. Since such co-simulation can consume significant amount of time, we describe

in the experimental results section techniques to speed it up. Unlike accuracy, the runtime

of the pipeline flow can be readily decomposed. To that end, we mathematically model

the runtime based on the input design knobs and our understanding of the complexity of

the algorithm. A summary of our runtime models is shown in Table 6.2. With the runtime

formulated, we profiled some training sets of design knobs to quantify the coefficients.

We then verified our formulation on another set of knobs settings demonstrating a runtime

modeling error of less than 5%. Note that this runtime merely guides the design space

exploration and will not translate into inaccuracies.
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Reinforcement Learning Based Design Space Exploration

As a powerful machine learning method, reinforcement learning enables an autonomous

agent to make good decisions in its environment through trial-and-error using reward func-

tions. As the agent learns, it starts to tune in on the best set of actions that maximizes its

expected reward. Recently this approach has been used to determine the appropriate archi-

tectures for general deep neural network classifiers with promising performance [99]. This

ability to learn and navigate through complex environment is a perfect fit for our problem.

Our multi-objective function, which minimizes runtime and meets encoding error rate re-

quirement, is non-convex. In addition, the input design space contains many dimensions,

which makes it hard for traditional exploration methods such as gradient descent. Using

reinforcement learning, we direct the agent, an RNN, to learn the best approximations for

SW/HW knobs in the exponential design space. Unlike traditional feed-forward neural

networks, RNNs have the ability to produce arbitrary-length output sequence. In this case,

we encode SW/HW knobs to form a “sentence” [99]. The RNN is then used to predict

the best sentence to optimize the systems metrics. During the learning process, the agent

seeks to change its predicted sentence to maximize its reward function.

The words in the predicted sentence corresponds to approximations for the knobs.

Using an accuracy co-simulation flow and runtime models, we then evaluate the impact

of the approximations as shown in Figure 6.6. More details on the RNN training process

and the reward function are available in our previously published work [33]. Algorithm 2

describes the overall design space exploration methodology.

After initialization, in an iterative manner, new values for the approximation knobs are

proposed by the design space exploration methodology. Specifically, for each iteration,

first the RNN is used to suggest a new set of approximation knob values. Once the knobs

values are chosen, we compute the runtime using our models and the error rates through
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Figure 6.6: Design Space Exploration with Reinforcement Learning using RNN.

simulation. These characteristics are then utilized to update the RNN [33]. In lines 10-13,

if the maximum error is lower than the threshold and the design offers the best runtime

observed so far, current knobs values are stored as the output of algorithm.

While RNN can efficiently explores the breadth of the design space, it can takes sig-

nificant amount of time to zoom in on local optimal point. To further improve the runtime

benefits, we propose to perform a local search (LS) step using the best result obtained

from the RNN. Here in one iteration, we change each parameter one step as long as it does

not violate the accuracy.

6.4 Experimental Results

In this section we evaluate our methodology empirically, considering both runtime and ac-

curacy performance. We compare our proposed methodology against a greedy and a local

search based heuristics (similar approach to methodology proposed in recent work [69])
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Algorithm 2: Design Space Exploration Methodology
// Design Knobs: List of tunable design knobs with

their possible approximations.
// Approx Knobs: The approximations for design knobs.
Input : Design Knobs
Output: Approx Knobs

1 Initialize(RNN);
2 for iteration = 1 to N do
3 In = START TOKEN;
4 knobs = RNN(In);
5 rtcurrent = GetRuntime(knobs);
6 err rate = SimulateErr(knobs);
7 avg err = Average(err rate);
8 max err = Max(err rate);

// Update RNN parameters [33]
9 Update(RNN,rtcurrent, rtbest, avg err, max err);

10 if max err < threshold AND runtime < best runtime then
11 rtbest = rtcurrent;
12 Approx Knobs = knobs;
13 end
14 end
15 return Approx Knobs

and report its performance.

6.4.1 Experimental Setup

For our experiments we use a Spartan6 Xilinx development board interfaced to a 5 MP

Videology camera with infrared optical filter and infrared LEDs for illumination. This

24B5.05USB3 camera features a unique 10 bit digital output port, which allows a direct

interface to the raw image sensor pixel data. We also use an Agilent 34410A multimeter

to monitor the current and measure power consumption accordingly. Figure 6.7 shows our

camera and FPGA setup. We compile and synthesize all our results on the FPGA board

and confirm correct functionality. While we test and run all our designs on the FPGA;

for DSE, we co-simulate the accuracy of the SW/HW system and model the runtime. To
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Figure 6.7: Our camera and FPGA board Setup.

speed up the computationally demanding co-simulation, we use Verilator [81] to compile

the Verilog-based hardware accelerators into C-based simulators, and then use gcc to com-

pile all the components in software. For runtime, we use the methodology described in

Section 6.3 based on training samples of runtime from the actual board. To validate our

performance and to compare against industry standards, we use two sources: (1) images

from MMU open source dataset, and (2) live feeds captured from our camera system.

Since MMU provides still images, we bypass the focus assessment module for their eval-

uation. For images captured from camera, we explore the complete flow where the energy

of 10 frames are evaluated before the sharpest image is passed to the rest of the pipeline.

In order to assess accuracy, we cross validate the signature of each image in the dataset,

using the approximate knob settings, against all of the signatures of the same eye in the

repository when computed with full quality. To ensure 100% accuracy in the design, if

at any point the maximum hamming distance error of any two images from the same eye

goes above 0.35% the design is discarded. Using this threshold ensures a false positive

rate of 1 in 133,000 [17]. Next section provides our results.
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Table 6.3: The components chosen for hardware acceleration, the corresponding speedups,
and the hardware utilization of each accelerator.

Pipeline Component Speedup HW utilization (%)
Focus Assessment 1234× 25.71
Iris Segmentation 6.8× 13.24
System 15.42

6.4.2 Results and Discussion

We first evaluate the benefits achieved from mapping part of the computing pipeline into

custom hardware accelerators. As discussed in Section 6.3.1 and as commonly practiced,

we map the algorithms that have the highest contribution to the total runtime of the iris

scanning pipeline to hardware. Thus, we manually translate and map the focus assessment

and the segmentation components into hardware accelerators, and leave the remaining

parts of the flow to run as software on the MicroBlaze processor. After mapping these

two components, the total logic utilization of our device reaches about 60%. Table 6.3

shows the speedups when focus assessment and segmentation are mapped to hardware

accelerators, together with the logic utilization. These results are merely the benefits from

hardware acceleration and use no approximations.

Next, we evaluate the performance of our proposed DSE methodology. Figure 6.8

shows the design points evaluate using our proposed RNN methodology. Here, the base-

line point shows the average error of the SW/HW design without approximation. Using

our reinforcement learning based DSE method, our design can achieve up to 42× speedup

while still maintaining the standard accuracy limits. Using the proposed RNN+LS method,

the algorithm achieves 48× in speedup. We stress that these speedups are due to ap-

proximate SW/HW processing and they are on top of the savings achieve due to the HW

acceleration.

We also compare our proposed method against a greedy and a local search heuristics.
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Figure 6.8: The design space explored using the proposed RNN, as well as RNN+LS.

In the greedy approach, starting from the beginning of the pipeline we approximate each

design knob as much as possible before moving to the next one. The process is continued

until all knobs have been visited. On the other hand, for the local search approach, we

iteratively change each quality knob individually by one in order to generate a new design

point. The design point with the highest gradient, where the gradient is defined by the

ratio of runtime improvement over quality degradation, is chosen as the parent for the

next iteration. Table 6.4 summarizes the trade-offs in speedups and effort offered by each

design space methodology. Further, as shown in the table, the proposed method results in

the highest speedup while requiring significantly less effort when compared to the gradient

descent. On the other hand comparing to the greedy, higher speedups are provided. Note

that here, the number of design points evaluated reported in the table directly indicates the

efficiency of the DSE algorithm.

Finally, we evaluate the output design of the our methodology on the FPGA board

to verify the runtime and the accuracy performance. We also compare the result of our

methodology with pure software and software/hardware codesign methods. While for
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Table 6.4: The comparison of the results using the proposed method ad compared against
pure gradient descent and greedy methods.

Ave. Error Design Points
Design Speedup (%) Evaluated
RNN+LS 48× 21.92 63
Greedy 37× 21.44 21
Local Search 42× 21.38 132

Table 6.5: The hardware characteristics of the end-to-end system.

Runtime HW (%) Energy Memory
Design (s) Utilization (kJ) (MB)
Pure SW 2419.6 15.42 47.90 0.69
SW/HW 198.3 54.37 3.94 2.20
Approx. SW/HW 6.4 46.42 0.12 0.89

the previous experiments, we relied on the MMU benchmark dataset, for this experiment

we use our camera system to capture iris images and run the complete flow. Here, we

highlight the immense benefits of exploring the hardware/software codesign domain in

conjugation with the approximate design knobs exploration. Table 6.5 summarizes the

results. As shown in the table, significant benefits are achieved in terms of both runtime,

and the total energy. Compared to a pure SW implementation, our approximate SW/HW

pipeline is able to achieve a speedup of 378×while meeting the industry standard accuracy

requirements.

6.5 Conclusions

In this chapter, we identified biometric security as a potential application domain for ap-

proximate computing, and we illustrated this potential through a comprehensive case study

on iris scanning system. We devised a SW/HW flow that processes input images from a

live camera to produce the final encoding of the iris. Our pipeline flow consists of four

major algorithms, where we identified eight design knobs that can trade-off design met-
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rics with accuracy as measured by the Hamming distance of the final iris encoding to the

golden encoding. We explored the approximate design space offered by these knobs and

identified optimal points. Using a comprehensive SoC implementation in a FPGA-based

system that receives inputs from a camera sensor with infrared optics, we showed that we

can minimize runtime, which in an FPGA system directly maps to energy consumption,

by 48× compared to exact SW/HW while fitting in the given FPGA resources and meeting

the target accuracies of the iris encoding as set by industry standards.
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Chapter 7

Summary of Dissertation and Potential

Future Extensions

In this thesis, we proposed new techniques in different areas of hardware approximate

computing paradigm. We extensively evaluated our results using simulations and synthe-

sis using industry strength standard cell libraries. We further evaluated application spe-

cific approximations for two different case studies, namely deep neural networks, and iris

recognition systems. In this chapter, we summarize the main contributions of this thesis,

highlight the key results, and discuss the potential extension directions to this work.

7.1 Summary of Results

First, in Chapter 3, we discussed in detail, our proposed arithmetic approximation scheme

based on unbiased dynamic truncation. Our methodology provides two significant advan-

tages over previous work. First, our dynamic technique guarantees a tight maximum error
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bound by always selecting the most important bits of each operand. Second, the resulting

unbiased error distribution ensures the occurrence of both underestimation and overesti-

mation errors, therefore allowing for reductions in errors through errors canceling each

other out. Our methodology also benefits from a design time tunable parameters where

a smooth accuracy-power trade-off is available based on the application quality require-

ments.

We explored and evaluated the performance of the approximate methodology on two

resource heavy arithmetic, namely multiplier and divider. For each operation, we explore

the design space both as a factor of the approximation factor, and the operator size. We

show significant benefits for both operations where benefits of up to 71.45% in power

savings are available for an average absolute error of 1.47% for the approximate multiplier.

Similarly, in the case of the approximate divider our scheme delivers up to 70.81% in

power benefits with an average absolute error of 3.08%. To further highlight the benefits,

we evaluated our design using real world applications showing considerable benefits with

insignificant reductions in QoR.

Next, in Chapter 4, and in approximate synthesis domain, we proposed and evaluated

a new technique where approximations can be introduced in the truth table of any arbi-

trary logic using Boolean matrix factorization. Our approach, BLASYS, benefits from a

approximation knob where different degrees of approximation can be exploited. We also

investigate the benefits of expanding the QoR metrics as used in factorization algorithms

to account for binary representation. BLASYS, therefore, provides a systemic approach

to trade accuracy for benefits in design complexity. We also provided a heuristic opti-

mization algorithm, based on local search, to navigate the design space of larger circuits.

BLASYS offers benefits of up to 47.55% for an error threshold of 5%, showing significant

improvements over the previous work.
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In chapters 5 and 6 we investigated the applicability of the approximate computing

concepts and techniques to real world applications by evaluating two case studies, namely

deep neural networks, and iris recognition. First, in Chapter 5, we performed an numerical

analysis evaluating a broad range of precisions and quantizations ranging from floating

point to fixed point, powers-of-two and binary networks. We explored these precisions

considering both the accuracy and the hardware metrics such as design area, power de-

mands, and energy requirements. In this chapter, we also demonstrated that slightly larger

networks utilizing lower-precision offer significantly more energy efficient models and

outperform the full-precision counterparts in both accuracy and hardware cost. In our

experiments and on CIFAR-10 dataset, we observe benefits of up to 36% in in energy

benefits while outperforming the original full-precision model in classification accuracy.

Finally, Chapter 6 described the approximate methodologies introduced as part of an

iris recognition pipeline. The main motive behind this case study is to showcase applica-

tions where due to the security nature of the application, accuracy does not appear as an

expendable metric. However, through this comprehensive case study we highlight the ap-

plicability of approximate computing paradigm in biometric security applications without

compromising the target accuracies required by the industry. Furthermore, we implement

our techniques as part of an end-to-end SW/HW co-designed pipeline, where image are

captured from an infrared camera and processed all the way to the final encoding result. In

our pipeline, and for each component, we identify design knobs where the accuracy can be

traded-off for complexity reduction. In order to explore, the design space of such knobs,

we devised an exploration methodology based on reinforcement learning. We showed run-

time benefits of up to 48× while remaining within the industry standards for acceptable

accuracy.
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7.2 Potential Research Extensions

In this thesis, we explored different approaches to approximate computing paradigm, as

well as evaluating two complex computing systems as case studies. The ideas put forth in

this work can be expanded in the following ways.

Since the publication of our results in approximate arithmetic design, many work have

investigated different approaches [1, 53, 76, 97] as well as expanded on our work [4, 38].

However, one less explored implementation is the idea of implementing the same dynamic

unbiased approach for other complex arithmetic systems, such as square root, etc. We also

described our approach to design of approximate synthesis methodologies. The proposed

approach opens many doors for investigation in logic synthesis. Future work can include

improved techniques for BMF including literal aware approximations, direct incorporation

of the QoR metric into the numerical optimization of the factorization algorithm, improved

k × m circuit decomposition, a design space exploration for the cut size, and improved

design space heuristics for fewer design point evaluations.

Similarly for our case studies, and in the case of neural networks, we plan on analyt-

ically investigating the correlations between network and datasets and their behavior in

lower precision thereby effectively predicting the optimal lower accuracy and hardware

metrics. Further, we plan to develop architectures which support multiple radix point lo-

cations between layers. Our exploration can also be expanded to other network topologies

and architectures. Alternatively, precision requirements in training process can also be a

potential addition to this work.

Finally, and in the case of the iris recognition, exploration of different biometric sys-

tems appears a compelling extension to the current work. Such biometric systems, include

3D facial recognition, and fingerprint recognition where similar approximate techniques
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can readily be applied in the future work. BMF can also be applied to approximate the

underlying accelerators of the proposed biometric security systems.
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