
Maximizing the performance of Parallel Applications on

Heterogeneous CPU-FPGA System

By

Shuchen Zheng

M.S., Brown University, 2016

Thesis

 Submitted in partial fulfillment of the requirements for the degree of Master of Science

in the School of Engineering at Brown University.

PROVIDENCE, RHODE ISLAND

MAY 2016

ii

AUTHORIZATION TO LEND AND REPRODUCE THE THESIS

As the sole author of this thesis, I authorize Brown University to lend it to other

institutions or individuals for the purpose of scholarly research.

Date_____________ Signature_________________________________

 Shuchen Zheng, Author

I further authorize Brown University to reproduce this thesis by photocopying or other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Date_____________ Signature_________________________________

 Shuchen Zheng, Author

iii

Signature Page

This thesis by Shuchen Zheng is accepted in its present form by the School of

Engineering at Brown University as satisfying the thesis requirements for the degree of

Master of Science.

Date_____________ Signature_________________________________

 Sherief M. Reda, Ph.D., Advisor

Approved by the Graduate Council

Date_____________ Signature_________________________________

 Peter Weber, Ph.D., Dean of the

 Graduate School

iv

Vita

Shuchen Zheng was born in xi’an, Shaanxi Province, P.R. China, in February

1992. She received her undergraduate degree from Beijing Institute of

Technology, China in 2014 in Electrical Engineering. Shuchen started to be a

Masters student in Brown School of Engineering from 2014, and study after Prof.

Sherief M. Reda on CPU-FPGA heterogeneous Computing.

v

Acknowledgements

I would like to express my thanks to the following people for their continuous

support and assistance. The completion of either this thesis or my Master degree

could not have been accomplished without them:

Professor Sherief Reda, for his professional advice and providing me with

the valuable learning opportunity.

Kapil Dev, for his countless helps in both experimental study and thesis

write-up.

Xin Zhan, for his continuous assistance in my coursework and research.

My parents, for their always supporting and love.

vi

Table of Contents

1. Introduction ... 1

1.1. Heterogeneous Computing .. 1

1.2. FPGA Accelerator .. 3

1.3. Implementing hardware program with OpenCL ... 7

1.4. Research Overview .. 11

1.5. Experimental Setup ... 12

2. Background .. 15

2.1. Related Work ... 15

3. Design Space Exploration .. 19

3.1. Altera OpenCL Optimization ... 19

3.1.1. AOC Resource-driven Optimization .. 19

3.1.2. Performance Optimization Based on Kernel Attributes 21

3.2. Evaluation ... 24

3.2.1. Double Floating Addition ... 24

3.2.2. Vector Multiplication .. 25

3.3. Kernel Optimization Analysis .. 27

4. Optimize FPGA-CPU Symbiosis .. 34

4.1. CPU-FPGA Overlapping Accelerator ... 34

4.1.1. Vector Multiplication .. 35

4.1.2. Vector Dot Product .. 35

4.1.3. Lp Space .. 36

4.1.4. 1D Convolution ... 36

4.1.5. Matrix Multiplication .. 37

4.2. OpenCL Data Migration on PCI Express .. 38

4.3. Methodology ... 39

4.4. Experiments ... 43

4.4.1. Vector Multiplication .. 43

4.4.2. Dot Product ... 44

4.4.3. LpSpace ... 45

4.4.4. 1D Convolution ... 49

vii

4.4.5. Matrix Multiplication .. 50

5. Conclusion ... 53

BIBLIOGRAPHY ... 56

viii

List of Figure
Figure 1.1.1 Hypothetical example of using heterogeneous processing [1]. 2

Figure 1.2.1: Comparison of parallelism of GPU and FPGA. [4] 5

Figure 1.2.2 Mapping get_global_id to a work-item. [6] .. 6

Figure 1.2.3 Pipeline example for Vector Add. ... 6

Figure 1.3.1 The implementation of vector addition in OpenCL FPGA kernel. 8

Figure 1.3.2 Altera OpenCL system overview [11]. .. 9

Figure 1.3.3 Altera OpenCL System Implementation [8].. 10

Figure 1.5.1 AMD-Altera Platform. .. 13

Figure 1.5.2 FPGA’s Architecture [15]. .. 13

Figure 3.1.2.1 Kernel Execution Model ... 22

Figure 3.2.2.1 Usage Summary of Vector Multiplication ... 26

Figure 3.2.2.2 Kernel Execution Time. .. 27

Figure 3.3.1 Pure Kernel Execution Time vs. number of CUs and SIMD. 28

Figure 3.3.2 Total Execution Time vs. number of CUs and SIMD 28

Figure 3.3.3 AOC optimization techniques to increase parallelism. (a) CU replication.

(b) Kernel vectorization in one CU [10]. ... 29

Figure 3.3.4 Logic Utilization-Runtime Pareto Frontier. .. 31

Figure 3.3.5 Dedicate Logic Register-Runtime Pareto Frontiers. 31

Figure 3.3.6 Block Memory Bits-Runtime Pareto Frontier. .. 32

Figure 4.2.1 Data Migration Time for Floating-point.. 38

Figure 4.4.1.1 CPU-FPGA Overlapped Computation for Vector Multiplication 43

Figure 4.4.2.1 CPU-FPGA Overlapped Computation for Vector Dot Product. 44

Figure 4.4.3.1 The Theoretical Speedup vs. p-Value. ... 46

Figure 4.4.3.2 CPU-FPGA Overlapped Computation for L2Space. 47

Figure 4.4.3.3 CPU-FPGA Overlapped Computation for L3 Space. 47

Figure 4.4.3.4 CPU-FPGA Overlapped Computation for L4 Space. 47

Figure 4.4.3.5 CPU-FPGA Overlapped Computation for L5 Space. 48

Figure 4.4.3.6 CPU-FPGA Overlapped Computation for L6 Space. 48

Figure 4.4.4.1 CPU-FPGA overlapped computation for 1D Convolution. 50

Figure 4.4.5.1 CPU-FPGA overlapped computation for Matrix Multiplication. 51

ix

List of Tables
Table 3.2.1.1 Usage summary and kernel execution time for dfadd with data size 46.

.. 25

Table 3.2.2.1 Kernel Attributes of Vector Multiplication ... 26

Table 3.3.1 Performance and Resource Usage Comparison .. 30

Table 3.3.2The Impact of SIMD and CU Attributes on DSP Blocks. 33

Table 4.4.3.1 The Impact of Computational Intensity on Speedup. 49

1

1. Introduction

1.1. Heterogeneous Computing

A bottleneck of general-purpose architectures is that they usually spend most

of the time on tasks for which they are not optimized to execute. The underlying

reason may be that many believe that many different tasks can adapt to the same

kind of hardware computation, with the only discriminant being how long they

take to execute. Unfortunately, there is not an all-encompassing architecture can

well match all types of data access patterns or algorithms. As a result, only a

fraction of the potential peak performance can be achieved on many applications

[1].

To better match application needs to appropriate hardware resources, and to

provide higher computational performance, heterogeneous computing is being

advocated. Heterogeneous computing refers to a single computing system that

coordinately use different types of cores, accelerator devices, or memory

interfaces to optimize their combined performance or/and power efficiency [2].

The increasingly growth of many- or multi-core processor with parallel,

pipelined, and other special-purpose architectures applied to high performance

computing systems (HPC) makes it possible to effectively handle

computationally intensive problems with heterogeneous computing. Compared

with using traditional homogeneous baseline systems, each task can be assigned

to an “appropriate” processor or device to maximize total performance. Since the

tasks are well matched to the hardware resources, and all the

processors/devices can execute concurrently, the use of heterogeneous

computing would easily lead to an optimal computational performance.

2

Figure 1.1.1 shows an ideal example of a program whose subtasks are adapted

to different types of architectures [1]. A pipelined system can give twice the

performance achieved by executing it on some linear single-core system.

Figure 1.1.1 Hypothetical example of using heterogeneous processing [1].

Heterogeneous computing supports a great number of different applications.

Although they may have diverse implementations, all the heterogeneous

computing-oriented platforms should be able to perform the following the

functions [6]:

1) Detect all available components/devices of the heterogeneous system.

2) Explore and adapt to each component/device’s characteristics.

3) Generate instruction blocks (kernels) that can be executed on device.

4) Build and manage the memory objective.

5) Execute each kernel in appropriate device as well as in appropriate

order.

6) Return the final result.

The above steps constitute the baseline of a heterogeneous system. CPU-FPGA

heterogeneous system is no exception. The above functions are implemented in

3

OpenCL programming flow, which helps programmers handle this structure with

ease.

1.2. FPGA Accelerator

Heterogeneous systems utilize multiple types of processors, like CPUs (central

processing unit), GPUs (graphics processing unit), DSPs (digital signal processor)

and other microprocessors, to give an optimal performance with highly parallel

architectures.

When we only consider the clock speed, there is no doubt that CPU will be the

winner. However, CPU perfects in handling serial tasks, which means typically it

can only execute one instruction per clock cycle. As a result, CPU’s peak

performance is much worse than GPU’s. Consider a state-of-the-art CPU edition,

6-core Intel Core i7-3930K [12]. And there is an instruction named MAD

(Multiply-ADD), which allows two operations to be executed in SSE register in

one clock cycle. With a base frequency 3.3 GHz and hyper-threading technology,

Intel CPU is possible to execute:

2(threads/core) × 6(core) × 2(double precision floats) × 2 (MAD instruction)

= 48

instructions per clock cycle. Consequently, the theoretical performance of Intel

Core i7-3930 will be 48 × 3.3 = 158.4 GFLOPS.

GPU is well known with its great graphics rendering capabilities and superior

performance in computations on very large data sets. With a lot more processing

units than CPU, GPU is able to execute much more instructions per clock cycle.

Consider a many-core GPU beyond handling graphics only, known as GPGPU,

then. Take NVidia GeForce 9800 GTX GPU, which has 128 Shader units at 1.688

4

GHz, for example [13]. Unlike CPU, GPU is able to execute MAD+MUL instruction,

which combines MAD with one more multiply into one instruction, in a single

clock cycle. Its theoretical performance can reach 128 × 3 × 1.688 =

648 GFLOPS. Under such measurement, GPUs exhibit higher performance than

CPUs. However, GPU also has its drawback in power consumption. It typically

consumes power at the scale of 200-300 Watt, which is about twice of the power

consumption of CPU.

Finally, let’s think over the performance of FPGAs. FPGAs are reconfigurable

integrated circuits consisting of programmable routing networks linking

together logic array blocks, embedded memory blocks, and digital signal

processor (DSP) blocks [5]. From its earlier days, FPGA has served as platforms

for configurable computing. Instead of working as SIMD (single instruction,

multiple data) devices (such as GPUs) that exploit data level parallelism, FPGAs

can create custom instruction pipelines when process the instructions.

FPGA, as a hardware accelerator, exhibits advanced computation capability as

software devices like CPUs, GPUs, and DSPs, and preferable energy consumption

as ASICs. With the ability to configure local customized storage, FPGAs could

reuse the already fetched data. Such efficient use of memory bandwidth brings

FPGAs with speed-up over both CPUs and GPUs. Besides their high performance

in processing data, as demonstrated in [3], the power consumption of FPGAs

platform is only 10% of the GPU and 16% of CPU. Moreover, FPGAs have

improved reliability and reduced mean-time-to-failure compared to GPUs

because they run at lower temperatures. Based on the above advantages, FPGAs

are very promising alternative solution for real application sets with

computationally intensive algorithms, considering the hardware parallelism

5

advantage of FPGAs.

Figure 1.2.1: Comparison of parallelism of GPU and FPGA. [4]

In terms of pipeline parallelism, a function loaded to FPGA can be divided into

phases and by inserting pipeline registers between operators, the execution

phases can be pipelined. The pipeline can also be replicated for further

parallelism. Figure 1.2.1 shows the difference of parallelism between GPU’s and

FPGA’s.

Take Vector Add for instance. Figure 1.2.2 shows its GPU implementation. Each

thread is going to be assigned a unique address, which marked as its global id, and

all the threads will then process a kernel function concurrently.

6

Figure 1.2.2 Mapping get_global_id to a work-item. [6]

 Whereas threads execute in parallel on different cores of CPU or GPU, OpenCL

compiler for FPGA can translate the executions into deeply pipelined hardware

circuits [11]. FPGA implementation of adding two vectors can be separated into

three portions: load operands, add, and store result, which form a pipeline

dataflow. On each clock cycle each thread will be pipelined to process different

operations. As shown in figure 1.2.3, work-item 0 is being stored, while 1 is being

added and 2 is being loaded.

 Figure 1.2.3 Pipeline example for Vector Add.

7

Other more complicated operations will be synthesized to pipelines with more

stages, and each pipeline stage can be reused by appropriately overlapping the

instructions and data.

We can either choose to form a pipelined execution within one operation or

among several operations. Taking two operations for example, if the output of

one operation A is consumed by a second operation B, two operations must be

executed sequentially on CPU that B can only start after A has produced the

entire set of executions in its output. While in hardware designs, it is possible to

run operation A and operation B simultaneously on different processors, and B

could start its execution in parallel as long as A produced some results.

1.3. Implementing hardware program with OpenCL

Unsatisfactory programmability and difficulties in debugging largely prevent

the wider adoption of FPGA-based accelerators Implementing software

programs into hardware requires solid experience and deep understanding for

logics and circuits in the past. Therefore, both software engineer and hardware

engineer keep exploring new solutions for automated software compilation into

hardware. Inspired by such strong need, an open standard tool, OpenCL,

proposed by Apple Inc. and maintained within Khronos Group supplies such

demand.

Open Computing Language, short as OpenCL, is a standard framework for

general-purpose parallel programming heterogeneous systems including CPUs,

GPUs, FPGAs, and custom devices that execute across different computing units.

With its API and a kernel-oriented programming environment, OpenCL can

8

achieve all the steps mentioned in Section 1.1. OpenCL specifies an ISO/IEC

9899:1999 C language (C99) based programming language that describes data-

parallel kernels and tasksacross different devices [6].

Data parallelism in OpenCL is expressed as an N-dimensional (N = 1, 2, or 3)

computation domain (referred to in short as NDRange). NDRange defines the

total number of work-items, which execute an instance of a kernel respectively,

in parallel. A further explanation for a kernel is a function executed for each

work-item. Here is an example of a data-parallel kernel:

void trad_mul (int n,

 const float *a,

 const float *b,

 float * result)

{

 int i;

 for (i=0; i < n; ++i)

 result [i] = a[i] * b[i];

}

__kernel void vector_add(

 __global const float *x,

 __global const float *y,

 __global float *result)

{

 // get index of the work item

 int id= get_global_id(0);

 // add the vector elements

 result[id] = x[id] + y[id];

}

Figure 1.3.1 The implementation of vector addition in OpenCL FPGA kernel.

The kernel named vector_add functions as summing two vectors of floats. The

inputs are referred as x and y, while result is the output. The get_group_id(dim)

(in this example dim = 0) gets the index of each work-item and returns a one-

dimensional NDRange, in which work-items spawn from 0 to get_global_size(dim)

– 1. Each work-item, which acts as a single thread, is processed by a processing

element, and those elements will form to a work-group and be executed within a

9

compute unit. Such functionality makes synchronization much efficient since

only two types of barriers are needed: An explicit barrier for all work-items

within a workgroup, and an implied barrier upon kernel completion for all work-

items in an NDRange [5].

As a popular industry standard, OpenCL has multiple implementations from

Altera, AMD, Apple, Intel, NVIDIA, Xilinx, IBM and many other venders. All the

test-benches in this project were implemented with Altera OpenCL. The Altera

SDK for OpenCL complies with the OpenCL 1.0 specification for embedded

profiles and updates its supports according to the OpenCL 1.1 and 1.2

specifications [7]-[9], which significantly reduces the complexity of converting a

software application to its hardware implementation. The system overview is

shown in Figure 1.3.2.

Figure 1.3.2 Altera OpenCL system overview [11].

Altera Software Development Kit for OpenCL maps the OpenCL kernel to FPGA

implementation with its offline compiler, Altera OpenCL compiler (AOC). In

10

process of compiling, AOC will automatically translate OpenCL to Verilog and

runtime libraries for the host application API and hardware obstructions [10].

Figure 1.3.3 Altera OpenCL System Implementation [8].

A detailed and complete system implementation model of Altera OpenCL is

defined in figure 1.3.3. OpenCL platform consist of a host, one or more OpenCL

supported FPGA device(s) and connected by PCIe bus. An FPGA device is further

divided into multiple Compute Units (CUs), and a CU is made up by a group of

Processing Elements (PEs), which are work-items or SIMD units.

There are totally four memory regions, which ensure the efficiency of

requesting the memory. Each work-item has its private memory that cannot be

accessed by other work-items, and each compute unit has its local memory, and

this memory is local to all the work-items within that work group. Different CUs

can share information with external memory via global memory interconnector;

loaders and savers are also connected to the global memory and scheduled by a

11

group of DDR DIMMs. Besides global memory, there is another external memory

called constant memory, which is used by host to allocate, initialize or free

memory, and stays constant while kernel is processing.

1.4. Research Overview

This thesis explores ways to minimize the execution time by maximizing the

overlap and balance between communication and computation on

heterogeneous systems with both CPUs and FPGAs. Then we analyze the

performance and energy efficiency from using FPGA accelerated application by

implementing several benchmarks.

To best study OpenCL workflow and leverage its advantages, we first

implement a simple HLS (high level synthesis) benchmark suite, the CHO

benchmark set [15], as the kernel functions to FPGA board. HLS is an automated

design process that helps designers convert an algorithmic description to RTL

(register transfer level) description [18]. Each of the CHO benchmarks is a single

kernel and has a test-bench that is part of the host program, and data will be

read/written on the host end. With such implementation, we can better

understand the way that external I/O interfaces between host and device(s)

works.

Based on the above experiments, we could have an overall understanding to

OpenCL and FPGA workflow. In order to maximize the advantage of FPGA

accelerator, we then focus on the topic of design space exploration, and try to

find out the appropriate scale of hardware resources that lead to an optimal

performance.

12

Afterwards, we balance and improve the performance of the benchmarks by

overlapping their hardware implementation or data migration part with

software implementation. To reach the optimal result, we keep the total data size

unchanged but iteratively adjust the size of data sets that sent into software (CPU)

and hardware (FPGA) respectively. We also put forward a way to determine the

possibility and degree of improving a program’s performance with such

framework ahead of implementing OpenCL program.

The rest of this thesis is organized as follows. Chapter 2 reviews the

background and previous work. Chapter 3 investigates the Altera based FPGA

design space exploration. The implementation and results of our suite of

benchmarks for FPGA is also described in chapter 3. Chapter 4 focuses on

optimizing programs’ performance with CPU-FPGA heterogeneous platform.

Finally, Chapter 5 sums up our analysis and addresses the future work we are

interested in.

1.5. Experimental Setup

For our experimental platform, we use Terasic DE5-Net Development Kit

empowered with the top-of-the-line Stratix V GX FPGA board. DE5 is integrated

through version 3.0 PCI interface with a motherboard with AMD A10 processor

and 16GB DDR3 memory with a transfer bandwidth of a maximum of 12.5 Gbps.

13

Figure 1.5.1 AMD-Altera Platform.

Figure 1.5.2 FPGA’s Architecture [15].

We sample the total AC power consumption data of the entire motherboard

including DE5 board using digital multimeter.

We implement three benchmarks to compare the performance improvement

of hardware implementations under several groups of hardware resource

attributes with pure software implementations. And four benchmarks are

designed in CPU-FPGA symbiosis computing part. All the experiments in this

14

thesis are achieved with DE5 and Altera OpenCL, see figure 1.5.1, and figure 1.5.2

gives the architeture of the FPGA.

15

2. Background

2.1. Related Work

This section mainly discusses the related work on FPAG accelerators.

As a technology that can automatically translate behavioral level descriptions

into RTL (register-transfer level) descriptions, HLS (High-Level Synthesis)

frameworks are of a great deal of interest.

Several previous works presented benchmarking of HLS technology. In [14], Y.

Hara et al. proposed a standard benchmark for C-based high-level synthesis,

named CHStone, for HLS researchers to evaluate the effectiveness of their

acceleration techniques. They include 12 programs, which were selected from

several different domains, in their suite and analyze the source-level features,

resource utilization, and sensitivity to resource constrains. However, their

implementation is based on a state-of-the-art HLS tool called eXCite instead of

OpenCL. Although HLS approaches realize an automated conversion from

algorithmic description to RTL (register transfer level) description, this tool is

still designed for hardware engineer. HLS tool targets to implement IP

(Intellectual Property) cores with C-based language, and then maps those IP

cores to an RTL architecture over several clock cycles, which makes it not

preferable for implementing large system. Additionally, instead of using pipeline

parallelism, HLS tools achieve parallelism by scheduling independent operations

in same clock. It is because of the limitation of C-based language – pipeline

descriptions are implicit [23]. As a result, such approaches may not make best

use of FPGA.

16

Recently, Ndu et al. propose a suite of OpenCL port of the commonly used

benchmark, which extends CHStone benchmark suite and named CHO, for

qualitative evaluation [15]. Their benchmark suite targets OpenCL 1.0 so that it

is compliant to any OpenCL compiler version. The test-bench of each application,

which is implemented on the host side, enables them to examine the external I/O

interfacing and its bandwidth. They successfully synthesized 4 test functions out

of 12, and evaluated how a program’s source-level and IR (intermediate

representation) -level characteristics impact the resource utilization of hardware

implementation as well as the program’s performance. The results provide a

rough indication of the complexity of each application on FPGA.

Meswani et al put forward an implemental methodology that helps

researchers explore the optimization opportunities in [17]. This paper raises a

creative concept, idiom, which can help programmers determine whether a given

application benefits from a certain accelerator. Idioms, or the pattern of

computation and memory access, could be useful for describing how a particular

application, or a sort of applications can be potentially optimized or sped up.

They focus on stream and gather/scatter idioms, and capture the indicative

parameters from the source code of a set of benchmarks to determine the

performance. The test result shows that the optimization of run time is largely

dependent on the data size, the data migration cost and data footprint. A binary

instrumentation tool named PEBIL is used to capture the data footprint at the

runtime, and the PMaC performance-modeling framework is chosen to provide

predictions of large scale HPC application performance. Based on the

experimental data, they derived a prediction model concerned about the

17

memory access time for both GPU and FPGA applications, which can accurately

predict each idiom’s run time with error rate between 0.3% and 17.3%.

A prediction model only concerning gather/scatter idioms from [18] can

achieve more accurate prediction with error rate that is less than 10% for

gather/scatter idiom. Their implementation is done on a HC-1 platform. They

firstly compile the SGBench benchmark on the host side, and then run the

majority executions on host side, while the loops that contain G/S computations

run on the FPGAs. The measurements are taken both on the host processor and

FPGA coprocessor, which illustrates the relation between the size of address

range and memory bandwidth. It is demonstrated that their fine-grained model

for FPGA has less than 8.6% absolute error, and further identify that more than

100 instances of G/S idiom are not worth porting, which largely saves the

programming time and decreases the likelihood of inaccurate result.

The compelling performance offered by FPGA leads researchers and engineers

apply FPGA to diverse fields. In [16], W. Vanderbauwhede et al. explore a way to

implement a document-filtering algorithm, which is widely used in database and

served as a filtering mechanism, with FPGA. They demonstrate the tremendous

advantages provided by FPGAs in both performance and power for document

filtering is that FPGA implementation for unstructured search achieved an

overwhelming speedup than the standard implementation. For the three IR

collections they tested, FPGA implementation gains about 10x to 20x than the

reference implementation.

Such implementation was also illustrated in [3], Doris et al. take advantage of

Altera OpenCL and created a kernel to perform the filtering function, and then

improve the memory bandwidth efficiency with memory coalescing. They also

18

take advantage of a Bloom Filter to optimize the memory bandwidth, which is

caused by read access. Bloom Filter is like a hash map, and it performs a pre-

search function that can reduce the times of memory access to the profileWts

array. Their result shows the performance comparison among Multi-Core CPU,

GPU and FPGA, and FPGA outperforms CPU and GPU by a factor of 5.25x and 5.5x

respectively when considering the power of external bridge chip and memory

power.

19

3. Design Space Exploration

OpenCL is designed as a software-friendly high level language that enables

programing on hardware accelerator. However, it is still a hardware-targeted

description. One primary factor that distinguishes OpenCL from software

programming language like C or C++ is that OpenCL support statements of

setting hardware attributes. Such feature helps programmer exploit the

hardware resource under a custom manner. This chapter addresses the problem

of optimizing the accelerator’s performance with appropriate hardware resource

attributes.

3.1. Altera OpenCL Optimization

Altera OpenCL provides programmers several ways of optimizing the kernel

function to achieve high performance. To achieve higher performance, it is

necessary to optimize the kernel with either automated or manual optimization.

In this section, we leverage the pros and cons of those two optimization

approaches.

3.1.1. AOC Resource-driven Optimization

A straightforward and simple way to optimize a kernel function is invoking

the resource-driven optimizer by applying –O3 flag in the command when the

programmer begin to generate kernel file. Resource-driven optimization is a

feature of AOC (Altera OpenCL Compiler). By invoking the optimizer, AOC will

evaluate the code and determine the possible sharing degree of work-items by

analysing various combinations of number of CUs, SIMDs, loop unrolling factor

and number of shared resources under the constraints of available hardware

20

resources and memory bandwidth to identify the optimal choice of these values

in terms of work-items executed per second [20].

One of the most compelling benefit of resource-driven optimization is its

usage of hardware resource will always conform to the fitting requirement. The

default threshold of estimated utilization is 85%, which ensures no usage

overflow error occurs while compiling a kernel into the FPGAs. According to AOC

Compilation Flow [20], the duration of compilation may last several hours. Even

a very simple kernel functione.g., vector addition, takes about 3 hours to compile

and generate an Altera Offline Compiler Executable File (.aocx) file. On the other

hand, unless syntax errors occur, the usage overflow cannot be detected by the

compiler at very beginning of the compilation, but in the fitting step. Therefore, it

is time-wasting if such error exists.

On the other hand, AOC resource-driven optimization also has several

limitations. First, the control flow analyses assume values of kernel arguments

are unknown when compiling the kernel. For example, the optimizer assumes

that loops with unknown bounds iterate 1024 times, which is meaningless most

of the time. Second, the performance estimation might not capture accurately

the maximum operating frequency that the hardware compiler achieves. Because

all optimizations take place ahead of hardware compilation occurs. Besides,

when the number of CUs increases in order to achieve higher throughput, the

hardware resource usage also increases due to the increasing frequent global

memory accesses.

21

3.1.2. Performance Optimization Based on Kernel Attributes

Another method to optimize a kernel function is manually setting hardware

attributes. To begin with, we need first get better understanding of the hardware

attributes the clEnqueueNDRangeKernel function [7-9],

cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,

cl_kernel kernel,

cl_uint work_dim,

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

AOCL supports specifying the following attributes:

reqd_work_group_size(x, y, z): The work-group size that must be used as the

local_work_size argument for the kernel, which equals to the number of work-

items (x*y*z) that form a work-group.

num_compute_units: Specify the number of CUs that used for processing the

kernel. This is used for increasing the throughputs by distributing the work-

groups within a kernel across the specified number of CUs, but at the expense of

increasing global memory bandwidth among the CUs.

num_simd_work_items: the data path within a compute unit is replicated to

increase throughput and can also lead to memory coalescing. For AOCL to

implement a SIMD data path, the value of num_simd_work_items must evenly

divide the value specified for reqd_work_group_size, and also be a power of 2.

22

max_unroll_loops: Loop unrolling decreases the number of iterations the AOC

executes, at the expense of increased hardware resource consumption. This can

be overridden for individual loops using #pragma unroll.

To better investigate the function of kernel attributes, we should first

understand OpenCL’s platform model as well as the execution model of OpenCL

kernel.

OpenCL kernels are defined as NDRange style, which refers an N-dimensional

(expressed as dim) index space. Once a kernel is requested by the host for

execution, its index space is specified. With the command get_global_id(dim) or

get_local_id(dim), a kernel’s instance will be executed at a point indicated by an

index within the index space. Such kernel instance is referred to OpenCL

language as work-item.

Figure 3.1.2.1 Kernel Execution Model

With this understanding of the kernel execution model, we then evaluate each

of the kernel attributes:

1) Loop Unrolling

23

The loop-unrolling factor will take effect if the kernel program contains any

loops. Generally, there will be two cases if any loop exists in the program: 1) a

loop with certain bounds, and 2) a loop with unknown bounds. The first case is

straightforward, but the second case may lead to insufficient loop unrolling that

AOC assumes the loop iterated 1024 times. In this situation, the best solution is

to manually set the unroll pragma to a reasonable number, which can override

the AOC optimizer’s assumption.

2) Kernel Vectorization

Kernel vectorization, which is realized by expanding SIMD, is prior to

introducing additional CUs. Considering the compiling rules that the value of

reqd_work_group_size attribute must evenly divided by the value of

num_simd_work_items, these two attributes should be set accordingly. The

default value of reqd_work_group_size is 256, which is the maximum work-group

size. However, this default number is not the optimal value in all test cases.

3) Compute Unit Replication

Replicating additional CUs is a way to increase throughput. But at the same

time, the times of global memory accesses will be increased. One of key factor of

Altera OpenCL Optimization is making efficient use of memory hierarchy. When

multiple CUs are generated, consequently more CUs will compete for global

memory bandwidth.

AOC optimizer defines higher priority to loop-unrolling and SIMD

vectorization than increasing compute unit for the hardware resource reason.

24

3.2. Evaluation

The result of Vector Multiplication indicates that barely running AOC

optimizer for a kernel function cannot always achieve its optimal performance.

But repeatedly attempting various combinations of kernel attributes to get

higher performance is not practical in real implementations. Therefore,

exploring a way to identify the proper values of kernel attributes of a program to

achieve its optimal performance is crucial for engineers and programmers.

A straightforward concept is that a kernel can be sped up by introducing more

hardware resources. When only considering a single hardware attribute to

speed-up the kernel, programmers can maximize its value only under constrain

of fitting requirement.

But maximizing all the kernel attributes is not possible due to the usage

constraints. In most of the cases, we need to leverage among all the attributes

and determine an optimal solution.

3.2.1. Double Floating Addition

We first implement CHO benchmark set [15], which is an OpenCL version of

CHStone HLS benchmark, to exploring the resource-driven optimization.

The first test we evaluate is an IEC/IEEE-standard double-precession floating-

point addition using 64-bits integers. We programmed dfadd kernel twice; we

firstly compile the kernel directly, and then invoke the command with –O3

optimization. Compilation time for those two ways are nearly the same, but we

can find the first stage hardware usage estimation differs a lot, which shows in

Table 3.2.1.1. Unfortunately, due to the small data scale, there is no obvious

difference in kernel execution time.

25

Table 3.2.1.1 Usage summary and kernel execution time for dfadd with data size 46.

Logic

utilization

Dedicated logic

registers

Memory

blocks

DSP

blocks

Execution

time/ms

Without optimization 19% 8% 16% 0% 0.131

With optimization 70% 26% 14% 0% 0.129

3.2.2. Vector Multiplication

To better analyze the difference before and after applying resource-driven

optimization, we implement a vector multiplication application as the second

benchmark. The function takes two vectors as inputs, and returns a vector as the

output, which stores the product of each two corresponding elements in the two

input vectors. The data type is integer, and the vector size is 108 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

We compile the vector-multiplication kernel three times:

1. Set no hardware attribute, and compile the kernel function without any

optimization approaching;

2. Set no hardware attribute, but invoke the AOC resource-driven optimizer

when compile the kernel;

3. Manually set hardware attributes in the kernel function, and invoke the

resource-driven optimizer when compile it.

Each of those three ways of compilation takes around two hours to complete,

which makes us believe that applying resource-driven optimization will not

increase the overall compilation time. The only difference among those three

ways is that the second method spends a few seconds on evaluating several

26

combinations of hardware attributes for preforming optimizations. However,

from the estimated resource usage summary, we can find distinct variation.

Figure 3.2.2.1 Usage Summary of Vector Multiplication

Figure 3.2.2.1 provides the hardware usage summary of the same kernel

function compiling in three different ways. Such differences produced by the

varying values of kernel attributes:

Table 3.2.2.1 Kernel Attributes of Vector Multiplication

 # CUs # SIMDs Local work size

No Optimization 1 1 1

AOC Optimizer 9 2 1

Attribute-setting 10 2 100

All the default kernel attributes are 1, which in the most cases shows better

performance than CPU does. But it still has much scope to be improved. To

achieve higher throughputs, the AOC optimizer will assign more hardware

resources to the kernel. The addition hardware space would be assigned to those

27

frequently executed work-items to allow them to complete the operations in

fewer cycles.

 Figure 3.2.2.2 Kernel Execution Time.

Figure 3.2.2.2 gives the kernel’s execution time under various optimization

methods. From the result, we can easily find that performing optimization, either

invoking the AOC optimizer or manually setting the kernel attributes, can speed-

up the kernel, but at the expense of occupying more hardware resources.

In this test case, manually setting kernel attributes can achieve 79.233ms to

execute multiplication of two vectors of size 108, which runtime improves 97.6%

over pure CPU execution, 81.12% over non-optimizing FPGA execution, and 22.9%

over AOC-optimizing FPGA execution.

3.3. Kernel Optimization Analysis

Vector Multiplication benchmark is tested in this section to help us understand

how the kernel attributes cooperate with each other and how each attribute

affect the performance. It is defined as:

𝑐𝑐[𝑖𝑖] = 𝑎𝑎[𝑖𝑖] ∙ 𝑏𝑏[𝑖𝑖]

where both 𝑎𝑎 and 𝑏𝑏 are lists of numbers.

28

AOC optimizer evaluates the kernel and than compiles it across 9 CUs with a 2

lane-wide SIMD. The pure kernel runtime when executing 100 million floating-

point numbers is 100.8ms. Then we fix all the other attributes unchanged, but

only set reqd_work_group_size to 100, the kernel runtime decreases to 79.6ms,

and performance improves by over 21%.

Figure 3.3.1 Pure Kernel Execution Time vs. number of CUs and SIMD.

 Figure 3.3.2 Total Execution Time vs. number of CUs and SIMD

0
50

100
150
200
250
300
350
400
450

CU = 1 # CU = 3 # CU = 5 # CU = 7 # CU = 9 # CU = 11

Ke
rn

el
 R

un
tim

e/
m

s

SIMD = 4 SIMD = 2 SIMD = 1

0
50

100
150
200
250
300
350
400
450

CU = 1 # CU = 3 # CU = 5 # CU = 7 # CU = 9 # CU = 11

To
ta

l R
un

tim
e/

m
s

SIMD = 4 SIMD = 2 SIMD = 1

29

Figure 3.3.1 gives the variation in pure kernel execution time versus the

number of CUs and the number of duplicated SIMDs, and Figure 3.3.2 gives the

variation in total runtime, which includes the host-to-device and device-to-host

data transform time.

We can easily find there is a descending trend in both FPGA kernel runtime

and total runtime as the number of either CU or SIMD decreasing. This tendency

is reasonable since the more hardware resources are generated, the more

operations can be performed concurrently.

Figure 3.3.3 AOC optimization techniques to increase parallelism. (a) CU replication. (b) Kernel

vectorization in one CU [10].

For Altera OpenCL, we can see the difference between two optimization

techniques. Every time we introduce one more Compute Unit for a kernel, we

will duplicate the number of work-group. The scheduler then dispatches a work-

group to the additional Compute Unit, and more work-items will be executed

simultaneously. Setting SIMD attribute to larger number can also achieve higher

performance. Whereas the CU attribute defines the number of work-groups that

can be scheduled, SIMD attribute describes the amount of paralleled executions

30

performed by a single work-group. Setting SIMD attribute can also defined as

kernel vectorization, which increases the datapath of a Compute Unit and

enables work-items to execute in SIMD fashion [23]. Although either CU

replication or SIMD vectorization can improve a kernel’s performance by

exploiting more hardware resources, SIMD vectorization should be applied

ahead of CU replication.

To clearly show the priority of replicating SIMD we compare the performance

and hardware resource usage of following CU-SIMD combination, and show the

results in Table 3.3.1.

Table 3.3.1 Performance and Resource Usage Comparison

(CU, SIMD)
Logic

Utilization

Dedicated
Logic

Registers

Block
Memory Bits

Total DSP
Blocks

FPGA
Runtime (ms)

(1, 2) 20% 7.14 × 104 3% 4 215.675
(2, 1) 20% 7.11 × 104 5% 4 365.650

(1, 4) 20% 7.17 × 104 3% 8 104.147
(4, 1) 22% 7.96 × 104 6% 8 187.975

There are two pairs of test results listed in Table 3.3.1. The first pair keeps

one attribute as default value 1, and double the other attribute; the second pair

also keeps one attribute as default value and increases the other attribute

threefold. Both of them give us a clear-cut difference between CU replication and

SIMD vectorization in kernel’s performance: the runtime of two SIMD

vectorization implementation reduced 41% and 44.5% than CU replication

respectively, while hardware resource utilization almost remains the same or

even less.

31

 Therefore, implementing kernel vectorization can achieve better

performance with more efficient design space.

A series of more intuitive of the hardware resource-runtime Pareto frontier

are shown in Figure3.3.4, Figure 3.3.5 and Figure 3.3.6.

Figure 3.3.4 Logic Utilization-Runtime Pareto Frontier.

Figure 3.3.5 Dedicate Logic Register-Runtime Pareto Frontiers.

4.00E+4

4.50E+4

5.00E+4

5.50E+4

6.00E+4

6.50E+4

7.00E+4

7.50E+4

50 100 150 200 250 300 350 400 450

Lo
gi

c U
til

iz
at

io
n

FPGA Runtime/ms

SIMD_work_items = 1 SIMD_work_items = 2 SIMD_work_items = 4

CU = 9

CU = 7

CU = 5

CU = 3

CU = 1

6.00E+4

7.00E+4

8.00E+4

9.00E+4

1.00E+5

1.10E+5

1.20E+5

50 100 150 200 250 300 350 400 450

Da
di

ca
te

d
Lo

gi
c R

eg
is

te
r

FPGA Runtime/ms

SIMD_work_items = 1 SIMD_work_items = 2 SIMD_work_items = 4

CU = 9

CU = 7

CU = 5

CU = 3
CU = 1

32

Figure 3.3.6 Block Memory Bits-Runtime Pareto Frontier.

The previous three plots show the importance of replicating

SIMD_work_items: as we double the SIMD_work_items attribute, the runtime

decreases a lot, but there is no obvious variation among Logic Units, Dedicated

Logic Register and Block Memory Bits. While we increase the number of

Compute Unit, as we can see, the hardware resources grow exponentially. The

runtime of using 1 CU and 4 vector lanes is a little longer than using 9 CUs and 4

vector lanes, which are 102ms and 74ms respectively.

However, not all the hardware resources only change with CU numbers,

another crucial hardware resource, like DSP blocks, is proportional to both CU

and SIMD attributes. According to our test results:

1.50E+6

2.00E+6

2.50E+6

3.00E+6

3.50E+6

4.00E+6

50 100 150 200 250 300 350 400 450

Bl
oc

k
M

em
or

y
Bi

ts

FPGA Runtime / ms

SIMD_work_items = 1 SIMD_work_items = 2 SIMD_work_items = 4

CU = 9

CU = 7

CU = 5
CU = 3

CU = 1

33

Table 3.3.2The Impact of SIMD and CU Attributes on DSP Blocks.

simd work items

Compute Units

1 3 5 7 9

1 2 6 10 14 18

2 4 12 20 28 36

4 8 24 40 56 72

We can easily find out the connection among SIMD, CU attributes and the

number of “active” DSP plocks:

𝐷𝐷𝐷𝐷𝐷𝐷 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 2 × 𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

DSP blocks in FPGA consist of multipliers and many other required functions

for processing high-precision DSP applications. Thus, when the application

targets on processing complicate DSP functions, both the number of compute

unit and simd_work_items should be considered to increase.

Overall, consider both the program’s runtime and hardware resource usage,

replicating SIMD attribute is prior to introducing more CUs when optimize a

program. Otherwise, the inefficient memory access pattern will obstruct

achieving optimal performance.

34

4. Optimize FPGA-CPU Symbiosis

As an accelerator, FPGA exhibits superior parallel execution ability then

traditional computer processor. However, performing as an accelerator, FPGA

cannot work independently – it must be instruct by a host, which is, in this case,

the CPU. The workflow requires kernel functions to be instantiated by host

program first, and then be sent to FPGA board. After FPGA executions are

completed, all the result must be copied back to the host side. Such flow path

could worsen program’s runtime if not optimized correctly.

After we examined Altera OpenCL workflow, we find that CPU is idle while

FPGA is processing. To maximize the performance of whole applications, we

designed a CPU-FPGA overlapping platform.

4.1. CPU-FPGA Overlapping Accelerator

In this section, we leverage the advantage of combining FPGA and CPU to

implement OpenCL kernels for several operations, in particular, the operations

that can be executed in a reductive fashion. We keep the size of inputs

unchanged, which is 108, while iteratively reduce the percentage of data that

will be executed on FPGA from 100% to 0 by 10%, and identify the optimal

combination of CPU and FPGA.

According to AOC programming flow, overlapping CPU-FPGA computations

can be generated either after the host side (CPU) call read_event, which function

as copying data from host to device, or set kernel arguments. Once the host

successfully sends data to FPGA and sets kernel arguments, and CPU will

35

become idle until all the tasks on FPGA are completed. We try to make use of

that period and find out an appropriate amount of operations to load to CPU.

We designed five benchmarks to help us evaluate the possibility and overlap

degree of using CPU-FPGA overlapping framework. Two factors are considered

when we choose our benchmarks: data migration intensity and computation

complexity.

4.1.1. Vector Multiplication

For the first step, we illustrate how the computations of FPGA and CPU be

overlapped using a simple vector multiplication kernel.

The implementation of vector multiplication is taking two lists of the same

size as inputs and adding each pair of the elements, then returning a single

vector as the output.

𝑐𝑐[𝑖𝑖] = 𝑎𝑎[𝑖𝑖] ∙ 𝑏𝑏[𝑖𝑖]

Here the name, vector, is just the container we used in the kernel function, but

actually this is a scalar multiplication.

4.1.2. Vector Dot Product

After creating the general kernel for vector operations, we proceed to

consider the acceleration cases of exploiting parallel reduction on data intensive

computing operations. The second test is taking a dot production of two vectors,

in which the inputs are still two vectors while the output result changed from a

vector to a single number. Dot product is defined as

𝒂𝒂 ∙ 𝒃𝒃 = 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + ⋯+ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛

,where 𝒂𝒂 and 𝒃𝒃 are vectors.

36

In place of linearly fetching each number from the vector and executing the

operation, the parallel algorithm implemented on FPGA can be expressed as

follows: the multiplications will be executed across all the initialized work items

concurrently and all the result will be stored in a temporary vector, after all the

multiplications are finished, the devices side will sum those products in parallel

and then return the final result as the output.

4.1.3. 𝑳𝑳𝒑𝒑 Space

The third application we tested is 𝑳𝑳𝒑𝒑 Space. In finite dimensions, the length of

a vector 𝒂𝒂 = {𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛} in the n-dimensional real vector space 𝑹𝑹𝑛𝑛 is given by

the Euclidean norm:

‖𝒂𝒂‖ = �𝑎𝑎12 + 𝑎𝑎22 + ⋯+ 𝑎𝑎𝑛𝑛2
2

However, the Euclidean distance may not sufficiently describe an actual

distance in many real-life situations, while p-norms can fill this gap and widely

applied in many parts of mathematics, engineering and computer science. A 𝑳𝑳𝒑𝒑

norm of vector 𝒂𝒂 is defined as

‖𝒂𝒂‖𝑝𝑝 = (|𝑎𝑎1|𝑝𝑝 + |𝑎𝑎2|𝑝𝑝 + ⋯+ |𝑎𝑎𝑛𝑛|𝑝𝑝)1/𝑝𝑝

We test the performances of 𝑳𝑳𝒑𝒑 Norm with different p values. Instead of

sequentially applying square operation on each element, in our FPGA

application, all the instantiated work-items do their work concurrently on each

cycle.

4.1.4. 1D Convolution

Convolution is one of the most important concepts in Fourier Theory that can

be defined on groups other than Euclidean Space. It takes two 1D vectors as

37

inputs - one of them is an “input signal” or “image”, the other one works as a

“filter”- and producing a vector as an “output signal” or “image”. Let’s call our

inputs 𝒂𝒂 and 𝒇𝒇, and 𝒃𝒃 as the output, so the convolution of 𝒂𝒂 and 𝒇𝒇 is:

𝑏𝑏[𝑖𝑖] = 𝒂𝒂 ∗ 𝒇𝒇[𝑖𝑖] = �𝑎𝑎[𝑗𝑗]𝑓𝑓 �𝑖𝑖 − 𝑗𝑗 +
𝑁𝑁
2
�

𝑁𝑁

𝑗𝑗=1

We choose a filter with size 𝑁𝑁 = 4, which is much smaller than the input

signal. The FPGA implementation unloops the convolution so multiple filters can

operate on the signal simultaneously.

4.1.5. Matrix Multiplication

Matrix Operations serves an important role in quantum mechanics, graph

theory, and all throughout fields. It is a way of organizing real-life data and

hence the calculations can become very easy and practical to tackle using matrix

operations. Due to this reason, Matrix Multiplication is implemented.

The inputs of matrix multiplication are a pair of matrices, and the output is

another matrix. In mathematics, its definition is

𝒂𝒂 × 𝒃𝒃 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

� × �
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

� = �
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13
𝑐𝑐21 𝑐𝑐22 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑐𝑐33

�

where 𝑐𝑐𝑖𝑖𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑏𝑏𝑘𝑘𝑘𝑘𝒏𝒏
𝒌𝒌=𝟎𝟎 .

The process of Matrix Multiplication can be divided into three pipelined stages:

1) Copying 𝑖𝑖𝑖𝑖ℎ row of vector 𝒂𝒂 and 𝑗𝑗𝑗𝑗ℎ column of 𝒃𝒃 from host to FPGA; 2) FPGA

start operating on the loaded vector, which contributes to 𝑐𝑐𝑖𝑖𝑖𝑖; 3) writing data

back from FPGA to CPU. Unlike the above benchmarks that copy all the data

from CPU to FPGA before FPGA computation begins, Matrix Multiplication copies

38

the input matrix block by block, which overlaps the data migration with FPGA

computation.

4.2. OpenCL Data Migration on PCI Express

In most of the cases, computing a function directly in hardware is

overwhelmingly efficient than in software. However, merely considering the

pure execution time of a program is not enough for us to choose FPGA platform,

since data migration between host and device can sometimes be very expensive,

and has a direct bearing on a program’s time efficiency.

Figure 4.2.1 Data Migration Time for Floating-point

Data migration time is hard to optimize since it is determined by the speed of

the PCI Express bus. However, this limitation makes it easy to be predicted.

Altera OpenCL provides users with build-in statements, write_event and

read_event, which serve as data-copy methods. We measure the data migration

time for our platform by transferring different number of floating points

between CPU and FPGA with Altera OpenCL API.

0

50

100

150

200

250

300

Ti
m

e/
m

s

Number of Floating Points

39

From Figure 4.2.1, we can observe that the data transfer time is linear to the

size of transferred data. Therefore, it is possible for programmer to calculate the

estimate data migration time for a certain amount of data, and then evaluate the

possibility of taking advantage of CPU-FPGA heterogeneous platform.

For our experimental platform, the migration speed when apply writeBuffer

statement is 1.65GB/s. When there are N single floating-point elements to be

transferred between host and device, the data migration time will be

𝑡𝑡 =
𝑁𝑁 × 4 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

1.65 × 109𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/𝑠𝑠

Similarly, programmer can estimate the data migration time for a certain type

of input data set, and further consider the computation method as well as the

platform applied to their applications.

4.3. Methodology

Based on Amdahl’s Law, the speedup of the whole task can be described by

portion of computations executed on FPGA 𝑥𝑥 (%) and the speed-up, p, attained

from parallelizing in FPGA:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

1 − 𝑥𝑥 + 𝑥𝑥 𝑝𝑝�

and when we overlap CPU computations with FPGA computations, the speedup

becomes:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑝𝑝�)

Consider the theoretical speedup of the whole program is limited by:

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

1 − 𝑥𝑥

40

, which we named as the Boundary Ratio.

In our experiments, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of the enhanced faction can be expressed in

following two ways based on the overlapping method:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑝𝑝�)
 =

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

max (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛)) + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛)

𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

max (1 − 𝑥𝑥, 𝑥𝑥 𝑝𝑝�)
 =

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

max (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑛𝑛)) + 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛)

where

𝑁𝑁 is total number of elements to be processed;

𝑛𝑛 is number of elements to be processed on FPGA;

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁) is the CPU runtime without using FPGA platform;

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁−𝑛𝑛) is the CPU runtime while applying CPU-FPGA overlapping

computation;

𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛) is the FPGA runtime while applying CPU-FPGA overlapping

computation;

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛) is data migration time.

Then the theoretical optimal speedup should be:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁)

as all the data are executed on FPGA.

Since generally FPGA has much better computational capability than CPU, the

data migration time could be the key factor to determine whether a program can

be speed up with CPU-FPGA overlapping computation. If 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 1, it means

41

the program cannot be further optimized, otherwise it can be speeded up to

some extent.

When n(𝑛𝑛 ≤ 𝑁𝑁) elements will be processed on FPGA, if

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) ≤ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁)

then:

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛) =

𝑛𝑛
𝑁𝑁
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑁𝑁) ≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) ≤ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁)

𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛) ≤ 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁) < 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁)

 For illustration, we consider the special case when programs with linear

runtime complexity are executed as our experimental objects and evaluate their

Speedup degree. However, programmers can further evaluate the Speedup

according to their program’s time complexity.

If the program execution time is linear to the input data size, we can model the

CPU and FPGA time as follows:

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑛𝑛) =

𝑛𝑛
𝑁𝑁
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁)

𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑛𝑛) =

𝑛𝑛
𝑁𝑁
𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁)

Then we consider the two possible situations. The first case is when

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛) > 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛) (1),

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

1 − 𝑥𝑥 + 𝑥𝑥 𝑝𝑝�
=

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

(max (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁−𝑛𝑛) , 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑛𝑛)) + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛))

=
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑛𝑛
𝑁𝑁 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁) , 𝑛𝑛𝑁𝑁 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁)) + 𝑛𝑛

𝑁𝑁 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁))

42

For this case, since 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁) could be always less than 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁) , and programmer have

great chance to further optimize FPGA computation, as long as 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) < 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶

(𝑁𝑁) ,

we can prove that:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 >
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑛𝑛
𝑁𝑁 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁) , 𝑛𝑛𝑁𝑁 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁)) + 𝑛𝑛

𝑁𝑁 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶
(𝑁𝑁))

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 >

⎩
⎪
⎨

⎪
⎧ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑁𝑁 − 𝑛𝑛
𝑁𝑁 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁) + 𝑛𝑛
𝑁𝑁 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶

(𝑁𝑁)
= 1

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑛𝑛
𝑁𝑁 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁) + 𝑛𝑛
𝑁𝑁 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶

(𝑁𝑁) =
𝑁𝑁
𝑛𝑛
𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

(𝑁𝑁)

𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶
(𝑁𝑁) +

𝑁𝑁
𝑛𝑛

> 1

Therefore, no matter how we choose 𝑛𝑛, the program’s performance can always

be improved.

Then we consider case (2), where speedup is expressed as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

(max (𝑁𝑁 − 𝑛𝑛
𝑁𝑁 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

(𝑁𝑁) , 𝑛𝑛𝑁𝑁 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁)) + 𝑛𝑛

𝑁𝑁 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(𝑁𝑁))

Without compiling and fitting the OpenCL program onto FPGA, if we could

guarantee 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
(𝑁𝑁) > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑁𝑁) , we can also ensure 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 1 by choosing

appropriate number of data, 𝑛𝑛. As long as the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is greater than 1, the

application can be further optimized with FPGA-CPU overlapping computation.

Therefore, by only comparing the data migration time with CPU-only runtime,

we can predict the possibility of optimizing an application with CPU-FPGA

platform.

43

4.4. Experiments

4.4.1. Vector Multiplication

Vector Multiplication is a typical test case which operation is lightweight

compared to its data migration. When each of the input vectors contains 𝑁𝑁

elements, then there will be 3𝑁𝑁 elements to be transferred between CPU and

FPGA (2𝑁𝑁 from CPU to FPGA and 𝑁𝑁 elements from FPGA back to CPU). While the

total operations is 𝑁𝑁.

Figure 4.4.1.1 CPU-FPGA Overlapped Computation for Vector Multiplication

From Figure 4.4.1.1, we can find that either CPU runtime or FPGA runtime is

basically proportional to its input data size. However, we can also observe that

even though FPGA is always faster than CPU, the time spend on copying data is

much longer than either FPGA computation or CPU computation. The Limiting

Ratio is:

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) =

227.332
762.79

≅ 0.30

838.05

757.497

679.54

591.64
527.6

423.598
388.066

342.663
309.1

255.889 227.732

0

100

200

300

400

500

600

700

800

900

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% data executed on FPGA

FPGA runtime Data migration time Total time CPU runtime

44

For this case, because sending data from the host to the device side as well as

copying the result back to the host is a big overhead, which would be the

primary determinant of the program’s total runtime, the strength of FPGA and

CPU overlapped computation cannot make up such expense. Therefore, the

optimal implementation, which total runtime is 227.732ms, is CPU-only

platform.

4.4.2. Dot Product

After testing Vector Multiplication, we seek for another benchmark with less

data migration intensity but higher computational intensity. Dot Product is

implemented as our second benchmark.

Figure 4.4.2.1 CPU-FPGA Overlapped Computation for Vector Dot Product.

In this experiment, the number of migrated data is 2𝑁𝑁 + 1(2𝑁𝑁 from host to

FPGA and 1 from FPGA to host CPU), and the number of operation is 2𝑁𝑁 − 1(𝑁𝑁

multiplications and 𝑁𝑁 − 1 additions).

Although it costs less time to transfer data between host and device side than

Vector Multiplication, which data migration still contributes most to the total

614.1
553.89

497.898
433.026

372.57
310.16

282.267 265.308 239.64 215.83 242.762

0

100

200

300

400

500

600

700

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% data executed on FPGA

FPGA runtime CPU runtime Data migration time Total time

45

execution time. The Limiting Ratio of the enhanced fraction for Vector Dot

Product:

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) =

227.332
483.58

≅ 0.50

The speedup is less than 1, however, our result shows that the program’s

runtime is slightly improved from 242.762𝑚𝑚𝑚𝑚 to 215.83𝑚𝑚𝑚𝑚. And the optimizing

point shifts from 0% to 10% as shown in Figure 4.4.2.1 and reduced by 11.1%. It

is because the data migration time will decrease as we reduce the amount of

data that assigned to FPGA, Then

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛) =

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑛𝑛
𝑁𝑁 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑁𝑁) ≅
𝑁𝑁
2𝑛𝑛

Thus, if there exists an appropriate 𝑛𝑛 that ensures 𝑁𝑁
2𝑛𝑛

> 1 , the program’s

performance could still be improved.

4.4.3. 𝑳𝑳𝒑𝒑Space

We further increase the ratio of operation frequency verses data migration

quantity in order to explore more chance to optimize the program. In this part,

Vector Norm is experimented as the third benchmark.

Because there is only 1 vector need to be transferred to FPGA, the amount of

data copied from host to device is 𝑁𝑁, and only 1 result is going to be written back

from device side to host side. In the same time, the number of operation is 2𝑁𝑁 +

1, which including 𝑁𝑁mutilications, 𝑁𝑁additions and 1 pow() function.

In this experiment, data migrate between CPU and FPGA takes less time than

processing the same size of data on CPU. Here shows the speedup of the

enhanced fraction for 𝑝𝑝 = 2 to 𝑝𝑝 = 6 are shown in Figure 4.4.3.1:

46

Figure 4.4.3.1 The Theoretical Speedup vs. p-Value.

From the above results, we can find there is an upward trend in theoretical

optimal speedup as p value increasing. Therefore, the program should have

greater chance to be optimized with FPGA-CPU overlapping computation, and

we could also assume that the larger the p’s value, the greater the speedup.

Supported by the above results, we then measure the performance under each

p Value, and produce the following plots:

1.17

1.41
1.51

1.84
1.9

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6

Sp
ee

du
p

p Value

362.272

326.37

291.551

258.031

222.271 220.69 228.89 237.58
256.09 267.998

282.52

0

50

100

150

200

250

300

350

400

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

47

Figure 4.4.3.2 CPU-FPGA Overlapped Computation for 𝑳𝑳𝟐𝟐Space.

Figure 4.4.3.3 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟑𝟑 Space.

Figure 4.4.3.4 CPU-FPGA Overlapped Computation for 𝑳𝑳𝟒𝟒 Space.

366.237

331.909

295.186

259.23

227.808
253.174

266.26
288.604

307.48
324.96

340.53

0

50

100

150

200

250

300

350

400

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

386.37

341.43

302.65

265.983
238.14

274.67 280.69
302.586

322.94
345.78

362.81

0

50

100

150

200

250

300

350

400

450

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

48

Figure 4.4.3.5 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟓𝟓 Space.

Figure 4.4.3.6 CPU-FPGA Overlapped Computation for 𝐋𝐋𝟔𝟔 Space.

367.842
331.613

294.78

248.2 257.24
289.622

318.95
355.49

383.35
414.24

444.36

0

50

100

150

200

250

300

350

400

450

500

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

368.65
335.02

295.01
258.41 267.52

302.78
331.56

379.29
401.35

432.34
465.95

0

50

100

150

200

250

300

350

400

450

500

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

49

The experiment results shown from Figure 4.4.3.2 to Figure 4.4.3.6 confirm

our assumption. We collect the results in Table 4.4.3.1 to help us clearly identify

the trend.

Table 4.4.3.1 The Impact of Computational Intensity on Speedup.

p value Limiting Ratio
Time

reduced/ms
Optimal Point Real Speedup

2 1.17 61.83 50% 1.28

3 1.41 112.722 60% 1.49

4

5

6

1.51

1.84

1.90

124.67

196.16

211.54

60%

70%

70%

1.52

1.79

1.90

From Table 4.4.3.1, as the theoretical speedup fraction increases, the optimal

point shifts to larger percentage, which means the advanced computing

capability of FPGA can counteract more overhead of data migration. Besides, our

assumption that Limiting Ratio would increase with the growth of p value is also

confirmed by our experiments, where Limiting Ratio reflects the comparison of

CPU computational intensity and data migration intensity. This feature

demonstrates that if a program’s computations are more intensive than its data

migrations, it would be further accelerated with CPU-FPGA heterogeneous

system.

4.4.4. 1D Convolution

Our next benchmark is 1D Convolution with a filter size 4. Compared with its

computation intensity, the data migration intensity could be much light. Hence,

we expect this benchmark to be optimized with more FPGA computations.

50

To predict the possibility of optimizing this benchmark, we still need to

evaluate the Limiting Ratio:

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) =

1141.7
483.42

≅ 2.36

This ratio is larger than all the above ratios, which confirms our expectation.

Figure 4.4.4.1 CPU-FPGA overlapped computation for 1D Convolution.

As we can see from Figure 4.4.4.1, the optimal point locates at 80% of input

data assigned to FPGA. The total runtime changes from 1141.7ms to 513.98ms,

which reduced by 54.98%.

4.4.5. Matrix Multiplication

Our last benchmark is Matrix Multiplication. The inputs and output are two 2-

dimentional vectors and one 2-dimentinal vector respectively. Since we send

two matrices block by block rather than a whole matrix, the data migration time

is significantly reduced.

592.84
536.26 513.98

562.31
613.23

659.78
740.69

848.54

945.94

1043.69

1141.7

0

200

400

600

800

1000

1200

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

51

Figure 4.4.5.1 CPU-FPGA overlapped computation for Matrix Multiplication.

As we can see from Figure 4.4.5.1, data transfer time between CPU and FPGA

compared to CPU runtime is extremely short, and the Limiting Ratio is far

greater than 1, which value is:

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝→∞𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑁𝑁) =

15452.6
32.122

≅ 481.05 ≫ 1

Such result indicates that the FPGA is much more capable to handle this program

than CPU. The result further verifiers FPGA’s capability and the best performance

of Matrix Multiplication occurs when all the computations are completed by

FPGA, which total runtime reduced by 95%.

By evaluating the results of the above five benchmarks, we can conclude that

the degree of optimizing a program with FPGA is largely rely on the comparison

between data migration intensity and CPU computation intensity. This

comparison can be evaluated by Limiting Ratio: If the ratio is larger than 1,

741.32 1179.98

3345.97
4730.84

6213.31

7782.12

9631.81

11241.03
12261.51

13942.75
15452.55

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

tim
e/

m
s

% input data executed on FPGA

FPGA runtime CPU runtime Data migration time total time

52

meaning that we can always gain higher performance from FPGA acceleration.

For this case, we would better transfer a great portion of data to FPGA while

remain a small portion of data on CPU. If the ratio is less than 1, we should

further divide this case into two sub-situations. If its value is very small, which

means the migration overhead is overwhelming. Then we should stick with CPU

and avoid the FPGA acceleration. But is the ratio is a little less than 1, we may

achieve higher performance if we let CPU do the majority computations and

FPGA execute partial operations.

In this way, programmers can choose the method of optimizing their

programs without working on FPGA.

53

5. Conclusion

The latency of data processing speed relative to the rapid growth of data leads

to a strong demanding for high performance computing architecture. Even

though the computation ability of multi-core CPU has largely improved

compared with traditional single-core CPU, it is still inefficient to processing the

growing data and huge computations.

FPGA, as an integrated circuit with powerful computation capability, is put

forward as a new processor. Its pipeline parallelism technique is very attractive

for processing large-scale data. However, the cumbersome hardware description

makes it unpopular in industry and commercial fields. Software developers are

also unwilling to use it because of its unfriendly programming language and

debugging flow. While problems solved when OpenCL was put forward as a

solution. This hardware-targeted programming language is much software-

friendly, which is much like C/C++ language. With the help of OpenCL, FPGAs are

increasingly applied to diverse fields as powerful accelerator.

In this thesis, we have first compared the performance of non-optimized FPGA

computations with optimized FPGA computations with a simple vector addition

benchmark, and found that the runtime can be reduced by 75.5%. Then we’ve

deeply investigated the FPGA’s performance with Altera OpenCL, and analyzed

the pros and cons of two optimization methods: AOC automated optimization

and manually setting resource attributes. We also compared two optimization

techniques – replicating Compute Unit vs. kernel vectorization – to help

programmers better decide the priority of applying those two techniques. Our

test results showed that applying kernel vectorization can leads to higher

54

performance with exploiting the same or less hardware resource than CU

replication.

After we have understood the optimization techniques, we presented a

practical method that can further optimize the program. This method overlaps

the computations of FPGA and CPU, and makes use of CPU’s idle period.

However, we found that even though CPU-FPGA heterogeneous platform can

produce higher performance in most of the cases, data migration may costs

much more time and lead to an overall worse performance than CPU-only

systems. So we put forward a “Speedup” ratio to help programmers evaluate the

possibility of taking advantage of FPGA only with software programming. Our

results showed that if the ratio is greater than 1, the program can absolutely be

optimized with CPU-FPGA platform, which it is less than 1, the program can

probably be optimized. This “Speedup” ratio can also describe the optimization

degree of applying FPGA accelerator. Five benchmarks were tested to verify our

expectation. The results showed that as the computation intensity of a program

increasing and/or data migration intensity decreasing, the program could

achieve higher performance.

Our future work will focus on accelerating more complex algorithm, like

Convolutional Neural Network (CNN). CNN algorithm is computationally

intensive, thus how to reduce the cost as well as ensure its accuracy is a key

questions.

In [19], Farabet et al. put forward a scalable hardware system to implement

convolutional neural networks for large-scale multi-layered synthetic vision

systems. It is demonstrated that at the same condition that the convolution

filters size of 3x3 and image size of 500x500, either FPGA or ASIC is capable to

55

run medium complexity tasks with 15W and 1W power consumption

respectively, which is lower than 90W of CPU implementation.

We plan to optimize CNN algorithm by loading layers with intensive

computations but lighter data migrations to FPGA, while remaining other layers

in CPU. Additionally, we hope to achieve deeper overlaps by dividing both data

transfer part and FPGA kernels into blocks, and then overlap each two blocks to

accomplish optimal performance.

56

BIBLIOGRAPHY

[1] Freund, Richard F., and Howard Jay Siegel. "Guest Editor's Introduction:

Heterogeneous Processing." Computer 6 (1993): 13-17.

[2] Maheswaran, Muthucumaru, et al. "Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems."Heterogeneous

Computing Workshop, 1999.(HCW'99) Proceedings. Eighth. IEEE, 1999.

[3] Chen, Doris, and Deshanand Singh. "Invited paper: Using OpenCL to evaluate the

efficiency of CPUS, GPUS and FPGAS for information filtering."Field Programmable

Logic and Applications (FPL), 2012 22nd International Conference on. IEEE, 2012.

[4] Accelerate, Opencl on fpgas for gpu programmers.

[5] Settle, Sean O. "High-performance dynamic programming on FPGAs with

OpenCL." Proc. IEEE High Perform. Extreme Comput. Conf.(HPEC). 2013.

[6] Munshi, Aaftab, et al. OpenCL programming guide. Pearson Education, 2011.

[7] Khronos OpenCL Working Group. "The OpenCL Specification, version 1.0. 29, 8

December 2008."

[8] Khronos OpenCL Working Group. "The OpenCL Specification Version 1.1. Khronos

Group, 2011."

[9] Khronos OpenCL Working Group. "The OpenCL Specification Version 1.2. Khronos

Group, 2012."

[10] Windh, Skyler, et al. "High-Level Language Tools for Reconfigurable

Computing." Proceedings of the IEEE 103.3 (2015): 390-408.

[11] Singh, Deshanand. "Implementing FPGA design with the OpenCL standard."Altera

whitepaper (2011).

[12] Intel® Microprocessor Export Compliance Metrics

http://www.intel.com/support/processors/sb/cs-017346.htm

[13] GeForce 9800 GTX Specification http://www.geforce.com/hardware/desktop-

gpus/geforce-9800-gtx/specifications

http://www.intel.com/support/processors/sb/cs-017346.htm
http://www.geforce.com/hardware/desktop-gpus/geforce-9800-gtx/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-9800-gtx/specifications

57

[14] Hara, Yuko, et al. "Proposal and quantitative analysis of the CHStone benchmark

program suite for practical C-based high-level synthesis." Journal of Information

Processing 17 (2009): 242-254.

[15] Ndu, Geoffrey, J. Navaridas, and M. Lujan. "CHO: A Benchmark Suite for OpenCL-

based FPGA Accelerators." University of Manchester Technical Report (2014).

[16] Vanderbauwhede, Wim, Leif Azzopardi, and Mahmoud Moadeli. "FPGA-accelerated

Information Retrieval: High-efficiency document filtering." Field Programmable Logic

and Applications, 2009. FPL 2009. International Conference on. IEEE, 2009.

[17] Meswani, Mitesh R., et al. "Modeling and predicting performance of high performance

computing applications on hardware accelerators." International Journal of High

Performance Computing Applications 27.2 (2013): 89-108.

[18] Carrington, Laura, et al. "An idiom-finding tool for increasing productivity of

accelerators." Proceedings of the international conference on Supercomputing. ACM,

2011.

[19] Farabet, Clément, et al. "Hardware accelerated convolutional neural networks for

synthetic vision systems." Circuits and Systems (ISCAS), Proceedings of 2010 IEEE

International Symposium on. IEEE, 2010.

[20] Altera, S. D. K. for OpenCL. Programming Guide. (2014).

[21] Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE Design & Test of

Computers 4 (2009): 8-17.

[22] Czajkowski, Tomasz S., et al. "From OpenCL to high-performance hardware on

FPGAs." Field Programmable Logic and Applications (FPL), 2012 22nd International

Conference on. IEEE, 2012.

[23] Altera, S. D. K. for OpenCL. Optimization Guide. (2014).

	1. Introduction
	1.1. Heterogeneous Computing
	1.2. FPGA Accelerator
	1.3. Implementing hardware program with OpenCL
	1.4. Research Overview
	1.5. Experimental Setup
	2. Background
	2.1. Related Work
	3. Design Space Exploration
	3.1. Altera OpenCL Optimization
	3.1.1. AOC Resource-driven Optimization
	3.1.2. Performance Optimization Based on Kernel Attributes
	3.2. Evaluation
	3.2.1. Double Floating Addition
	3.2.2. Vector Multiplication
	3.3. Kernel Optimization Analysis
	4. Optimize FPGA-CPU Symbiosis
	4.1. CPU-FPGA Overlapping Accelerator
	4.1.1. Vector Multiplication
	4.1.2. Vector Dot Product
	4.1.3. ,𝑳-𝒑. Space
	4.1.4. 1D Convolution
	4.1.5. Matrix Multiplication
	4.2. OpenCL Data Migration on PCI Express
	4.3. Methodology
	4.4. Experiments
	4.4.1. Vector Multiplication
	4.4.2. Dot Product
	4.4.3. ,𝑳-𝒑.Space
	4.4.4. 1D Convolution
	4.4.5. Matrix Multiplication
	5. Conclusion
	BIBLIOGRAPHY

