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1. Introduction 

1.1. Heterogeneous Computing 

A bottleneck of general-purpose architectures is that they usually spend most 

of the time on tasks for which they are not optimized to execute. The underlying 

reason may be that many believe that many different tasks can adapt to the same 

kind of hardware computation, with the only discriminant being how long they 

take to execute. Unfortunately, there is not an all-encompassing architecture can 

well match all types of data access patterns or algorithms. As a result, only a 

fraction of the potential peak performance can be achieved on many applications 

[1].  

To better match application needs to appropriate hardware resources, and to 

provide higher computational performance, heterogeneous computing is being 

advocated. Heterogeneous computing refers to a single computing system that 

coordinately use different types of cores, accelerator devices, or memory 

interfaces to optimize their combined performance or/and power efficiency [2]. 

The increasingly growth of many- or multi-core processor with parallel, 

pipelined, and other special-purpose architectures applied to high performance 

computing systems (HPC) makes it possible to effectively handle 

computationally intensive problems with heterogeneous computing. Compared 

with using traditional homogeneous baseline systems, each task can be assigned 

to an “appropriate” processor or device to maximize total performance. Since the 

tasks are well matched to the hardware resources, and all the 

processors/devices can execute concurrently, the use of heterogeneous 

computing would easily lead to an optimal computational performance. 
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Figure 1.1.1 shows an ideal example of a program whose subtasks are adapted 

to different types of architectures [1]. A pipelined system can give twice the 

performance achieved by executing it on some linear single-core system.  

 

Figure 1.1.1 Hypothetical example of using heterogeneous processing [1]. 

Heterogeneous computing supports a great number of different applications. 

Although they may have diverse implementations, all the heterogeneous 

computing-oriented platforms should be able to perform the following the 

functions [6]: 

1) Detect all available components/devices of the heterogeneous system. 

2) Explore and adapt to each component/device’s characteristics.  

3) Generate instruction blocks (kernels) that can be executed on device. 

4) Build and manage the memory objective. 

5) Execute each kernel in appropriate device as well as in appropriate 

order. 

6) Return the final result. 

The above steps constitute the baseline of a heterogeneous system.  CPU-FPGA 

heterogeneous system is no exception. The above functions are implemented in 
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OpenCL programming flow, which helps programmers handle this structure with 

ease.    

1.2. FPGA Accelerator 

Heterogeneous systems utilize multiple types of processors, like CPUs (central 

processing unit), GPUs (graphics processing unit), DSPs (digital signal processor) 

and other microprocessors, to give an optimal performance with highly parallel 

architectures.  

When we only consider the clock speed, there is no doubt that CPU will be the 

winner. However, CPU perfects in handling serial tasks, which means typically it 

can only execute one instruction per clock cycle. As a result, CPU’s peak 

performance is much worse than GPU’s. Consider a state-of-the-art CPU edition, 

6-core Intel Core i7-3930K [12]. And there is an instruction named MAD 

(Multiply-ADD), which allows two operations to be executed in SSE register in 

one clock cycle. With a base frequency 3.3 GHz and hyper-threading technology, 

Intel CPU is possible to execute:  

2(threads/core) × 6(core) × 2(double precision floats) × 2 (MAD instruction)

= 48 

instructions per clock cycle. Consequently, the theoretical performance of Intel 

Core i7-3930 will be 48 × 3.3 = 158.4 GFLOPS. 

GPU is well known with its great graphics rendering capabilities and superior 

performance in computations on very large data sets. With a lot more processing 

units than CPU, GPU is able to execute much more instructions per clock cycle. 

Consider a many-core GPU beyond handling graphics only, known as GPGPU, 

then. Take NVidia GeForce 9800 GTX GPU, which has 128 Shader units at 1.688 
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GHz, for example [13]. Unlike CPU, GPU is able to execute MAD+MUL instruction, 

which combines MAD with one more multiply into one instruction, in a single 

clock cycle. Its theoretical performance can reach 128 × 3 × 1.688 =

648 GFLOPS. Under such measurement, GPUs exhibit higher performance than 

CPUs.  However, GPU also has its drawback in power consumption. It typically 

consumes power at the scale of 200-300 Watt, which is about twice of the power 

consumption of CPU. 

Finally, let’s think over the performance of FPGAs. FPGAs are reconfigurable 

integrated circuits consisting of programmable routing networks linking 

together logic array blocks, embedded memory blocks, and digital signal 

processor (DSP) blocks [5]. From its earlier days, FPGA has served as platforms 

for configurable computing. Instead of working as SIMD (single instruction, 

multiple data) devices (such as GPUs) that exploit data level parallelism, FPGAs 

can create custom instruction pipelines when process the instructions. 

FPGA, as a hardware accelerator, exhibits advanced computation capability as 

software devices like CPUs, GPUs, and DSPs, and preferable energy consumption 

as ASICs. With the ability to configure local customized storage, FPGAs could 

reuse the already fetched data. Such efficient use of memory bandwidth brings 

FPGAs with speed-up over both CPUs and GPUs. Besides their high performance 

in processing data, as demonstrated in [3], the power consumption of FPGAs 

platform is only 10% of the GPU and 16% of CPU. Moreover, FPGAs have 

improved reliability and reduced mean-time-to-failure compared to GPUs 

because they run at lower temperatures. Based on the above advantages, FPGAs 

are very promising alternative solution for real application sets with 

computationally intensive algorithms, considering the hardware parallelism 
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advantage of FPGAs. 

 

 

Figure 1.2.1: Comparison of parallelism of GPU and FPGA. [4] 

In terms of pipeline parallelism, a function loaded to FPGA can be divided into 

phases and by inserting pipeline registers between operators, the execution 

phases can be pipelined. The pipeline can also be replicated for further 

parallelism. Figure 1.2.1 shows the difference of parallelism between GPU’s and 

FPGA’s. 

Take Vector Add for instance. Figure 1.2.2 shows its GPU implementation. Each 

thread is going to be assigned a unique address, which marked as its global id, and 

all the threads will then process a kernel function concurrently.  
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Figure 1.2.2 Mapping get_global_id to a work-item. [6] 

 Whereas threads execute in parallel on different cores of CPU or GPU, OpenCL 

compiler for FPGA can translate the executions into deeply pipelined hardware 

circuits [11]. FPGA implementation of adding two vectors can be separated into 

three portions: load operands, add, and store result, which form a pipeline 

dataflow. On each clock cycle each thread will be pipelined to process different 

operations. As shown in figure 1.2.3, work-item 0 is being stored, while 1 is being 

added and 2 is being loaded. 

 

 Figure 1.2.3 Pipeline example for Vector Add. 
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Other more complicated operations will be synthesized to pipelines with more 

stages, and each pipeline stage can be reused by appropriately overlapping the 

instructions and data.  

We can either choose to form a pipelined execution within one operation or 

among several operations. Taking two operations for example, if the output of 

one operation A is consumed by a second operation B, two operations must be 

executed sequentially on CPU that B can only start after A has produced the 

entire set of executions in its output. While in hardware designs, it is possible to 

run operation A and operation B simultaneously on different processors, and B 

could start its execution in parallel as long as A produced some results.  

1.3. Implementing hardware program with OpenCL 

Unsatisfactory programmability and difficulties in debugging largely prevent 

the wider adoption of FPGA-based accelerators Implementing software 

programs into hardware requires solid experience and deep understanding for 

logics and circuits in the past. Therefore, both software engineer and hardware 

engineer keep exploring new solutions for automated software compilation into 

hardware. Inspired by such strong need, an open standard tool, OpenCL, 

proposed by Apple Inc. and maintained within Khronos Group supplies such 

demand. 

Open Computing Language, short as OpenCL, is a standard framework for 

general-purpose parallel programming heterogeneous systems including CPUs, 

GPUs, FPGAs, and custom devices that execute across different computing units. 

With its API and a kernel-oriented programming environment, OpenCL can 
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achieve all the steps mentioned in Section 1.1. OpenCL specifies an ISO/IEC 

9899:1999 C language (C99) based programming language that describes data-

parallel kernels and tasksacross different devices  [6].  

Data parallelism in OpenCL is expressed as an N-dimensional (N = 1, 2, or 3) 

computation domain (referred to in short as NDRange). NDRange defines the 

total number of work-items, which execute an instance of a kernel respectively, 

in parallel. A further explanation for a kernel is a function executed for each 

work-item. Here is an example of a data-parallel kernel: 

void trad_mul (int n,  

                        const float *a,  

                        const float *b,  

                        float * result)  

{  

        int i;  

        for (i=0; i < n; ++i) 

           result [i] = a[i] * b[i]; 

} 

 

__kernel void vector_add( 

                         __global const float *x,  

                         __global const float *y,  

                         __global float *result) 

{ 

    // get index of the work item 

    int id= get_global_id(0); 

    // add the vector elements 

    result[id] = x[id] + y[id]; 

} 

Figure 1.3.1 The implementation of vector addition in OpenCL FPGA kernel.  

The kernel named vector_add functions as summing two vectors of floats. The 

inputs are referred as x and y, while result is the output. The get_group_id(dim) 

(in this example dim = 0) gets the index of each work-item and returns a one-

dimensional NDRange, in which work-items spawn from 0 to get_global_size(dim) 

– 1. Each work-item, which acts as a single thread, is processed by a processing 

element, and those elements will form to a work-group and be executed within a 



    
 

9 

compute unit. Such functionality makes synchronization much efficient since 

only two types of barriers are needed: An explicit barrier for all work-items 

within a workgroup, and an implied barrier upon kernel completion for all work-

items in an NDRange [5]. 

As a popular industry standard, OpenCL has multiple implementations from 

Altera, AMD, Apple, Intel, NVIDIA, Xilinx, IBM and many other venders. All the 

test-benches in this project were implemented with Altera OpenCL. The Altera 

SDK for OpenCL complies with the OpenCL 1.0 specification for embedded 

profiles and updates its supports according to the OpenCL 1.1 and 1.2 

specifications [7]-[9], which significantly reduces the complexity of converting a 

software application to its hardware implementation. The system overview is 

shown in Figure 1.3.2. 

 

Figure 1.3.2 Altera OpenCL system overview [11]. 

Altera Software Development Kit for OpenCL maps the OpenCL kernel to FPGA 

implementation with its offline compiler, Altera OpenCL compiler (AOC). In 
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process of compiling, AOC will automatically translate OpenCL to Verilog and 

runtime libraries for the host application API and hardware obstructions [10].  

 

Figure 1.3.3 Altera OpenCL System Implementation [8]. 

A detailed and complete system implementation model of Altera OpenCL is 

defined in figure 1.3.3. OpenCL platform consist of a host, one or more OpenCL 

supported FPGA device(s) and connected by PCIe bus. An FPGA device is further 

divided into multiple Compute Units (CUs), and a CU is made up by a group of 

Processing Elements (PEs), which are work-items or SIMD units.  

There are totally four memory regions, which ensure the efficiency of 

requesting the memory. Each work-item has its private memory that cannot be 

accessed by other work-items, and each compute unit has its local memory, and 

this memory is local to all the work-items within that work group. Different CUs 

can share information with external memory via global memory interconnector; 

loaders and savers are also connected to the global memory and scheduled by a 
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group of DDR DIMMs. Besides global memory, there is another external memory 

called constant memory, which is used by host to allocate, initialize or free 

memory, and stays constant while kernel is processing. 

1.4. Research Overview  

This thesis explores ways to minimize the execution time by maximizing the 

overlap and balance between communication and computation on 

heterogeneous systems with both CPUs and FPGAs. Then we analyze the 

performance and energy efficiency from using FPGA accelerated application by 

implementing several benchmarks. 

To best study OpenCL workflow and leverage its advantages, we first 

implement a simple HLS (high level synthesis) benchmark suite, the CHO 

benchmark set [15], as the kernel functions to FPGA board. HLS is an automated 

design process that helps designers convert an algorithmic description to RTL 

(register transfer level) description [18]. Each of the CHO benchmarks is a single 

kernel and has a test-bench that is part of the host program, and data will be 

read/written on the host end. With such implementation, we can better 

understand the way that external I/O interfaces between host and device(s) 

works.   

Based on the above experiments, we could have an overall understanding to 

OpenCL and FPGA workflow. In order to maximize the advantage of FPGA 

accelerator, we then focus on the topic of design space exploration, and try to 

find out the appropriate scale of hardware resources that lead to an optimal 

performance. 
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Afterwards, we balance and improve the performance of the benchmarks by 

overlapping their hardware implementation or data migration part with 

software implementation. To reach the optimal result, we keep the total data size 

unchanged but iteratively adjust the size of data sets that sent into software (CPU) 

and hardware (FPGA) respectively. We also put forward a way to determine the 

possibility and degree of improving a program’s performance with such 

framework ahead of implementing OpenCL program. 

The rest of this thesis is organized as follows. Chapter 2 reviews the 

background and previous work. Chapter 3 investigates the Altera based FPGA 

design space exploration. The implementation and results of our suite of 

benchmarks for FPGA is also described in chapter 3. Chapter 4 focuses on 

optimizing programs’ performance with CPU-FPGA heterogeneous platform. 

Finally, Chapter 5 sums up our analysis and addresses the future work we are 

interested in. 

1.5. Experimental Setup 

For our experimental platform, we use Terasic DE5-Net Development Kit 

empowered with the top-of-the-line Stratix V GX FPGA board. DE5 is integrated 

through version 3.0 PCI interface with a motherboard with AMD A10 processor 

and 16GB DDR3 memory with a transfer bandwidth of a maximum of 12.5 Gbps. 
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Figure 1.5.1 AMD-Altera Platform. 

 

Figure 1.5.2 FPGA’s Architecture [15]. 

We sample the total AC power consumption data of the entire motherboard 

including DE5 board using digital multimeter.  

We implement three benchmarks to compare the performance improvement 

of hardware implementations under several groups of hardware resource 

attributes with pure software implementations. And four benchmarks are 

designed in CPU-FPGA symbiosis computing part. All the experiments in this 
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thesis are achieved with DE5 and Altera OpenCL, see figure 1.5.1, and figure 1.5.2 

gives the architeture of the FPGA. 
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2. Background 

2.1. Related Work 

This section mainly discusses the related work on FPAG accelerators.  

As a technology that can automatically translate behavioral level descriptions 

into RTL (register-transfer level) descriptions, HLS (High-Level Synthesis) 

frameworks are of a great deal of interest.  

Several previous works presented benchmarking of HLS technology. In [14], Y. 

Hara et al. proposed a standard benchmark for C-based high-level synthesis, 

named CHStone, for HLS researchers to evaluate the effectiveness of their 

acceleration techniques. They include 12 programs, which were selected from 

several different domains, in their suite and analyze the source-level features, 

resource utilization, and sensitivity to resource constrains. However, their 

implementation is based on a state-of-the-art HLS tool called eXCite instead of 

OpenCL. Although HLS approaches realize an automated conversion from 

algorithmic description to RTL (register transfer level) description, this tool is 

still designed for hardware engineer. HLS tool targets to implement IP 

(Intellectual Property) cores with C-based language, and then maps those IP 

cores to an RTL architecture over several clock cycles, which makes it not 

preferable for implementing large system. Additionally, instead of using pipeline 

parallelism, HLS tools achieve parallelism by scheduling independent operations 

in same clock. It is because of the limitation of C-based language – pipeline 

descriptions are implicit [23]. As a result, such approaches may not make best 

use of FPGA. 
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Recently, Ndu et al. propose a suite of OpenCL port of the commonly used 

benchmark, which extends CHStone benchmark suite and named CHO, for 

qualitative evaluation [15]. Their benchmark suite targets OpenCL 1.0 so that it 

is compliant to any OpenCL compiler version. The test-bench of each application, 

which is implemented on the host side, enables them to examine the external I/O 

interfacing and its bandwidth. They successfully synthesized 4 test functions out 

of 12, and evaluated how a program’s source-level and IR (intermediate 

representation) -level characteristics impact the resource utilization of hardware 

implementation as well as the program’s performance. The results provide a 

rough indication of the complexity of each application on FPGA. 

Meswani et al put forward an implemental methodology that helps 

researchers explore the optimization opportunities in [17]. This paper raises a 

creative concept, idiom, which can help programmers determine whether a given 

application benefits from a certain accelerator. Idioms, or the pattern of 

computation and memory access, could be useful for describing how a particular 

application, or a sort of applications can be potentially optimized or sped up. 

They focus on stream and gather/scatter idioms, and capture the indicative 

parameters from the source code of a set of benchmarks to determine the 

performance. The test result shows that the optimization of run time is largely 

dependent on the data size, the data migration cost and data footprint. A binary 

instrumentation tool named PEBIL is used to capture the data footprint at the 

runtime, and the PMaC performance-modeling framework is chosen to provide 

predictions of large scale HPC application performance. Based on the 

experimental data, they derived a prediction model concerned about the 
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memory access time for both GPU and FPGA applications, which can accurately 

predict each idiom’s run time with error rate between 0.3% and 17.3%.  

A prediction model only concerning gather/scatter idioms from [18] can 

achieve more accurate prediction with error rate that is less than 10% for 

gather/scatter idiom. Their implementation is done on a HC-1 platform. They 

firstly compile the SGBench benchmark on the host side, and then run the 

majority executions on host side, while the loops that contain G/S computations 

run on the FPGAs. The measurements are taken both on the host processor and 

FPGA coprocessor, which illustrates the relation between the size of address 

range and memory bandwidth. It is demonstrated that their fine-grained model 

for FPGA has less than 8.6% absolute error, and further identify that more than 

100 instances of G/S idiom are not worth porting, which largely saves the 

programming time and decreases the likelihood of inaccurate result. 

The compelling performance offered by FPGA leads researchers and engineers 

apply FPGA to diverse fields. In [16], W. Vanderbauwhede et al. explore a way to 

implement a document-filtering algorithm, which is widely used in database and 

served as a filtering mechanism, with FPGA. They demonstrate the tremendous 

advantages provided by FPGAs in both performance and power for document 

filtering is that FPGA implementation for unstructured search achieved an 

overwhelming speedup than the standard implementation. For the three IR 

collections they tested, FPGA implementation gains about 10x to 20x than the 

reference implementation.  

Such implementation was also illustrated in [3], Doris et al. take advantage of 

Altera OpenCL and created a kernel to perform the filtering function, and then 

improve the memory bandwidth efficiency with memory coalescing. They also 
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take advantage of a Bloom Filter to optimize the memory bandwidth, which is 

caused by read access. Bloom Filter is like a hash map, and it performs a pre-

search function that can reduce the times of memory access to the profileWts 

array. Their result shows the performance comparison among Multi-Core CPU, 

GPU and FPGA, and FPGA outperforms CPU and GPU by a factor of 5.25x and 5.5x 

respectively when considering the power of external bridge chip and memory 

power. 
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3. Design Space Exploration  

OpenCL is designed as a software-friendly high level language that enables 

programing on hardware accelerator. However, it is still a hardware-targeted 

description. One primary factor that distinguishes OpenCL from software 

programming language like C or C++ is that OpenCL support statements of 

setting hardware attributes. Such feature helps programmer exploit the 

hardware resource under a custom manner. This chapter addresses the problem 

of optimizing the accelerator’s performance with appropriate hardware resource 

attributes. 

3.1. Altera OpenCL Optimization  

Altera OpenCL provides programmers several ways of optimizing the kernel 

function to achieve high performance. To achieve higher performance, it is 

necessary to optimize the kernel with either automated or manual optimization. 

In this section, we leverage the pros and cons of those two optimization 

approaches. 

3.1.1. AOC Resource-driven Optimization 

A straightforward and simple way to optimize a kernel function is invoking 

the resource-driven optimizer by applying –O3 flag in the command when the 

programmer begin to generate kernel file.  Resource-driven optimization is a 

feature of AOC (Altera OpenCL Compiler). By invoking the optimizer, AOC will 

evaluate the code and determine the possible sharing degree of work-items by 

analysing various combinations of number of CUs, SIMDs, loop unrolling factor 

and number of shared resources under the constraints of available hardware 



    
 

20 

resources and memory bandwidth to identify the optimal choice of these values 

in terms of work-items executed per second [20]. 

One of the most compelling benefit of resource-driven optimization is its 

usage of hardware resource will always conform to the fitting requirement. The 

default threshold of estimated utilization is 85%, which ensures no usage 

overflow error occurs while compiling a kernel into the FPGAs. According to AOC 

Compilation Flow [20], the duration of compilation may last several hours. Even 

a very simple kernel functione.g., vector addition, takes about 3 hours to compile 

and generate an Altera Offline Compiler Executable File (.aocx) file. On the other 

hand, unless syntax errors occur, the usage overflow cannot be detected by the 

compiler at very beginning of the compilation, but in the fitting step. Therefore, it 

is time-wasting if such error exists. 

On the other hand, AOC resource-driven optimization also has several 

limitations. First, the control flow analyses assume values of kernel arguments 

are unknown when compiling the kernel. For example, the optimizer assumes 

that loops with unknown bounds iterate 1024 times, which is meaningless most 

of the time.  Second, the performance estimation might not capture accurately 

the maximum operating frequency that the hardware compiler achieves. Because 

all optimizations take place ahead of hardware compilation occurs. Besides, 

when the number of CUs increases in order to achieve higher throughput, the 

hardware resource usage also increases due to the increasing frequent global 

memory accesses.  
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3.1.2. Performance Optimization Based on Kernel Attributes 

Another method to optimize a kernel function is manually setting hardware 

attributes. To begin with, we need first get better understanding of the hardware 

attributes the clEnqueueNDRangeKernel function [7-9], 

cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue, 

cl_kernel kernel, 

cl_uint work_dim, 

const size_t *global_work_offset, 

const size_t *global_work_size, 

const size_t *local_work_size, 

cl_uint num_events_in_wait_list, 

const cl_event *event_wait_list, 

cl_event *event) 

AOCL supports specifying the following attributes: 

reqd_work_group_size(x, y, z): The work-group size that must be used as the 

local_work_size argument for the kernel, which equals to the number of work-

items (x*y*z) that form a work-group. 

num_compute_units: Specify the number of CUs that used for processing the 

kernel. This is used for increasing the throughputs by distributing the work-

groups within a kernel across the specified number of CUs, but at the expense of 

increasing global memory bandwidth among the CUs. 

num_simd_work_items: the data path within a compute unit is replicated to 

increase throughput and can also lead to memory coalescing. For AOCL to 

implement a SIMD data path, the value of num_simd_work_items must evenly 

divide the value specified for reqd_work_group_size, and also be a power of 2. 
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max_unroll_loops: Loop unrolling decreases the number of iterations the AOC 

executes, at the expense of increased hardware resource consumption. This can 

be overridden for individual loops using  #pragma unroll. 

To better investigate the function of kernel attributes, we should first 

understand OpenCL’s platform model as well as the execution model of OpenCL 

kernel.  

OpenCL kernels are defined as NDRange style, which refers an N-dimensional 

(expressed as dim) index space.  Once a kernel is requested by the host for 

execution, its index space is specified. With the command get_global_id(dim) or 

get_local_id(dim), a kernel’s instance will be executed at a point indicated by an 

index within the index space. Such kernel instance is referred to OpenCL 

language as work-item. 

 

Figure 3.1.2.1 Kernel Execution Model 

With this understanding of the kernel execution model, we then evaluate each 

of the kernel attributes: 

1) Loop Unrolling 
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The loop-unrolling factor will take effect if the kernel program contains any 

loops.  Generally, there will be two cases if any loop exists in the program: 1) a 

loop with certain bounds, and 2) a loop with unknown bounds. The first case is 

straightforward, but the second case may lead to insufficient loop unrolling that 

AOC assumes the loop iterated 1024 times. In this situation, the best solution is 

to manually set the unroll pragma to a reasonable number, which can override 

the AOC optimizer’s assumption. 

2) Kernel Vectorization 

Kernel vectorization, which is realized by expanding SIMD, is prior to 

introducing additional CUs. Considering the compiling rules that the value of 

reqd_work_group_size attribute must evenly divided by the value of 

num_simd_work_items, these two attributes should be set accordingly. The 

default value of reqd_work_group_size is 256, which is the maximum work-group 

size. However, this default number is not the optimal value in all test cases.  

3) Compute Unit Replication 

Replicating additional CUs is a way to increase throughput. But at the same 

time, the times of global memory accesses will be increased. One of key factor of 

Altera OpenCL Optimization is making efficient use of memory hierarchy. When 

multiple CUs are generated, consequently more CUs will compete for global 

memory bandwidth. 

AOC optimizer defines higher priority to loop-unrolling and SIMD 

vectorization than increasing compute unit for the hardware resource reason. 
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3.2. Evaluation 

The result of Vector Multiplication indicates that barely running AOC 

optimizer for a kernel function cannot always achieve its optimal performance. 

But repeatedly attempting various combinations of kernel attributes to get 

higher performance is not practical in real implementations. Therefore, 

exploring a way to identify the proper values of kernel attributes of a program to 

achieve its optimal performance is crucial for engineers and programmers.  

A straightforward concept is that a kernel can be sped up by introducing more 

hardware resources. When only considering a single hardware attribute to 

speed-up the kernel, programmers can maximize its value only under constrain 

of fitting requirement.  

But maximizing all the kernel attributes is not possible due to the usage 

constraints. In most of the cases, we need to leverage among all the attributes 

and determine an optimal solution. 

3.2.1. Double Floating Addition 

We first implement CHO benchmark set [15], which is an OpenCL version of 

CHStone HLS benchmark, to exploring the resource-driven optimization. 

The first test we evaluate is an IEC/IEEE-standard double-precession floating-

point addition using 64-bits integers. We programmed dfadd kernel twice; we 

firstly compile the kernel directly, and then invoke the command with –O3 

optimization. Compilation time for those two ways are nearly the same, but we 

can find the first stage hardware usage estimation differs a lot, which shows in 

Table 3.2.1.1. Unfortunately, due to the small data scale, there is no obvious 

difference in kernel execution time. 
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Table 3.2.1.1 Usage summary and kernel execution time for dfadd with data size 46. 

 

 

Logic 

utilization  

Dedicated logic 

registers 

Memory 

blocks 

DSP 

blocks  

Execution 

time/ms 

Without optimization  19% 8%  16% 0% 0.131 

With optimization 70% 26% 14% 0% 0.129 

3.2.2. Vector Multiplication 

To better analyze the difference before and after applying resource-driven 

optimization, we implement a vector multiplication application as the second 

benchmark. The function takes two vectors as inputs, and returns a vector as the 

output, which stores the product of each two corresponding elements in the two 

input vectors. The data type is integer, and the vector size is 108 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

We compile the vector-multiplication kernel three times: 

1. Set no hardware attribute, and compile the kernel function without any 

optimization approaching; 

2. Set no hardware attribute, but invoke the AOC resource-driven optimizer 

when compile the kernel; 

3. Manually set hardware attributes in the kernel function, and invoke the 

resource-driven optimizer when compile it. 

Each of those three ways of compilation takes around two hours to complete, 

which makes us believe that applying resource-driven optimization will not 

increase the overall compilation time. The only difference among those three 

ways is that the second method spends a few seconds on evaluating several 
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combinations of hardware attributes for preforming optimizations.  However, 

from the estimated resource usage summary, we can find distinct variation. 

 

Figure 3.2.2.1 Usage Summary of Vector Multiplication  

Figure 3.2.2.1 provides the hardware usage summary of the same kernel 

function compiling in three different ways. Such differences produced by the 

varying values of kernel attributes: 

Table 3.2.2.1 Kernel Attributes of Vector Multiplication 

 # CUs # SIMDs Local work size 

No Optimization 1 1 1 

AOC Optimizer 9 2 1 

Attribute-setting 10 2 100 

 

All the default kernel attributes are 1, which in the most cases shows better 

performance than CPU does. But it still has much scope to be improved. To 

achieve higher throughputs, the AOC optimizer will assign more hardware 

resources to the kernel. The addition hardware space would be assigned to those 
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frequently executed work-items to allow them to complete the operations in 

fewer cycles.  

 

 Figure 3.2.2.2 Kernel Execution Time. 

Figure 3.2.2.2 gives the kernel’s execution time under various optimization 

methods. From the result, we can easily find that performing optimization, either 

invoking the AOC optimizer or manually setting the kernel attributes, can speed-

up the kernel, but at the expense of occupying more hardware resources.  

In this test case, manually setting kernel attributes can achieve 79.233ms to 

execute multiplication of two vectors of size 108, which runtime improves 97.6% 

over pure CPU execution, 81.12% over non-optimizing FPGA execution, and 22.9% 

over AOC-optimizing FPGA execution. 

3.3. Kernel Optimization Analysis 

Vector Multiplication benchmark is tested in this section to help us understand 

how the kernel attributes cooperate with each other and how each attribute 

affect the performance. It is defined as: 

𝑐𝑐[𝑖𝑖] =  𝑎𝑎[𝑖𝑖] ∙ 𝑏𝑏[𝑖𝑖] 

where both 𝑎𝑎 and 𝑏𝑏 are lists of numbers. 



    
 

28 

AOC optimizer evaluates the kernel and than compiles it across 9 CUs with a 2 

lane-wide SIMD. The pure kernel runtime when executing 100 million floating-

point numbers is 100.8ms. Then we fix all the other attributes unchanged, but 

only set reqd_work_group_size to 100, the kernel runtime decreases to 79.6ms, 

and performance improves by over 21%.  

 

 

Figure 3.3.1 Pure Kernel Execution Time vs. number of CUs and SIMD. 

 

 Figure 3.3.2 Total Execution Time vs. number of CUs and SIMD 
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Figure 3.3.1 gives the variation in pure kernel execution time versus the 

number of CUs and the number of duplicated SIMDs, and Figure 3.3.2 gives the 

variation in total runtime, which includes the host-to-device and device-to-host 

data transform time.  

We can easily find there is a descending trend in both FPGA kernel runtime 

and total runtime as the number of either CU or SIMD decreasing. This tendency 

is reasonable since the more hardware resources are generated, the more 

operations can be performed concurrently.  

 

Figure 3.3.3 AOC optimization techniques to increase parallelism. (a) CU replication. (b) Kernel 

vectorization in one CU [10]. 

For Altera OpenCL, we can see the difference between two optimization 

techniques. Every time we introduce one more Compute Unit for a kernel, we 

will duplicate the number of work-group. The scheduler then dispatches a work-

group to the additional Compute Unit, and more work-items will be executed 

simultaneously. Setting SIMD attribute to larger number can also achieve higher 

performance. Whereas the CU attribute defines the number of work-groups that 

can be scheduled, SIMD attribute describes the amount of paralleled executions 
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performed by a single work-group. Setting SIMD attribute can also defined as 

kernel vectorization, which increases the datapath of a Compute Unit and 

enables work-items to execute in SIMD fashion [23]. Although either CU 

replication or SIMD vectorization can improve a kernel’s performance by 

exploiting more hardware resources, SIMD vectorization should be applied 

ahead of CU replication. 

To clearly show the priority of replicating SIMD we compare the performance 

and hardware resource usage of following CU-SIMD combination, and show the 

results in Table 3.3.1. 

Table 3.3.1 Performance and Resource Usage Comparison 

(CU, SIMD) 
Logic 

Utilization 

Dedicated 
Logic 

Registers 
 

Block 
Memory Bits 

Total DSP 
Blocks 

FPGA 
Runtime (ms) 

(1, 2) 20% 7.14 × 104 3% 4 215.675 
(2, 1) 20% 7.11 × 104 5% 4 365.650 

 
(1, 4) 20% 7.17 × 104 3% 8 104.147 
(4, 1) 22% 7.96 × 104 6% 8 187.975 

 

There are two pairs of test results listed in Table 3.3.1. The first pair keeps 

one attribute as default value 1, and double the other attribute; the second pair 

also keeps one attribute as default value and increases the other attribute 

threefold. Both of them give us a clear-cut difference between CU replication and 

SIMD vectorization in kernel’s performance: the runtime of two SIMD 

vectorization implementation reduced 41% and 44.5% than CU replication 

respectively, while hardware resource utilization almost remains the same or 

even less. 
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 Therefore, implementing kernel vectorization can achieve better 

performance with more efficient design space. 

A series of more intuitive of the hardware resource-runtime Pareto frontier 

are shown in Figure3.3.4, Figure 3.3.5 and Figure 3.3.6. 

 

Figure 3.3.4 Logic Utilization-Runtime Pareto Frontier. 

 

Figure 3.3.5 Dedicate Logic Register-Runtime Pareto Frontiers. 
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Figure 3.3.6 Block Memory Bits-Runtime Pareto Frontier. 

The previous three plots show the importance of replicating 

SIMD_work_items: as we double the SIMD_work_items attribute, the runtime 

decreases a lot, but there is no obvious variation among Logic Units, Dedicated 

Logic Register and Block Memory Bits. While we increase the number of 

Compute Unit, as we can see, the hardware resources grow exponentially. The 

runtime of using 1 CU and 4 vector lanes is a little longer than using 9 CUs and 4 

vector lanes, which are 102ms and 74ms respectively.  

However, not all the hardware resources only change with CU numbers, 

another crucial hardware resource, like DSP blocks, is proportional to both CU 

and SIMD attributes. According to our test results: 
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Table 3.3.2The Impact of SIMD and CU Attributes on DSP Blocks. 

simd work items 

Compute Units 

1 3 5 7 9 

1 2 6 10 14 18 

2 4 12 20 28 36 

4 8 24 40 56 72 

  

We can easily find out the connection among SIMD, CU attributes and the 

number of “active” DSP plocks: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝐵𝐵𝑒𝑒𝐵𝐵𝑐𝑐𝐵𝐵𝑒𝑒 = 2 × 𝐶𝐶𝐶𝐶 × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷 

DSP blocks in FPGA consist of multipliers and many other required functions 

for processing high-precision DSP applications.  Thus, when the application 

targets on processing complicate DSP functions, both the number of compute 

unit and simd_work_items should be considered to increase. 

Overall, consider both the program’s runtime and hardware resource usage, 

replicating SIMD attribute is prior to introducing more CUs when optimize a 

program. Otherwise, the inefficient memory access pattern will obstruct 

achieving optimal performance. 
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4. Optimize FPGA-CPU Symbiosis 

As an accelerator, FPGA exhibits superior parallel execution ability then 

traditional computer processor. However, performing as an accelerator, FPGA 

cannot work independently – it must be instruct by a host, which is, in this case, 

the CPU. The workflow requires kernel functions to be instantiated by host 

program first, and then be sent to FPGA board. After FPGA executions are 

completed, all the result must be copied back to the host side. Such flow path 

could worsen program’s runtime if not optimized correctly.  

After we examined Altera OpenCL workflow, we find that CPU is idle while 

FPGA is processing. To maximize the performance of whole applications, we 

designed a CPU-FPGA overlapping platform. 

4.1. CPU-FPGA Overlapping Accelerator 

In this section, we leverage the advantage of combining FPGA and CPU to 

implement OpenCL kernels for several operations, in particular, the operations 

that can be executed in a reductive fashion. We keep the size of inputs 

unchanged, which is 108, while iteratively reduce the percentage of data that 

will be executed on FPGA from 100% to 0 by 10%, and identify the optimal 

combination of CPU and FPGA. 

According to AOC programming flow, overlapping CPU-FPGA computations 

can be generated either after the host side (CPU) call read_event, which function 

as copying data from host to device, or set kernel arguments. Once the host 

successfully sends data to FPGA and sets kernel arguments, and CPU will 
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become idle until all the tasks on FPGA are completed. We try to make use of 

that period and find out an appropriate amount of operations to load to CPU. 

We designed five benchmarks to help us evaluate the possibility and overlap 

degree of using CPU-FPGA overlapping framework. Two factors are considered 

when we choose our benchmarks: data migration intensity and computation 

complexity. 

4.1.1. Vector Multiplication 

For the first step, we illustrate how the computations of FPGA and CPU be 

overlapped using a simple vector multiplication kernel.  

The implementation of vector multiplication is taking two lists of the same 

size as inputs and adding each pair of the elements, then returning a single 

vector as the output.  

𝑐𝑐[𝑖𝑖] =  𝑎𝑎[𝑖𝑖] ∙ 𝑏𝑏[𝑖𝑖] 

Here the name, vector, is just the container we used in the kernel function, but 

actually this is a scalar multiplication. 

4.1.2. Vector Dot Product 

After creating the general kernel for vector operations, we proceed to 

consider the acceleration cases of exploiting parallel reduction on data intensive 

computing operations. The second test is taking a dot production of two vectors, 

in which the inputs are still two vectors while the output result changed from a 

vector to a single number. Dot product is defined as 

𝒂𝒂 ∙ 𝒃𝒃 = 𝑎𝑎1𝑏𝑏1  +  𝑎𝑎2𝑏𝑏2 + ⋯+ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛  

,where 𝒂𝒂 and 𝒃𝒃 are vectors. 



    
 

36 

In place of linearly fetching each number from the vector and executing the 

operation, the parallel algorithm implemented on FPGA can be expressed as 

follows: the multiplications will be executed across all the initialized work items 

concurrently and all the result will be stored in a temporary vector, after all the 

multiplications are finished, the devices side will sum those products in parallel 

and then return the final result as the output. 

4.1.3. 𝑳𝑳𝒑𝒑 Space 

The third application we tested is 𝑳𝑳𝒑𝒑 Space. In finite dimensions, the length of 

a vector 𝒂𝒂 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} in the n-dimensional real vector space 𝑹𝑹𝑛𝑛 is given by 

the Euclidean norm: 

‖𝒂𝒂‖ =   �𝑎𝑎12 +  𝑎𝑎22 + ⋯+  𝑎𝑎𝑛𝑛2
2

 

However, the Euclidean distance may not sufficiently describe an actual 

distance in many real-life situations, while p-norms can fill this gap and widely 

applied in many parts of mathematics, engineering and computer science. A 𝑳𝑳𝒑𝒑 

norm of vector 𝒂𝒂 is defined as  

‖𝒂𝒂‖𝑝𝑝 = (|𝑎𝑎1|𝑝𝑝 + |𝑎𝑎2|𝑝𝑝 + ⋯+ |𝑎𝑎𝑛𝑛|𝑝𝑝 )1/𝑝𝑝 

We test the performances of 𝑳𝑳𝒑𝒑 Norm with different p values. Instead of 

sequentially applying square operation on each element, in our FPGA 

application, all the instantiated work-items do their work concurrently on each 

cycle.  

4.1.4. 1D Convolution 

Convolution is one of the most important concepts in Fourier Theory that can 

be defined on groups other than Euclidean Space. It takes two 1D vectors as 



    
 

37 

inputs - one of them is an “input signal” or “image”, the other one works as a 

“filter”- and producing a vector as an “output signal” or “image”. Let’s call our 

inputs 𝒂𝒂 and 𝒇𝒇, and 𝒃𝒃 as the output, so the convolution of 𝒂𝒂 and 𝒇𝒇 is: 

𝑏𝑏[𝑖𝑖] = 𝒂𝒂 ∗ 𝒇𝒇[𝑖𝑖] = �𝑎𝑎[𝑗𝑗]𝑓𝑓 �𝑖𝑖 − 𝑗𝑗 +
𝑁𝑁
2
�

𝑁𝑁

𝑗𝑗=1

 

We choose a filter with size 𝑁𝑁 = 4, which is much smaller than the input 

signal. The FPGA implementation unloops the convolution so multiple filters can 

operate on the signal simultaneously. 

4.1.5. Matrix Multiplication 

Matrix Operations serves an important role in quantum mechanics, graph 

theory, and all throughout fields. It is a way of organizing real-life data and 

hence the calculations can become very easy and practical to tackle using matrix 

operations. Due to this reason, Matrix Multiplication is implemented. 

The inputs of matrix multiplication are a pair of matrices, and the output is 

another matrix. In mathematics, its definition is  

𝒂𝒂 × 𝒃𝒃 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 

� × �
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13 
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33 

� = �
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13 
𝑐𝑐21 𝑐𝑐22 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑐𝑐33 

� 

where 𝑐𝑐𝑖𝑖𝑗𝑗 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑏𝑏𝑖𝑖𝑗𝑗𝒏𝒏
𝒌𝒌=𝟎𝟎 . 

The process of Matrix Multiplication can be divided into three pipelined stages: 

1) Copying 𝑖𝑖𝑒𝑒ℎ row of vector 𝒂𝒂 and 𝑗𝑗𝑒𝑒ℎ column of 𝒃𝒃 from host to FPGA; 2) FPGA 

start operating on the loaded vector, which contributes to 𝑐𝑐𝑖𝑖𝑗𝑗; 3) writing data 

back from FPGA to CPU. Unlike the above benchmarks that copy all the data 

from CPU to FPGA before FPGA computation begins, Matrix Multiplication copies 
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the input matrix block by block, which overlaps the data migration with FPGA 

computation. 

4.2. OpenCL Data Migration on PCI Express 

In most of the cases, computing a function directly in hardware is 

overwhelmingly efficient than in software. However, merely considering the 

pure execution time of a program is not enough for us to choose FPGA platform, 

since data migration between host and device can sometimes be very expensive, 

and has a direct bearing on a program’s time efficiency.  

 

Figure 4.2.1 Data Migration Time for Floating-point 

Data migration time is hard to optimize since it is determined by the speed of 

the PCI Express bus. However, this limitation makes it easy to be predicted. 

Altera OpenCL provides users with build-in statements, write_event and 

read_event, which serve as data-copy methods. We measure the data migration 

time for our platform by transferring different number of floating points 

between CPU and FPGA with Altera OpenCL API. 

0

50

100

150

200

250

300

Ti
m

e/
m

s

Number of Floating Points



    
 

39 

From Figure 4.2.1, we can observe that the data transfer time is linear to the 

size of transferred data. Therefore, it is possible for programmer to calculate the 

estimate data migration time for a certain amount of data, and then evaluate the 

possibility of taking advantage of CPU-FPGA heterogeneous platform. 

For our experimental platform, the migration speed when apply writeBuffer 

statement is 1.65GB/s. When there are N single floating-point elements to be 

transferred between host and device, the data migration time will be  

 

𝑒𝑒 =  
𝑁𝑁 × 4 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒

1.65 × 109𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒/𝑒𝑒
 

Similarly, programmer can estimate the data migration time for a certain type 

of input data set, and further consider the computation method as well as the 

platform applied to their applications. 

4.3. Methodology 

Based on Amdahl’s Law, the speedup of the whole task can be described by 

portion of computations executed on FPGA 𝑥𝑥 (%) and the speed-up, p, attained 

from parallelizing in FPGA: 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

1 − 𝑥𝑥 + 𝑥𝑥 𝑆𝑆�
 

and when we overlap CPU computations with FPGA computations, the speedup 

becomes: 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑆𝑆� )
 

Consider the theoretical speedup of the whole program is limited by: 

𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

1 − 𝑥𝑥
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, which we named as the Boundary Ratio. 

In our experiments, the 𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 of the enhanced faction can be expressed in 

following two ways based on the overlapping method: 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑆𝑆� )
 =

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

max (𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛) )  + 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛)  

𝐵𝐵𝑜𝑜 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑆𝑆� )
 =

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

max (𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛

(𝑛𝑛) )  + 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛)  

where  

𝑁𝑁 is total number of elements to be processed; 

𝑒𝑒 is number of elements to be processed on FPGA; 

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁)  is the CPU runtime without using FPGA platform; 

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁−𝑛𝑛)  is the CPU runtime while applying CPU-FPGA overlapping 

computation; 

𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛)  is the FPGA runtime while applying CPU-FPGA overlapping 

computation; 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛)  is data migration time. 

Then the theoretical optimal speedup should be: 

𝐵𝐵𝐵𝐵𝑆𝑆𝑒𝑒𝑆𝑆𝑎𝑎𝑜𝑜𝐵𝐵 𝑅𝑅𝑎𝑎𝑒𝑒𝑖𝑖𝐵𝐵 =  𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁)  

as all the data are executed on FPGA. 

Since generally FPGA has much better computational capability than CPU, the 

data migration time could be the key factor to determine whether a program can 

be speed up with CPU-FPGA overlapping computation. If 𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 1, it means 
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the program cannot be further optimized, otherwise it can be speeded up to 

some extent.  

When n(𝑒𝑒 ≤ 𝑁𝑁) elements will be processed on FPGA, if 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁)  ≤ 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)   

then: 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛) =

𝑒𝑒
𝑁𝑁
𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛

(𝑁𝑁) ≤ 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁)  ≤ 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)  

𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛) ≤ 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁) < 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁)  

 For illustration, we consider the special case when programs with linear 

runtime complexity are executed as our experimental objects and evaluate their 

Speedup degree. However, programmers can further evaluate the Speedup 

according to their program’s time complexity.  

If the program execution time is linear to the input data size, we can model the 

CPU and FPGA time as follows: 

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑛𝑛)  =

𝑒𝑒
𝑁𝑁
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)  

𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛)  =

𝑒𝑒
𝑁𝑁
𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁)  

Then we consider the two possible situations. The first case is when 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛) > 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛) (1), 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

1 − 𝑥𝑥 + 𝑥𝑥 𝑆𝑆�
=

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

(max (𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛) )  + 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛) )

 

=
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑒𝑒
𝑁𝑁 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)  , 𝑒𝑒𝑁𝑁 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁) )  + 𝑒𝑒

𝑁𝑁 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) )
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For this case, since 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁)  could be always less than 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁) , and programmer have 

great chance to further optimize FPGA computation, as long as 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) < 𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶

(𝑁𝑁) , 

we can prove that: 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 >
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑒𝑒
𝑁𝑁 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)  , 𝑒𝑒𝑁𝑁 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁) )  + 𝑒𝑒

𝑁𝑁 𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶
(𝑁𝑁) )

 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 >

⎩
⎪
⎨

⎪
⎧ 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑁𝑁 − 𝑒𝑒
𝑁𝑁 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)   + 𝑒𝑒
𝑁𝑁 𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶

(𝑁𝑁)
= 1

  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒
𝑁𝑁 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁)   + 𝑒𝑒
𝑁𝑁 𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶

(𝑁𝑁) =  
𝑁𝑁
𝑒𝑒
𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁)

𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶
(𝑁𝑁) +

𝑁𝑁
𝑒𝑒

> 1

 

Therefore, no matter how we choose 𝑒𝑒, the program’s performance can always 

be improved. 

Then we consider case (2), where speedup is expressed as: 

𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑒𝑒
𝑁𝑁 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐

(𝑁𝑁)  , 𝑒𝑒𝑁𝑁 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) )  + 𝑒𝑒

𝑁𝑁 𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁) )

 

Without compiling and fitting the OpenCL program onto FPGA, if we could 

guarantee 𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐
(𝑁𝑁) > 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛

(𝑁𝑁) , we can also ensure  𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 > 1  by choosing 

appropriate number of data, 𝑒𝑒. As long as the 𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 is greater than 1, the 

application can be further optimized with FPGA-CPU overlapping computation. 

Therefore, by only comparing the data migration time with CPU-only runtime, 

we can predict the possibility of optimizing an application with CPU-FPGA 

platform.  
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4.4. Experiments 

4.4.1. Vector Multiplication 

Vector Multiplication is a typical test case which operation is lightweight 

compared to its data migration. When each of the input vectors contains 𝑁𝑁 

elements, then there will be 3𝑁𝑁 elements to be transferred between CPU and 

FPGA (2𝑁𝑁 from CPU to FPGA and 𝑁𝑁 elements from FPGA back to CPU). While the 

total operations is 𝑁𝑁.  

 

Figure 4.4.1.1 CPU-FPGA Overlapped Computation for Vector Multiplication 

From Figure 4.4.1.1, we can find that either CPU runtime or FPGA runtime is 

basically proportional to its input data size. However, we can also observe that 

even though FPGA is always faster than CPU, the time spend on copying data is 

much longer than either FPGA computation or CPU computation. The Limiting 

Ratio is: 

𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) =

227.332
762.79

≅ 0.30 
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For this case, because sending data from the host to the device side as well as 

copying the result back to the host is a big overhead, which would be the 

primary determinant of the program’s total runtime, the strength of FPGA and 

CPU overlapped computation cannot make up such expense. Therefore, the 

optimal implementation, which total runtime is 227.732ms, is CPU-only 

platform. 

4.4.2. Dot Product 

After testing Vector Multiplication, we seek for another benchmark with less 

data migration intensity but higher computational intensity. Dot Product is 

implemented as our second benchmark. 

 

Figure 4.4.2.1 CPU-FPGA Overlapped Computation for Vector Dot Product. 

In this experiment, the number of migrated data is 2𝑁𝑁 + 1(2𝑁𝑁 from host to 

FPGA and 1 from FPGA to host CPU), and the number of operation is 2𝑁𝑁 − 1(𝑁𝑁 

multiplications and 𝑁𝑁 − 1 additions).  

Although it costs less time to transfer data between host and device side than 

Vector Multiplication, which data migration still contributes most to the total 
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execution time. The Limiting Ratio of the enhanced fraction for Vector Dot 

Product: 

𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) =

227.332
483.58

≅ 0.50 

The speedup is less than 1, however, our result shows that the program’s 

runtime is slightly improved from 242.762𝑒𝑒𝑒𝑒 to 215.83𝑒𝑒𝑒𝑒. And the optimizing 

point shifts from 0% to 10% as shown in Figure 4.4.2.1 and reduced by 11.1%. It 

is because the data migration time will decrease as we reduce the amount of 

data that assigned to FPGA, Then  

𝐷𝐷𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑛𝑛) =

𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒
𝑁𝑁 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛

(𝑁𝑁) ≅
𝑁𝑁
2𝑒𝑒

 

Thus, if there exists an appropriate 𝑒𝑒  that ensures 𝑁𝑁
2𝑛𝑛

> 1 , the program’s 

performance could still be improved. 

4.4.3. 𝑳𝑳𝒑𝒑Space 

We further increase the ratio of operation frequency verses data migration 

quantity in order to explore more chance to optimize the program. In this part, 

Vector Norm is experimented as the third benchmark. 

Because there is only 1 vector need to be transferred to FPGA, the amount of 

data copied from host to device is 𝑁𝑁, and only 1 result is going to be written back 

from device side to host side. In the same time, the number of operation is 2𝑁𝑁 +

1, which including 𝑁𝑁mutilications, 𝑁𝑁additions and 1 pow() function.   

In this experiment, data migrate between CPU and FPGA takes less time than 

processing the same size of data on CPU. Here shows the speedup of the 

enhanced fraction for 𝑆𝑆 = 2 to 𝑆𝑆 = 6 are shown in Figure 4.4.3.1: 
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Figure 4.4.3.1 The Theoretical Speedup vs. p-Value. 

From the above results, we can find there is an upward trend in theoretical 

optimal speedup as p value increasing. Therefore, the program should have 

greater chance to be optimized with FPGA-CPU overlapping computation, and 

we could also assume that the larger the p’s value, the greater the speedup.  

Supported by the above results, we then measure the performance under each 

p Value, and produce the following plots: 
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Figure 4.4.3.2 CPU-FPGA Overlapped Computation for 𝑳𝑳𝟐𝟐Space. 

 

Figure 4.4.3.3 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟑𝟑 Space. 
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Figure 4.4.3.5 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟓𝟓 Space. 

 

Figure 4.4.3.6 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟔𝟔 Space. 
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The experiment results shown from Figure 4.4.3.2 to Figure 4.4.3.6 confirm 

our assumption. We collect the results in Table 4.4.3.1 to help us clearly identify 

the trend.  

Table 4.4.3.1 The Impact of Computational Intensity on Speedup. 

p value Limiting Ratio 
Time 

reduced/ms 
Optimal Point Real Speedup 

2 1.17 61.83 50% 1.28 

3 1.41 112.722 60% 1.49 

4 

5 

6 

1.51 

1.84 

1.90 

124.67 

196.16 

211.54 

60% 

70% 

70% 

1.52 

1.79 

1.90 

  

From Table 4.4.3.1, as the theoretical speedup fraction increases, the optimal 

point shifts to larger percentage, which means the advanced computing 

capability of FPGA can counteract more overhead of data migration. Besides, our 

assumption that Limiting Ratio would increase with the growth of p value is also 

confirmed by our experiments, where Limiting Ratio reflects the comparison of 

CPU computational intensity and data migration intensity. This feature 

demonstrates that if a program’s computations are more intensive than its data 

migrations, it would be further accelerated with CPU-FPGA heterogeneous 

system. 

4.4.4. 1D Convolution 

Our next benchmark is 1D Convolution with a filter size 4. Compared with its 

computation intensity, the data migration intensity could be much light. Hence, 

we expect this benchmark to be optimized with more FPGA computations. 
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To predict the possibility of optimizing this benchmark, we still need to 

evaluate the Limiting Ratio: 

𝑒𝑒𝑖𝑖𝑒𝑒𝑝𝑝→∞𝐷𝐷𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑁𝑁

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛
(𝑁𝑁) =

1141.7
483.42

≅ 2.36 

This ratio is larger than all the above ratios, which confirms our expectation.  

 

 

Figure 4.4.4.1 CPU-FPGA overlapped computation for 1D Convolution. 

As we can see from Figure 4.4.4.1, the optimal point locates at 80% of input 

data assigned to FPGA. The total runtime changes from 1141.7ms to 513.98ms, 

which reduced by 54.98%. 

4.4.5. Matrix Multiplication 

Our last benchmark is Matrix Multiplication. The inputs and output are two 2-

dimentional vectors and one 2-dimentinal vector respectively. Since we send 

two matrices block by block rather than a whole matrix, the data migration time 

is significantly reduced. 

592.84
536.26 513.98

562.31
613.23

659.78
740.69

848.54

945.94

1043.69

1141.7

0

200

400

600

800

1000

1200

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA 

FPGA runtime CPU runtime Data migration time total time



    
 

51 

 

Figure 4.4.5.1 CPU-FPGA overlapped computation for Matrix Multiplication. 
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meaning that we can always gain higher performance from FPGA acceleration. 

For this case, we would better transfer a great portion of data to FPGA while 

remain a small portion of data on CPU. If the ratio is less than 1, we should 

further divide this case into two sub-situations. If its value is very small, which 

means the migration overhead is overwhelming. Then we should stick with CPU 

and avoid the FPGA acceleration. But is the ratio is a little less than 1, we may 

achieve higher performance if we let CPU do the majority computations and 

FPGA execute partial operations. 

In this way, programmers can choose the method of optimizing their 

programs without working on FPGA. 
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5. Conclusion 

The latency of data processing speed relative to the rapid growth of data leads 

to a strong demanding for high performance computing architecture.  Even 

though the computation ability of multi-core CPU has largely improved 

compared with traditional single-core CPU, it is still inefficient to processing the 

growing data and huge computations.  

FPGA, as an integrated circuit with powerful computation capability, is put 

forward as a new processor. Its pipeline parallelism technique is very attractive 

for processing large-scale data. However, the cumbersome hardware description 

makes it unpopular in industry and commercial fields. Software developers are 

also unwilling to use it because of its unfriendly programming language and 

debugging flow. While problems solved when OpenCL was put forward as a 

solution. This hardware-targeted programming language is much software-

friendly, which is much like C/C++ language. With the help of OpenCL, FPGAs are 

increasingly applied to diverse fields as powerful accelerator. 

In this thesis, we have first compared the performance of non-optimized FPGA 

computations with optimized FPGA computations with a simple vector addition 

benchmark, and found that the runtime can be reduced by 75.5%. Then we’ve 

deeply investigated the FPGA’s performance with Altera OpenCL, and analyzed 

the pros and cons of two optimization methods: AOC automated optimization 

and manually setting resource attributes. We also compared two optimization 

techniques – replicating Compute Unit vs. kernel vectorization – to help 

programmers better decide the priority of applying those two techniques. Our 

test results showed that applying kernel vectorization can leads to higher 
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performance with exploiting the same or less hardware resource than CU 

replication. 

After we have understood the optimization techniques, we presented a 

practical method that can further optimize the program. This method overlaps 

the computations of FPGA and CPU, and makes use of CPU’s idle period. 

However, we found that even though CPU-FPGA heterogeneous platform can 

produce higher performance in most of the cases, data migration may costs 

much more time and lead to an overall worse performance than CPU-only 

systems. So we put forward a “Speedup” ratio to help programmers evaluate the 

possibility of taking advantage of FPGA only with software programming. Our 

results showed that if the ratio is greater than 1, the program can absolutely be 

optimized with CPU-FPGA platform, which it is less than 1, the program can 

probably be optimized. This “Speedup” ratio can also describe the optimization 

degree of applying FPGA accelerator. Five benchmarks were tested to verify our 

expectation. The results showed that as the computation intensity of a program 

increasing and/or data migration intensity decreasing, the program could 

achieve higher performance. 

Our future work will focus on accelerating more complex algorithm, like 

Convolutional Neural Network (CNN). CNN algorithm is computationally 

intensive, thus how to reduce the cost as well as ensure its accuracy is a key 

questions. 

In [19], Farabet et al. put forward a scalable hardware system to implement 

convolutional neural networks for large-scale multi-layered synthetic vision 

systems. It is demonstrated that at the same condition that the convolution 

filters size of 3x3 and image size of 500x500, either FPGA or ASIC is capable to 
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run medium complexity tasks with 15W and 1W power consumption 

respectively, which is lower than 90W of CPU implementation. 

We plan to optimize CNN algorithm by loading layers with intensive 

computations but lighter data migrations to FPGA, while remaining other layers 

in CPU.  Additionally, we hope to achieve deeper overlaps by dividing both data 

transfer part and FPGA kernels into blocks, and then overlap each two blocks to 

accomplish optimal performance. 
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