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Abstract 

 Effective design and evaluation of thermal management techniques require 

dependable forms of thermal characterization. However, the difficulty of runtime thermal 

characterization of a processor is contributed by a number of factors such as the 

inaccuracy of thermal sensors and inaccessibility of thermal data on a processor while 

using a thermal camera. Beginning with an understanding of thermal modeling using the 

HotSpot tool, I simulated RC thermal models of a FinFET device and validated the model 

with results. My work involves the thermal measurements of real running processors in 

an oil-sink setup using both an infrared camera and the processor thermal sensors and 

comparing the thermal behaviors via the two methods of measurement. I demonstrate that 

the on-chip thermal sensors correlate directly with IR imaging with slight systemic 

differences. This means that thermal sensors on which DTM techniques depend are very 

effective. In addition, I also compared the thermal behaviors of the processor in the oil 

sink and air sink configurations using the thermal sensors and found that the thermal 

behavior in the oil cooling configuration has a quicker long-term (gradual, low frequency 

variation) transient response and a slower short-term (high frequency variation) transient 

response than that of the air sink configuration. Finally, I will characterize the thermal 

behavior of various workloads with the infrared camera in an oil sink configuration, 

generating the hotspot loci, statistics and frequency domains of each benchmark and 

observe that there are some differences among different workloads. 
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Chapter 1: Introduction 

1.1 Thermal Characterization of Processors 

Elevated temperatures have a negative impact on processor performance. Leakage 

current constitutes a major portion of total power dissipation in processors and this 

leakage current varies exponentially with temperature. Additionally, higher operating 

temperature and increased power density can also decrease the reliability of logic and 

timing on the chip due to the increase in system parameter variability (temperature and 

voltage variations). 

The challenge of temperature as a key limiter of processor performance has 

become especially real as device dimensions are scaled down aggressively to the 

nanometer range since a smaller gate length has a higher source-drain leakage, leading to 

a higher current density in interconnect lines and higher power consumption. Hence, a 

temperature-aware processor design has become a necessity for designers, leading to 

various thermal modeling tools such as HotSpot. These tools are used to characterize 

temporal and spatial thermal behaviors at design time, needed for developing efficient 

and effective thermal management techniques at the architectural level as well as at the 

dynamic level where the chip is adapting on the fly to changes in temperature. 

However, while design time thermal models are very useful for a quick analysis 

and evaluation of thermal solutions, run time thermal characterization offers a more 

accurate and direct result of processors with actual workloads. It can also be used to 

validate the effectiveness of design-time thermal modeling tools. One common way of 
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measuring temperature of processors is using an infrared camera that can directly 

measure the photons levels emitted by the processor. 

Unfortunately, the challenges of real time thermal characterization using the 

infrared camera lie in the innate inaccessibility of temperature on the processor due to the 

package and cooling configuration itself. While infrared (IR) thermal imaging has been 

increasingly popular among researchers, one challenge is to set up a unique cooling 

configuration requiring an IR transparent cooling fluid to make the processor 

temperature-accessible to the camera. Consequently, different thermal characteristics 

from a running processor under regular metal heat sink configuration would be observed. 

This work will reveal the differences in run-time thermal characterizations of 

processors between a metal heat sink configuration and oil heat sink configuration. 

Moreover, I will also expose the workload thermal behavior of a processor under oil heat 

sink configuration, which would be useful for evaluating architectural thermal solutions 

and dynamic thermal management techniques. 

 

1.2 Research Overview 

Due to the inaccessible temperatures of the typical processor, it is difficult to 

exploit the accuracy of an infrared camera to capture the thermal data of the running 

processor under typical cooling configuration since the processor is masked from the 

camera lens by a metallic heat sink. On the other hand, to replace the metallic heat sink 

with a infrared transparent fluid heat sink would mean that the original configuration is 
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altered and thermal data collected would not accurately reflect typical run-time 

temperatures. 

Dynamic Thermal Management (DTM) techniques that require run-time 

measurements of temperature rely on on-chip thermal sensors to engage in a reactive and 

adaptive process of dynamic frequency scaling, dynamic voltage scaling, fetch and clock 

gating, local toggling and computation migration.  

To study the effectiveness of using an infrared camera to characterize thermal 

behavior of various SPEC CPU2006 benchmark workloads, we propose a three stage 

process. 

 

1. Comparing the thermal results collected using an IR camera and using the on-chip 

thermal sensors on a processor under an oil heat sink configuration and comparing 

them. 

2. Comparing the thermal results obtained from using the on-chip thermal sensors 

under the two different heat sink configurations. 

3. Studying the thermal characterizations of different workload applications. 

 

In the first stage, the relationship found between the infrared camera and the 

thermal sensors would enhance the effectiveness of using the on-chip thermal sensors as 

a relevant instrument to make thermal measurements and characterization for the purpose 

of effective DTM techniques. 
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In the second stage, by studying the differences and relationship between thermal 

measurements collected from two different heat sinks, we would be better able to develop 

DTM techniques while using the oil heat sink configuration, which is necessary for the 

utilization of the infrared camera. 

To assist in the analysis of the different thermal results, the techniques used to 

model temperature and heat transfer, thermal models will be studied. This would give us 

the necessary tools required to understand the differences caused by the different heat 

sink configurations or the different thermal measuring instruments as set up above. 

Hence, by understanding the differences of the run-time thermal characterization of 

processor under typical metal heat sink configuration and run-time thermal 

characterization of processor under fluid heat sink configuration, we can justify the use of 

the oil heat sink apparatus in producing accurate thermal behaviors of different 

benchmarks. 

The second part of this work involves the thermal characterization of actual 

benchmarks running on processor under an oil heat sink configuration, using an IR 

camera. The thermal data collected will be substantiated with spatial, temporal and 

statistical information valuable for a complete thermal characterization of these 

benchmark applications. 

This report is organized as follows. I will first discuss previous related work in 

run-time thermal measurements of real processors. Second, I will proceed to analyze the 

technique used in the HotSpot tool to develop thermal models and extend this 

understanding by simulating a HotSpot thermal model of a Carbon Nanotube Transistor 
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(CNT) based processor and some research developments in this field. Third, I will show 

the thermal results of the two set of experiments - oil heat sink and metal heat sink, 

thermal sensors and IR camera, and provide a convincing analysis of the different thermal 

data collected under different conditions. Finally, I will show the thermal results of 

different benchmark applications running on a processor under an oil heat sink 

configuration, collected with an IR camera. These thermal data will be characterized in 

spatial, temporal and statistical terms. 
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Chapter 2: Previous Related Work 

Run-time thermal characterizations of real processors are more accurate and 

useful than thermal results predicted by present tools that simulate a thermal model of the 

processor utilizing theoretical behaviors at the architectural level. One such tool is 

HotSpot, introduced in the paper, [1], which uses an equivalent circuit of thermal 

resistances and capacitances that correspond to microarchitecture blocks and essential 

aspects of the thermal package to model temperature based on available power densities, 

input configuration parameters and floorplan consisting of the processor and heat sink. 

We would observe that other works such as [10] relying on the thermal RC model 

to simulate the self-heating of ultra-thin body SOI and FinFET devices which have 

unpredictable effects of confined dimensions and complicated geometries. [11] is the first 

work to propose a similar distributed thermal channel model for FinFET devices, which 

have promising electrostatic characteristics but also suffer from significant self heating. 

The model was validated using ANSYS and would be used to study the electro-thermal 

properties of multi-fin devices with both flared and rectangular devices. [13] extended 

this work to include derivations of different thermal resistances in the FinFET RC model 

which will be used in our work to validate our understanding of thermal models.  

In our work, we would see a further extension of the HotSpot RC thermal model 

being used for a proposed Carbon Nanotube (CNT) transistor device. [7] focused more on 

the properties of CNT as a suitable semiconductor similar to Silicon and the possibility of 

using CNT for FETs. It described properties of CNTs that would make them more power 

efficient, smaller in size, more resistant to heating and degeneration. However, it also 
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discussed possible problems such as susceptibility to noise caused by electrical, thermal 

and chemical fluctuations. [8] explored further the use of CNTs in FETs and addressed 

several differences between CNTs and silicon which are important to the development of 

CNT based FETs. To support their work, a logic gate was fabricated using CNT and 

results were shown to prove their success. On a different note, [9] proposed a different 

application of the CNT, presenting a methodology to solve heating problems by using 

CNTs as “thermal interconnect” to transfer heat dissipated in a region of high activity 

such as ALU to regions of lower activity such as the cache. This is possible because 

CNTs have much higher thermal conductivity than typical heat spreader materials.   

There have been many papers proposing experimental methods of IR thermal 

imaging such as [2], [3], [4] which are useful for the architecture community to validate 

processor power and thermal models. [2] and [3] discuss the advantages of 'observing the 

actual temperature and power behavior of proposed high performance systems' since 

'without the measurement of real-time responses from the processor, the best efforts of 

the architecture community are reduced to best guesses and approximations when 

modeling the power and thermal behavior of proposed architectural designs. These two 

works focused on designing/ building an effective infrared measurement setup that 

simultaneously captures run-time power consumption, thermal characteristics and 

performance activity counters from modern processors. In addition, [2] included some 

previous failed setups that the group encountered. All these mistakes contributed to the 

aspects of their final successful setup. 
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[4] proposes an experimental technique 'which allows for spatial-resolved 

imaging of microprocessor power (SIMP)'. The work utilizes IR thermal imaging to 

derive the underlying power distribution by 'determining the temperature fields for each 

individual power source on the chip'. The discussion of the impact of power and 

temperature limitations of high performance CMOS chips shows the importance of 

temperature and power distributions for chip floor planning, layout, design and 

architecture and how the SIMP method could be used to directly measure the temperature 

and power fields as a function of workload and frequency. 

While these works all propose a similar measurement setup involving IR thermal 

imaging and an IR transparent heat sink and show the importance of temperature 

distributions for architectural design and DTM techniques, our work studies the disparity 

of the experimental setup under IR transparent heat sink cooling configuration and real 

packaged processors. This disparity is caused by a different thermal characteristic of the 

cooling configurations – one is due to an IR transparent flowing fluid, one is due to a 

metal heat sink cooled by convection current of the air in the ambient surroundings. This 

leads to a very different thermal behavior of the processor when different workloads are 

running on it. 

Similar work has been done in [5], which 'characterizes the differences between 

two cooling configurations - forced air flow over a copper heat sink and laminar oil flow 

over bare silicon'. Several attributes of the IR thermal imaging setup are discussed such 

as the thermal characteristics of the IR transparent heat sink, rate of flow of cooling 

solution and direction of flow that would result in the differences observed in the thermal 
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data of the processor under two different cooling configurations. It also makes use of 

HotSpot RC model to model the cooling configuration of the IR transparent heat sink 

using RC circuits. 

Our work would validate this RC model and extend my analysis to the differences 

of the thermal data collected by the on-chip thermal sensors and the IR camera. Finally, 

with this understanding of the deviation of experimental measurements, I will collect 

thermal results and provide thermal characterizations of several benchmark workloads for 

the processor running under the oil cooling configuration. 

[6] presents a similar experimental setup to 'measure and characterize the thermal 

behavior of real processors and their workloads'. It focuses on a theoretical approach of 

defining the attributes of the IR transparent cooling configuration to match the metal heat 

sink solution. It also studies the experimental process for producing accurate thermal 

results in an effort to address challenges and improve the simulation and modeling of 

thermal characterization of processor designs. 

Our work will begin with comparing the thermal measurements of on-chip 

thermal sensors with IR measurements and then to acknowledge the disparity of results 

from an oil heat sink experimental setup and a typical metal heat sink setup using the RC 

thermal model. In [5], we only see simulations of thermal behaviors in HotSpot. Our 

work is novel in comparing 1) the thermal results of thermal sensors and IR camera and 

2) the thermal measurements from processor in oil heat sink configuration and metal heat 

sink configuration on real processors instead of just simulations in HotSpot. Finally, we 
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will thermally characterize several benchmark workloads via IR thermal imaging 

displaying statistics, hotspot loci and variograms. 
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Chapter 3: Thermal Models & Methods 

 To understand thermal runtime behavior, we need to first understand heat transfer 

on a chip. This could be done by studying thermal modeling in design tools such as 

HotSpot. 

3.1 The HotSpot Design Tool 

HotSpot, as proposed in [1] is a design tool to model temperature and characterize 

temporal and spatial nonuniformities and application-dependent behavior. The tool is 

very useful for developing temperature-aware design and power management techniques 

that could directly target the spatial and temporal behavior of operating temperature. 

By understanding the thermal modeling techniques used in HotSpot, we would be 

able to utilize the tool as a convenient means to account for the thermal behaviors in our 

experiments and understand the differences in thermal data obtained via different setups 

and cooling configuration. The HotSpot model is convenient because it draws a parallel 

of the RC Circuit to model temperature. 

 

3.2 How It Works? 

Hence, lumped values of thermal resistance and capacitance can be computed to 

represent heat flow among regions of chip and from each region to the thermal package 

based on this duality between electrical and thermal resistances and capacitances. This 

will be used to derive a dynamic compact model of the heat flow among the different 

architecture-level blocks within a microprocessor. In HotSpot, a new compact model is 

automatically generated for different microarchitectures based on the parameters and the 
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power trace it receives. It is also able to solve the thermal RC circuit differential 

equations quickly. 

 

Figure 1: Example HotSpot RC model including heat sink and spreader, [1] 

 

Figure 2: RC model of the die layer, [1] 
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The RC model consists of three vertical, conductive layers for the die, heat 

spreader and heat sink and a fourth vertical convective layer for the sink-to-air interface. 

These are either vertical models (heat flow from one layer to the next) or lateral models 

(heat diffusion between adjacent blocks within a layer and from the edge of one layer into 

the periphery of the next area).  The die layer is divided into blocks that correspond to 

the microarchitectural blocks of interest and their floorplan. The sink is divided into five 

blocks: one for the area under the spreader and four trapezoids for the periphery. The 

convective heat transfer from the package to the air is represented by a single thermal 

resistance. The modeling tool assumes the spreader to be isothermal and neglect the small 

amount of heat flowing into the die’s insulating ceramic cap and into the I/O pins. It also 

neglects interface material between the die, spreader and sink.  

HotSpot dynamically generates the RC circuit when initialized with a 

configuration that consists of the blocks’ layout and their areas. This circuit is then used 

in a dynamic architectural power/performance simulation by providing dynamic values 

for power density in each block as the values for the current sources. These current 

sources are at the nodes on each block. Power densities are obtained from the 

power/performance Wattch simulator. 

 

3.3 Derivation of RC Model 

 The electrical-thermal duality proposed by [1] is based on the similarity of the 

Ohm’s law to Fourier’s law. Thermal resistance is proportional to the thickness of the 
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material and inversely proportional to the cross sectional area across which the heat is 

being transferred. Thermal capacitance is proportional to both thickness and area. 

 

 

 

 

 

, 

 

 

Fourier’s law can be described by the following equation. 

 

 

 

Hence we compare and see the similarity of Fourier’s law and Ohm’s law 

Fourier’s law Ohm’s law 

  

 

This leads to a similarity between the heat conduction equation and Kirchhoff 

Current Law. From the principle of conservation of energy, we obtained the following 
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equation. 

 

 

 

 

 

 

 

 

 

 

 

 

Using the circuit above and Fourier’s law, I can derive the following equation. 
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T(x+dx,t) T(x-dx,t) T(x,t) 
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The electrical version of the equation is given below. 

 

 

Comparing the two above equations, we have demonstrated that the above heat 

conduction equation is very similar to Kirchhoff’s current law where net current at a node 

is zero. 

Lateral resistances must account for spreading resistance between blocks of 

different aspect ratios. Vertical resistance of the heat sink must account for constriction 

resistance from the heat sink base into the fins. Spreading and constriction resistances 

account for the increased heat flow from a small area to a large area and vice versa. The 

power densities are comparative to the current sources in the thermal RC model.  

 

3.4 Integrating Thermal Model in HotSpot 

At first, initialization information in the form of initial temperatures and floorplan 

must be passed to HotSpot. The initial steady state temperatures can be generated in the 

first place by running the HotSpot application once. Second, at runtime, the power 

dissipated in each block is averaged over a user specified interval and passed to 

HotSpot’s RC solver which returns the newly computed temperature. 

 Systematically, the capacitances and resistances from the grid are derived from 

the geometric and thermal properties of the material. Using Kirchhoff’s Current Law, the 

HotSpot software obtains the number of equations as the number of nodes. Initially, with 
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the steady state temperatures, capacitance has no effect on the current. Hence, simply 

solving the equations involving resistance values and power densities (thermal current 

sources) would give the initial temperatures (thermal voltages) as described in the first 

step in the above paragraph.  

 In the following time intervals, the initial or previous temperatures (thermal 

voltages) are used to solve for the RC equations which now involve differential equations 

of thermal voltages due to the transient temperatures (thermal voltages) changing over 

time. The Runge Kutta 4 method is used to solve for node temperatures over given time 

intervals. 

This method is boundary and initial condition independent since the component 

values are derived only from material, physical and geometric values. 

 

3.5 Validation of Model 

 Any source of localized, time dependent measurements of physical temperatures 

at a microarchitectural granularity could be used to validate our model. For example, [1] 

compared HotSpot with Floworks, a commercial, finite-element simulator of 3D fluid 

and heat flow for arbitrary geometries, materials and boundary conditions that performs 

full fluid dynamics calculations, including air flow. They verified that the two obtained 

similar steady state operating temperatures and transient response.  
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3.6 Understanding Thermal Modeling during Design-time 

With inputs of the configuration file, floorplan and power trace of a particular 

SPEC benchmark, gcc, I generated outputs of the temperature trace file which contains 

the transient temperatures and the steady state file which contains the steady state 

temperatures. This is done on a DEC Alpha EV6 processor. After that, I use the steady 

state temperatures as initial temperatures for the next run. The final output is shown in the 

figure below.  

 

Figure 3: Generated HotSpot Thermal Map of Dual Core with gcc running on both cores 
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Figure 4: Generated HotSpot Thermal Map of Single Core with gcc 
 

With the configuration parameters and floorplan, the equivalent RC network is 

designed and the values are determined by the power trace values with the thermal RC 

equations. From the RC networks, HotSpot is able to calculate the values of temperature 

for individual nodes in each block taking into consideration the size of the grid and the 

fact that the block acts as a low pass filter that attenuates spatial high-frequency 

variations. 

 

3.7 Thermal Modeling of FinFETs  

We also propose that the thermal model used in the HotSpot tool can also be used 

to thermally model the FinFET device, which is a quasi-planar double-gated device, 
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formed by creating a silicon fin which protrudes out of the wafer, wrapping a gate around 

the fin, and then doping the ends of the fin to form the source and drain’ [11]. Figure 5 

below shows how a multifin device looks like. 

 

Figure 5: Image of Multi-fin Device, [11] 
 

 [10] and [11] introduced thermal models due to the self heating of the ultra- thin 

FinFETs. Both proposed models that use the similar thermal – electrical duality of 

resistance and capacitance as proposed by HotSpot.  

 

3.8 Validating RC Thermal Model for Single-fin FinFET in [11] 

To test my understanding of thermal modeling techniques, I will first validate the 

model proposed by [11] and [13] by calculating the values of the thermal voltages or 

temperatures using the resistance values in the thermal models and Table 1 as shown 

below for a single-fin FinFET. This is done using KCIRC. All the diagrams below are 

obtained from [11] and [13]. The first table you can see below contains the dimensions 
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and thermal conductivities of the FinFET. All these parameters could be found in the 

following diagrams. 

Table 1: Model FinFET Dimensions and Thermal Conductivities, [11] 

 

 

In the model below, we will obtain the dimensions of Hfin, Lgate/ Lg, tox and 

Wfin. Hg corresponds to the height of the gate which is the sum of Hfin and thickness of 

the oxide and gate at the top. We also note that Wgate is width of the gate which wraps 

around the fin but this value will not be useful to our calculations as we will see later. 

 

Figure 6: Single Fin FET Device, [13] 
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 A more accurate illustration of how a FinFET device will look like is shown 

below with its three pads. Our verification of the RC thermal model will be based on this 

thermal model. 

 

Figure 7: ANSYS Thermal Model of a FinFET, [11] 
 

Flattening the above diagram will give us a top view of the thermal model as 

shown below. The diagram below gives us parameters such as Wgp, Lgp, Lsd, Wsd and 

Lext. Hsd in the table above corresponds to the height of the pads which is observed 

below. One point to note is that Lq in the above table corresponds to the length between 

the heat generation regions, Td to the drain edge of the gate, as explained in [10]. This is 

due to the fact that Monte Carlo simulation has shown that the heat generation region 

seems to extend a few nm into the drain. The reason that there is no thermal resistance 

modeled from Tg to Ts is because the heat generation region is at Td and thus there is a 
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heat transfer between Td and Tg. Another assumption we made is Ts is located at the 

source edge of the gate. 

 

Figure 8: Top View of FinFET Layout with Equivalent Thermal Resistances, [13], 
(dotted lines rep. flared channel extensions) 

 
Figure 9 below is the simplified version of the thermal model shown above. 

 

Figure 9: Simplified Circuit Diagram of Thermal Model above, [13] 
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The resistances in the above figure could be calculated using the values in the 

above table and the equations below. The equations below describe the thermal RC 

model at steady state temperatures based on the dimensions and thermal conductivities 

indicated above. In (7), the extra factored term on the right is due to the interface 

resistance which is more significant for thin layers of materials, oxide in this case, as 

explained in [10]. The below equations are provided and explained in [13]. 

 

 

 

 

 

 

 

 

The values of the resistances are computed below. 

 



30 
 

 

 

 

 

 

 

 

 

The thermal current source or equivalently power density is computed as follows. 

 

 

 

 

 

 

 

Using KCIRC to model an identical circuit as the simplified circuit above, I found the 

values of the thermal voltages by substituting the above values of resistances into the 

circuit as shown below. 
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Figure 10: Screenshot of KCIRC Thermal Circuit of FinFET 
 
 

Table 2: Comparison of KCIRC values and ANSYS values 

Temperature/ Thermal 
Voltage 

Obtained Results/ degrees 
Celsius 

ANSYS Results/ degrees 
Celsius [11] 

Td 61.06 59.57 
Tg 10.01 9.66 
Tch 22.60 17.80 
Ts 12.28 13.58 

Tref 0 NA 
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Table 3: Thermal Model Nodal temp. & ANSYS temp. in degrees Celsius, [11] 

 

 

We can observe that the ANSYS values in [11] and [13] and the values obtained 

by our computations are similar, thereby verifying that the RC thermal model is accurate 

in determining the temperatures of a transistor computed by ANSYS which uses finite 

element analysis to find approximate solutions to the differential heat diffusion equations. 

The heat – electrical duality relationship is also therefore validated. 

Now, we will extend the RC thermal model to CNT transistors. 

 

3.9 Background of CNTs 

The possibility of using CNTs as semiconductor devices is discussed in [7] which 

could solve the problems if decreasing size of metallic wires. Smaller wires lead to 

overheating and degeneration of wires. On the other hand, CNTs could cool as well as 

diamond or sapphire. One important characteristic of CNT is that it is semimetal. At the 

quantum level, electrons behave like waves and particles which can reinforce or cancel 

each other. Thus, only electrons of certain wavelengths can remain when the electrons 

spread around the nanotube circumference. This wavelength depends on the 

circumference of the nanotube. However, in a graphite sheet, only one particular electron 
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state gives the graphite almost all its conductivity. Thus, only nanotubes of certain 

circumference (one third) can include this Fermi point in their subset of allowed states, 

causing them to be truly metallic.  

 The rest of the nanotubes function as semiconductors which contain band gaps 

across which a voltage is required to power the electrons. These band gaps depend on the 

circumference. The smallest diameter nanotubes have very few states that are spaced far 

apart in energy. As the diameter increases, more and more states are allowed and the 

spacing between them shrinks. 

Working electronic devices have been built out of carbon nanotubes, like FETs. 

These devices have electrical characteristics similar to silicon devices and can switch 

reliably using much less power than silicon based device.  

There have been many other works exploring the use  of CNT as field-effect 

transistors (FETs) such as [8] or the use of CNT as “thermal interconnect” for on-die heat 

transfer in [9] as seen in figure 11. The high thermal conductivity, tensile strength, 

thermal stability and semi-metallic properties make it an ideal candidate for the above 

applications.  
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Figure 11: Side view of proposed CNFET, [8] 
 
 

 

 

Figure 12: Top view of CNFET, [8] 
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Figure 13: View of the proposed CNT-based heat interconnect, [9] 
 

3.10 Extension of RC Model into CNT FinFET Device 

We propose that a similar thermal model could be implemented on a FinFET 

device based on CNTs instead of silicon fins. The figure below from [12] shows the 

thermal conductivity for a (10, 10) single walled carbon nanotube converging to a value 

of 29 W cm−1 K−1. This will be used for the value of kch. 

 

Figure 14: Convergence of Thermal Conductivity along CNT length, [12] 
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The following values from table 1 were modified to account for the difference in 

characteristics of the CNT. 

 

 W m−1 K−1 

 W m−1 K−1 

 

 

 

 

The values of the resistances for the CNT transistor thermal model were computed below. 
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Figure 15: Screenshot of KCIRC Thermal Circuit of CNFET 
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Table 4: Comparison of CNFET and FinFET temperatures 

Temperature at diff nodes Obtained Results for CNFET/ 
degrees Celsius 

Obtained Results for FinFET 
previously/ degrees Celsius 

Td 50.43 61.06 
Tg 28.95 10.01 
Tch 49.18 22.60 
Ts 48.61 12.28 
Tref 0 0 

 

The results of the values of temperature obtained above for the CNFET are 

slightly different from the FinFET. One observation made is that the range of 

temperatures is smaller for CNFET (0 to 50.43 degrees) compared to FinFET, (0 to 61.06 

degrees). Hence, we immediately see the advantages of using Carbon nanotubes in a 

transistor. 
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Chapter 4: Thermal Measurements of Real Processors under Different 

Configurations 

4.1 Overview 

 In this chapter, we will show results of two experiments we conducted: – 1. 

Compare the differences in thermal results collected with IR thermal imaging and on-chip 

thermal sensors. 2. Compare the thermal results collected by the on-chip thermal sensors 

for a running processor in two different cooling configurations – metal heat sink and oil 

heat sink. The metal heat sink cooling configuration refers to the processor in a typical 

setting such as a copper heat sink with forced air flow over the sink generated by a fan. 

The oil heat sink refers to an exposed processor without the metal heat sink but with a 

layer of oil flowing over it forced by a pump and cooled by an external thermoelectric 

cooler. The details of the setup will be given in the next section. 

With an understanding of RC thermal models from the previous chapter, we will 

analyze the results of our experiments. The motivation behind these two experiments is to 

draw a relationship between using a thermal camera and using on-chip thermal sensor. 

This will help us determine the accuracy of measurements obtained by the on-chip 

thermal sensors as compared to the thermal camera. Subsequently, we can take into 

account the effect of using thermal sensors in run time DTM while using an accurate 

measuring tool like the thermal camera to design DTM techniques or validate design time 

thermal modeling tools. We perform this experiment using the oil heat sink and not the 

metal heat sink because IR imaging requires an IR transparent heat sink above the 

processor to be able to capture the thermal data. Similarly, in the second experiment, by 
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comparing results obtained from two different cooling configurations, we are better able 

to consider different important effects of run time thermal measurement setups which are 

entirely different environments from typical environments of running processors. 

Furthermore, we have to conduct this second experiment using only the thermal sensors 

because the IR camera is not able to capture thermal data through the metal sink. Hence, 

both sets of experiments will complement each other to fill up the missing link between 

thermal data collected by thermal sensors of typical running processor under metal sink 

to the thermal data collected by IR imaging in an oil cooling configuration. 

In this chapter, I will explain the oil cooling and thermal camera setup, describe 

the two experiments, show their results and provide an analysis and comparison between 

the two cases in each experiment. 

 

4.2 Thermal Measurement Setup 

The general setup consists of a oil cooling setup in which infrared transparent 

mineral oil is pumped through a thermo-electric cooling system and then to the processor, 

flowing under a sapphire window. Both the oil and sapphire window are IR transparent. 

Hence, a window is present exposing the processor to the lens of the thermal camera. The 

thermal camera used is a FLIR SC5600 (3-5 µm spectral range, 30 µm spatial resolution, 

100 Hz 6210 x 512 resolution). The software for the camera is Altair software by FLIR 

systems version 5.90.001. Figures 16 and 17 shows the experimental setup with the 

thermal camera and figure 18 shows a screenshot of the Altair software used. 
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Figure 16: Image of IR Camera and Motherboard 

 

 

Figure 17: Close-up Image of processor concealed by sapphire window and oil tubes 
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Figure 18: Screenshot of Altair Software with image of processor 
 

The setup has progressed over the time of my research. At first, an open oil bath is 

used in which the motherboard is immersed partially. Oil is pumped via tubes into the 

space above the processor for cooling and exit via tubes into the oil bath. Another tube is 

used to suck the oil out of the oil bath. After a few improvements, the present setup (refer 

to earlier figures 16 and 17) consists of a closed reservoir of oil that forms a close loop 

that leaves the oil unexposed, making the setup cleaner and less easily contaminated.  

This helps with a cleaner window for thermal measurements as well as reduced the need 

for periodic replacement of oil when it is overexposed and contaminated. At this point, 

we would like to emphasize that we have no control over the oil flow rate or knowledge 

of the oil temperature.  



43 
 

The output data that would be processed by perlscript and MATLAB is in asc. file 

format and the raciometric data is shown in the table below. 

 

Table 5: Raciometric data obtained from asc. thermal output file 

Raciometric data : 
Calibration file 
Unit DL 

(Digital Levels) 
Emissivity 1  
BackGround 
temperature 

22 °C 

Transmission 100 % 
Distance 0.01 m 
Atmosphere 
temperature 

22 °C 

Housing temperature 33.69 °C 
Pixel size 14 µm 
Pixel pitch 30 µm 
Focal length 1 mm 
Aperture 2 F/# 
Cut on 3.7 µm 
Cut off 4.8 µm 

 

 

4.3 Experiment 1: Infrared Camera vs Thermal Sensors 

We collected the thermal data for several SPEC CPU2006 benchmark 

applications using the IR camera and thermal sensors at the same time. Both instruments 

are set to the same sampling frequency to collect data at 40 Hz for the same amount of 

time for each SPEC CPU2006 benchmark. The thermal sensors are from lm-sensor 

package running on Linux operating system. As mentioned previously, this experiment 
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will be conducted solely on an oil heat sink cooling configuration since it can 

accommodate both IR imaging and thermal sensor measurements. These SPEC CPU2006 

benchmarks are listed as follows. 

 

 Only the maximum thermal data for each unit time will be recorded and graphed. 

The digital levels (DL) are captured instead of temperature with the thermal camera 

because the DL is proportional to the number of photons captured by the thermal camera 

lens (Capacitor accumulating charge proportional to the number of photons captured). 

This is due to the emissivity problem whereby the number of photons emitted is 

dependent upon the material and to obtain the right temperatures from the number of 

photons captured, calibration is needed. These benchmarks are run on an Intel Core 2 

Duo 45nm processor at 1.6 GHz. Moreover, the operating system kernel and scripts are 
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configured so that only one core is running and no switching of applications by operating 

system is allowed. 

The results are plotted as graphs of temperature and digital levels against time and 

shown in the figures below for several benchmarks. For the thermal sensors, the graphs 

are of temperature values measured by the thermal sensors versus time and these graphs 

have vertical temperature axes in degrees Celsius and horizontal time axes in 

milliseconds. For the thermal camera, the graphs are of maximum values of DL every 

time frame versus time and these graphs have vertical DL axes and horizontal time axes. 
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My observations are as follows. 

1. As observed from the above results, one can directly see the similarity between 

the thermal results collected by the thermal camera and the thermal sensors. The 

peaks and troughs of both graphs correspond closely with each other (second and 

third pair of graphs). Furthermore, the magnitude of the dips and rises seems to be 

linearly scaled between the temperature and DL graphs according to the 

proportionality factor of around 1 degree Celsius is to 50 DL. Since the graph 

plots only the maximum DL every frame captured by thermal camera while the 

thermal sensors are actually measuring the exact temperatures where they are 

placed, we can deduce that the thermal sensors on the chip are quite well placed 
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on the processor to capture the thermal variation, especially the increase and 

decrease in temperatures, of each workload. The differences in the first pair of 

graph is described and explained in the next point below. 

2. There are some differences in the first pair of graphs with one missing peak and 

trough in the thermal sensor graph. This shows that the thermal sensor failed to 

capture certain variations caught by the thermal camera. Upon closer observation, 

we noticed that all the short-term peaks and troughs of about 400 DL are not 

captured in all the thermal sensor graphs, indicating a disability of the thermal 

sensor to capture variation of that magnitude and period. Perhaps these certain 

variations correspond to thermal variations on locations on the die that are not 

covered by the thermal sensors and thus have slipped through.  

3. One can also observe that the plots for thermal sensors are more discrete with less 

variation than the thermal camera. This might be due to the thermal sensors being 

slower to respond to changes in temperatures compared to the thermal camera. 

Moreover, the ADC of thermal sensors has limited resolution which can also 

cause this lack of variation compared to the thermal camera. Because of this 

slowness, some peaks that occur over a short period of time such as in the graph 

showing the ‘gamess’ benchmark, are missing. It should also be noted that the 

camera captures the maximum DL everywhere across the chip but the sensors are 

placed at fixed locations which would inadvertently lead to a difference in 

measurements. 
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4.4 Experiment 2: Oil Heat Sink vs Metal Heat Sink 

In this experiment, I will collect thermal data using the thermal sensors on the 

processor while it is running benchmark applications under two different cooling 

configurations – cooling by oil and cooling by typical metal heat sink. The oil cooling 

setup is the same as the previous experiment (refer to figures 16 and 17). Additionally, I 

will allow two workloads from SPEC CPU2006 benchmarks to run simultaneously to add 

variation to the experiment. 

This experiment poses more difficulties since separate runs must be conducted for 

different cooling configurations, unlike the previous experiment where the thermal data 

are collected by two instruments at the same time. I also took note to clear the cache after 

every run of the workload to ensure a fair experiment and comparison between the two 

cooling configurations. Furthermore, the times of each run of the same workload might 

differ from each other when run separately. This adds to the difficulty of the comparison. 

 In order to minimize the room for error and ensure a fairer comparison, I ran the 

benchmarks in a strict order in a continuous fashion. This sequence is: perlbench-

perlbench, leslie3d-leslie3d, perlbench-leslie3d, gcc-leslie3d, gcc-perlbench. I ran this 

sequence of workload pairs only once after booting up to ensure the cache is clear before 

the experiment. After that, I plotted the results of the thermal data collected on two cores 

on the same graph for each cooling configuration. I scaled the axes for every pair of 

graphs to be the same length for an easier comparison. When the time taken was different 

for the same workload ran on different cooling setups, I extrapolated the data by using the 
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same value of the final temperature so that both workload run times are the same. The 

figures below show the graphs of temperature versus time of different benchmark pairs 

collected by the thermal sensors. 

 

gcc-leslie3d (metal heat sink) 
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gcc-leslie3d (oil heat sink) 

 

gcc-perlbench (metal heat sink) 
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gcc-perlbench (oil heat sink) 

 

leslie3d-leslie3d (metal heat sink) 
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leslie3d-leslie3d (oil heat sink) 

 

  

From the above results, we made three observations. 

1. We observed that the oil heat sink setup has a larger range of max temperature 

values than the metal heat sink setup. The range of temperature for the oil heat 

sink setup is about 30 to 80 degrees Celsius but the range for the metal heat 

sink setup is about 40 to 50 degrees Celsius. This could be explained by the 

more effective lateral heat spreading in the metal heat sink because of its 

higher thermal conductivity and presence of heat spreader, leading to a lower 

thermal resistance in the RC thermal model than the IR-transparent oil flow. 

The low thermal conductivity of the oil leads directly to a higher temperature 

gradient on the processor. This result is validated by [5] which modified the 



56 
 

HotSpot thermal modeling tool to model the oil flow over a bare silicon die. 

In the work, it also proposed that due to the low thermal conductivity of oil, 

heat from the silicon is vertically transferred to the oil at a very slow rate. This 

causes heat from that hotspot to either accumulate at that point or spread to its 

closest neighbors, raising the temperature of that spot. In the metal heat sink 

setup, higher thermal conductivity results in good vertical heat transfer from 

silicon to metal sink and also effective lateral heat spreading in the metal sink 

instead of silicon like the oil heat sink case. As a side note, the velocity of the 

oil is a factor in the thermal resistance of the oil as the velocity is directly 

proportional to the Reynolds number of the oil flow and from [5], we 

observed the relationship between Reynolds number and the thermal 

resistance of the oil described in the equations below. 
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Hence, we can see that if there is an increase in oil flow rate (with a stronger 

pump), there will be a larger Reynolds number and a lower thermal resistance 

of the oil. This will facilitate a higher rate of heat transfer from Silicon to oil. 

However, this will not be the focus of our work presently. 

2. Another observation is that the oil heat sink setup has a slower short term 

transient response than the metal heat sink setup when the temperatures are 

changing rapidly. This is seen from the longer time taken to reach a peak 

when the temperatures are fluctuating. This could also be observed from the 

rounded peaks and dips for the oil heat sink setup plots. The reason for such 

slow response when the power density switches rapidly is because of the low 

conductivity of the oil, which translates to a high thermal resistivity and a 

larger RC time constant. [5] explained that for a metal heat sink setup, a short 

term heat pulse will only increase the temperature of the silicon and not the 

metal heat sink because the metal has a much higher thermal capacitance than 

the silicon due to its large size. Thus, the temperature of the metal heat sink 

does not change visibly and thermal resistance of the metal heat sink is not 

applicable. The thermal time constant is given as below. 

 

Due to the lower thermal capacitance of the oil compared to the silicon 

because of its thin conducting layer, the temperature does not change in the 

silicon but in the oil. Thus, the thermal capacitance of the oil is negligible. 

Because of the almost constant temperature of the silicon and the lower 



58 
 

resistance of the silicon compared to the oil, the thermal resistance of silicon 

is negligible. This gives us the thermal time constant below. 

 

Comparing (1) and (2), since the thermal resistance of the oil is much higher 

(2 orders of magnitude) than the silicon, we see that the oil heat sink setup, 

(2), has a longer response time than the metal heat sink setup, (1) under the 

application of short term heat pulse. 

3. My third observation is that it takes a longer time for the temperature to reach 

the peak for the metal heat sink than the oil heat sink when the maximum 

temperatures are steady for a long time. This could be seen in the last pair of 

graphs. This means that there is a faster long term transient response for the 

oil heat sink than the metal heat sink. This could be explained by the fact that 

the metal heat sink has a much larger thermal capacitance than the oil, leading 

to a longer thermal RC time constant during warmup. For the metal heat sink, 

since this is a long term transient response, the temperature of the metal heat 

sink is no longer constant and the thermal capacitance and resistance of the 

metal heat sink now represents the major factors contributing to the thermal 

time constant as shown below. 

 

For the oil heat sink setup, the oil still has a lower thermal capacitance than 

the silicon and is negligible. Temperature changes more in the oil than the 
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silicon and the thermal resistance of oil is much larger so the resistance of the 

silicon is negligible. This gives the following time constant, identical to (2). 

 

Comparing (3) and (4), the thermal resistance of oil could be seen as 

comparable to the metal since this resistance refers to the vertical thermal 

resistance from silicon to oil or metal. Thus, even though metal has lower 

thermal resistance than oil (better lateral heat spreading),  and   

really refers to the vertical heat transfer between two different materials. Thus, 

with this in mind, we can see that > , since the thermal 

capacitance of the metal is much higher than the silicon due to its larger size. 

 

The implications of these results and observations are that the many differences in 

the thermal behaviors of the processor when in different cooling configurations would 

necessarily affect the way DTM techniques are developed such as engagement duration 

or thermal thresholds. It is essential to take into account these differences in thermal 

behaviors while using the IR imaging setup cooled by oil so that the design of the DTM 

techniques would be efficient and free of thermal hazards. Alternatively, an easier 

solution would be to achieve a higher control of the oil heat sink apparatus such as the oil 

flow rate, temperature and direction such that a higher similarity between the two cooling 

configurations can be achieved. 
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Chapter 5: Workload Thermal Behavior in Oil Heat Sink 

5.1 Overview of Experiments 

Characterizing workload thermal behaviors are useful because it allows us to 

study various aspects of thermal behaviors which could later be used for developing 

DTM techniques. For example, determining the locations of hotspots for different 

workloads would enable us to place thermal sensors in a more appropriate fashion. 

Statistical data could be obtained from raw thermal data over time to give us important 

information of how different workloads differ from one another or how temperatures on 

different locations on the chip correlate to one another. All these results would give us a 

clearer idea in the design of DTM techniques. 

In this chapter, I characterized the thermal behavior of various benchmark 

workloads running on the AMD Athlon II Dual Core processor in an oil heat sink cooling 

configuration. At this point, we note that based on results of previous experiments, the 

thermal measurements of the oil heat sink setup does not match the metal heat sink. The 

processor is set to run at 1.6 GHz. This will be done using the IR camera to capture the 

thermal data at a rate of 2 Hz over 90 seconds of the application. This rate is sufficient 

because enough variation of temperature occurs over the first 90 seconds to thermally 

characterize the benchmark workloads. The thermal data captured is not used directly for 

my analysis. Instead, the differential thermal data, which is the difference in the thermal 

data collected from the running application and the thermal data collected from the 

processor when the processor is switched off (but the oil is still flowing) would be used. 
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This ensures that temperature variation due to the specific ambient surroundings as well 

as the oil flow is accounted for in my thermal characterization.  

Using this differential temperature data, the difference between the absolute frame 

and idle frame, I displayed the thermal characteristics of these different workloads 

through different forms.  

1. The first is an image representation of the hotspot locus on the chip. This 

represents the spatial locations of all the temperatures above a set threshold 

level at any given time or frame of the thermal data captured.  

2. The second set of characterizations is in the form of thermal data statistics, 

such as the mean, median, max and standard deviation.  

3. The final set of characterizations is represented by means of a variogram. This 

final means of representation of thermal behavior will be discussed in a 

separate section below. 

 

5.2 Experimental Challenges 

One of the challenges in setting up an IR transparent oil cooling configuration is 

that the oil flow was not regular over different runs of the workloads. This is caused by 

the difficulty of regulating the oil flow, especially when the oil setup has a large open 

reservoir which could be affected by the ambient surroundings. Also, the cooling of the 

oil was done by fans initially which is not as effective as we wanted it to be. The oil 

pump is too weak to generate a high rate of oil flow. Over the course of my work, the 

setup was improved. As mentioned previously, the oil reservoir was made to be a closed 



62 
 

one, thereby reducing the sources of uncertain external factors that might affect the oil 

flow. The oil pump was changed to a better one and a thermoelectric cooler was used to 

replace the fan coolers. As a result, there was less turbulence or more regular flow during 

the course of the experiments. 

Another challenge that I encountered is the errors in the thermal data collected. 

The thermal data in the form of asc. files contain missing values and terms that were the 

cause of many errors when I ran my perlscript. My solution was to design a data checking 

perlscript to test the thermal data for bugs and correct them manually. 

There was also a problem for thermal data file size since collecting too much data 

would cause my data processing to slow down. I can set the duration of each run, the 

sampling frequency of the data in order to change the file size. I found that 90 seconds of 

workload runs at sampling frequencies of 2 Hz corresponds to a file size of around 120 

MB which is manageable. 

Finally, in the characterization of hotspot locus, there was a problem in 

representing the locus with lines. The motivation was to provide a graphical means of 

showing how the hotspots move about on the processor. However, the lines were too 

messy and I decided to represent just the locations in dots for a clearer view. 

 

5.3 Experiment 1: Characterizing HotSpot Locus 

 In this experiment, the hotspot loci of the various workloads are characterized on 

a 2D representation of the processor. This is done by extracting all the thermal DL levels 

from every frame that are above a user set threshold. Together with its specific location 
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on the array of thermal data, I accurately reproduce these spots on a separate background 

so that we can observe the hotspots on the processor. The threshold is set such that we 

can correctly represent locations of high levels of activity while running the workload, 

thereby showing the different hotspot loci in different workloads. I conducted the 

experiments for both single and dual cores. When only one benchmark workload is run, 

only the left core will be used, otherwise both cores will be used. 

 To ensure the uniformity of basis for comparison, I ran the benchmark workloads 

in 5 different batches. Each batch represents a single period of time when I turned the 

processor on to collect thermal data. This reduced human and systemic errors within each 

batch. I found the maximum thermal DL levels for each batch of workloads and set the 

threshold levels for the hotspot loci accordingly. Also, each batch has its own idle frame. 

I also made sure to kill every workload after every run. The following table shows the 

maximum DL for every workload. 

 

Table 6: Maximum DL for every workload 

Benchmarks Max Data 
astar 4651 
bwaves 4586 
bzip2 4351 
gcc 4534 
gobmk 4506 
h264ref 5159 
hmmer 5017 
libquantum 5182 
mcf 3902 
omnetpp 4331 
perlbench 4229 
sjeng 4597 
xalancbmk 4261 
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cactusADM 3786 
dealII 4501 
gamess 4485 
gromacs 3779 
leslie3d 4192 
milc 4230 
namd 4440 
soplex 3782 
zeusmp 6821  
calculix 5072 
GemsFDTD 4068 
lbm 3681 
povray 4507 
sphinx3 3915 
tonto 4597 
wrf 4173 
 

From the above results, I found that the maximum DL levels seem to be pretty 

consistent across batches. One anomaly was for zeusmp workload where the thermal DL 

level was unusually high. Since it is the only one, I neglected its significance and set the 

threshold levels to be 4000 for those with maximum values above 4000 and 3500 for 

those below 4000. My results are as follows. 
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Table 7: Maximum DL for every workload pair 

Benchmark Pairs  Max Data  
perlbench - astar  6827  
perlbench - bwaves  6626  
perlbench - bzip2  6262  
perlbench - gamess  6910  
perlbench - gcc  6392  
perlbench - gobmk  6558  
perlbench - h264ref  6806  
perlbench - hmmer  6846  
perlbench - libquantum  6672  
perlbench - mcf  6304  
perlbench - omnetpp  6454  
perlbench - sjeng  6547  
perlbench - xalancbmk  6552  
bzip2 - gcc  5076  
cactusADM - leslie3d  4919  
calculix - GemsFDTD  4893  
gamess - milc  4908  
hmmer - sjeng  4817  
libquantum - h264ref  4981  
mcf - gobmk  5005  
namd - dealII  5016  
omnetpp - astar  4942  
perlbench - cactusADM  4861  
perlbench - gromacs  4853  
perlbench - leslie3d  4932  
perlbench - milc  4862  
perlbench - namd  5054  
perlbench - zeusmp  4830  
soplex - povray  5082  
tonto - lbm  4835  
xalancbmk - bwaves  4975  
zeusmp - gromacs  4883  
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Based on the above results, we made some observations. 

1. In almost all the locus plots, there are no hotspots in the cache or in the center 

column (memory controller) of the processor. This means that the hotspots are 

localized in the top left and right regions of the processor and the caches below 

and the center column remains cool, or experienced less thermal activity. 

2. Also when there is an addition of one more workload to an existing workload, the 

hotspot locus of the initial workload is changed and hotspots appear on both 

halves of the processor.  

3. One further observation is that most hotspots appear in particular locations, 

showing that there are certain spots on the chip that often experience hotspots 

 

There are many uses of generating hotspot loci like we did. We could make use of 

these hotspot loci generated to better place thermal sensors by observing the ‘popular’ 

spots on the chip. We can also identify the areas of hotspots on the die layer 

corresponding to each workload or workload combinations to study the areas of the chip 

being affected by different benchmark applications. These hotspot loci could also be a 

means of evaluating the results of design time architectural thermal management 

techniques. 

 

5.4 Experiment 2: Statistics of Thermal Behaviors of Different Benchmarks 

This experiment will show the digital levels mean median, max and standard 

deviation of each workload and how these statistics vary across workloads. 
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I generated these results by transferring the thermal data into MATLAB and using 

the statistics functions to generate the following graphs. These graphs will show the 

maximum DL versus time over 180 frames at 2 Hz or 90 seconds. 
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Our observations are as follows. 

1. I observed that the statistics of the thermal data of different workloads varies a lot 

among one another. Some have less variation in max DL such as leslie3d and 

bwaves after 70 frames or 35 seconds. Others were irregular and consist of peaks 

and dips such as bzip2 and gobmk.  

2. The standard deviations are similar for different workloads at a value of below 

500 DL. 

3. The mean and median values usually reach a steady level ranging from 2500 to 

3000 DL but the max DL has more variation than the mean and median. This 

indicates that the workloads have a more significant impact on localized 

temperatures rather than changing the temperatures by a similar extent across the 

entire die. 

4. In most workloads, there is larger variation in DL for the initial 20 to 80 frames or 

10 to 40 seconds before they reach a relatively stable level. This is perhaps due to 

the thermal variation encountered at the start of any workload execution.  

 

5.5 Background on Variogram 

In this section, I will discuss about the variogram and how it can be used to study 

the spatial thermal field of the various benchmark workloads. Very generally, a 

variogram shows the correlation of any two different data points of a particular distance, 

h from each other. Hence, given a set of data points, the variogram is found by finding 

the correlation of every possible pair of data points and forming a relation between the 
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correlation and the distance between the pair of data points. This is very useful for 

studying how thermal data collected from different benchmark workloads running, would 

correlate to one another, according to distance. This would give us a very good sense of 

spatial thermal behavior for each unique benchmark. For example, some workloads might 

have two hotspots that constantly correlate closely with each other throughout the runs 

while others might have hotspots that behave differently from each other at different 

times of the runs. 

In probabilistic notion, the variogram is defined by the following equations. 

 

 

where h is the lag distance, or the distance between any two points in the data and Z 

represents the value of the data at the location u. 

 From the equation (3), we can observe that the variogram,  varies 

proportionally with the expected value of the square of every pair of data points with a 

lag distance of h between them. 
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 From (6), we can observe this relationship from an example of a variogram graph 

below which is generated by a software developed by ‘Surfer of Golden Software, Inc.’ 

 

Figure 19: Example of Variogram graph by Surfer of Golden Software, Inc. 
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The maximum level of the variogram corresponds to the variance of the data field, 

beyond which there is no correlation between any two points. Hence, it is reasonable that 

the longer the lag distance, the less correlated one point is to the other. The covariance is 

described in this graph by the difference between the highest line and the variogram. It 

decreases with an increasing lag distance, indicating that there is zero covariance at the 

lag distance when the variogram is equal to the variance of the data field. 

 

5.6 Experiment 3: Variogram of Various Benchmarks 

 Since the thermal data I collect is too large, I have to define a sampling interval to 

downsample the thermal data to a more manageable size. I also have to define a lag 

interval, h for the variogram to collect enough thermal samples in ‘buckets’ at regular 

spatial intervals. The lag distance refers to the spatial Euclidian distance between any two 

data points in the data field. Each bucket would correspond to a certain value of lag 

distance, h and generates the variogram with the thermal samples collected in that bucket. 

In my experiments, I defined these two sampling and lag intervals to be 24 pixel 

intervals. The size of the pixel is 14 µm and the pixel pitch is 30 µm as could be seen in 

the raciometric data table (Table 5, page 41). Thus the distance of pixel interval or 

distance between adjacent pixels is 30 µm. I generated variograms for both single and 

double workloads running and tabulated the values of lambda, the lag distance at which 

the variogram is equal to the variance, or distance between any two data points with the 

least covariance. As seen in the previous section, the equations are repeated below. 
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My observations are tabulated below. 

Table 8: Values of Lambda and Variance for every workload 

SPEC CPU2006 
Benchmarks Workloads 

Lambda/ pixels (will be 
converted to mm) 

Variance/ 10^5 

astar 360 1.7 
bwaves 360 2.1 
bzip2 360 2.45 
h264ref 360 5 
hmmer 360 5.3 
libquantum 360 3.8 
mcf 380 0.35 
omnetpp 360 1.8 
perlbench 360 3.55 
cactusADM 360 1.4 
gamess 360 4.7 
bzip2-gcc 360 2.55 
calculix-GemsFDTD 360 1.7 
games-milc 335 2.4 
hmmer-sjeng 335 3.3 
libquantum-h264ref 360 4.7 
mcf-gobmk 360 10 
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My observations are listed below. 

1. I observed that for single workloads, the processor shows similar thermal 

behavior in variogram. The value of the variogram rises with lag distance 

almost linearly to a peak before falling to almost half the rise and rising by a 

little again or not at all, near the edge of the processor. This means that as the 

distance between any pair of data points increases, the less correlated they are. 

This happens until the peak which represents the variance of the data field. 

The reason for the fall is due to the similarity of the temperatures at the 

boundaries where there is little activity at the edges. Hence, most of the 

temperatures there are similarly low in value and in that sense would be more 

correlated to each other. 

2. For dual workloads, there is more variation in the shape of the variograms 

across the different pairs of workloads. One characteristic I observed in 

certain pairs is the slight presence of a second peak at about 50 % of the lag 

distance of lamda, especially in the second and third graphs with two 

workloads. This could be explained by an increasing ‘unrelatedness’ or 

decreasing covariance between closer data points due to two concurrent 

workloads which are completely different and independent of each other. The 

presence of two workload activities on the same processor region occupies 

more space of activity than space of non activity in the single workload 

processor. Hence, it is expected that the region of covariance as represented 
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by the space above the variogram and below the variance level decreases in 

area due to a decrease in region of non activity on the processor, which has a 

high covariance.  

3. Another observation is the variance in each graph is different, ranging from 

0.3 x 105 to 5.5 x 105. This shows that different workloads or workload 

combinations have different spatial thermal behaviors. The presence of two 

workloads instead of one does not seem to affect the value of variance in the 

thermal data field. Perhaps each combination exudes a spatial thermal 

behavior in terms of variance that is unique to itself. 

4. I also observed that for all of the graphs the values of lambda or lag distance 

which corresponds to the variance of the field are almost similar. This implies 

that the lambda is independent of the type of workloads running on the 

processor or that the distance between any two points that are completed 

uncorrelated in temperature is always the same. This might be because there is 

a maximum distance on the processor where it is physically impossible for 

temperature at one point to affect temperature at the other point. Perhaps one 

of the factors that affect the value of lambda is the thermal conductivity of the 

material in use which can contribute to lateral heat spreading. 
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Chapter 6: Conclusions 

6.1 Conclusions of Experimental Results 

In the first experiment comparing thermal measurements from thermal sensors 

and thermal camera, we see a close correspondence in thermal readings from these two 

different measuring instruments and hence can conclude that the on-chip thermal sensors 

are relatively accurate. However, one can also observe that the readings for thermal 

sensors are more discrete with less variation than the thermal camera due to a slower 

response, limited resolution and rigid placements of the thermal sensors. Also, the 

thermal sensor failed to capture certain variations of particular period and magnitude that 

is caught by the thermal camera. 

In the second experiment comparing thermal readings using IR imaging on two 

different cooling configurations, we first observed that the oil heat sink setup has a larger 

range of max temperature values than the metal heat sink setup. Secondly, the oil heat 

sink has a slower short term transient response but a faster long term transient response as 

compared to the metal heat sink setup which is due to a difference in thermal resistance 

and capacitance of the materials contributing to the cooling configurations. 

In our thermal characterization involving hotspot locus of different workloads and 

workload combinations, we observed that the hotspots are localized in the top left and 

right regions of the processor and the caches below and the center column remains cool. 

Also when there is an addition of one more workload to an existing workload, the hotspot 

locus of the initial workload is changed and hotspots appear on both halves of the 
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processor. One further observation is that there are certain spots on the chip that often 

experience hotspots. 

In the next thermal characterization involving statistical characterization of 

thermal behavior of various workloads, I observed that the statistics of the thermal data of 

different workloads varies a lot among one another. The standard deviations are similar 

for different workloads at a value of below 500 DL. The mean and median values usually 

reach a steady level ranging from 2500 to 3000 DL but the max DL has more variation 

than the mean and median indicating that the workloads have a more significant impact 

on localized temperatures rather than changing the temperatures by a similar extent 

across the entire die. 

In our final characterization of thermal behaviors showing the variograms of 

different workloads, we observed that for single workloads, the processor shows similar 

thermal behavior in variogram. For dual workloads, there is more variation in the shape 

of the variograms across the different pairs of workloads and there is a second peak at 

about 50 % of the lag distance of lamda, indicating a lower covariance between any two 

thermal data points in general. The variance in each graph is different, showing that 

different workloads or workload combinations have different spatial thermal behaviors. 

We also observed that for all of the graphs the values of lambda or lag distance which 

corresponds to the variance of the field are almost similar, indicating that the lag distance 

of lowest covariance between any two points is independent of the type of workloads. 
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6.2 Future Directions 

 We observed the differences and similarities in thermal measurements collected 

by two different measuring instruments, thermal sensors and thermal camera, in our 

work. A further improvement of this work could be exploring the effect of different 

allocations of thermal sensors on thermal measurements collected. This will assist in the 

development of better techniques for allocation of sensors on the chip to capture hotspots. 

Furthermore, we would be able to achieve a better comparison by using the IR camera to 

obtain the real temperature of the processor instead of digital levels. This could be done 

by finding the relationship between DL and temperature of the processor and calibrating 

the IR camera accordingly. 

 We have also compared thermal measurements collected by the IR camera on the 

processor in an oil heat sink and a metal heat sink. However, there are other factors such 

as oil flow speed, oil flow direction and oil temperature that are worth considering. By 

adjusting these parameters, we can better match the cooling configuration in a typical 

metal heat sink and perform a more accurate thermal measurement and characterization 

of real processors under typical conditions. 

 Finally, in the thermal characterization of various benchmark workloads, a further 

improvement to our work could be generating the fourier transforms of the thermal data 

collected on different workloads and studying them. Moreover, we have allowed the 

processor to run at 1.6 and 2.8 GHz in our experiments in this work but have not really 

explored the effect of different frequencies on thermal characterizations of workloads. 

Thus, this could be also worth investigating. 
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