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Abstract of “Power Mapping of Computing Devices:
Fundamentals and Applications” by Abdullah Nazma Nowroz, Ph.D., Brown University,
May 2014

Power consumption limits the maximum achievable performance of modern processors.

Accurate power modeling is an essential step in both mobile and high-end processors.

Large-scale transistor-level power modeling is computationally very challenging. As a

result high-level power modeling is performed at the expense of accuracy. Pre-silicon

power tools need to be complemented with post-silicon characterization to determine the

true power consumption of circuits. Post-silicon power maps are developed during de-

bugging and characterization phases of the first-silicon, and then applied to improve the

design during re-spins and for future designs. Post-silicon power results can also improve

the accuracy of power and thermal models.

We provide fundamentals for post-silicon power validation using captured thermal in-

frared emissions from back-side of integrated circuits. We identify challenges associated

with thermal-to-power inversion [8]: (1) spatial heat diffusion which blurs underlying

power maps, and (2) measurement noise in thermal imaging systems. We address these

challenges by devising optimization formulation that incorporates Tikhonov filtering. To

further increase the accuracy of power mapping, we propose to use AC-based thermog-

raphy which reduces the impact of flicker noise and spatial heat diffusion. The average

power mapping error reduced from 40% using DC-based method to about 8.5% using the

proposed AC-based method. A programmable circuit of micro heaters is implemented,

and used to validate our methods and to quantify the improvements in power mapping

attained from regularization techniques and AC-based methodology.

Using our novel power mapping framework, we present versatile applications of post-

silicon power mapping. First, we power map a soft processor embedded in a FPGA chip,

and a real multi-core processor using DC-based techniques, where we decompose the

viii



power-per-block into dynamic and leakage power. We demonstrate methods for utiliz-

ing AC framework on real processors. Second, we propose alternate way of post-silicon

power mapping with reconstructed thermal maps using measurements from on-chip ther-

mal sensors in-place of infrared imaging, which reduces the cost of post-silicon power

mapping drastically. To reconstruct the thermal maps, we utilize full thermal characteri-

zation methods based on various frequency-domain techniques. Third, we utilize the high

resolution thermal and power maps to formulate high-sensitivity hardware Trojan detec-

tion techniques, which are scalable to large circuits.
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Chapter 1

Introduction

1.1 Problem Characterization

In the past decade power has emerged as a major challenge to computing advancement. A

recent report by the National Research Council (NRC) of the National Academies high-

lights power as the number one challenge to sustain historical improvements in computing

performance [28]. Power is limiting the performance of both mobile and server computing

devices. At one extreme, embedded and portable computing devices operate within power

constraints to prolong battery operation. The power budgets of these devices are about

tens of milli-Watts for some embedded systems (e.g., sensor nodes), 1–2 Watts for mobile

smart phones and tablets, and 15–30 Watts for laptop computers. At another extreme,

high-end server processors, where performance is the main objective, are increasingly be-

coming hot-spot limited [33], where increases in performance are constrained by a maxi-

mum junction temperature (typically 85 °C). Economic air-based cooling techniques limit

the total power consumption of server processors to about 100–150 Watts, and it is the

1



spatial and temporal allocation of the power distribution that leads to hot spots in the die

that can comprise the reliability of the device. Because server-based systems are typically

deployed in data centers, their aggregate performance becomes power limited [7], where

energy costs represent the major portion of total cost of ownership.

The emergence of power as a major constraint has forced designers to carefully eval-

uate every architectural and design feature with respect to its performance and power

trade-offs. This evaluation requires pre-silicon power modeling tools that can navigate the

rich design landscape. Every architectural feature has to be judged in terms of its per-

formance, area, power and reliability. A typical design space has an exponential number

of possible combination of settings for the various features. Thus, there is a strong need

for power modeling methods that enable designers to efficiently explore the design space

and to evaluate the impact of various high-level system architectural choices and opti-

mizations on power consumption. These architectural features and choices vary by the

medium of the computing substrate. For multi-core processors, the choices include, for

example, pipeline depth, instruction issue width, and cache sizes. For SoC-based embed-

ded systems, the choices include the functionality of the custom blocks and the on-chip

communication architecture (e.g., network topology, buffer sizes and transfer modes). In

some embedded systems, the boundary between hardware (HW) and software (SW) is

fluid, where the choice of the implementation (SW or HW) of every component could be

decided based on its impact on performance, power, and area. Field-programmable gate

array (FPGA) power modeling is also challenging as the user’s design is not known during

the design and fabrication of the FPGA.

Various techniques have emerged for pre-silicon power modeling [25, 13, 105, 77, 63,

12, 49, 30, 46, 54, 101, 92, 62]. Low-level power estimation tools which rely on transistor-

level circuit characteristics, gate-level switching activities and detailed RTL netlists can

be very accurate, but is highly infeasible for large designs. To improve computation effi-

2



ciency, designers rely on high-level power estimation tools at the early stage. Some notable

techniques for high-level power estimation are macro-modeling, analytical modeling and

regression modeling [57, 30, 16, 101, 92, 49, 77]. Macro-modeling is a bottom-up ap-

proach where black-box models (macro-models) are built for circuit blocks by a process

of characterization that models the block power as a function of the input/output signal

statistics (probabilities) of the block. Other details can also be used to query the power

models, such as the bus width, average capacitance, etc. This approach of power modeling

is suitable for blocks with irregular structure, such as, arithmetic logic unit (ALU), control

unit etc. Analytical power modeling techniques attempt to correlate power consumption

of circuits block with mathematical equations, which are suitable for functional blocks

which are organized in a regular way, such as, cache memory, translation lookaside buffers

(TLBs) and register file. Regression modeling is a statistical inference method, where the

relationship between a dependent variable power and independent variable architectural

parameters is established. While it is highly desirable, these pre-silicon power estimation

tools are inevitably inaccurate, or approximate [65] because these tools trade-off accuracy

for speed.

Many of the high-level power modeling tools estimates power per block. Figure 1.1

gives one such example, the data is taken from power estimation work by Natarajn et. al

[68]. Here high-level per-block power has been estimated, but validating the accuracy of

the estimation still remains a fundamental challenge. In fact, such a pie chart is extremely

difficult to measure directly, since there are no on-chip ammeters to determine how current

or power divides between different CPU units. McPAT [35], which is a recently proposed

power modeling tools for multi-core processor, has compared the estimated total peak

dynamic power with post-silicon total measured chip power. But no validation has been

done for per-block power, or the estimated leakage power. The accuracy of these tools

could be 30% from the actual power consumption [13]. For all computing substrates
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Figure 1.1: Average estimated per-block power distribution (W) of Alpha 21264 pipeline
design.

estimating power consumption of each circuit block in the chip accurately is very crucial

in making good design decisions at an early stage. So, to gain trust and improve accuracy

of pre-silicon power estimation tools, these tools need to be validated with post silicon

measurements.

To validate pre-silicon design estimates, to calibrate power-modeling CAD tools, and

to estimate the impact of variabilities introduced during fabrication, there is need for post-

silicon characterization. Furthermore, post-silicon methods can guide design changes
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Figure 1.2: Post silicon characterization.
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(layout, sensor-locations, etc.) during the period between the first-silicon and the product-

silicon as shown in Figure 1.2. In a state-of-the-art custom chip, it is expected to spend

about half of the time to market in the design phase, starting with architecture and cul-

minating with placement, routing, timing closure, and meeting the power specifications.

The initial design could take more than a year, depending on complexity and IP re-use

[19]. Once completed, the initial design is shipped for fabrication and first silicon is re-

ceived about three months later. At this point, the silicon still has to be debugged, nearly

always requiring at least one major re-spin of the design [93]. The debug phase, including

working out yield problems as volume is ramped up, can easily take as long as the initial

design where in many cases the mismatch between pre-silicon and post-silicon requires

major changes in the design and implementation of the chip. Popular examples of large

mismatches between pre- and post-silicon estimates include IBM’s Cell processor, where

the post-silicon power and thermal measurements led to large changes in its specifications

and implementation [31]. Once a design is implemented and a physical prototype is avail-

able for direct measurements, post-silicon characterization methods should be utilized to

perform required design adjustments.

The most versatile approach for post-silicon power characterization is to capture the

thermal emissions from the back side of the die and to use these captures to estimate the

power [33, 61, 17]. Post-silicon power mapping involves many challenges at both the

experimental and modeling fronts as follows.

1. At the experimental front, it is necessary to use a infrared transparent heat sink.

For oil-based sink, it is required to control the speed and temperature of the oil

flow on top of the chip to remove the generated heat, while maintaing good optical

transparency to the infrared imaging system.

2. It is essential to accurately synchronize all the measurements of the system, includ-
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ing thermal maps, fluid state measurements and total power consumption.

3. There are two major challenges in infrared imaging; spatial heat diffusion and mea-

surement noise in the thermal imaging system. Heat diffusion blurs the underlying

power map and reduces the accuracy of post-silicon power maps as it filters out the

spatial high-frequency power patterns. Small noise in temperature measurement can

be amplified into significant error in power estimation.

4. At the processing front, challenges include the need to model the relationship be-

tween power consumption and temperature.

5. Decomposing the total power into leakage and dynamic is a challenging task due to

the dependency of leakage on process variability and temperature.

1.2 Major Contributions

There has been a diversification in possible computing substrates that offer different trade-

offs in performance, power, and cost for different applications. These substrates in-

clude application-specific custom-fabricated circuits, application-specific circuits imple-

mented in field-programmable logic arrays (FPGAs), general-purpose processors whose

functionality is determined by software, general-purpose graphical processing units (GP-

GPUs), digital signal processors (DSPs), and system-on-chip (SoC) substrates that com-

bine general-purpose cores with heterogeneous application-specific custom circuits. None

of these substrates necessarily dominate the other, but they rather offer certain advantages

that depend on the target application and the deployment setting of the computing de-

vice. Enormous amount of computing devices have emerged utilizing these substrates in

last few decades. Portable computing devices include smartphones, laptops, notebooks,

tablets and stationary computing devices include desktop computers and high performance
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server computers. While power modeling and characterization for these devices share

common concepts, each of these devices has its own peculiarities and bring new chal-

lenges to pre-silicon power modeling and post-silicon power characterization. In address-

ing the challenges inherent to power modeling and estimation, we provide fundamentals of

post-silicon characterization where we propose an accurate, detailed framework for post-

silicon power mapping which is applicable across all the fabrics. The focus of this work is

to devise algorithmic and experimental methods for post-silicon power mapping by using

infrared imaging techniques, where the captured thermal emissions from the backside of

the die are inverted to yield the underlying spatial power maps. The major contributions

of this thesis are as follows.

1. Fundamentals of Post-silicon Power Mapping using DC-based methods: We

propose a novel DC-based methodology that provides accurate, detailed post-silicon

spatial power estimates using the thermal infrared emissions from the backside of

silicon die [17, 84]. We theoretically and empirically demonstrate the inherent dif-

ficulties in thermal to power inversion. These difficulties arise from measurement

errors and from the inherent spatial low-pass filtering associated with heat diffusion.

To address these difficulties we propose new techniques using quadratic optimiza-

tion formulation that incorporates Tikhonov filtering techniques to find the most

accurate power maps. Furthermore, we propose new techniques to compute the

emissivities and conductances required for any infrared to power inversion method.

To verify our results, a programmable circuit of micro heaters is implemented to

create any desired power pattern. The thermal emissions of different known in-

jected power patterns are captured using a state-of-the-art infrared camera, and then

our characterization techniques are applied to invert the thermal emissions to power.

The estimated power patterns are validated against the injected power patterns which

shows 30% improvement in power mapping accuracy over previous approaches.
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2. Fundamentals of Post-silicon Power Mapping using AC-based methods: Two

major challenges in thermal to power inversion is the spatial diffusion of heat and

measurement noise. Heat diffusion blurs the underlying power map and reduces

the accuracy of post-silicon power models as it filters out the high spatial frequency

power patterns. AC excitation reduces the amount of spatial heat diffusion as the

AC excitation frequency increases [55, 10]. AC excitation also has the benefit of

reducing flicker noise making the inversion more stable. In contrast to previous us-

ages of AC-based thermography, we use AC-based thermography to improve post-

silicon power mapping, where AC excitation signals are applied to the chip instead

of DC excitation signals [71, 72]. We prove and demonstrate that using AC exci-

tation sources reduces the impact of flicker noise and spatial heat diffusion, which

translates to significant improvements in power mapping accuracy by reducing the

average error to 8.5% compare to 40% in the DC case. We devise a lock-in based

thermal to power inversion methodology that maps spatial power consumption on a

real chip. By using a custom test chip that can be programmed to control the spatial

and temporal power consumption, we perform a number of experiments. We use the

test chip to analyze the noise in our thermal imaging system, and to quantify the im-

provements in power mapping attained from the proposed AC-based methodology.

We elucidate the impact of the AC excitation frequency on both the signal-to-noise

ratio and power mapping accuracy.

3. Applications of Post-silicon Power mapping: The proposed DC and AC-based

post-silicon power mapping overcome many challenges that results into a very ac-

curate post-silicon power estimation framework. These methods can be applied

to various computing devices to get access to detailed accurate spatial post-silicon

power maps. We apply our proposed methods to two different computing substrates,

an embedded soft processor in a FPGA and a real multi-core processor. We propose

an alternative way to perform the proposed post-silicon power mapping by using
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measurements from available on-chip thermal sensors. Furthermore, we formulate

various techniques for hardware Trojan detection using the detailed spatial power

maps. Following are the three different applications of the post-silicon power map-

ping.

(a) Power Mapping of Real Processors: We apply our DC-based post-silicon

power mapping to two different real processors, firstly to an embedded soft

processor [70] and secondly to a multi-core processor [21]. For the embedded

processor, we invert the thermal emissions of the soft processor while running

a standard application, into spatial power estimates. We consider different con-

figurations of the soft processor to evaluate the accuracy of the power mapping.

For the multi-core processor, we propose various new techniques to tackle

challenges that accompanies power mapping and modeling of multi-core pro-

cessors. To decompose the estimated power maps of the multi-core processor

to dynamic and leakage power, we utilize thermal conditioning techniques to

build leakage power models for the die and use these models to analyze within-

die spatial leakage variations. In our experiments, we capture thermal images

from a 45 nm quad-core processor under different workload conditions, and

then we reconstruct the dynamic and leakage power maps for different blocks.

Our results show great accuracy in mapping and modeling, revealing good in-

sights into the trends of power consumption in multi-core processors. We also

demonstrate the basic applicability of our AC-based power mapping technique

on a dual-core processor [72].

(b) Power Mapping from Sparse Thermal Sensor Measurements: We propose

to apply post-silicon power mapping on thermal maps reconstructed from ther-

mal sensor measurements [69] instead of the thermal maps obtained by in-

frared imaging. We characterize temperature signals of real processors and

demonstrate that on-chip thermal gradients lead to sparse signals in the fre-
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quency domain. We exploit this observation to devise signal reconstruction

techniques that fully characterize the thermal maps of the processor using the

limited number of measurements from the thermal sensors. Using the recon-

structed thermal maps, we perform the post-silicon power mapping procedure

to obtain spatial power estimates. We present results using a custom FPGA

chip and a real processor.

(c) Power Mapping for Hardware Trojan Detection: Vulnerability of mod-

ern integrated circuits (ICs) to hardware Trojans has been increased consid-

erably due to the globalization of semiconductor design and fabrication. In

this work, we present fast and easy-to-implement methods for Trojan detection

that is based on post-silicon thermal and power characterization technique and

2-dimensional principal components analysis (2DPCA) [37]. Our approach

first estimates the detailed post-silicon spatial power consumptions using ther-

mal emissions of the IC, then applies 2DPCA to extract features of the spatial

power consumptions, and finally uses statistical tests against the features of au-

thentic ICs to detect the Trojan. To characterize real-world ICs accurately, we

add 20% - 40% process variation to gates’ length, width and oxide thickness

of ICs in our experiments. We have designed Trojans modules with varying

power consumption. The results reveal that our experiments can detect Tro-

jans with power consumptions as small as 0.05% to 0.2% of the total power

consumption of the chip.

The remainder of this thesis is structured as follows. Chapter 2 presents the required

background for power modeling in ICs, challenges in pre-silicon power modeling and

motivation for post-silicon characterization, related works and basics of infrared imaging

including detail techniques for thermal calibration. We provide the fundamentals of post-

silicon power mapping in Chapter 3 and 4. Chapter 3 presents our framework for post-
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silicon power mapping using infrared emissions using DC-based techniques, and Chapter

4 describes techniques for post-silicon power mapping using AC-based thermography. In

Chapter 5, we give detail description of three different applications for post-silicon power

mapping. Finally, in Chapter 6, we summarize our findings and outline directions for

possible research extensions.
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Chapter 2

Background

2.1 Power Consumption Mechanisms

Power consumption of digital Complementary Metal Oxide Semiconductor (CMOS) cir-

cuits is caused by two mechanisms. The first mechanism is dynamic power, which arises

when signals transition their values, and the second mechanism is static power, which

causes circuits to dissipate power when no switching activity is occurring. One of the main

advantages of using CMOS technology over earlier bipolar technology was that CMOS

circuits consumed power only during circuit switching. However, aggressive technology

scaling in the past decade led to a situation where static power is no longer negligible, but

rather a significant contributor to total power consumption.

Dynamic Power: Logic gates implemented in CMOS chips use two complementary tran-

sistor types, NMOS and PMOS, to build the functionality of each gate. One terminal

of PMOS transistors is typically connected to the voltage supply, VDD, while one termi-

nal of NMOS transistors is connected to the ground voltage VGND. Figure 2.1 gives the
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schematic of an inverter gate that consists of one NMOS transistor and one PMOS transis-

tor. To understand the operation of the gate, assume that the input voltage is first at logic 0

(i.e., VGND). In this case the PMOS transistor is in on state with a very low resistance (ide-

ally 0), while the NMOS transistor is in off state with a very high resistance (ideally∞),

and a path exists to charge the load capacitance CL until the output voltage reaches VDD.

The load capacitance, CL, represents the total capacitance arising from the output diffu-

sion capacitances of the two transistors, the input capacitances of fan-out gates, wiring

capacitance, and parasitics. When the input voltage switches to a logic 1 (i.e., VDD), the

PMOS transistor is in off state with a very high resistance (ideally∞), while the NMOS

transistor is on state with a very low resistance (ideally 0), and a path exists to discharge

the charges on the load capacitance to the ground until the output voltage reaches 0. The

sum of energy consumed during the charging and discharging, i.e., the energy per cycle,

is equal to CLV 2
DD. The dynamic power consumed, which is the switching energy per

second, by the gate is equal to

Pdynamic−gate = sCLV
2
DD, (2.1)

PMOS 

NMOS 

input output 

CL 

VDD 

GND 

Figure 2.1: CMOS inverter.
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where s is an activity factor that denotes the number of switching cycles per second. If a

circuit has N gates, then the total dynamic power is equal to

Pdynamic =
N∑
i

siCLiV
2
DD, (2.2)

Another power component that is incurred during switching is short circuit power. If

the transition edge (from 1 to 0 or 0 to 1) of the input signal is not sharp, there will exist a

brief moment of time where the NMOS and the PMOS transistors are both turned on and

current will flow from the supply terminal to the ground. Short circuit power is incurred

only whenever a switching activity occurs, which makes it proportional to dynamic power

consumption. Its exact value is determined by the slopes, or transition times, of the input

and output signals. With proper circuit design, short circuit power is usually about 10% of

the dynamic power [29].

Static Power: Static power is the power consumed by transistors when they are not

switching. When CMOS logic gates do not switch, they have no electrical path between

the supply terminal, VDD, and the ground terminals. Thus, static or leakage current was

historically negligible; however, aggressive scaling in sub-100 nm technologies has led

to a substantial increase in its magnitude. Note that modern computing devices include

analog components (e.g., phase-locked loops, sense amplifiers) that incur static DC power

consumption. For digital CMOS, there are three main components for leakage current: (1)

subthreshold leakage current between the transistor’s source and drain; (2) gate leakage

between the transistor’s channel and gate; and (3) reverse bias current between the transis-

tor’s drain and well [88, 2]. Figure 2.2 illustrates these three leakage components. With the

introduction of high-k dielectrics, the main source of leakage current is the subthreshold

leakage.
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Figure 2.2: Three components of leakage current in a MOS transistor.

MOS transistors operate by modulating an energy barrier between the source and drain

of the transistor. The height of the energy barrier is called the threshold voltage (Vth). By

increasing the potential difference between the gate and the source, |VGS|, it is possible to

reduce the energy barrier enabling more flow of electrical carriers between the source and

the drain of the transistor. During the off state when VGS = 0, the average carrier’s en-

ergy is lower than the barrier’s energy; however, the carriers do not have a uniform energy

distribution, and there is a probability that some carriers will have higher energy than the

height of the barrier, enabling them to leak from the source to the drain [28]. The prob-

ability of a carrier having an energy higher than the average energy drops exponentially

with a factor that is proportional to temperature. The subthreshold leakage current can be

mathematically expressed as

Ileak = Ioe
−qVth
αkT , (2.3)

where Io is a constant that depends on the transistor’s geometrical dimensions and fabri-

cation technology, α is a number greater than one, T is the temperature of the transistor, q

is the charge of the electrical carrier, and k is the Boltzmann constant [28]. Equation (2.3)

reveals a number of sensitivity factors that impact leakage [1], such as, process sensitivity
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and temperature sensitivity. While the leakage current of an individual logic gate also de-

pends on its input vector, the sum of these vector-dependent variations typically average

out for large circuits; furthermore, they are dwarfed by the impact of temperature and Vth

variations [1]. The sensitivities of leakage power (i.e., VDD × Ileak) to the supply voltage,

threshold voltage, and temperature introduce variabilities in leakage modeling.

2.2 Power Modeling and Estimation

2.2.1 Challenges in Pre-silicon Power Modeling

While computer-aided power analysis tools can provide power consumption estimates for

various circuit blocks, these estimates can deviate from the actual power consumption

of working silicon chips. There are a number of reasons these pre-silicon estimates can

deviate from the actual post-silicon power measurements.

• Large input vector space: The most significant obstacle in trying to estimate power

dissipation is that the power is pattern dependent. In other words, it strongly depends

on the input patterns being applied to the circuit. The exponentially vast number

of possible input vector sequences and the billions of transistors implemented in

current designs make it impossible to simulate the power consumption incurred from

every possible input vector sequence or software application.

• Spatiotemporal correlation between signals: Probabilistic approaches are commonly

used to solve the pattern-dependence problem [29]. But the problem becomes more

difficult when re-convergent fanout introduces correlations between input signals.

In order to achieve good accuracy, one must model the correlations between internal
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node values, which can be very expensive [66]. As a result, the tools typically apply

heuristics that trade off accuracy for speed in order to obtain the necessary transition

probability estimates [65].

• Errors in coupling capacitance estimation: Coupling capacitance between neigh-

boring wires is determined by the exact waveform activity experienced by the wires.

The computational in-feasibility of simulating every input vector automatically makes

estimating the coupling capacitance during design time a difficult process. Wrong

estimates for the coupling capacitance impact switching power the following ways

[29]. Wrong capacitance values incorrectly estimate incomplete voltage transitions

arising from crosstalk noise. They impact signal slew times which determine short

circuit power. Furthermore, they impact the signal timing delays which determine

the occurrence of glitches.

• Process variations: Intra-die and inter-die process variations are unique for each

die. Process variations impact leakage power, and they also impact the signal delays

along the circuit paths, which determine glitches [9, 103, 73, 83]. Process variations

can introduce serious deviations in power consumption compared to pre-silicon de-

sign time estimates.

• Glitch power: It has been observed that power dissipation due to glitch signals is

typically 20% of the total power, but can be as high as 70% of the total power in

some cases such as combinational adders [91]. This component of the power dis-

sipation is computationally expensive to estimate, because it depends on the timing

relationships between signals inside the circuit. Consequently, many power estima-

tion techniques ignore this issue to improve computation time.

• Spatiotemporal thermal variations: Incorrect estimates for dynamic power implies

incorrect estimation of thermal variations. The inaccuracy in thermal variations

17



estimation in turn leads to further deviations in leakage power estimates because

leakage power is strongly dependent on thermal status of the chip.

Because of the aforementioned complexities, pre-silicon power estimates might not

be accurate when compared to the real post-silicon characteristics. In many cases the

mismatch between pre-silicon and post-silicon characteristics forces major changes in the

design and implementation of integrated circuits. In a study from 2005, it was shown

that 70% of new designs require at least one design re-spin to fix post-silicon problems

and that 20% of these re-spins are due to power and thermal issues [93]. It is likely that

these figures are much higher now as chips are more complex with a larger number of

transistors.

2.2.2 Post-silicon Characterization

Once a design is fabricated, the manufactured devices can yield a wealth of power char-

acterization data that can improve various design choices and runtime applications. The

produced devices can be directly characterized for their true power consumption under

various loading conditions with no need for approximate models or simulations as in the

case with the pre-silicon design. One of the main research directions for post-silicon

characterization is detailed power mapping for validation. Design-time power estimates

are approximate. By measuring total electrical current and thermal status of a fabricated

device, the true power estimates of the circuit structures are revealed. This is possible be-

cause of two reasons, (1) the inherent relationship between power and temperature can be

quantized into a modeling matrix, (2) the thermal emission which is a representative of the

thermal status of the chip can be obtained from the back side of the silicon die. By com-

bining the thermal emissions with the modeling matrix, the detailed power consumption of
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the chip can be estimated. These post-silicon power estimates can be used to validate de-

sign time power estimates, calibrate various empirical models used by CAD tools, or make

re-adjustments during design re-spin if necessary. We describe the relationship between

chip power and temperature and basics of thermal imaging as follows.

a. Relationship between Power and Temperature

The relationship between power and temperature is described by the physics of heat trans-

fer. Mainly, heat diffusion governs the relationship between power and temperature in the

bulk of the die and the associated metal heat spreader, while heat convection governs the

transfer of heat from the boundary of the integrated metal spreader/sink to the surrounding

fluid medium which is either air or liquid. The heat diffusion equation is given by

5 · (k5 T (x, y, z)) + p(x, y, z) = ρc
∂T (x, y, z)

∂t
, (2.4)

where T (x, y, z) is the temperature at location (x, y, z), p(x, y, z) is the power density

at location (x, y, z), ρ is the material density, c is the specific heat density, and k is the

thermal conductivity [74]. k, ρ, and c are all functions of location [74]. In the steady-state

DC case, the heat diffusion equation can be written as follows,

5 · (k5 T (x, y, z)) = −p(x, y, z), (2.5)

where T (x, y, z), p(x, y, z) , and k are the temperature, power density, and the thermal

conductivity at location (x, y, z) respectively [74]. The power transferred at the boundary

by convection is described by Fourier’s law for heat transfer, and it is proportional to the
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temperature difference between the boundary of the heat sink and the ambient tempera-

ture. The constant of proportionality is the heat transfer coefficient which depends on the

geometry of the heat sink, the fluid used for heat removal and its convection characteristics

(e.g., speed and laminarity / turbulence) [40].

In any practical implementation, the heat equation must be discretized. This discretiza-

tion comes from the finite memory size of any computer and more importantly from the

use of thermal imaging equipment with limited spatial resolution. In a discretized form,

the continuous temperature signal is represented by a vector T that gives the true temper-

atures at a discrete set of back-side die locations. The length of the vector T is determined

by the spatial resolution of the infrared camera and the dimensions of the die. The contin-

uous power signal is represented by a vector p that gives the power consumption of each

of the circuit’s units. In such case, Equation (2.5) is approximated by the following linear

matrix formulation,

Rp = T, (2.6)

where the matrix R is a linear operator that captures the impact of all modes of heat

transfer, which is called the modeling matrix for the system.

b. Basics of Infrared Imaging

Any body above absolute zero Kelvin emits infrared thermal radiation with an intensity

that depends on its temperature, its emissivity, and the radiation wavelength [86]. Tran-

sistors and interconnects in integrated circuits operate at elevated temperatures due to re-

sistive heating by charge carriers [75]. Modern computing integrated circuits use flip-chip
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Figure 2.3: Infrared Imaging of silicon back side.

packaging, where the die is flipped over and soldered to the package substrate. By re-

moving the package heat spreader, one can obtain optical access to every device on the

die through the silicon backside. It is possible to use infrared-transparent heat removal

techniques that have similar thermal characteristics to the original heat spreader [81, 59]

or to numerically translate the thermal maps to the original thermal maps.

Figure 2.3 shows one such setup, where the emission from the transistor layer can

be captured from the silicon back side. Silicon is transparent to infrared emissions with

photon energies that are less than its bandgap energy (1.12 eV), which corresponds to

wavelengths larger than 1.1 µm. This transparency is ideal from an infrared imaging per-

spective as it enables the capture of photonic emissions from the devices, which provides

valuable information for thermal and power characterization of computing devices oper-

ating under realistic loading conditions.

One of the key specifications of an infrared imaging system is its spectral response,

which determines the part of the infrared spectrum that the imaging equipment can de-

tect. For the range of temperatures encountered during chip operation, the mid-wave in-

frared (MWIR) range, which stretches from 3 µm to 5 µm shown in Figure 2.4, yields the

most sensitive and accurate characterization of thermal emissions. Detecting emissions in

the MWIR range requires the use of InSb quantum detectors which have to be cooled to
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Figure 2.4: Infrared wavelength range.

cryogenic temperatures to ensure sensitivity. As a consequence, high-resolution MWIR

imaging systems tend to be fairly expensive.

To capture the thermal emissions from an operational die, it is necessary to remove the

optical obstruction introduced by traditional heat removal mechanisms (e.g., integrated

heat spreader, metal heat sink and fan), and to substitute them with mechanisms that can

remove heat while being transparent to infrared emissions. The standard technique to

achieve such a system is through the use of infrared transparent oil-based heat sink [33, 60,

81, 59, 69]. For our experiments with real multi-core processors, we machined a special

sapphire oil-based infrared-transparent heat sink that precisely controls the oil flow over

the computing device shown in Figure 2.5. Chilled oil is forced into an inlet valve of

the sink, which then flows on top of the die to sweep the heat and then exits through

an outlet valve. The oil maintains its flow using an external pump, and the temperature

of the oil is controlled using a thermoelectric cooler. By controlling the oil flow and

its temperature, as well as the sapphire window dimensions, it is possible to get similar

Fluid inlet Fluid outlet 

Figure 2.5: Infrared-transparent oil-based heat removal system.

22



infrared	
  
imaging	
  

current	
  
measurements	
  

power	
  
characteriza4on	
  

loadings: 
workloads 

DVFS  
environment 

power 
estimates 

layout	
  	
  
(P	
  &	
  R)	
  

power	
  
models	
  

device	
  
specs	
  

device 

Figure 2.6: Using post-silicon power characterization for design validation and CAD tool
calibration. P & R stands for placement and routing.

thermal characteristics as the original heat removal package [81, 59]. For our experiments

with an FPGA test chip, we selected 10% of the chip as our test area to keep the power

consumption moderate. After removing the heat spreader from the top of the FPGA a

fan from the side at a fixed location was enough to maintain the chip temperature below

maximum tolerance level such as 85◦ during operation.

c. Need for Post-silicon Power Mapping

Post-silicon power characterization of integrated computing devices provides the true spa-

tial and temporal power characteristics under representative loading conditions, such as

workloads and dynamic voltage and frequency (DVFS) settings. Figure 2.6 gives an in-

tegrated framework, where measurements from infrared imaging equipment together with

electrical current measurements are used for power characterization. The electric current
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measurements can provide the total power consumption. If the chip supports multiple in-

dependent power supply networks, then it is possible to increase the pool of current mea-

surements. The thermal emissions captured from the infrared imaging system, together

with the lumped electrical current measurements, can be inverted to yield high-resolution

spatial power maps for the individual circuit blocks. The results of post-silicon power

characterization can aid the IC design and validation process in the following ways.

1. High-level power modeling tools rely on the use of parameters that are estimated

from empirical data [13, 77]. The results from post-silicon power characterization

can be used to calibrate and tune high-level pre-silicon power modeling tools.

2. The power characterization results can drive heat sink design. Passive heat sinks

remove heat indiscriminately from the die, and thus, their design is mainly driven

by total power consumption. Active heat removal systems, such as thermoelectric

Peltier coolers [89], can make use of the true post-silicon power characterization

results to maximize their heat removal capabilities.

3. To evaluate “what if?” design re-spin questions, the power characterization results

can substitute the power simulator estimates and directly feed the thermal simulator.

For example, if the thermal characterization results are unacceptable, then the layout

can be changed to reduce the spatial power densities and hot spot temperatures. The

power characterization results are fed together with the new layouts to the thermal

simulator to evaluate the impact of the changes.

4. The post-silicon power characterization results can also force a re-evaluation of the

computing device specifications (e.g., operating frequencies and v-oltages).

5. Post-silicon power characterization can reveal valuable information for chip-wide

process variability estimation. Leakage power is dependent on process variation.
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Design time leakage power is estimated using statistical methods or analytical equa-

tions, whereas post-silicon power mapping of leakage power is estimated using real

runtime chip temperature.

6. IC Trojans are implemented by unsought chip modifications during the third-party

fabrication process. Infrared-based power mapping techniques can generate high-

resolution spatiotemporal power maps, which can be used for non-intrusive Trojan

detection techniques.

2.3 Related Work on Post-Silicon Power Mapping

Power related issues in modern multi-core processors have made post-silicon power anal-

ysis a necessity in IC design flow. To conduct fine-grained post-silicon power analysis,

there have been two main research directions: 1) power characterization using infrared

emissions, and 2) dynamic power characterization using performance counters. The first

direction uses thermal infrared emissions to estimate the power consumption of different

circuit blocks [33, 59, 61]. The second direction uses the embedded frequency coun-

ters in most modern processors to estimate the switching activity of various circuit blocks

[42, 77]. These switching activities are combined with design-time estimates of the capac-

itances of various circuit blocks to compute the dynamic power consumption of the blocks.

These performance counters based methods need their own calibration. Furthermore, the

second approach cannot estimate leakage power and its spatial variability. Comparing the

two directions, we find that the second direction relies on design time estimates which are

not necessarily accurate and requires performance-counter infrastructure that is specific to

processors. The first direction, which we follow in this work, is more generally applicable

and powerful.
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An industrial team, Hamann et al. [33] introduced experimental techniques for post-

silicon characterization which allows spatially resolved imaging of microprocessor power

(SIMP), where infrared imaging is performed with infrared transparent heat sink to get the

thermal maps of the microprocessor. The measured temperature field is then de-convolved

to obtain the underlying power map. In the proposed technique, the spatial steady-state

power consumption is estimated by minimizing the total squared error between the tem-

peratures computed from the estimates and the actual temperature measurements. Firstly,

one of the most important factors in estimating post-silicon power is to have an accurate

modeling matrix R which relates power to temperature. Hamann et al. [33] constructed

the modeling matrix by using a laser measurement setup that injects individual power

pulses on the actual chip and measures the resultant response. Power sources are provided

to the chip in form of a scannable focused laser beam, where the laser mimics individ-

ual power sources of the processor. The drawback of this setup is that it needs expensive

automated scanning of the laser beam by using a pair of galvo-directing mirrors and it

estimates the modeling matrix R not on the operating chip, but on a dummy chip, which

can introduce error. Furthermore, a fairly simple least square formulation is used to invert

power to temperature, which does not overcome the inherent challenges in post-silicon

power mapping.

A second approach by an academic team also used an infrared transparent heat sink

setup to obtain the die temperature of the processor. This group used combinatorial op-

timization formulation based on genetic algorithms to find a power solution that leads to

the measured emissions [60, 59, 61]. The power solution is resolved into dynamic power

and leakage power. The authors used analytical power equations with constant parameters

that relate the power of a floorplan block to the average temperature of the corresponding

block. The genetic algorithm finds various power equation parameters for each floorplan

block after gathering results for several benchmarks at different ambient temperatures and
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processor activities. Using only the average temperature per block can introduce inaccu-

racies due to the presence of hotspots in the chip. Furthermore, the drawbacks of genetic

algorithms are that they are based on heuristic, require a lot of characterization data and

are not known to find the best solution in many cases.

Moreover, the shortcomings of the previous works are that both approaches did not ad-

dress the inherent limitations of resolving spatial power from temperature measurements,

such as, measurement noise and spatial low pass filtering. Previous approaches mainly

focused on minimizing the total squared error between the temperatures computed from

the power estimates and the thermal measurements [32, 33, 61]. These approaches can

produce suboptimal results as they ignore the ill-posed nature of the problem where mea-

surement noise and spatial diffusion reduce the accuracy of power estimation. Compared

to previous approaches, our proposed numerical techniques handle many of the challenges

associated with inversion. We leverage regularization techniques to reduce the impact of

noise and improve the numerical instability. We introduce AC-based technique to diminish

the effect of spatial low-pass filtering and flicker noise.

More importantly, previous works did not provide any validations on the accuracy of

their spatial power estimates. Previous studies presented spatial power estimates for the

different processor blocks “as is” [33, 61]. This lack of validation is the result of the

experimental setup that previous studies chose. Earlier experimental setups used general-

purpose processors (a dual core PowerPC 970MP [33] and an AMD Athlon 64 processor

[61]) in which it is impossible to fully control the underlying spatial power consumption,

and there exists no alternative means to verify the spatial power maps. To address this

issue, we design our experimental test chip with special emphasis on the ability to estimate

the spatial power consumption through two different means, and hence we are able to

provide estimations for the accuracy of our proposed power characterization methodology.
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Chapter 3

Fundamentals of Post-silicon DC-based

Power Mapping

3.1 Introduction

Our objective is to provide accurate post-silicon spatial power estimates for the various

circuit blocks using the runtime thermal infrared emissions emitted from the back side of

semiconductor chips. Spatial power mapping from thermal emissions has emerged in the

past few years through the research work of two groups (Hamann et al. [33] and Renau

et al. [61]) as discussed in Chapter 2. The objective of this chapter is to provide novel

accurate methods for post-silicon power mapping framework. The contributions are as

follows:

1. We elucidate the technical challenges in thermal to power inversion. Spatial dis-

cretization and measurement errors in thermal imaging limit the ability to resolve
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power spatially. In addition, heat conduction has a low-pass filtering effect that

attenuates the thermal impact of high-frequency spatial power variations. We inves-

tigate these phenomena theoretically and empirically, and demonstrate their impact

on spatial power estimation accuracy.

2. To address the outlined challenges we propose techniques from regularization the-

ory. We propose quadratic formulations that are augmented with Tikhonov regular-

ization methods to improve the accuracy of spatial power estimation. Our techniques

limit the impact of measurement errors and improve power estimation compared to

previous techniques.

3. A major challenge in thermal to power inversion is to be able to validate the power

estimations. Accordingly, we design and implement a circuit with programmable

micro heaters that can generate power maps with various intensities and spatial con-

structions. We exercise the circuit with a number of different spatial power maps and

then capture the thermal emissions in the mid-wave infrared range from the back-

side of the chip using a cryogenic-cooled InSb-based infrared camera. Our work is

the first to validate its post-silicon power characterization estimates. We also trace

the source of errors using statistical and frequency domain analyses techniques.

4. To address the difficulties encountered in realistic experimental setups, we provide

novel techniques (1) to model the relationship between power and temperature, and

(2) to calibrate thermal imaging equipment to compensate for the different material

emissivities of semiconductor chips.

The organization of this chapter is organized as follows. In Section 3.2 we elucidate

the challenges associated with thermal to power inversion, and in Section 3.3 we describe

our proposed methodology for thermal to power inversion that handles the outlined chal-

lenges. In Section 3.4 we describe our proposed test chip design and modeling techniques.
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In Section 3.5 we provide our experimental and validation results. Finally, Section 3.6

summarizes the main conclusions of this chapter.

3.2 Challenges in Thermal to Power Inversion

An inversion problem is well-posed if it satisfies three conditions (first outlined by Hadamard

[8]): existence, uniqueness, and stability. In the context of thermal to power inversion, ex-

istence means that for every measured temperature map, there exists a power map that

leads to the temperature map; uniqueness means that there exists one and only power

map that leads to the temperature map; and stability means that small perturbations in the

temperature measurements lead to small perturbations in the estimated power maps. In

the post-silicon power characterization, there are two main challenges that can lead to ill-

posed thermal to power inversion problems. The first challenge arises from the physics of

heat diffusion and the second challenge arises from the physics of noise and the technol-

ogy used to perform thermal imaging. Previous approaches used least-square estimation to

find p that gives temperatures as closest as possible (in `2 norm) to T [33]. We argue that

previous approaches ignore the ill-posed and ill-conditioned nature of thermal to power

inversion where high-frequency spatial thermal gradients and measurements error could

lead to significant power estimation errors. In our proposed framework, we identify and

address such challenges as follows.

3.2.1 First Challenge: Spatial Filtering

The first limit in thermal to power inversion is inherent to the physics of heat transfer. It is

well-established in the literature that a chip’s temperature map is a low-pass filtered form
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of its power density map [27, 38]. While the power density can spatially vary abruptly

according to the chip’s layout and application behavior, the temperature will always vary

smoothly in space. This low-pass filtering effect is governed by Equation (2.5). In this

subsection we will consider a 2-D die with homogenous material, i.e., k(x, y, z) = k, to

simplify the discussions and to focus on the key concepts. In this case, Equation (2.5)

simplifies to

k(
∂2T (x, y)

∂x2
+
∂2T (x, y)

∂y2
) = −p(x, y). (3.1)

The 2D Fourier transform of some function T (x, y) is defined by

FT (u, v) =

∫ ∞
−∞

∫ ∞
−∞

T (x, y)e−j2π(ux+vy)dxdy, (3.2)

where u and v are variables that represent the spatial frequencies in the x and y directions

respectively. Applying the 2-D Fourier transform to both sides of Equation (3.1) gives

k(−u2FT (u, v)− v2FT (u, v)) = −Fp(u, v). (3.3)

Thus, the power-temperature transfer function, G(u, v), is equal to

G(u, v) =
FT (u, v)

Fp(u, v)
=

1

k(u2 + v2)
(3.4)

It is clear from Equation (3.4) that the higher frequency components of spatial power

maps will be subjected to greater attenuation. This spatial filtering phenomenon is illus-
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(a) 

(b) 

Figure 3.1: Illustrating the impact of spatial low pass filtering on the intensity and varia-
tions of thermal emissions.

trated in Figure 3.1, where we create checkerboard power maps with increasing spatial

frequency in a test chip and measure their emissions. The maps in Figure 3.1.a have the

same amount of total power but they differ in their spatial frequencies. Figure 3.1.b gives

the resultant emissions demonstrating that the variations are attenuated as the spatial fre-

quency increases. For example, the standard deviation drops from 184 mK to 111 mK

and 64 mK as the spatial frequency is increased. In a simulation-based environment with

double precision floating point numbers, attenuation is not an issue, but in real systems

with physical and technological limits on their detectors and analog to digital converters,

attenuation is a major problem as it degrades the signal to noise ratio. This degradation

can attenuate the signal to a level below the detection sensitivity of the infrared imaging

equipment, leading to irreversible loss of information. In the discrete form of the heat

diffusion equation (Equation (2.6)), the low-pass filtering effect implies that there exists at

least one power vector pg that belongs to the null space of R. If vector p satisfies Equation
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(2.6), then p + pg also satisfies the equation. In practical terms, pg is in the null space

of R, if Rpg is below the detection sensitivity of the imaging system. Thus, the low-pass

filtering effect could render the temperature to power inversion problem ill-posed as the

uniqueness condition is violated.

3.2.2 Second Challenge: Noise in Measurements

The second limit arises from discretization and measurement noise introduced during in-

frared imaging. A number of noise phenomena could lead to errors in the measurements

[86]. Sources of noise include (i) dark noise caused by random generation of electron-hole

pairs in quantum detectors; (ii) thermal noise caused by the agitation of charge carrier in

the electronic readout circuitry; (iii) flicker noise which is inversely proportional to the

emission frequency; and (iv) discretization errors introduced by the analog to digital con-

verters of the imaging system. Mathematically, the impact of these errors can be expressed

as

Rp + e = T + e = Tm, (3.5)

where the vector e denotes the errors in measurements introduced during imaging, and the

vector Tm denotes the measured temperatures. To understand the impact of measurement

errors on the inversion problem, we will use the Singular Value Decomposition (SVD).

SVD decomposes a matrix into a weighted sum of ordered matrices. That is

R =
∑
i

siuivi
T , and R−1 =

∑
i

1

si
viui

T (3.6)
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where the si’s are the singular values, the ui’s form a set of orthonormal vectors, and the

vi’s form a set of orthonormal vectors such that Rui = sivi. The operator T denotes the

transpose operation. Using the non-zero singular values of the SVD of R and Equation

(3.5), we find that

estimated p = R−1Tm = R−1(T + e)

= p +
∑
i

1

si
(ui

Te)vi (3.7)

Thus, small singular values amplify the impact of noise during inversion [8]. Using

Equation (3.7), we can bound the error in power estimation, δp, as follows. Since δp =

R−1e, ||δp||2 ≤ ||R−1||2||e||2, where || · ||2 is the `2 norm. Thus,

||δp||2
||p||2

≤ ||R−1||2||e||2
||p||2

=
||R−1||2||R||2||e||2
||p||2||R||2

≤ ||R−1||2||R||2||e||2
||T||2

≤ smax

smin

||e||2
||T||2

, (3.8)

where the ratio smax/smin is the condition number of R, and is equal to ||R−1||2||R||2

[95]. The condition number controls the propagation of errors from the measurements to

the estimated power. For example, if the condition number of our chip’s R matrix is in

the order of 103 then the inversion algorithm could transform a tiny milli-Kelvin error –

a typical number in cryogenic thermal quantum detectors – in temperature measurement

into a significant error in power estimation. This amplification of noise leads to ill-posed
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inversion as the stability condition is violated, where slight changes in the measured tem-

peratures lead to the large changes in the estimated power.

3.3 Proposed Methodology for Thermal to Power Inver-

sion

The objective of thermal to power inversion is to find the best power map p that minimizes

the total squared error between the true temperatures T as computed using Equation (2.6)

and the measured temperatures; that is, min ||Rp−T||22. As mentioned in Section 3.2,

this objective is challenging to achieve because (1) spatial filtering could lead to ill-posed

inversion with a singular or ill-conditioned matrix R, and (2) measurement noise can

deviate Tm from the true temperature T. To address these two challenges, we propose

two techniques. We introduce regularization theory techniques to improve the numerical

stability of R and to reduce the impact of measurement noise, and we introduce constraints

on the solution space to reduce the possibility of getting a wrong solution due to the

existence of a null space for R. We explain the details of these two techniques in the rest

of this section.

To reduce the impact of measurement noise and the potential ill-posed nature of the

problem, we propose techniques from regularization theory [8]. Regularization techniques

consider a family of approximate solutions using a positive parameter called the regular-

ization parameter. When the measured thermal data is noise-free, the solution converges

to the true power solution as the regularization parameter goes to zero. Tikhonov regular-

ization finds the power solution that gives the least total squared error while simultane-

ously minimizing the `2 norm; that is,
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Figure 3.2: Tradeoff between ||Rp − T|| and ||p|| as a function of the regularization
parameter α.

pα = argp min ||Rp−Tm||22 + α ||p||22 , (3.9)

where α > 0 is the regularization parameter that controls the minimization emphasis

between the two terms of the objective function [34]. The first term ||Rp−Tm||22, which

gives the total squared error, controls how well the power estimates p, lead to temperatures

that match the measurements (which could be noisy). If the value of this term is large

then the solution is far from the true power, but a small value for this term could lead

to a fitting that is driven by noise. The second term ||p||22 controls the regularity of the

solution. Large values for this term could lead to solutions that are dominated by high-

frequency measurement noise. Using one of our captured thermal traces, the trade-off

between the two terms as a function of α is illustrated in Figure 3.2. Increasing the value of

α traces the curve from the top-left corner to the lower-right corner, and thus the trade-off

curve is typically referred to as the L-curve [34]. Small values for α can lead to solutions

dominated by noise, while large values for α leads to more regularized solutions.

To develop further insight into the role of the regularization parameter α, we utilize the
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SVD, but it is first necessary to re-cast the objective of Equation (3.9) as a least squares

problem as follows

pα = argp min

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 R

√
αI

p−

 Tm

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(3.10)

Thus, the solution to the least square estimation problem is

 R

√
αI


T  R

√
αI

pα =

 R

√
αI


T  Tm

0


pα = (RTR + αI)−1RTTm

(3.11)

The SVD expansion of Equation (3.6) can be written as R = USVT , where U and V

are unitary matrices formed from the ui and vi vectors respectively, and S is a diagonal

matrix with the diagonal elements are the non-zero singular values si. Using the SVD,

Equation (3.11) can be further analyzed as follows

pα = (VSTUTUSVT + αVIVT )−1VSTUTTm

= V(STS + αI)−1STUTTm

= Vdiag(
s2i

s2i + α
× 1

si
)UTTm

=
∑
i

1

si

s2i
s2i + α

viui
TTm. (3.12)
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Figure 3.3: Attenuation of the singular values as a function of σ. The regularization
parameter α = 0.5.

Comparing Equation (3.12) against Equation (3.7), we find that each singular value in

the SVD decomposition of Equation (3.7) is multiplied by a factor s2i
s2i+α

known as Tikhonov

attenuation factor [98, 34]. Figure 3.3 gives the value of the Tikhonov attenuation factor
s2i

s2i+α
as a function of the singular value si for α = 0.5. The figure shows that the atten-

uation factor essentially functions as a filter function that filters out singular components

that are small relative to α and passes singular components that are large relative to α [98].

Singular values of zero value are totally eliminated. The attenuation of the small singu-

lar components makes the inverse problem more well conditioned and controls the error

propagation as governed by Equation (3.8). Good values for α can be found by inspecting

the L-curve. One possibility is to the use the corner of the curve [34]. The corner is the

point on the L-curve with the maximum curvature. In Figure 3.2 the corner occurs at α is

equal to 1.6.

To reduce the possibility of getting a wrong solution due to the existence of a null

space for R, we introduce additional constraints on the solution space. One possible

constraint is that the sum of the elements of the power map must be equal to the total

power consumption of the chip ptotal and that these elements are nonnegative; i.e.,

38



||p||1 =
∑
i

pi = ptotal and p ≥ 0, (3.13)

where || · ||1 is the `1 norm and ptotal is the total power consumption of the chip which

could be measured externally using a digital multimeter. Thus, if multiple solutions exist,

then the the solution with least total power error is chosen. Note that because the total (and

average) power is constrained by Equation (3.13), the regularization term in Equation (3.9)

controls the variance in spatial power estimates. In practice, any digital multimeter has a

tolerance, tol, in its measurements (the tolerance is typically listed in the multimeter’s data

sheet), and thus it is better to replace the constraint of Equation (3.13) by the following

constraints:

||p||1 ≤ ptotal + tol, (3.14)

||p||1 ≥ ptotal − tol, and (3.15)

p ≥ 0 (3.16)

Our overall inversion methodology is summarized in the algorithm given in Figure 3.4.

3.4 Test Chip Design and Modeling

In order to validate our power characterization methodology, we designed an experimental

test chip with special emphasis on the ability to estimate the spatial power consumption

through two different means. We describe the design and implementation of the test chip
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Procedure: Thermal to power inversion method
Input: Thermal map Tm, ptotal, R
Output: p

1. Given Tm and R, construct the L-curve

2. Identify α from the corner of the L-curve

3. Compute Rα =
∑

i si
s2i+α

s2i
uiv

T

4. Solve the quadratic program: min ||Rαp−Tm||22 such that ||p||1 ≤ ptotal + tol,
||p||1 ≥ ptotal − tol and p ≥ 0

5. Return the solution of the quadratic program p

Figure 3.4: Proposed thermal to power inversion methodology.

as follows.

Test Chip Design and Implementation. The basic unit of our circuit is a programmable

micro heater, which consists of a number of ring oscillators (ROs) that are controlled by

flip-flops that determine the operational status of the micro-heater. Figure 3.5.a shows the

programmable 15-stage RO with the D Flip-flop (DFF). Each micro-heater block consists

of 3 × 3 ring oscillators, creating the array of micro-heater blocks as shown in Figure

DF
F	
  

clock 

scan bit 

10(30) 

10(30) 

scan bit clock 

a) b) 

Figure 3.5: a) Programmable ring oscillators, and b) Programmable array of micro-heaters.
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Figure 3.6: Grid of programmable micro-heaters.

3.5.b. 10(30) represents 10 micro-heater blocks, and 30 ring oscillators on one side. So,

in total 100 micro-heater blocks consists of 30 × 30, nine hundred ring oscillators. We

create two kinds of micro heater designs:

1. Bi-Level Micro-Heaters: A bi-level micro heater consists of 3× 3 ROs resulting into

nine 15-stage ROs together with one flip-flop that controls their operational status. If

the DFF holds a binary value of 1 then the heater is turned on; otherwise, it is turned

off. When enabled, each micro heater consumes 25 mW. Using the programmable

heater, a grid that consists of 10 × 10 micro heaters is created as shown in Figure

3.6.a. In the grid structure, the output of each DFF is connected to the input of the

DFF of the consecutive heater forming a scan chain.

2. Multi-Level Micro-Heaters: A multi-level micro heater consists of ROs that can be

programmed to one of the following configurations: nine 51-stage ROs with a power

consumption of 25 mW; eighteen 25-stage ROs with a power consumption of 60

mW; twenty-seven 19-stage ROs with a power consumption of 102 mW; and thirty-

six 13-stage ROs with a power consumption of 142 mW. Thus, each micro-heater

block offers five different power levels: 0, 25, 60, 102, and 142 mW. The DFFs

associated with each micro heater determines its status. Using the programmable
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micro heater blocks, a grid that consists of 6 × 6 blocks is created as shown in

Figure 3.6.b. In the grid structure, the output of each DFF is connected to the input

of the DFF of the consecutive heater forming a scan chain.1

In both designs, the advancements of the programming bits in the chain is controlled

by the clock signal. To create any desired power pattern, we inject control bits into the

flip-flops of the micro heaters to selectively turn on the micro heaters that correspond to

the required power pattern. Our experimental novelty of using a chip of programmable

micro heaters enables us to achieve the following two experimental goals which have not

been attained in previous works:

1. The grid structure of the micro heaters, where every micro heater can be selectively

controlled, enables us to create any desired spatial power map on a real chip. Previ-

ous works used processors in which independent control of various processor blocks

is infeasible. The programmable nature of the grid enables the generation of a large

number of different maps that can be used to test the accuracy of the thermal to

power inversion methodology.

2. The regular and homogenous structure of the micro heater grid enables us to esti-

mate the power consumption of each micro heater by simply measuring the total

power consumption of the grid and dividing it by the number of enabled micro

heaters. The locations of the enabled heaters are known by construction. Hence,

we are able to construct the spatial power map through an alternative path to in-

frared emissions. Previous works lacked this ability to validate their spatial power

estimations through different means.

1The multi-level micro-heater implementation in the FPGA was done by the co-author Stefan An-
gelevski.
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Figure 3.7: 90 nm Altera Stratix II FPGA .

For implementation, we choose a 90 nm Altera Stratix II (EP2S180) field programmable

gate array (FPGA) with 180,000 logic elements with total die dimensions of 23 mm × 24

mm as shown in Figure 3.7. The regular fabric of the FPGA ideally fits our design. For

our experiments, we use a relatively homogenous section of the die that spans 7.2 mm ×

7.9 mm for the bi-level 10×10 grid as shown in Figure 3.8.a, and a section that spans 8.8

mm × 8.9 mm for the multi-level 6×6 grid as shown in Figure 3.8.b. The micro heater

blocks are mapped to the logic array blocks at the precise grid locations using Altera’s

Quartus II placement assignment editor. In order to capture the chip’s thermal emissions

it was necessary to remove the heat spreader. While removing the heat spreader is going

a. die section for 10 x 10 grid 

9.8  m
m

 

8.8 mm 

b. die section for 6 x 6 grid 

7.9  m
m

 

7.2 mm 

Figure 3.8: Implementation areas in Altera Stratix II EP2S180 device.

43



to change the spatial thermal behavior, the change in spatial thermal emissions does not

change the underlying dynamic power consumption (fCV 2) [85], which is weakly de-

pendent on temperature. The spatial power consumption remains relatively intact, and the

new interactions between temperature and power are captured in the learned R matrix as

described in the next paragraph.

Measuring Modeling Matrix (R) of the Test Chip. Given the test chip, it is necessary to

measure the modeling matrix R. The matrix R can be measured in a column-by-column

basis as follows. Enabling only one micro heater at a time is mathematically equivalent

to setting the vector p to be equal to [0 · · · pk · · · 0]T , where pk is the power consumption

of the kth enabled block and all the other elements are zeros. For each micro heater

location, we enable the selected micro heater as shown in Figure 3.9.a and record the

emitted temperatures across the field as shown in Figure 3.9.b. If Tk denotes the thermal

emissions captured from enabling the kth micro-heater, then column k of matrix R is equal

to Tk/pk. We automate the whole process in order to measure the columns of R with fast

turn-around time.

a) Sliding window of power pulses 

b) Temperature maps after emissivity calibration 

Figure 3.9: Measuring the power to thermal inversion matrix R using a sliding window of
power pulses.
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We utilized the programmability of FPGAs to estimate the model matrix R. In custom

chips with generic designs, the matrix R can be estimated in the same conceptual way but

through a different implementation approach [33, 61]. One approach is to turn off the chip,

and scan a laser beam with known power density to deliver the power from the outside to

the regions of interest. The scanning of the laser system can be automated by using a pair

of galvo-directing mirrors [33]. Our method uses the programmable nature of our design

to get the same results of the expensive laser scanning system but in a much cheaper way.

Another approach is to use the actual design and layout of the chip to conduct a fluid

dynamic simulation coupled with a heat diffusion simulation to estimate the matrix R

[33, 60].

There is always a possibility that errors might occur during the estimation of R. If R

is estimated from direct measurement, then measurement noise can introduce errors, and

if R is estimated from simulations, then unrealistic simulation assumptions can lead to

errors. Our experimental results in the next section show that the overall power estimation

error arising from our inversion procedure is relatively small.

3.5 Validation and Experimental Results

To test our post-silicon power characterization methodology, we put together the following

experimental setup which is shown in Figure 3.10. To capture the thermal emissions from

the back-side of our die, we use a FLIR SC5600 infrared camera with a mid-wave spectral

range of 2.5 µm – 5.1 µm. The camera is run at a rate of 100 Hz with a spatial resolution

of 30 µm with a 0.5× microscopy kit. Silicon is transparent to infrared emissions in the

1.5 µm – 5.1 µm range with a 55% transmittance. Thus, the infrared camera can measure

the temperature through the chip under test [60]. The camera’s cryogenic InSb detectors
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cooled to 77 K (-196 °C) have a sensitivity of about 15 mK noise equivalent temperature

difference (NETD). We use an Agilent E3634A power supply to supply and measure the

total power consumption of FPGA chip.

Thermal Calibration. Measuring the temperature is slightly complicated because an in-

frared camera is really a photon detector that measures the infrared radiation intensity at

different parts of the chip. Thus, it is necessary to convert photon measurements recorded

by the camera to temperatures. One problem is that radiation intensity is not constant

among different materials even if they are at the same temperature. Perfect radiation emit-

ters are black bodies with an emissivity of 1. The emissions of real materials are a fraction

of the black-body level, and each material is characterized with an emissivity value, which

is defined as the ratio of that material’s thermal emission to that of a perfect black-body at

the same temperature [86]. As integrated circuits are comprised of a mixture of different

materials (e.g., copper, silicon and dielectrics) with varying spatial material densities, the

radiation intensities of different parts of the chip could be different even if the chip is held

at isothermal temperature by external means.

infrared camera data acquisition workstation 

thermocouple FPGA fan 

multimeter 

Figure 3.10: Experimental setup showing the different equipment that make up our mea-
surement system.
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To handle the emissivity problem, previous approaches coated the backside of the

die with a material of constant emissivity [33]. The downside of this approach is that it

obstructs the silicon transparency and only measures the heat emissions resulting from

the projections of the internal emissions on the backside of the die. Previous approaches

were thus forced to thin the backside silicon to reduce the amount of internal projections

and spatial heat diffusion. To get a more accurate thermal imagery, we avoid coating

the backside of the silicon and instead devise a pixel-by-pixel calibration process that

translates the captured emissions (as measured by the digital levels of the camera’s A/D

converters) to temperatures.

The relationship between the digital level Di and temperature Ti of a pixel i can be

modeled by an exponential function

Di = αie
βiTi , (3.17)

Figure 3.11: Relationship between camera’s digital levels and temperatures for two pixels.
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where αi and βi are per-pixel coefficients that are functions of many factors including

emissivity, path to length, and integration time [36]. The exponential relationship arises

from the physics of photon detectors in which the current of an infrared-sensitive diode

depends exponentially on the incident radiation. If there were no emissivity differences

between the different pixels then αi and βi would be chip-wide constants, but instead they

must be computed for each pixel. For example, Figure 3.11 shows two curves relating the

temperatures to the measured digital levels for two different pixels on the test chip. Our

pixel-by-pixel calibration procedure is simple. We first turn the test chip off and then force

it to an isothermal status through external means.

Two thermocouples placed at opposite ends of the die could be used to verify chip-

wide steady-state attainment. Once steady-state is reached, the digital levels of all pixels

are captured using the camera. This process is repeated for a few temperatures and then

the calibration curves (as the ones given in Figure 3.11) are constructed, and the αi and

βi for every pixel i are found through curve fitting. Figure 3.12 contrasts the raw digital

thermal levels before calibration and the thermal images after calibration. The images

show that the calibration process successfully removes imaging artifacts introduced by

emissivity variation. For high-power chips, thermally-controlled infrared transparent oil

can be used to force the isothermal status, and then measure the temperature of the chip

(a) Digital levels without 
emissivity calibration 

(b) Temperature after 
emissivity calibration 

Figure 3.12: Thermal images before and after emissivity calibration.
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through available thermal sensors.

We conduct and report the results of four experiments:

1. The first experiment compares the estimation accuracy of our proposed method

against previous techniques using the bi-level micro heater block grid. We analyze

the sources of errors using statistical and frequency domain techniques.

2. The second experiment assesses the effectiveness of our method using random spa-

tial maps constructed using the bi-level micro heater grid.

3. The third experiment evaluates the accuracy of our power estimation method as a

function of the spatial frequency of the power maps.

4. The fourth experiment assesses our power mapping method using the multi-level

micro heater block grid. We demonstrate that our method is capable of handing

underlying power maps with various intensities and spatial constructions.

Experiment 1. In the first experiment we assess the accuracy of our thermal to power

inversion methodology by evaluating its power estimates for a number of reference spatial

power maps generated using the bi-level micro heater grid. The locations of the activated

micro heaters of these maps are illustrated in Figure 3.13.a, and the measured temperature

maps after emissivity calibration are illustrated in Figure 3.13.b. Given our low-power

micro heater designs, the temperature range, i.e., the difference between the maximum

temperature and the minimum temperature in each map, is about 1.5–2 °C. The power

maps estimated by just minimizing total squared error as proposed by previous approaches

([33]) are given in Figure 3.13.c; and the estimated power maps from our methodology are

given in Figure 3.13.d. The power mapping results in Figure 3.13.c and Figure 3.13.d are

rounded to the nearest power level. We report the estimation error in percentage which
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b. resultant temperature measurements 

a. injected power patterns 

0.0% / 0   4.9% / 2 14.9% / 7  0.0% / 0  

c. estimated power maps using previous methods 

d. estimated power maps using proposed method 

0.0% / 0 0.0% / 0 0.0% / 0 12.8% / 6 

Figure 3.13: Accuracy of estimating arbitrary power maps using thermal emissions. Power
maps are rounded to the nearest level.

is equal to the sum of the absolute differences between the power estimates and their

true values divided by the total power. The average error from using previous approaches

is 4.95% while the average error from using our proposed approach is 1.5%. We also

report the number of block heaters that were not estimated correctly (either turned on

and estimated to be off or vice versa). Previous techniques give a total of 9 incorrectly

estimated blocks, whereas our technique give 6 incorrectly estimated blocks for reduction

of 30%. By visually comparing the injected power maps and the estimated maps, we

notice that our technique recovers the injected maps to a very good extent.

To understand the source of errors, we conduct the following two analyses. First, we

simulate the resultant temperatures if the true power maps are used as inputs; the simula-
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σ  = 9 mK σ  = 8 mK σ  = 8 mK σ  = 7 mK 
(a) residual error 

(b) DCT transform of power maps 

energy = 35% energy = 30% energy = 25% energy = 30% 

Figure 3.14: Analysis of errors of maps in Figure 3.13.

tion is basically the result of multiplying the injected power maps by the matrix R. We plot

in Figure 3.14.a the residual error between the measured temperatures and the simulated

measurements. We verify that the errors form a normal distribution using the Kolmogorov-

Smirnov test, and we compute the standard deviation for each residual distribution. The

standard deviations are given as labels (σ) in Figure 3.14.a. For instance, the first pattern,

which has an error of 2.0% in its power map estimates, has a residual standard deviation

of 9 mK which means that the large majority of errors (97%) are between ±18 mK. The

residual errors fall within the sensitivity limitation (15 mK) of our camera detectors. The

first pattern has the highest standard deviation in residuals which implies that it had the

highest amount of noise. Our second analysis technique computes Discrete Cosine Trans-

form (DCT) of the true power maps and report them in Figure 3.14.b (the top-left corner

is the lowest frequency). The DCT quantifies the spatial frequencies of an input power

map. For each power map, we compute the percentage of the power signal energy that is

present in higher frequencies of the DCT.2 The third pattern, which has 12.8% error in its

power map estimates, has the largest amount of energy, 35%, in the high-frequency range.

Thus, we attribute the power estimation error to such high-frequency energy content.

2The energy of a signal is the sum of squares of its frequency domain coefficients. We compute the
energy in coefficients with frequencies ≥ 7 and divide the result by the total energy.
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b. resultant temperature measurements 

a. injected power patterns 

2.1% / 1 15.7% /  8  

c. estimated power maps using previous methods 

d. estimated power maps using proposed method 

0.0% / 0 11.8% / 6 

Figure 3.15: Accuracy of estimating spatial power estimates from thermal emissions of
random power maps. Power maps are rounded to the nearest level.

Experiment 2. In the second experiment we use random spatial power maps for test-

ing our methodology in addition to the maps of Experiment 1. The use of random maps

provides a more complete assessment of our proposed method. In Figure 3.15.a we pro-

vide the random maps tested, and the resultant thermal images are provided in Figure

3.15.b. Figure 3.15.c gives the resultant power maps from previous techniques, while

Figure 3.15.d gives the results from using our inversion methodology. The results show

estimation errors of 0% and 11.8% from our techniques versus 2.1% and 15.7% from

previous techniques. We also report the number of block heaters that were not estimated

correctly. Previous techniques give a total of 9 incorrectly estimated blocks, whereas our

technique give 6 incorrectly estimated blocks for reduction of 30%. Overall, the results

of experiments 1 and 2 show an average error of about 4.4% from our techniques versus
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(a) residual error 

(b) DCT transform of power maps 

energy = 24% energy = 38% 

σ = 8 mK σ = 18 mK 

Figure 3.16: Analysis of errors of maps in Figure 3.15.

6.6% from previous techniques, where our technique gives a total of 13 incorrectly es-

timated blocks and previous techniques give 19 incorrectly estimated blocks. Thus, our

technique gives 31% improvement in power mapping.

To further understand the reason for the errors in some of the maps, we conduct anal-

yses similar to the ones of Experiment 1. First, we compute the residual error between

the simulated temperatures and the measured temperatures and plot the results in Figure

3.16.a. We verify that the errors form a normal distribution, and we compute the stan-

dard deviations for the distributions which are given as labels (σ) in Figure 3.16.a. For

instance, the second pattern, which has a large error of 11.8% in its power map estimates,

has a residual standard deviation of 18 mK. Second, we compute the Discrete Cosine

Transform (DCT) of the true power maps and give them in Figure 3.16.b (the top-left

corner is the lowest frequency). Again, the second pattern shows the largest amount of

energy, 38%, in its higher-frequency components. Thus, we attribute both the noise and

high-spatial frequencies to the large error in power estimation.
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Experiment 3. To further gain insight into the behavior of thermal to power inversion, we

assess the accuracy of our methodology as a function of the spatial frequency of power

maps. As discussed earlier in Section 3.2, the nature of heat conduction on chips leads

to a low-pass filtering effect. Hence, we create checker-board maps of increasing spatial

frequencies as illustrated in Figure 3.17.a, which lead to the thermal emissions illustrated

in Figure 3.17.b. The estimated spatial power maps are given in Figure 3.17.c. The average

errors are: 0.0%, 0.0%, and 11.5%. To provide further analysis into the source of error,

we plot the 2-D DCT of the power maps in Figure 3.18. The figures clearly show the

trend of increased frequencies in the power pattern, where the third pattern has the highest

frequency and error. The results agree with our earlier discussions in Section 3.2 that

concluded that increasing the spatial frequencies of power maps can lead to a deterioration

in the accuracy of thermal to power inversion due to the impact of low pass filtering.

a. power patterns with increasing spatial frequencies 

b. resultant temperature measurements 

c. estimated power patterns 

Error = 0.0 % Error = 0.0 % Error = 11.5 % 

Figure 3.17: Impact of increasing spatial frequencies of power maps on the accuracy of
thermal to power inversion. Power maps are rounded to the nearest level.
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Figure 3.18: DCT of checkerboard maps.

Experiment 4. In this experiment, we provide results using the multi-level micro heater

grid design. In contrast to the first three experiments where the power of each micro heater

was only restricted to two levels (0 and 25 mW), the micro-heaters in the constructed

spatial power maps of this experiment have power levels of multiple intensities (0, 25, 60,

102, and 142 mW). Our inversion procedure can naturally handle any number of levels,

and the results of this experiment confirm this capability. The number and step size of

different levels are limited by the noise level of the camera. The state-of-the-art infrared

camera can detect temperature difference as small as 20 mK, as long as the power sources

mW (a) Constructed Circuits 

(b) Thermal Images 

error = 0.00% error = 1.81% error = 3.10% error = 4.76% 

mW (c) Estimated Power Maps 

Figure 3.19: Results from multi-level power estimation. Power maps are rounded to the
nearest level.
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produce temperature difference that can be detected by the infrared camera, it can be used

as a different power level. Figure 3.19.a gives the constructed multi-level power maps. The

resultant thermal maps are given in Figure 3.19.b, and the estimated power maps from our

inversion procedure are given in Figure 3.19.c. The power mapping results are rounded to

the nearest power level. The power estimation errors of the four maps are 4.76%, 0.00%,

1.81% and 3.10%, with an average of 2.41%. The magnitudes of the power estimation

errors from the multi-level power mapping experiment are comparable to the magnitude

of the errors in the first three experiments using bi-level micro heaters. The results of

this experiment confirm that our technique is capable of handling a large range of power

intensities and spatial power maps.

3.6 Summary

In this chapter we presented a new methodology for spatial post-silicon power character-

ization using the infrared emissions from the back of the silicon die. We elucidated the

various challenges that underlie thermal to power inversion. We demonstrated mathemat-

ically and experimentally how low-pass filtering, discretization, and measurement errors

could all compromise the accuracy of power estimation. We proposed new techniques

from regularization theory to reduce the impact of noise and improve the numerical insta-

bility in the model matrix R by eliminating zero singular values and filter small singular

values. We also introduced constraints on the solution space to eliminate the possibility

of getting multiple solutions. Furthermore, we provided experimental techniques to com-

pensate for the varying emissivity of different chip materials and to measure the thermal

resistance model matrix. For experimental validation of our proposed technique, we de-

signed a highly modular programmable test chip to create sets of known power maps. Our

test chip and realistic infrastructure enabled us to validate our methodology by comparing
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its power estimates against the known injected spatial power maps. Compared to previous

approaches, our experiments demonstrate consistent improvement in power estimation ac-

curacy where we improve the power mapping accuracy by 30%. We also analyzed the

residual errors between the simulated temperatures and the measured temperatures to un-

derstand the error sources. Our statistical and frequency domain analyses quantify the

roles of noise and spatial filtering on the accuracy of power estimates.
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Chapter 4

Fundamentals of Post-silicon AC-based

Power Mapping

4.1 Introduction

In Chapter 3, we have proposed a detailed technique for DC-based post-silicon power

mapping, and demonstrated the accuracy our technique using a programmable test chip.

As elucidated DC-based power maping faces two major challenges: (1) spatial low-pass

filtering of the underlying power map arising from heat diffusion can cause information

loss, and (2) the measurement noise in the setup of the infrared imaging system lim-

its the obtainable accuracy. In this chapter, we present a post-silicon power mapping

methodology, where AC excitation signals are used instead of DC excitation signals to im-

prove mapping accuracy. We present analytical derivations and experimental validations,

demonstrating that the proposed AC-based approach leads to significant improvements in

the power mapping compared to DC-based methods as discussed in Chapter 3. The major
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contributions of this work are as follows.

1. We analyze and quantify the role of noise on the quality of thermal imaging. We

breakdown the noise contribution into flicker and white noise, and analyze their

dependencies on integration time and excitation frequencies.

2. We analyze the impact of AC excitation frequency on the extent of spatial heat

diffusion and the strength of the thermal signal. We combine this analysis with the

noise analysis to elucidate the relationship between the signal-to-noise (SNR) ratio,

the excitation frequency, and the integration time.

3. We quantify the thermal to power model parameters of real chips at desired AC

frequencies. Our method captures all modes of heat transfer.

4. Given the AC thermal emissions and model parameters, we devise a constrained

convex optimization inversion procedure to estimate the post-silicon power maps. In

our procedure additional constraints obtained from lumped physical measurements,

e.g., total power, are imposed on the solution space to reduce numerical error.

5. To scientifically validate our post-silicon power mapping approach, we utilize the

programmable test chip described in Chapter 3. Due to the programmable nature

of the design, it is possible to precisely control the AC excitation frequency of the

power sources. The test chip has micro-heater blocks which can be switched ON

and OFF at desired frequencies to create different excitation frequencies. Thermal

emissions from the test chip are captured using infrared imagery and then processed

to reveal the estimated post-silicon power maps. We quantify the impact of excita-

tion frequency on the accuracy of post-silicon power maps and relate this accuracy

to the signal-to-noise ratio.
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The rest of this chapter is organized as follows. Section 4.2 provides the motivation and

necessary background information on AC-based thermography. In Section 4.3, we analyze

the impact of excitation frequency and integration time on flicker noise and white noise.

In Section 4.4, we analyze the impact of excitation frequency on spatial heat diffusion

and thermal signal strength. We combine the analyses of Section 4.3 and Section 4.4 to

analyze the SNR trends in Section 4.5. We present our numerical inversion optimization

method in Section 4.6. We provide an extensive set of experimental results on a test chip

in Section 4.7. Finally, Section 4.8 summarizes our main results.

4.2 Motivation and Background for AC Thermography

The are two major challenges in post-silicon power mapping: i) spatial heat diffusion

[33, 27, 38, 17], and ii) measurement noise in the thermal imaging system [17, 10]. Heat

diffusion blurs the underlying power map and reduces the accuracy of post-silicon power

maps as it filters out the spatial high-frequency power patterns. AC excitation reduces the

amount of spatial heat diffusion as the AC excitation frequency increases [55, 10]. As a

result, AC-based thermography improves the resolution of thermal images and the detec-

tion of weak emission sources, which makes it a valuable tool in device characterization

[41] and failure analysis of integrated circuits [10].

In the power mapping procedure described in Chapter 3, a DC excitation source, e.g.,

a workload of a stable nature or a test pattern, is applied to the chip under characterization,

and the infrared emissions are captured from the back of the die using infrared imaging.

The emissions are then inverted to get the power maps. Figure 4.1.a illustrates the main

framework of DC post-silicon power mapping [33, 60, 78, 17, 71]. The general framework

for AC thermography is given in Figure 4.1.b, where an AC excitation source rather than
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Figure 4.1: a) DC post-silicon power mapping framework, and b) AC post-silicon power
mapping based on thermography techniques using infrared emissions.

a DC excitation is applied to the integrated circuit. Applying a true sinusoidal AC source

to excite a digital circuit is impossible. Instead a square wave is applied, and because a

square wave can be represented by a Fourier series, whose dominant component is the

fundamental frequency, such technique does not alter the results as long as the acquired

infrared emissions are filtered to only extract the fundamental frequency [10]. Creating

AC square-wave excitations in digital circuits can be implemented by a number of tech-

niques such as: (1) toggling enable signals of circuit blocks while keeping the operating

voltage constant; (2) alternating the voltage supply signal between two operational values

(e.g., 0.9 V and 1 V); or by (3) executing workloads (for the case of processors) that al-

ternate between an activity phase and inactivity phase. For example, Figure 4.2.a shows

the thermal emissions of just one pixel over time arising from a test circuit where a circuit

block is toggled at 2 Hz, and Figure 4.2.b shows the Fourier spectrum of the waveform,

clearly showing the amplitude at the fundamental frequency. The amplitudes of all pixels
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Figure 4.2: Steady-state AC emissions at 2 Hz in time domain and frequency domain for
one pixel.

at the fundamental frequency form the AC-based thermal image as shown in Figure 4.1.b.

In the context of fault isolation, Breitenstein [10] discusses methods to use AC lock-in

techniques to deblur thermal images by deconvolution to reveal sharper power images that

identify a failure site with excessive leakage power consumption. However, no practical

way of measuring the thermal to power modeling parameters are presented and instead the

parameters are derived from analytical derivations that do not capture all modes of heat

transfer (e.g., convection at surface and radiation) in a real chip. Furthermore, the reported

experimental setup and results are not devised to quantify intricate power maps, but rather

to isolate faults where only a handful of locations at most are actively consuming power. In

contrast to previous usages of AC-based thermography, we use AC-based thermography

for the purpose of post-silicon power mapping where intricate spatial power maps pro-

duced from tens of circuit blocks can be simultaneously estimated from their combined

thermal emissions.
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4.3 Impact of Using AC Excitation on Noise

The objective of this section is to analyze and quantify the impact of noise on AC-based

thermography. Previous works assumed white noise on the measurements [10]. We will

show in this section that 1
f

flicker noise has a significant contribution to the measurement

noise.

Let Ti(t)1 denote the temperature of pixel i at time t as recorded by the thermal imag-

ing system, and let P denote the integration period of the measurements. Then the tem-

perature magnitude, Ti, of pixel i is given by

Ti =


1
P

∫ P
0
Ti(t)dt DC case

2
P
‖
∫ P
0
Ti(t)e

−2πjf0tdt ‖2 AC case,

(4.1)

where f0 is the fundamental frequency of the AC excitation source, and ‖ · ‖2 is the

`2 norm which gives the magnitude of a complex number in this case. If there is no

noise in the measurements, then we expect Ti to exhibit no stochastic behavior. However,

noise in the measurements leads to a stochastic process where Ti is a random variable.

The main sources of noise in the infrared imaging system are: (1) thermal noise, (2)

digitization noise, (3) dark noise, and (4) flicker noise [36]. Thermal noise is caused by

agitation of charge carriers, and is present in all electronic devices. Digitization noise

arises from the use of analog-to-digital converters in the infrared camera. Dark noise

is caused by random generation of electron-hole pairs in the quantum detectors which

is usually present in photosensitive devices. Flicker noise is also present in almost all

1Note that, we denoted T as thermal maps without noise and Tm for infrared thermal maps with noise in
Chapter 3 previously. We drop the subscript from thermal map Tm, here onwards T represents the infrared
thermal map with noise for simplicity.
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electronic devices, which is related to the trapping and detrapping fluctuations of charge

carries at the transistor interfaces [15]. We can divide the noise sources into two categories,

frequency-dependent and frequency-independent. The first three sources of noise do not

show dependency on frequency, and thus, they can be modeled as white noise. White noise

has a flat power spectral density that does not vary with the frequency. The last source of

noise has frequency dependency, and usually termed as a 1
f

noise.

The amplitude of noise is equal to the standard deviation of the values of Ti. The noise

amplitude is commonly referred to as noise equivalent temperature difference (NETD)

[86, 10], and is given by

NETDf0,P =

√√√√1

k

k∑
i=1

(Ti − T̄ )2, (4.2)

where T̄ is the mean value of the pixel over k successive measurements. If all the pixels

are experiencing the same constant temperature, then it does not matter whether the NETD

is calculated from k successive measurements of one pixel or from evaluating k pixels on

one image.

4.3.1 Noise Reduction using Higher Frequencies

One of the main advantages of using AC excitation is that the frequency-dependent flicker

noise component reduces significantly as frequency increases. To analyze the noise in

our infrared system, we implement a simple test chip where a circuit block is placed at

the center of an otherwise idle chip (the full details of the test chip are given in Section

4.7). The block is toggled at different frequency rates 0.25 Hz, 0.5 Hz, . . ., 8 Hz. At each
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Figure 4.3: log-log plot of noise amplitude as a function of frequency. Dashed blue line
gives the noise amplitude from measurements using an integration time of 16 seconds. Red
line gives the fitting to measurements. Corner frequency is observed between 2 and 3 Hz.
Noise amplitude fitting before corner frequency yield an amplitude of 9.5× 10−4f−0.51.

frequency rate, we capture the thermal emissions for 400 seconds at steady state using a

frame rate of 100 Hz. We then use Equation (4.1) (with an integration time of P = 16

seconds) to compute the magnitude of the thermal signal at the fundamental frequency.

Thus, each pixel yields 400
16

magnitudes at the fundamental frequency. The noise amplitude

is then computed as the standard deviation of these temperature magnitudes as given by

Equation (4.2). There is a tradeoff between data acquisition time and the noise of the

image. As the integration time increases noise reduces which is discussed in the following

section. The integration time of 400 seconds was chosen for this experiment to optimize

between data acquisition time and noise.

We plot the noise amplitude (dashed blue line) as a function of frequency in Figure

4.3 on a log-log scale. The plot shows that the noise decreases as a function of frequency

until it reaches a corner frequency, beyond which the noise amplitude does not show

improvement with frequency increase. In our system, this corner frequency is somewhere
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between 2 – 3 Hz. Fitting the measurements gives a noise amplitude equal to

NETDf,P =


9.5× 10−4f−0.51 f < corner frequency

6.2× 10−4 f ≥ corner frequency.

(4.3)

The fitted trends are given by the solid red line in Figure 4.3. Thus, the noise spec-

tral density, which is equal to the variance, has a near perfect 1/f characteristic as it is

equal to the square of the NETD. This indicates strong dominance of flicker noise at low

frequencies. Thus, increasing the excitation frequency reduces the impact of flicker noise.

However, increasing the excitation frequency beyond the corner frequency has no benefit

as noise becomes dominated by white noise which has flat frequency characteristics.

4.3.2 Noise Reduction using Larger Integration Times

As discussed earlier, the second component of noise is white noise. White noise has a

Gaussian distribution, and thus by increasing the integration time, we reduce the standard

deviation of the thermal signal which is responsible for the amplitude of noise. From the

central limit theorem, we know that the standard deviation of the average of a number of

a samples of a random variable has 1√
n

dependency on the number of samples n. Thus,

by increasing the integration time, we can reduce white noise proportionally to the square

root of integration time [10].

To analyze the white noise in our infrared system, we implement a simple test chip

where a circuit block is placed at the center of an otherwise idle chip. The block is toggled

at 2 Hz, and the thermal emissions are captured for 400 seconds at steady state using a

camera’s frame rate of 100 Hz. We then use Equation (4.1) to compute the magnitude of
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Figure 4.4: log-log plot of noise amplitude as a function of integration time at excitation
frequency 2 Hz. Dashed blue line gives actual measurement. Red solid line gives results
from fitting.

the thermal signal at 2 Hz for various integration times of 4, 6, . . ., 16 seconds. For each

integration time, the noise amplitude is computed as the standard deviation of the thermal

magnitudes as given by Equation (4.2).

We plot the noise amplitude (dashed blue line) as a function of integration time in

Figure 4.4 on a log-log scale. The plot shows the dependency on the reciprocal of the

square root of integration time (solid red line with a fit ∝ 1/n0.52). As a result, as we

increase the integration time, the noise amplitude of our image reduces.
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4.4 Impact of using AC Excitation on Spatial Tempera-

ture Signal

In this section we analyze the impact of AC excitation on spatial heat diffusion and the

strength of the thermal signal. We first mathematically analyze this phenomenon and then

demonstrate it experimentally with a test chip.

We first assume a semi-infinite isotropic and homogeneous silicon substrate with stan-

dard wafer thickness of 750µm. Heat transfer inside the substrate is governed by the heat

diffusion equation:

D∇2T (~r, t) + p(~r, t) =
∂

∂t
T (~r, t), (4.4)

where T (~r, t) is the temperature as a function of the radial distance, ~r, from the center of

the substrate at time t, p(~r, t) is the power function, and D is the thermal diffusivity of

silicon (D = 0.88 cm2/s). The standard thickness of 200 and 300 mm wafers is about

750µm, and memory and mobile chips are commonly thinned to less than 100µm. By

comparison, at 20 Hz the thermal diffusion length LD ≡
√
D/2πf is more than 800 µm.

This justifies treating heat transfer as a two-dimensional problem.

We first consider a sinusoidal point heat source at ~r = 0 of unit amplitude that is

toggled in time with an angular frequency ω = 2πf ; i.e., p(~0, t) = ejωt. From a practical

perspective, a point heat source has physical extent smaller than the spatial resolution of

the thermal imaging equipment, and thus occupies at most one pixel. We can also express

the temperature function in polar coordinates: T (~r, t) = T (r, t), where r is the radial

distance from the source and without any dependency on the angle, due to the rotational
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symmetry of the single-point excitation. The thermal response T (r, t) to the unit point

heat source is the Green’s function g(r, t). At steady-state AC, the boundary conditions of

the setup are

g(r →∞, t) = 0 and lim
r→0

r
∂

∂r
g = ejωt. (4.5)

The standard Green’s function solution for Equation (4.4) subject to the boundary con-

straints of Equation (4.5) is given by

g(r, t) = K0

(
r

√
jω

D

)
ejωt, (4.6)

where K0(·) is the modified Bessel function of the second kind. K0(·) is a complex func-

tion and its amplitude and phase cannot be described analytically. Thus, we plot in Figure

4.5 the amplitude and phase of K0(r
√
jω/D) as a function of r

√
ω/D. For a given r, the

figure shows that the amplitude of the temperature decays at a faster rate as ω increases.

That is, the temporal excitation frequency controls the extent of spatial heat diffusion. In

AC thermography, the thermal image at the fundamental frequency is the one that is used

as it has the strongest signal value; thus, in the frequency-domain, only the amplitude of

g(r, t) at the fundamental frequency, f0, is used. That is,

gω0(r) = K0

(
r

√
jω0

D

)
, (4.7)

where w0 is equal to 2πf0. Figure 4.6.a shows in a visual illustration the amplitudes of the
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Figure 4.5: Amplitude and phase of the Green’s function gω(r) as a function of r
√
ω/D

fundamental frequency component of gω0(r) for a number of excitation frequencies DC (0

Hz), 1 Hz, 2 Hz, 4 Hz, and 8 Hz. The images in Figure 4.6.a show a clear trend where the

spatial extent of heat diffusion reduces as the excitation frequency increases. To quantify

this reduction, we plot in Figure 4.6.b and Figure 4.6.c the temperature as a function of the

distance (in mm) from the center of the point source and the excitation frequency. Figure

4.6.c gives normalized results of Figure 4.6.b. We observe the following.

• The thermal “inertia” of silicon reduces the amplitude of the temperature change at

higher AC frequencies. For example, the plot of Figure 4.6.c shows that the signal

drops to 40% of its peak value at a distance of 3.5 mm for DC, 0.6 mm for 1 Hz and

0.35 mm for 8 Hz. Thus, using higher excitation frequencies has the advantage of

reducing the extent of thermal diffusion and as a result the contrast of the captured

thermal images is improved.

• Increasing the frequency has the disadvantage of reducing the absolute signal value

as shown in Figure 4.6.b. This reduction in average signal value ultimately reduces
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DC 1 Hz 2 Hz 4 Hz 8 Hz 
(a) spatial temperature as a function of distance and frequency 

(b) temperature as a function of radial distance and frequency 

(c) normalized temperature as a function of radial distance and frequency 

Figure 4.6: Impact of increasing excitation frequency on spatial heat diffusion as com-
puted from the analysis.

the benefit of AC-based thermography at higher frequencies.

To demonstrate experimentally the impact of excitation frequency on spatial heat dif-

fusion, we implement a simple test circuit where a circuit block (approximating a point
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(a) Temperature distribution from test chip measurements 

DC 1 Hz 2 Hz 4 Hz 8 Hz 

(b) Average magnitude of temperature as function of radius 

Figure 4.7: Impact of increasing excitation frequency on spatial heat diffusion as measured
from the test chip.

source) is placed at the center of an otherwise idle chip. The block is toggled through an

enable signal at various excitation rates, and the AC thermography procedure is used to

compute the amplitude of every pixel at the fundamental frequency according to Equation

(4.1). The thermal amplitudes at the fundamental frequency of all pixels are plotted in

Figure 4.7.a, and the normalized thermal signals as a function of distance from the block

are given in Figure 4.7.b. The results confirm that using AC excitation reduces the extent

of heat diffusion.

To understand the impact of using AC excitation on the final quality of the thermal

image, we combine next the analysis of this section, which focused on estimating the

signal value, with the noise analysis in Section 4.3 to analyze the signal-to-noise ratio

(SNR) as a function of the excitation frequency.
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4.5 Signal to Noise Ratio (SNR) Analysis

In Section 4.3, we observed that increasing the excitation frequency decreases the flicker

noise up to the corner frequency. Beyond the corner frequency, noise is dominated by

white noise rather than flicker noise. Thus, increasing the excitation frequency beyond

the corner frequency does not reduce the noise; instead, increasing the integration time is

more beneficial. In Section 4.4 we observed that increasing the AC excitation frequency

reduces the extent of heat diffusion which reduces the blurring of the underlying power

map; however, increasing the excitation frequency has the disadvantage of reducing the

absolute temperature signal value at the fundamental frequency. In this section, we in-

vestigate the impact of the excitation frequency on both the signal and the noise. The

signal-to-noise (SNR) is a combined metric that gives the quality of the thermal image.

Theoretical analysis of SNR. To analyze the SNR, we first compute the average thermal

signal over a radius of 3.5 mm using Equation (4.7) at various frequencies from DC to 8

Hz and then divide the results at each frequency by the corresponding noise amplitude as

given by Equation (4.3). The SNR values as a function of frequency are plotted in Figure

Figure 4.8: Results from theoretical signal-to-noise analysis.
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4.8. Clearly, the SNR improves as the frequency increases at the beginning because the

reduction in flicker noise and in spatial heat diffusion outweigh the reduction in signal

value. But as the frequency is increased beyond the corner frequency, the SNR worsens

due to the reduction of the signal strength and lack of reduction in noise.

Empirical analysis of SNR. To measure the SNR, we use the thermal maps measured in

the context of the experiment corresponding to Figure 4.7, where we calculate the average

temperature over a radius of 3.5 mm from the center of our chip area. The 3.5 mm radius

is chosen to cover our experimental test chip area. We divide the results at each frequency

by the measured noise amplitude as given in Figure 4.3. The SNR values as a function

of frequency are plotted in Figure 4.9. The empirical results show the same trends as the

theoretical SNR plot of Figure 4.8, where both plots relatively agree with each other. For

instance, the empirical results of Figure 4.9 shows a degradation of the SNR by 57% from

its peak value of 140 to 80 at 8 Hz. The same reduction percentage is predicted from the

theoretical results given in Figure 4.8.

Our analysis and results show that for our test chip and imaging equipment, the peak

Figure 4.9: Empirical Signal-to-noise ratio at different frequencies with fixed integration
time (16s).
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SNR occurs around 2-3 Hz. Our analysis procedure is applicable for other chips and other

imaging systems, though the exact peak SNR frequency might differ. This difference

could arise because of different flicker noise characteristics in the imaging equipment

readout electronics and from the dimensions (in particular the thickness) of the test chip.

Reducing the thickness of the chip can shift the peak SNR to higher frequencies.

4.6 Thermal to Power Inversion Method

In a discretized form, the steady-state DC relationship between power and temperature

can be succinctly described using

Rp + e = T, (4.8)

where R is the power-to-thermal modeling matrix, vector p is the power vector that gives

the power consumption of every circuit block, e is the measurement noise vector, and

vector T is the temperature vector that gives the recorded temperatures at every pixel of the

thermal image [33]. The length of vector p is determined by the number of circuit blocks,

and the length of T is determined by the camera’s spatial resolution and the dimensions of

the die. In steady-state AC, Equation (4.8) is still valid except that the elements of vectors

p and T are complex numbers that give the the amplitudes and phases of power and

temperature at the fundamental frequency. If the phase of the power signal is considered

as reference, then p is real and T is complex. The modeling matrix R is now frequency

dependent and its elements are complex numbers as described in Section 4.4. We denote

the frequency-dependent model matrix by Rf , and the DC model matrix by R0.
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For power mapping purposes, three steps need to be conducted: i) T needs to be

measured for the chip under characterization after applying the appropriate workload and

waiting for AC or DC steady state; ii) R needs to be estimated for the actual chip in its

deployed environment; and iii) given T, R and the total power consumption, a numerical

inversion procedure must be carried to find p. We explain each of these steps in the

remainder of this section.

Measuring T. The thermal imaging system captures a discretized thermal emission field

with an image sampling rate that is at least twice larger than the AC excitation frequency

according to the Nyquist sampling criterion. To measure T, we capture a number of

consecutive frames for an integration time, P , as illustrated earlier in Figure 4.2. The

temperature at each pixel is computed as

Ti =


1
P

∫ P
0
Ti(t)dt DC case

2
P

∫ P
0
Ti(t)e

−2πjf0tdt AC case,

(4.9)

In the case of the AC case, the temperature Ti of pixel i is a complex number that gives

the amplitude and phase of the thermal wave at pixel i. The temperatures from all pixels

form the elements of the vector T.

Estimating the Modeling Matrix R. For practical power mapping, it is necessary to

estimate the modeling matrix R accurately. The model parameters must capture all modes

of heat transfer (e.g., conduction throughout the solid, convection and radiation at the

surface). Thus, analytical derivations as described in Section 4.4 are not sufficient. We

estimate the model parameters directly from the test chip using the following procedure.

For each excitation frequency f , the matrix Rf can be estimated in a column-by-column

basis as follows. Exciting only the kth circuit block is mathematically equivalent to setting
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the vector p to be equal to [0 0 · · · pk · · · 0 0]′, where pk denote the total additional power

(at the fundamental frequency) incurred from exciting block k. The total power of a test

chip can be readily measured using an external digital ammeter. Dividing the captured

temperature vector T by pk gives the values of the kth column of the matrix Rf . Thus,

we can measure Rf column-by-column by enabling each block one by one and repeating

the described procedure. It is also possible to carry the same procedure in simulation. In

this case, it is first necessary to construct a finite-element model (FEM) of the test chip,

its substrate board, and its environment, and then the use the FEM within a numerical

simulation environment to estimate the model parameters in the same conceptual way as

the described procedure. The matrix Rf is a function of f and thus it needs to be measured

at each desired excitation frequency.

Inverting Temperature to Power. Given the amplitude measurements T, R and total

power, the objective is to find the best power map vector p that minimizes the total squared

error between the temperatures as computed from the estimated power p and the measured

temperatures T; that is,

argp min ‖ Rfp−T ‖22, (4.10)

where || · ||2 denotes the `2 norm, and under the constraints that the sum of the elements

of the power vector is equal to the total power consumption of the chip ptotal and that the

individual power estimates of circuit blocks must be greater than zero; i.e.,

‖ p ‖1=
∑
k

pk = ptotal (4.11)
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∀k : pk ≥ 0, (4.12)

where || · ||1 denotes the `1 norm. The total power is readily measured through an external

digital multimeter. Any multimeter has its own tolerance (tol), so for practical purposes

we change the constraints in Equation (4.11) to be two inequalities:

∑
k

pk ≥ ptotal − tol (4.13)

∑
k

pk ≤ ptotal + tol (4.14)

In our implementation, we use MATLAB’s quadratic optimization solver (lsqlin)

to minimize (4.10) under the constraints of Equation (4.12), Equation (4.13) and Equation

(4.14). The solver uses the active-set strategy (also known as a projection method) which

relies on a two-step solution. The first step calculates a feasible solution point, and the

second phase generates an iterative sequence of feasible solution points that converge to

the final solution.

4.7 Experimental Results

The objective of our experiments is to assess the improvement in power mapping accuracy

using the proposed AC-based framework. For validation purposes, we design a test chip

where we can control exactly the switching activity, which yields reference power maps.

By knowing the reference power maps, we can scientifically validate our thermal-to-power
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inversion technique as it is applied to estimate the spatial power maps. We utilize the

same test chip which is 90 nm Altera Stratix II (EP2S180) field programmable gate array

(FPGA) with 180,000 logic elements as in Chapter 3, but instead of DC excitation sources,

we use AC excitation source for the following experiments. The programmability of the

test chip allows us to excite the micro-heater block at desired AC frequencies. The basic

unit of our test circuit is a programmable micro heater, which consists of a number of ring

oscillators (ROs) that are controlled by flip-flops that determine the operational status of

the micro-heater. We create two kinds of micro-heater designs: Bi-Level Micro-Heaters

and Multi-Level Micro-Heaters. We describe the design of the test chip in detail in Chapter

3.4.

Experiment 1. For this experiment we utilize our bi-level microheater grid (10×10 micro-

heaters; each consumes 25 mW when enabled) to create a number of reference maps and

then we capture the resultant thermal emissions using the infrared camera. The reference

power maps are given in the first column of Figure 4.10. We use our thermal to power

inversion method to estimate the spatial power maps and compare them with the reference

maps for validation. We conduct power estimation for traditional DC excitation and AC

excitation with frequencies of 0.5, 1, 2, 4, 8 Hz using an integration time of 16 seconds. We

report the estimated power maps in Figure 4.10. The percentage error for each individual

power map is computed as the absolute error between the reference power map and the

estimated power map normalized by the total power of the map. That is,

Error =

∑
k |pk − Pcorrectk|∑

k Pcorrectk
(4.15)

where Pcorrect is the reference power map and pk is the value of the kth element in the

vector p. The results show that AC-based inversion gives significant reduction in power
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Estimated power maps  
0   5   10   15   20   25 mW 

DC#(0#Hz)# AC#(0.5#Hz)# AC#(1#Hz)# AC#(2#Hz)# AC#(4#Hz)# AC#(8#Hz)#

av.#error#=#33.3%# av.#error#=#16.3%# av.#error#=#10.5%# av.#error#=#8.5%# av.#error#=#8.8%# av.#error#=#15.8%#

av.#error#=#35.6%# av.#error#=#15.8%# av.#error#=#10.5%# av.#error#=#8.6%# av.#error#=#7.2%# av.#error#=#14.9%#

av.#error#=#29.7%# av.#error#=#17.6%# av.#error#=#10.3%# av.#error#=#7.7%# av.#error#=#11.1%# av.#error#=#11.8%#

av.#error#=#54.4%# av.#error#=#17.2%# av.#error#=#10.1%# av.#error#=#8.8%# av.#error#=#7.7%# av.#error#=#14.0%#

av.#error#=#43.4%# av.#error#=#17.2%# av.#error#=#13.6%# av.#error#=#9.3%# av.#error#=#7.1%# av.#error#=#16.4%#

Reference patterns 

0     25 mW 

Figure 4.10: Error in post-silicon power mapping for DC and AC excitation without round-
ing.

mapping error compared to DC-based inversion. The average error decreases from 40%

at DC to about 8.5% in the AC (2 Hz) method. Rounding the results of the AC method to

the nearest level (0 or 25 mW) yields a perfect estimation of the reference maps with no

errors.

Comparison of power mapping error against excitation frequencies. We summarize

the power mapping percentage errors of Figure 4.10 in Figure 4.11, which gives the av-

erage power mapping percentage error for the five shown maps against all the excitation

frequencies including DC. The trends in the power mapping accuracy results are in agree-

ment with the SNR results provided earlier in Section 4.5. It is clearly observed that the
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Figure 4.11: Percentage of error versus different frequencies with fixed integration time
(16s).

power mapping error reduces drastically when we move from DC excitation to AC exci-

tation until the 2-4 Hz range. Increasing the excitation frequency beyond that range leads

to a loss in power mapping accuracy, which is consistent with the SNR results.

Comparison of power mapping error against integration times. In Section 4.3, we
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Figure 4.12: Percentage of error versus different integration time.
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analyzed the dependency of noise on the integration time. Increasing the integration time

(especially at and beyond the corner frequency) reduces the noise, which translates into

improved power mapping results. In Figure 4.12, we plot the average percentage error for

the five spatial maps as a function of the integration time for 2 Hz and 4 Hz power mapping

results. The plot shows consistent improvements in accuracy as the integration time is

increased. Increasing the integration time requires additional time for data collection and

processing and additional space for storing the measurement data.

Experiment 2. In this experiment, we provide results using the multi-level micro-heater

grid design (6×6 micro-heaters; each can consume 0, 25, 60, 102, 142 mW when enabled).

In contrast to the previous experiment where the power of each micro heater was only

restricted to two levels (0 and 25 mW), the constructed reference spatial power maps in

reference maps DC 

 0    25   60   102    142  mW 

rounded DC AC (2 Hz) rounded AC (2 Hz) 

14.84% 4.76% 9.09% 0.00% 

24.15% 1.81% 4.95% 0.00% 

26.88% 3.10% 7.73% 2.76% 

19.05% 8.24% 11.45% 1.71% 

Figure 4.13: Results from multi-level power estimation.
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this experiment comprises of power levels of varying intensities (0, 25, 60, 102, and 142

mW). Our inversion procedure can naturally handle any number of levels, and the results

of this experiment confirms this capability. Figure 4.13 gives the reference multi-level

power maps in the first column. The second column gives the estimated power maps using

DC-based excitation. The average error is 21.23%. We give in the third column the results

of the DC-based power maps when they are rounded to the nearest power level. In the

rounded case the average error drops to an average of 4.48%. In the fourth column we

give the results from using the proposed AC-based technique at 2 Hz; the average error

is 8.30% which again confirms the drastic improvement compared to the DC case. The

last column gives the rounded power maps from AC-based estimation with an average

error of 1.11%. The results of this experiment confirm that our technique is capable of

handling a large range of power intensities and spatial power maps, and that AC-based

power mapping consistently outperforms DC-based power mapping with a large margin.

4.8 Summary

In this chapter we have investigated the challenges in power mapping and proposed AC-

based thermography techniques to overcome the challenges. We have presented theoreti-

cal analysis and experimental validation for the impact of AC excitation on measurement

noise and spatial heat diffusion. To quantify the noise in our system, we have analyzed and

quantified the signal-to-noise ratio. We have devised techniques for realistic estimation of

the parameters of the thermal to power modeling matrix, and we have devised numeri-

cal techniques to invert the thermal emissions into power estimates. We have crafted a

programmable test chip to scientifically evaluate the accuracy of our thermal to power in-

version methods. Our test chip enables us to create any desired spatial power map. Using a

number of constructed intricate power maps, we have demonstrated that AC-based power

83



mapping dramatically improves post-silicon power mapping by reducing the average error

from 40% at DC to about 8.5% in the AC method. We can also observe that rounding the

results of the AC method to the nearest level yields a perfect estimation of the reference

maps with no errors. We analyzed the power mapping results for different AC excitation

frequencies and integration times, and linked these results to the SNR analysis.
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Chapter 5

Applications of Post-silicon Power

Mapping

5.1 Introduction

In recent years, post-silicon power mapping has emerged as a technique to mitigate the

uncertainties in design-time power models and enable effective post-silicon power char-

acterization [33, 61, 78, 17, 84, 72]. We proposed DC and AC-based post-silicon power

mapping framework in Chapter 3 and Chapter 4 respectively, which solve many of the

open challenges in this area. Using the proposed power mapping techniques, it is possible

to estimate detailed runtime spatial power maps of various computing devices accurately.

These post-silicon power estimation techniques can be applied to various computing sub-

strates, such as, multi-core processors, FPGAs, mobiles processors and SoCs. In this

chapter we present three different applications of the proposed post-silicon power map-

ping.
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1. Power Mapping of Real Processors: To test the DC and AC-based post-silicon

power mapping framework proposed in Chapter 3 and 4, we utilize three different

computing devices. In contrast to previous chapters, where we have created power

patterns in a programmable test chip to verify the proposed methods, in this section,

we apply our methods in real processors while running practical applications. First,

we apply our DC-based power mapping methods on a soft processor embedded in a

FPGA, while running practical applications. Second, the DC-based power mapping

techniques are applied to a real quad-core processor, while running different real

benchmarks. The power maps from the quad-core processor are decomposed into

dynamic and leakage power per block. Third, we demonstrate the basic applica-

bility of our AC-based power mapping on a real dual-core processor. For all three

computing devices, we present extensive set of experimental results.

2. Power Mapping using Sparse Thermal Sensors: In this application, we extend

our previous methods by devising a framework for post-silicon power mapping us-

ing thermal maps reconstructed from thermal sensor measurements. We give a de-

tailed description of frequency domain based full characterization methods. These

reconstructed thermal maps can be used to locate chip thermal hot spots. Using

the reconstructed thermal maps, we provide an alternative way for the post-silicon

power mapping procedure. The infrared imaging which is most commonly used for

post-silicon power mapping can be very expensive. This approach of using thermal

sensor measurements reduces the cost of power mapping drastically, since on-chip

thermal sensors are already present in the chip for various thermal management

purposes, and do not require any extra cost. We present thermal sensor based power

mapping results utilizing our programmable test chip and a real quad-core processor.
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3. Power Mapping for Hardware Trojan Detection: Vulnerability of modern in-

tegrated circuits (ICs) to hardware Trojans has been increasing considerably due to

the globalization of semiconductor design and fabrication processes. The large num-

ber of parts and decreased controllability and observability to complex ICs internals

make it difficult to efficiently perform Trojan detection using current detection meth-

ods. We propose a completely new post-silicon multimodal approach using runtime

thermal and inverted power maps for Trojan detection and localization. Utilizing our

novel power mapping framework, we propose various Trojan detection methods in-

volving two-dimensional principal component analysis to reduce dimensionality of

thermal and power maps. The supervised thresholding method uses a training data

set, and the unsupervised clustering method require no prior characterization data

of the chip. To characterize real-world ICs accurately, we perform our experiments

in presence of 20 - 40% CMOS process variation. Our experimental evaluations

reveal that our proposed methodology can detect very small Trojans with 3-4 orders

of magnitude smaller power consumptions than the total power usage of the chip.

The organization of this chapter is as follows. In Section 5.2 we present power map-

ping framework and results for real processors, which comprises of embedded soft pro-

cessor and multi-core processors. Section 5.3 describes the full thermal characterization

methods and post-silicon power mapping using reconstructed thermal maps along with ex-

perimental results from a FPGA test chip and a real quad-core processor. In Section 5.4,

we describe various hardware Trojan detection and localization techniques and simulation

results. Section 5.5 summarizes the novelties of all three applications.
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5.2 Post-silicon Power Mapping of Real Processors

The proposed post-silicon power mapping in Chapter 3 and 4 can be applied to various

computing devices to get access to detailed runtime spatial power maps. In this section,

we describe methodologies for applying the DC-based power mapping techniques to two

different computing substrates; a soft processor in Section 5.2.1 and real quad-core pro-

cessors in Section 5.2.2. We apply our AC-based techniques to a real dual-core processor

in Section 5.2.3.

5.2.1 DC-based Power Mapping of a Soft Processor

Given that FPGA-based implementations are less area and power efficient than their ASIC

counterparts, power characterization for FPGAs is an active topic of research in recent

literature [90, 50]. We apply our proposed power characterization methodology that in-

verts the spatial thermal emissions into power estimates to a soft processor embedded in

a FPGA chip. A soft processor (also called soft-core microprocessor) is a microprocessor

core that can be wholly implemented using logic synthesis. It can be implemented via dif-

ferent semiconductor devices containing programmable logic (e.g., ASIC, FPGA, CPLD),

including both high-end and commodity variations. In many applications, soft-core pro-

cessors provide several advantages over custom designed processors such as, reduced cost,

flexibility, platform independence and greater immunity to obsolescence. These soft pro-

cessors are optimized for various specific requirements, such as, layout area, high perfor-

mance, low power consumption, and versatility in a wide range of applications. The power

consumption of these processors is not entirely determined during design time as runtime

workloads can impact the exact power consumption. To validate each of the claimed opti-

mized features, there is a great need to perform post-silicon characterization of these soft

88



processors. We propose to apply our thermal to power inversion techniques on soft pro-

cessors. To evaluate our power mapping methods proposed in Chapter 3, we embed a soft

processor in a FPGA test chip. We estimate the spatial power maps of the soft processor

during runtime. Following we describe our experimental setup and results.

a. Experimental Setup and Results

In this experiment, we evaluate our spatial power mapping technique by inverting the

thermal emissions of the Nios II soft processor, while running the standard Dhrystone

2.1 application, into spatial power estimates. The Nios embedded processor is a general-

purpose RISC CPU implemented as a soft core in Altera FPGAs. We use 90 nm Stratix

II FPGA for our experiment. We consider four different configurations of the Nios II

processor: the economy model Nios II/e, the standard model Nios II/s with multipliers

implemented in the FPGA’s logic blocks, the standard model Nios II/s with multipliers

implemented in the FPGA’s DSP blocks, and the full-performance model Nios II/f. For

all four cases, the processor frequency is set to 150 MHz. We first constrain the logic

blocks of the Nios II processor to fit into a 30× 30 array of logic blocks (about 6.4 mm ×

7.0 mm) of the layout as shown in Figure 5.1.a and then capture the steady-state thermal

emissions T from this area as shown in Figure 5.1.b. The total power consumption of the

four configurations are 171 mW, 324 mW, 315 mW and 477 mW respectively. For the

purpose of spatial power mapping, we discretize the layout area of the soft processor into

6× 6 regions, and thus the p vector is comprised of 36 elements that need to be estimated.

To compute the power map p from the thermal emissions T, we need to estimate the

modeling matrix R as described in earlier chapters. We estimate the matrix R in a similar

way as discussed in Chapter 3 on a column-by-column basis. We note that the kth column

of matrix R can be obtained by setting the vector p to be equal to [0 0 · · · 1 · · · 0 0]T , where
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the “1” is at the kth location of the p vector, and then use the resultant emissions Tk directly

as the kth column of matrix R. To realize this setting, we utilize the fact that FPGAs are

programmable. For each power region k, we embed, and turn on, ring oscillators precisely

into the logic array blocks that are available in the region, while the rest of the blocks in

the design are inactive. Such precise embedding is possible with Altera’s Quartus II tool.

The resultant thermal emissions Tk from such embedding are then normalized by the total

power pk that is measured externally through the digital multimeter. Thus, column k of

matrix R is equal to Tk/pk. We automate the whole process in order to measure the 36

columns of R with fast turn-around time.

With the estimated matrix R and thermal emissions from the Nios II processor (Figure

5.1.b), we compute the spatial power maps using the optimization formulation as follows,

Total Power 171 mW Total Power 324 mW Total Power 315 mW Total Power 477 mW 

a. Floorplans 
Nios II/e 

Nios II/s  
(logic multiply) 

Nios II/s  
(DSP multiply) Nios II/f 

b. Thermal emissions in °C 

c. Estimated spatial power in mW 

Figure 5.1: Spatial power estimates of Nios II processors running Dhrystone 2.1 applica-
tion.
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p = argp min ||Rp−T||22, (5.1)

where the vector p denotes the power, R is the modeling matrix, and the vector T denotes

the measured thermal map using infrared imaging. The total power constraints are also

imposed to make the solutions unique as follows.

||p||1 ≤ ptotal + tol, (5.2)

||p||1 ≥ ptotal − tol, and (5.3)

p ≥ 0 (5.4)

where ptotal is the total measured multimeter power and tol is the tolerance of digital mul-

timeter. The detailed description of the procedure is given in Section 3.3. The estimated

spatial power maps in mW are plotted in Figure 5.1.c. Our estimated spatial maps augment

the floorplan with valuable spatial power density estimates. The revealed detailed power

estimation maps can be used to calibrate the estimates from high-level dynamic power

modeling tools. Given that the design of the Nios II processor is proprietary, it is not

possible for us to match the spatial power consumption estimates to the various functional

blocks of the processor.

5.2.2 DC-based Power Mapping of a Multi-core Processor

Modern multi-core processors designs are highly complex, incorporating a number of in-

dependent cores with billions of transistors. This complexity makes accurate pre-silicon
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power modeling a very difficult task for multi-core processors [13, 77]. Furthermore,

workloads and process variability alter the power consumption during runtime, making it

harder to accurately estimate power consumption during design time. In this section, we

extend our framework for DC-based post-silicon power mapping and modeling for real

multi-core processors. We add to our framework the capability to identify the dynamic

and leakage power consumption of blocks of multi-core processors under different work-

loads, while simultaneously analyzing the impact of process variability.

a. Power Mapping Framework

Figure 5.2 illustrates the framework of the proposed power mapping method. In our

setup, the processor’s regular fan and metal heat spreader are removed and replaced by an

infrared-transparent heat sink with silicon windows. Laminar mineral oil flow is pumped

through the heat sink on top of the processor’s die with high flow rate to remove its heat

[33, 60, 59, 82]. During runtime, realistic workloads are applied to the processor and the

steady-state or averaged thermal map is captured with the infrared camera. We will use

Toil to denote the vector that corresponds to the captured temperature map of the proces-

sor.

Replacing the fan and copper (Cu) heat spreader with an oil-based infrared transparent

heat sink changes the thermal map of the die [40]. The changes in the thermal map have

no impact on dynamic power, but they could change the leakage power characteristics

slightly. This impact of the change in leakage power on the power mapping results is

very small for our purpose and ignored for experimental results. For power mapping,

it is necessary to have an accurate modeling matrix R that relates temperature to power

at the steady state. This modeling matrix can be estimated experimentally [33, 17] or

numerically using finite-element modeling (FEM) methods [45]. We propose to use FEM
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Figure 5.2: Power mapping framework.

methods to accurately estimate the modeling matrix Roil for the case of the oil-based heat

removal sink1. In particular, we solve following optimization problem to reconstruct the

power map of the die.

p = argp min ‖Roilp−Toil‖22 (5.5)

such that plkg,i ≤ pi ∀i

where, p is the reconstructed power vector, Toil is the thermal map, plkg,i denotes the

leakage power in the ith die-block, and pi denotes ith element of p, i.e., the power in

the ith block of the die. By solving the above optimization problem, we obtain the total

power of each block for the die. The dynamic power of each block is readily obtained by

subtracting the leakage power from the reconstructed total power. Using the pi ≥ plkg,i

constraints helps in ensuring that dynamic power for all blocks is always positive. Our

1The FEM modeling of the Roil matrix is done by Kapil Dev. Details can be found in the work [21]
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power mapping framework provides the dynamic, leakage, and total powers for each block

of a processor given its thermal map.

b. Mapping Leakage Variability

Leakage power, especially its dominant sub-threshold component, depends exponentially

on temperature. But within the typical chip operation range 25 - 85 ◦C, it has a quadratic

dependency on temperature, which can be modeled by second-order Taylor series expan-

sion at a reference temperature. In order to compute the chip’s spatial leakage power map,

we divide the die area into a grid with large number of locations n. For each location i, we

develop a second-order Taylor expansion model for leakage power, plkg,i, as a function of

the average temperature, Ti, of location i. The expansion around a reference power, pref,i,

and temperature, Tref,i, is given by

plkg,i = pref,i + α1,i(Ti − Tref,i) + α2,i(Ti − Tref,i)2 (5.6)

where α1,i and α2,i are the model coefficients for location i that depend on the voltage,

process variability, and structure of devices. The total leakage power, Plkg is the sum of

leakage of the chip’s n locations, which can be written as:

Plkg =
n∑
i

pref,i +
n∑
i=1

[α1,i(Ti − Tref,i) + α2,i(Ti − Tref,i)2]
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which can be re-arranged as

∆P =
n∑
i=1

α1,i∆Ti + α2,i∆T
2
i , (5.7)

where ∆P = Plkg−
∑

i pref,i and ∆Ti = Ti−Tref,i. Note that ∆P , which is the change in

total power, is readily obtained using an external multimeter that measures the total power

of the processor, and ∆Ti is measured using the thermal maps provided from our infrared

imaging or from the translated thermal maps.

To learn the model coefficients, we repeat the thermal conditioning experiment m

times with different ambient temperatures, and for each experiment, we measure the

change in total power and change in the thermal map. The jth thermal conditioning ex-

periment provides a thermal image which consists of ∆Tj,i at each chip location i and an

incremental total leakage power ∆Pj , which creates an instance of Equation (5.8).

∆Pj =
n∑
i=1

α1,i∆Tj,i + α2,i∆T
2
j,i (5.8)

The results from the m thermal conditioning experiments can be assembled into a

system of equations as follows,
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
∆T1,1 ∆T 2

1,1 · · · ∆T1,n ∆T 2
1,n

...
... . . . ...

...

∆Tm,1 ∆T 2
m,1 · · · ∆Tm,n ∆T 2

m,n





α1,1

α2,1

...

α1,n

α2,n


=


∆P1

...

∆Pm

 (5.9)

We solve the above system of equations using least-square regression to find the 2n

α first-order and second-order model coefficients. To compute the total reference leakage

power,
∑n

i pref,i in Equation (5.7), one can change the ambient temperature of the chip

while keeping the dynamic power constant (by running a stable workload), and measuring

the total power consumption and the average chip temperature simultaneously. To estimate

the total reference leakage power, an exponential model of the measured power to the
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(27, 13.6) 

Figure 5.3: Measured power vs. average chip temperature, while keeping dynamic power
unchanged. Pdyn denotes the dynamic power and

∑
pref denotes the total leakage power

at reference temperature 27 ◦C.
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chip’s average temperature can be used to extrapolate it to the point where leakage power

tapers off. As shown in Figure 5.3, for our experimental quad-core processor, we estimate

the total reference leakage power at 27 ◦C as 1.6 W, and stable dynamic power, Pdyn as

12 W. For a particular chip, these coefficients need to be computed only once, and then

the same coefficients are used for estimating fine-resolution leakage maps for any thermal

map of the chip as given in the framework of Figure 5.2.

Process Variability Mapping. In a typical power mapping experiment, the temperature of

location i is plugged into Equation (5.6) to estimate the leakage power of location i. If it is

desired to estimate the inherent spatial leakage variability arising from process variability,

then a fixed temperature could instead be plugged into the equations of all chip locations.

By using the same temperature everywhere, the leakage variations that arise will be due

to the coefficients α1,i and α2,i which are dependent on the inherent process variability,

assuming a fixed operating voltage.

c. Experimental Setup and Results

Our experimental system consists of a motherboard fitted with a 45 nm AMD Athlon II

X4 610e quad-core processor and 4 GB of memory. The motherboard runs Linux OS with

2.6.10.8 kernel. The floorplan of the processor with 11 different blocks is shown in Figure

5.4. We treat each core as one block, as we could not find public-domain information on

the make-up of blocks within each core. It is worth mentioning that our proposed tech-

nique of power mapping is generic and will work for any arbitrary layout details we use for

reconstructing power maps. The processor has 4×512 KB L2 caches, but it lacks a shared

L3 cache. The area in the center is occupied by the northbridge and other miscellaneous

components such as the main clock trunks, the thermal sensor, and the built-in thermal

throttling and power management circuits. The periphery is composed of the devices for
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Figure 5.4: Layout of the quad-core AMD Athlon II X4 processor.

I/O and DDR3 communication. The processor supports four distinct DVFS settings. We

set the DVFS to 1.7 GHz.

We image the processor using a mid-wave FLIR 5600 camera with 640×512 pixel

resolution. We also intercept the 12 V supply lines to the processor and measure the cur-

rent through a shunt resistor connected to an external Agilent 34410A digital multimeter,

which enables us to log the total power measurements of the processor. To implement

thermal conditioning in our experimental setup, we use a thermoelectric device and a fluid

monitoring device in line with the oil flow as shown in Figure 5.5. By changing the voltage

and current of the thermoelectric device, we can either cool or heat the fluid to any desired

temperature. Thus, we setup a feedback control system to control the fluid temperature

A/D	
  
fluid 

monitor 

thermoelectric	
  
device	
  

PI	
  
controller	
  

oil  
heat sink 

set 
temperature 

+ - 

programmable 
current supply 

oil loop 

pump 

Figure 5.5: Experimental setup for thermal conditioning.
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memory bound processor bound
Integer point omnetpp hmmer
Floating point soplex gamess

Table 5.1: Selected SPEC CPU2006 benchmarks.

to any desired set temperature point. In the feedback loop, the fluid temperature is com-

pared to the set point and the error is fed to a PI controller, the output of which derives the

programmable power supply of the thermoelectric device.

Experiment 1: The goal of the first experiment is to demonstrate the results of power map-

ping for the processor using different number of workloads and different workload char-

acteristics. Our workloads come from widely used SPEC CPU2006 benchmark suite. We

selected four benchmark applications, which cover both integer point and floating point

computations and processor-bound and memory-bound characteristics. These benchmarks

are listed in Table 5.1. We ran different cases of workload sets. For each experiment, we

captured the steady-state thermal image using an infrared-camera and reconstructed the

underlying power maps from the thermal maps. We decomposed the total power maps

into dynamic and leakage power dissipation of each block of the processor and analyzed

the spatial leakage variability. The per-block power results for 10 sample workload cases

are presented in Table 5.2. We also report the total dynamic power, total leakage power,

and the sum of leakage and dynamic power. The results show that the leakage power is

on the average about 11% of the total power. We also report in the last column the total

measured power through the external multimeter. We notice that our total estimated power

through infrared-based mapping achieve very close results with an average absolute error

of 0.84 W of the measured power. The differences could be either due to modeling inac-

curacies or due to the fact that the measured total power also include the power consumed

by the off-chip voltage regulators, and thus, it does not represent the net power consumed

by the processor.
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Reconstructed total power (W) for each block Total power (W)
c1 c2 c3 c4 c1 L2-1 c2 L2-2 c3 L2-3 c4 L2-4 I/O N. B. DDR3 dyn lkg dyn+lkg meas

o - - - 3.21 0.78 1.13 0.45 1.58 0.24 2.11 0.49 0.82 4.62 0.92 14.16 2.18 16.35 16.77
h - - - 4.43 0.90 0.90 0.47 1.33 0.28 2.04 0.47 0.81 5.20 0.79 15.36 2.24 17.62 18.45
s - - - 3.24 0.84 1.03 0.47 1.56 0.23 2.10 0.46 0.80 4.78 0.88 14.19 2.18 16.39 17.06
s s - - 3.06 0.95 2.52 0.92 1.63 0.26 2.32 0.47 0.88 6.20 0.89 17.70 2.37 20.09 19.75
o - h - 3.07 0.93 0.74 0.60 4.81 0.49 2.24 0.47 0.83 6.74 0.86 19.31 2.46 21.78 21.57
s - g - 3.31 1.01 0.75 0.61 4.72 0.58 2.30 0.47 0.83 6.83 0.85 19.76 2.49 22.25 21.86
s s s - 2.92 1.00 2.29 1.01 3.34 0.49 2.50 0.49 0.89 7.24 0.94 20.57 2.53 23.11 22.26
o s g - 3.02 1.08 2.39 1.16 4.89 0.67 2.54 0.49 0.91 8.36 0.84 23.66 2.71 26.36 24.77
o s h - 2.98 1.05 2.31 1.13 5.01 0.58 2.55 0.49 0.92 8.28 0.88 23.49 2.70 26.19 24.58
s s s s 2.88 1.12 2.17 0.99 3.08 0.54 4.46 0.56 0.92 8.14 0.96 23.13 2.68 25.83 24.31

Table 5.2: Power-mapping results for 10 test cases. c1, c2, c3 and c4 stand for core 1, core
2, core 3 and core 4 respectively; o, h, s and g stand for omnetpp, hmmer, soplex
and gamess respectively; N.B. stands for north bridge block; dyn stands for dynamic; lkg
stands for leakage; dyn+lkg is the total power reconstructed from post-silicon in infrared
imaging; meas is the total power measured through the external digital multimeter.

Experiment 2: To see the impact of increasing number of applications on the power

consumption of different blocks, such as, core, cache, northbridge, I/O, DDR3 channels,

we run soplex in four different ways. First, we run one instance of soplex on core 1,

second, we run two instances of soplex on core 1 and core 2, third we run three instances

of soplex on core 1, core 2 and core 3 and last we run four instances of soplex on all

four cores. Figure 5.6 shows the trend of power consumption of different blocks in the

processor as we increase the number of applications. When a core is idle it usually clock
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Figure 5.6: Increasing number of instances of soplex in the quad-core processor
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gates, and consumes minimum power, but as we increase the number of applications, the

total power of the four cores increases proportionally. In contrast, the power consumption

from other blocks such as the northbridge, I/O, DDR3 do not change as much depending

on the number of workloads, because those blocks do not clock gate and they are always

operational.

Experiment 3: To estimate the leakage profile for the AMD quad-core processor, we per-

form the thermal conditioning techniques described earlier in this section and shown in

Figure 5.5, where we increase the chip temperature from 27 °C to 55 °C by increasing

the infrared transparent cooling fluid temperature from 18 °C to 45 °C, and measuring the

associated changes in power consumption and thermal profiles of the chip using infrared

imaging. We divide our chip into small blocks of size about 0.4 mm2 resulting into ap-

proximately 418 first-order and 418 second-order coefficients. In order to maintain the

stability of the least square estimation, the maximum number of coefficients i.e. the leak-

age power resolution is limited by the available number of instances of Equation (5.8).

We collected approximately 2000 data points to solve our least square estimation. The

total reference leakage power,
∑
pref in Equation (5.7) is estimated by changing the die

ambient temperature as shown earlier in Figure 5.3.

(b) 
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38% 

Caches  
19% 

IO 
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Figure 5.7: a) Percentage Leakage power per core with its L2 cache, and b) Percentage
Leakage power per block type.
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To uncover the underlying leakage spatial-variability introduced by process variability,

we assume constant temperature across the die, and measure the leakage power for each

grid location. Figure 5.7.a shows the percentage of leakage power for each core with

its L2-cache. Core 1 has approximately 5% more leakage than the lowest power core.

This result for instance can be used to bias the operating system scheduler to allocate

applications on the lower-leakage cores before the higher-leakage cores. Figure 5.7.b

gives the total leakage power distribution among different blocks. There is approximately

10.3% within-die variations among all the blocks.

5.2.3 AC-based Power Mapping of General-Purpose Processors

In this section we demonstrate the basic applicability of our AC-based power mapping

technique on general-purpose processors. We focus on demonstrating the ability to (i)

alternate between two discrete power levels at different excitation frequency, and to (ii)

analyze the resultant thermal images to show the reduction of the spatial heat diffusion as

a function of the excitation frequency.

For our demonstration we utilize an AMD Athlon II dual-core processor that is em-

14 mm 

8.
5 

m
m

 

Figure 5.8: AMD Athlon II dual-core processor chosen for demonstration.
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Figure 5.9: Impact of alternating DVFS between two levels of power.
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Figure 5.10: Frequency domain representation of the power signal.

bedded in a motherboard with 4 GB of memory and running the Linux operating system.

The layout of the processor is given in Figure 5.8. We execute a floating-point application

of a stable nature on one of the cores. To alternate the power level between two values,

we execute a script that alternates the dynamic voltage-frequency setting (DVFS) between

two levels. For example, Figure 5.9 shows the power signal of the processor alternat-

ing between two values completing a full cycle every 1.1 seconds. Figure 5.10 gives the

amplitude of the power signal in the frequency domain, clearly showing the fundamental

component of the square wave at 0.9 Hz and its odd harmonics. Switching the DVFS

settings takes a few microseconds, which is a negligible amount of time compared to the

frequency of alternating the DVFS setting, which results in excellent frequency domain

characteristics.

Figure 5.11.a gives the DC thermal map when the DVFS settings does not alternate.
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(a) Thermal map at DC 

(b) Thermal map at 0.9 Hz 

(c) Thermal map at 1.8 Hz 

Figure 5.11: Thermal maps at various excitation frequencies.

Using our DVFS alternating script, we collect the thermal emissions and process them

as described in Section 4.2 for the cases of 0.9 Hz and 1.8 Hz. Figure 5.11.b gives the

AC thermal map when DVFS settings alternate at 0.9 Hz, and Figure 5.11.c gives the

the AC thermal map when DVFS settings alternate at 1.8 Hz. The thermal maps show

that the extent of spatial heat diffusion reduces as the alternation frequency of the DVFS

setting increases. The results confirm the applicability our AC-based technique on general-

purpose processors.

To perform full AC-based post-silicon power mapping to any general-purpose pro-

cessor, there are two main challenges, (1) to estimate an accurate modeling matrix R

corresponding to the excitation frequencies, and (2) to be able to control the excitation

frequencies of the power sources in the chip. The modeling matrix R can be obtained
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by using the actual design and layout of the chip to conduct a FEM simulation coupled

with a heat diffusion simulation which is discussed in Section 5.2.2 [33, 61, 21]. The only

difference for the AC-case is that the modeling matrices have to be estimated by FEM

at various excitation frequencies. The second requirement is more challenging because

we do not have control over the excitation frequencies of each floorplan block in a real

processor. By switching DVFS settings, or running applications between high and low ac-

tivity phase, it is possible to control the voltage/frequency for some parts of the chip, e.g.

cores, but other blocks of the chip e.g. cache memories, I/Os, Nbridge remain at DC state.

So, we cannot filter out the temperature corresponding to the fundamental frequency as

discussed in Chapter 4, as it will filter out thermal responses corresponding to the blocks

at DC. These hurdles need to be overcome in order to perform the full AC framework to

modern processors to improve post-silicon power estimates. One emerging future direc-

tion to tackle power management concern in high performance microprocessor designs is

to accommodate fast on-chip voltage regulator modules (VRMs) that provide fine-grain

on-chip voltage switching capabilities [44, 47]. If available, these VRMs could be utilized

to control the AC excitation of the power sources of modern general-purpose processors.

5.2.4 Conclusions

In this work, we utilized our proposed power mapping framework and devised techniques

to apply it to power mapping applications for real processors. We have introduced mul-

tiple novel techniques that advance the state-of-the-art post-silicon power mapping and

modeling for both the case of soft processors embedded in FPGAs or real multi-core pro-

cessors. For power characterization of FPGAs, we proposed new techniques for thermal to

power inversion using quadratic program optimization. We used our DC power mapping

methodology to estimate the spatial power distribution of an embedded soft processor dur-
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ing operation. For multi-core processors, we have devised accurate finite-element models

that relate power consumption to temperatures. We have proposed techniques to model

leakage power through the use of thermal conditioning. These leakage power models

were used to yield fine-resolution leakage power maps and within-die variability trends

for multi-core processors. We analyzed the power consumption of different blocks of a

real quad-core processor under different workload scenarios from the SPEC CPU2006

benchmarks. Our results reveal a number of insights into the make-up and scalability of

power consumption in modern processors. We have also demonstrated the applicability of

our AC-based techniques on a real dual-core processor.
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5.3 Post-silicon Power Mapping from Sparse Thermal Sen-

sor Measurements

Hot spots impact directly all key circuit metrics, including: lifetime and reliability, speed,

power, and costs. Hot spots reduce the mean time to failure as most failure mechanisms

(e.g., electromigration, time dependent dielectric breakdown, and negative bias tempera-

ture instability) have strong temperature dependencies [74]. Furthermore, different ther-

mal expansion coefficients of chip materials cause mechanical stresses that can eventually

crack the chip/package interface [11]. Elevated temperatures also slow down devices and

increase interconnect delays which might lead to timing failures [11]. High tempera-

ture also increase leakage power, which could lead to thermal runaway [52]. Many-core

processors with 100s - 1000s of cores will localize power consumption which further in-

creases thermal problems [38].

To manage runtime thermal variations, circuit designers embed within-die thermal

sensors that acquire temperatures at few selected locations. The acquired temperatures

are then used to guide runtime thermal management techniques [87, 56]. Inaccurate ther-

mal monitoring arises from: limited number of sensors, remoteness of sensors from hot

spots locations, manufacturing variability, and analog-to-digital conversion accuracy [87].

While increasing the number of thermal sensors can reduce these errors, thermal sensors

and their support circuitry (e.g., A/D converters) and wiring occupy valuable silicon area,

and thus designers tend to limit their numbers.

We propose to utilize the temperature measurements from the sparse thermal sensors

for the purpose of post-silicon power mapping. Our technique for post-silicon power

mapping involves capturing the thermal emissions from the back of the die and inverting

the captured images to get power estimates. But this requires the full infrared imaging
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setup. The high resolution infrared camera can be very expensive, making the cost of

the imaging setup very high. In this subsection, we provide an alternative way for the

post-silicon power mapping procedure. We describe the framework for post-silicon power

mapping using thermal maps reconstructed from temperature readings of sparse thermal

sensors. We use the thermal sensor measurements to perform full thermal characterization

of the chip, and use the reconstructed full thermal map for post-silicon power mapping

purposes. The major contributions of this section are as follows.

• We elaborate the frequency domain characterizations of thermal signals directly ac-

quired from a real processor using a thermal infrared camera. The sparsity of these

signals is analyzed in the frequency domain. We also explore different choices of

frequency domain bases.

• Using the few measurements of thermal sensors, we propose a number of full signal

reconstruction techniques that are capable of locating the sparse components of the

temperature signal in the frequency domain and determining their magnitudes.

• We propose to use the full reconstructed thermal maps using sensor measurements

for the purpose of post-silicon power mapping, giving an alternate way to the in-

frared imaging for post-silicon thermal and power characterization.

• In contrast to previous works which relied on simulators, we directly verify our

full thermal characterization method on an operational 45-nm dual-core processors

using an infrared camera. We elucidate the trade-off between the number of thermal

sensors and the accuracy of full thermal characterization.

• We further utilize the various artificial power patterns created using a FPGA test chip

in Chapter 3 and 4 for thermal reconstruction based post-silicon power mapping. In

order to apply our thermal sensor based power mapping to a real processor, we

utilize the real quad-core processor from Section 5.2.2. We extend the post-silicon
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power mapping results from previous chapters, where instead of using the thermal

maps obtained by infrared imaging, we use samples of the thermal traces as thermal

sensor measurements and apply the proposed DC -based power mapping framework.

• We analyze the accuracy of power mapping as a function of the number of sensors

and the spatial frequency of the power maps.

The organization of this section is as follows. Section 5.3.1 overviews some of the re-

cent relevant methods in the literature. Section 5.3.2 introduces the frequency-domain as a

method to analyze temperature signals. In Section 5.3.3 we propose a number of new, ac-

curate methods for full thermal characterization. In Section 5.3.4, we propose techniques

to utilize the full reconstructed thermal maps for post-silicon power mapping purposes. We

verify our full thermal characterization methods through experimental results and evaluate

the accuracy of the power mapping techniques with two different computing chips, FPGA

and multi-core processor in Section 5.3.5. Finally, Section 5.3.6 summarizes the main

results of this work.

5.3.1 Previous work

A number of recent papers discuss design methods that allocate sensors near potential

hotspot locations, and runtime methods that estimate the hotspot temperature and full chip

temperatures during runtime using the measurements of the thermal sensors [53, 58, 64].

For runtime hotspot and full thermal characterization, two techniques have been proposed.

In the first technique, Long et al. [53] advocate using a grid-based interpolation scheme

that identifies the hotspot around each sensor by interpolating the measurements at its

immediate neighbors. In the second technique, Cochran et al. [18] advocated spectral

techniques that are capable of fully reconstructing the temperature at all locations of the
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processor die. The main idea of [18] is to regard the spatial temperature as a space-varying

signal and to utilize the Nyquist-Shannon sampling theory to devise methods that can

reconstruct the full thermal status from the measurements of the thermal sensors. None of

the previous works in thermal characterization utilized the reconstructed thermal maps for

post-silicon power mapping purposes.

5.3.2 Frequency Domain Techniques

Exact thermal estimation requires solving the partial differential heat equation, or a lumped

first-order approximation for it, using as input the detailed power consumption of vari-

ous processor units together with a model of the chip-package structure. This detailed

information is not available during runtime, and furthermore, there is no sufficient com-

putational resources to estimate the temperature in real time. Thus, we focus on devising

computationally efficient frequency domain techniques that only use the measurements

of the thermal sensors to fully characterize the processor’s temperature. If T is the spa-

tial temperature signal which is expressed as a N × 1 vector, then the frequency domain

representation of T can be expressed as

T = ΦC, or C = Φ†T (5.10)

where Φ is an N × N matrix with columns that form a orthonormal basis, Φ† is the

conjugate transpose of Φ, andC = {C1, . . . , CN} is anN×1 vector that has the frequency-

domain coefficients of T . There are many choices for orthonormal bases. One choice for

Φ is the 2-D Discrete Fourier Transform (DFT) matrix, where an element at row u and
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column v of Φ is computed as,

Φuv =
1

N ×N
e−2πiquqv/Ne−2πirurv/N , (5.11)

where ru and qu are the remainder and quotient of dividing u by N respectively, and rv

and qv are the remainder and quotient of dividing v by N respectively. Another choice is

the 2-D Discrete Cosine Transform (DCT) matrix , where each element in the matrix is

computed as,

Φuv = αuαv cos
π(2qv + 1)qu

2N
cos

π(2rv + 1)ru
2N

, (5.12)

where αu and αv are normalization factors. The biggest advantage of using frequency-

domain techniques is that they transform a non-sparse signal, T in this case, to a sparse

signal C with mostly zero coefficients. The sparsity of the spatial thermal signal in the

frequency domain is confirmed as follows. Using our infrared camera, we capture the

thermal maps of an AMD Athlon II dual-core processor during operation as shown in Fig-

ures 5.12.a and 5.12.c. We plot the the DCT transform of the two thermal maps in Figure

5.12.b and 5.12.d. Note that we only plot few frequency coefficients at low frequencies as

the rest of the coefficients are very close to zero. Furthermore, Figure 5.12.d displays co-

efficients that are larger in magnitude and at a larger frequency ranges than the coefficients

of Figure 5.12.b. These differences in the magnitudes and locations of the frequency do-

main coefficients are a quantitive metric for the visually apparent strong spatial gradients

of the temperature signal of Figure 5.12.c in comparison to Figure 5.12.b.

Signal energy is an important concept in frequency-domain analysis, where it is de-
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(c) Processor thermal map 

(a) Processor thermal map (b) DCT of thermal map in (a) 

(d) DCT of thermal map in (c)  

Figure 5.12: Thermal maps of Athlon dual II processor and their corresponding DCT
frequency-domain representations.

fined as the sum of squares of the magnitudes of its coefficients in the frequency domain.

The concept of energy gives a quantitive metric to compare various frequency-domain

representations. We use this concept to confirm that DCT is a better basis than DFT for

thermal signals. Using the thermal maps of Figure 5.12, we plot in Figure 5.13 the percent-

age of energy captured as a function of the number of frequency domain coefficients, for

both the FFT and DCT bases. From the plot, it is evident that it is possible to capture most

of the energy content of the thermal signal with only few coefficients. Furthermore if we

compare DFT and DCT, we can see from the plot that the DCT captures the same energy

as the DFT using a fewer number of coefficients. This result shows that DCT has more

energy concentrated in fewer number of coefficients making it a sparser representation.

Thus, we choose DCT as our orthogonal basis for further analyses.
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Figure 5.13: Fraction of signal energy captured as a function of the number of frequency-
domain coefficients.

5.3.3 Proposed Full Runtime Thermal Characterization Techniques

During regular processor operation, the full temperature field T = {T1, T2, . . . , TN} of the

die at all N locations is not available; instead, only n samples obtained from the n thermal

sensors are available. Let y = {i1, i2, . . . , in} denote the indices or locations of the n

sensors in the temperature field, and T (y) denote the temperature measurements at these

locations. Then the objective of full thermal characterization is to estimate the temperature

at each of the N points given the measurements of the n sensors. If the thermal signal is

k-sparse in the frequency domain, and if the locations of the non-zero signal coefficients

in the frequency domain are known, then let s = {j1, j2, . . . , jk} denote the locations or

indices of these non-zero coefficients. Given the sensor samples T (y) and the orthonormal

basis Φ, the signal samples T (y) can be expressed

T (i1) = Φi1,j1Cj1 + Φi1,j2Cj2 + · · ·+ Φi1,jkCjk

... =
...

T (in) = Φin,j1Cj1 + Φin,j2Cj2 + · · ·+ Φin,jkCjk
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These set of equations can be written succinctly using matrix notation as

T (y) = Φ(y, s)C(s), (5.13)

where Φ(y, s) denote the matrix formed using Φ’s rows with indices y and Φ’s columns

with indices s, and C(s) is the vector formed of the C elements at indices s. In this case

the best C that gives the total least square errors (LSE) of Equation (5.13) is given by

CLSE = (Φ(y, s)†Φ(y, s))−1Φ(y, s)†T (y). (5.14)

Full temperature characterization is achieved by multiplying the original basis set Φ

with CLSE; i.e., T = ΦCLSE . While Equation (5.14) gives a convenient closed-form to

find the best frequency-domain representation, it is also possible to find the LSE solu-

tion of Equation (5.13) iteratively using gradient descend methods [5]. The advantage of

gradient descend methods is that they allow a relatively smooth trade-off between com-

putational runtime and solution accuracy. In all cases, solving Equation (5.13) hinges on

the ability to determine the locations of the non-zero coefficients of C; that is, s must be

determined. We propose two approaches to tackle this problem:

k-LSE using Pre-determined Thermal Characterization: In the first approach, we uti-

lize our observation of Section 5.3.2 that the energy of the temperature signals acquired

from real processors are mostly concentrated in the low frequency range. Consequently,

the locations of the k non-zero coefficients can be picked from the low-frequency range.

The number of coefficients picked depend on the number of available thermal sensors

where k < n to make sure that the solution to Equation (5.14) is stable. To prioritize

low-frequency coefficients over high-frequency coefficients, we propose the order given
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Figure 5.14: Order of coefficients for the k-LSE method.

in Figure 5.14. Essentially our proposed method picks coefficient locations to match the

frequency-domain representations of thermal signals acquired from real processors.

Compressive Sensing: Compressive sensing techniques attempts to simultaneously find

the locations and magnitudes of the non-zero components of the sparse signal [14]. We

investigate two compressive sensing techniques. In the first technique (CS-L1 MIN), the

following Second-Order Cone Programming (SOCP) formulation

min ||C||1 (5.15)

subject to T (y) = Φ(y, :)× C, (5.16)

is solved to minimize the `1 norm of C, where Φ(y, :) is the matrix formed from the full

rows of the Φ matrix. Minimizing the `1 norm forces the SOCP solver to choose the

solutions that are sparsest. For a real-time setting, solving a SOCP formulation can be

unacceptable from an computational perspective. Thus, we explore a second technique

(CS-STOMP) based on the greedy iterative procedure Stagewise Orthogonal Matching
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Procedure: STOMP(·)
Input: Initialize r = T (y), C as a zero N × 1 vector, and s = ∅.
Output: Full characterization of temperature signal.

While |r| ¡ noise threshold

1. Cr = Φ(y, :)†r

2. Find p = {j|Cr(j) > max(Cr)− noise threshold}
3. Let s = s ∪ p
4. Compute C(s) = (Φ(y, s)†Φ(y, s))−1Φ(y, s)†T (y)

5. Let r = T (y)− Φ(y, :)C

Return T = ΦC

Figure 5.15: Procedure STOMP (·) for full thermal characterization using compressive
sensing.

Pursuit (StOMP) [22]. The StOMP algorithm transforms the sampled signal T (y) into a

negligible residual by identifying the significant non-zero components from the signal in

the frequency domain one at a time in a greedy fashion as given in Figure 5.15. In Step

1, the algorithm computes the frequency domain representation Cr of the residual signal

(the residual signal r is initialized to T (y) at the beginning of the algorithm), and then

in Step 2, it determines the locations of non-zero coefficients from Cr that are above a

certain noise threshold. Using the selected coefficient locations, the algorithm then solves

the least squares estimation formulation in Step 4 to determine the magnitude of these

selected coefficients. Finally, it reconstructs the signal in Step 5 and subtracts it from

the original sampled signal to produce a new residual. The algorithm is iterated until the

residual goes close to zero and all the significant non-zero components in the signal are

recovered.

A fundamental assumption for both the compressive sensing techniques is that the
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sampling is performed randomly. In real processors thermal sensors are placed at strategic

locations near hot spots, and consequently, the theoretical attractiveness of compressive

sensing is no longer guaranteed.

5.3.4 Post-silicon Power Mapping using Reconstructed Thermal maps

We propose to perform post-silicon power mapping with full thermal maps reconstructed

using frequency domain techniques as described in Section 5.3.3. The procedure for post-

silicon power mapping is similar to the framework described in Chapter 3, where we find

the best power map p that minimizes the total squared error between the true temperatures

T and the measured temperatures; that is, min ||Rp − T||22. In contrast to previous tech-

niques, the thermal map T is obtained by reconstruction using measurements from thermal

sensors, rather than the commonly used infrared imaging. The matrix R is estimated either

based on measurements as described in Chapter 3 or based on equivalent finite-element

simulations as described in Chapter 5.2.

For the thermal to power inversion, the following optimization formulation is used,

where T = ΦCLSE; Φ is the original basis formed for the full thermal characterization

and CLSE are the estimated frequency domain coefficients from Equation (5.14).

p = argp min ||Rp− ΦCLSE||22 , (5.17)

117



with following constraints,

||p||1 ≤ ptotal + tol, (5.18)

||p||1 ≥ ptotal − tol, and (5.19)

p ≥ 0 (5.20)

where p is the power map using reconstructed thermal map, R is the thermal resistance

matrix, and ΦCLSE is the reconstructed thermal map. || · ||1 is the `1 norm and ptotal

is the total power consumption of the chip which could be measured externally using a

digital multimeter. Note that, we do not use a regularization parameter for the thermal to

power inversion as in Chapter 3 formulation, which was used to mitigate the thermal noise

present in infrared images. In this case, the reconstructed thermal images will not have

measurement noise as in the case of infrared imaging. We present experimental results

from two different computing substrates, FPGA and multi-core processor as follows.

5.3.5 Experimental Results for Full Thermal Characterization and

Power Mapping

To test the effectiveness of our post-silicon power mapping using full thermal characteri-

zation methods, we use the following experimental setup:

• For thermal imaging, we utilize a FLIR SC5600 infrared camera with a mid-infrared

spectral range of 2.5 µm – 5.1 µm. The camera is capable of operating at 100

Hz with a spatial resolution of 30 µm with a 0.5× microscopy kit. Details of the

experimental setup is given in Chapter 3.
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• For full thermal characterization, we use a real dual-core 45 nm AMD Athlon II X2

240 processor running at 2.1 GHz. The processor is cooled with a oil based cooling

system as described in Chapter 2. To collect the thermal traces involved in the exper-

iments we use the SPEC CPU2006 benchmark set which has 29 applications. We

collect 100 temperatures traces obtained from the infrared camera after executing

each benchmark individually and after executing two benchmarks at a time.

• For validating the proposed thermal reconstruction based post-silicon power map-

ping, we utilize the FPGA test chip described in Chapter 3, which allows us to create

artificial patterns with different frequencies. We further apply the thermal recon-

struction based techniques on a real quad-core using SPEC CPU2006 benchmarks

described in Section 5.2.2.

a. Full thermal characterization results

The objective of the first experiment is to demonstrate the effectiveness of our frequency-

domain techniques in fully reconstructing the thermal signal. We report the following

metric in our experiment:

• Full thermal characterization error. For each temperature trace, we compute the

average absolute error between the true temperatures as measured by the infrared

camera and as estimated by our signal reconstruction methods. We normalize the

average error by the difference between the maximum and minimum temperatures

in the trace. This normalization helps put the characterization error in perspective:

a 0.5 °C error is more significant if the difference between maximum and mini-

mum temperatures is 5 °C rather than 20 °C. We report the average absolute error

computed for all 100 temperature traces.
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In this experiment we compute the full thermal characterization error as a function of

the number of sensors which are placed randomly. We compare here four full thermal

characterization methods: the spectral method [18], the proposed k-LSE method, the

CS-L1 MIN method, and the CS-STOMP method. The performance of these methods

as a function of the number of sensors is given in Figure 5.16. The results show that

the proposed k-LSE method gives superior results compared to other methods. Note

that CS-L1 MIN and CS-STOMP fail to produce meaningful results when the number of

sensors is relatively low. The main reason for the poor performance of generic compressive

sensing techniques is that they attempt to compute both the locations and magnitudes of

the frequency-domain coefficients, and hence there is a chance they end up picking wrong

high-frequency coefficients. In contrast our proposed k-LSE method is devised with the

nature of thermal characterizations encountered in real processors in mind, and hence it

is more powerful than a generic technique. Our method k-LSE also outperforms the

spectral method ([18]) as it uses a sparser basis (DCT instead of FFT) and a more

accurate direct algebraic approach that guarantees minimizing the total square error.
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Figure 5.16: Average error in full thermal characterization using various temperature re-
construction methods.
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b. FPGA power mapping results

We have used 12 different power patterns created in a FPGA test chip as described in

Section 3.4 to test our proposed technique. Figure 5.17.a shows six different arbitrary

injected power patterns, Figure 5.17.b shows the infrared thermal maps, Figure 5.17.c

shows the sampled temperature values at 36 uniform thermal sensor locations, and Figure

5.17.d shows the reconstructed thermal maps using techniques described in Section 5.3.3.

We chose k-LSE as our reconstruction method, because it gave us the best reconstruction

error as shown in the experimental results in Section 5.3.5.a.
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Figure 5.17: Reconstructed thermal maps of arbitrary power maps using thermal emis-
sions. (a) Injected power patterns, (b) Resultant temperature measurements by infrared
imaging, (c) Sampled temperature values at uniform sensor locations (sensor sizes have
been magnified for visibility), and (d) Reconstructed thermal maps using measurements
of 36 sensors.
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Figure 5.18: Thermal reconstruction error vs. number of thermal sensors.

We define the average reconstruction error as the mean of the absolute error between

the full characterization results as computed by the k-LSE method and the true thermal

map as given by the thermal camera. Figure 5.18 shows the average reconstruction error

of all 12 cases as the number of thermal sensors increases. We observe that the reconstruc-

tion error drastically decreases as the number of sensors goes from 1 to 16. For number

of thermal sensors of 16, the reconstruction error is less than 8%. In modern multicore

processor with many cores, increasing number of thermal sensors are becoming available,

which can be used for the full thermal characterization purposes.

We define the power mapping error as follows,

Error =

∑
k |pk − Pcorrectk|∑

k Pcorrectk
(5.21)

where Pcorrect is the golden power map and pk is the value of the kth element in the

vector p. We estimate power mapping error for all 12 patterns. Figure 5.19 shows the
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Figure 5.19: Average power mapping error (%) for 12 patterns.

average percentage error for 12 patterns. The reason for very high error is that the spa-

tial frequency of the power patterns are intentionally created very high, which creates a

twofold effect on the power mapping error. The k-LSE reconstruction method picks the

locations of the non-zero coefficients from the low-frequency range as discussed in Sec-

tion 5.3.3. The number of coefficients picked has to be less than the number of thermal

sensors to make sure that the solution is stable. So, more higher frequencies are omitted

from the thermal maps, which makes it difficult to reconstruct the thermal maps with high

frequency. The error in the thermal reconstruction is propagated to the power mapping

error. In addition to that, as discussed earlier in Chapter 3, the nature of heat conduction

on chips leads to a low-pass filtering effect, which makes the thermal to power inversion

harder, which in turn increases the power mapping error.

We assess the accuracy of our proposed power mapping methodology as a function

of the spatial frequency of power maps. To assess the effect of the low-pass filtering, we

created checker-board power maps of increasing spatial frequencies. Figure 5.20.a shows

the golden spatial power maps of the checker-board patterns, Figure 5.20.b shows their

infrared thermal maps, Figure 5.20.c shows the sampled temperature measurements at 36
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Figure 5.20: Reconstructed thermal maps of power maps with increasing spatial fre-
quency. (a) Injected power patterns, (b) Resultant temperature measurements by infrared
imaging, (c) Sampled temperature values at uniform sensor locations (sensor sizes have
been magnified for visibility), and (d) Reconstructed thermal maps using values from 36
sensors.

uniform thermal sensor locations, and Figure 5.20.d shows the reconstructed thermal maps

using our k-LSE full thermal characterization methods. We can see the trend of increasing

spatial frequency in the power patterns, where the fourth pattern has the highest frequency.

To quantify the signal energy for each power pattern shown in Figure 5.20, we first

perform 2-D Fast Fourier Transform of the power patterns. Then we compute the energy

in coefficients with frequencies≥7 for each golden power map, and divide the result by the

total energy to get corresponding signal energy for all four patterns. In Figure 5.21, we plot
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Figure 5.21: Power mapping error vs. spatial frequency of checker patterns.

the power mapping accuracy of each thermal map from Figure 5.20.d against the computed

signal energy. This result confirms our earlier results in Chapter 3 that concluded that

increasing the spatial frequencies of power maps can lead to a deterioration in the accuracy

of thermal to power inversion. In this case, increasing the spatial frequency, leads to more

low pass filtering effect and loss of information. It is more difficult to reconstruct thermal

maps using sparse thermal sensor measurements as the spatial frequency of the thermal

maps increases. As a result, our proposed power mapping accuracy confirms this trend.

c. Real Processor Power Mapping results

For implementing the post-silicon power mapping with reconstructed thermal map for real

processor, we use AMD quad-core processor as in Section 5.2.2. We do thermal recon-

struction using our full thermal characterization methods for the ten different workloads

from Table 5.2. Figure 5.22 shows four of the ten cases using 36 sensor measurements for

thermal reconstruction. Figure 5.22.a shows the infrared thermal map, and 5.22.b shows

the reconstructed thermal maps. The thermal maps are fairly accurately reconstructed.
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Figure 5.22: a) Infrared thermal maps and b) Reconstructed thermal maps using 36 sen-
sors; the black dots represent the sensor locations, sizes of sensors have been magnified
compare to the chip size for visibility.

The average thermal reconstruction error over ten different workload cases are shown in

Figure 5.23.
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Figure 5.23: Average thermal reconstruction error over ten cases vs. number of thermal
sensors.

126



We perform thermal to power inversion for the reconstructed thermal maps using for-

mulation of Equation 5.17 with corresponding total power constraints. We compute the

error in the power map using Equation 5.21, where p is the power map estimated using

reconstructed thermal maps and the Pcorrect is the power map estimated using infrared

based thermal maps in Section 5.2.2. That is, the estimated power maps with block pow-

ers in Section 5.2.2 are considered as the golden patterns for this experiment. Figure 5.24

shows the average error over the ten cases with respect to number of thermal sensor mea-

surements used for the reconstruction. The average error of power mapping for the real

processor as shown in Figure 5.24 is much less than the manually created power patterns

in the FPGA as shown in Figure 5.19. This is because the spatial frequency is less in the

real processor power maps which improves the power mapping results. This shows that

in a practical scenario our thermal sensor based power mapping will maintain reasonable

accuracy compare to the infrared based power mapping.
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Figure 5.24: Average power mapping error for ten cases using AMD quad-core processor.

127



5.3.6 Conclusions

We presented a new methodology for thermal monitoring techniques for real processors

and proposed runtime full thermal characterization techniques. We proposed frequency

domain representations based on the DCT basis which achieves better results than the tra-

ditional FFT basis. We characterized the DCT representations of spatial thermal signals

of a real processor, and utilized this characterization to devise a number of effective full

thermal estimation methods such as k-LSE, CS-L1 MIN, and the CS-STOMP, which are

designed for fine-grain thermal management techniques. Furthermore, we utilized the re-

constructed full thermal maps for our proposed post-silicon power characterization, which

gives an alternative to infrared imaging techniques. Using a sophisticated experimental

setup with a state-of-the-art thermal infrared camera, we demonstrated the superiority of

our techniques using a real 45-nm dual-core processor, a FPGA test chip with several

artificially created power patterns and a multi-core processor with real applications.
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5.4 Hardware Trojan Detection using Post-silicon Power

Maps

5.4.1 Introduction

Globalization of the semiconductor design and fabrication process due to the ever-increasing

cost of manufacturing in small-scale CMOS technology has caused imminent threat to the

security of integrated circuits. Besides foundry practices, modern IC design often use

intellectual properties (IP) cores and electronic design automation (EDA) software tools,

which are supplied by third party vendors. While the practice saves cost by utilizing the

economy of scale, involvement of third-party entities exposes the chips by authentic de-

signers to threats including hardware malware (Trojan) insertion, unlicensed IP handling,

and IP piracy [96, 23, 97]. Since ICs form the core for the computing and communica-

tion systems used in contemporary personal, commercial, and government affairs, their

exposure endangers the full systems built upon them. Therefore, developing non-invasive

methods for screening and interrogating ICs for maintaining integrity in presence of unre-

liable third-party fabrication has become essential.

We devise a novel methodology for Trojan detection using the post-silicon spatial

thermal and power characterization framework proposed in Chapter 3 and 4. Chips can be

thermally characterized using infrared emissions from the backside of silicon die, which

then can be processed to get detailed spatial power maps [17, 33, 59]. These detailed

thermal and power maps provide a much higher resolution Trojan detection method than

previous methods where the total current is measured and converted to gate-level. This

detection procedure is easily scalable because the chip’s spatial view in thermal mapping is

not limited by the size of the chip and is only dependent on the thermal mapping resolution.
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The major contributions of this work can be summarized as follows.

• We propose a new direction for Hardware Trojan Detection using spatial thermal

maps and inverted power maps described in Chapters 3 and 4 to detect and locate IC

Trojans. Our detection framework involves acquiring post-silicon runtime thermal

maps and applying residual inversion methods with l1 regularization to obtain sparse

spatial power maps which results in high sensitivity Trojan detection.

• We employ two-dimensional principal component analysis (2DPCA) in order to

tackle high dimensional thermal and power maps. Utilizing the 2DPCA frame-

work, we present two different approaches to Trojan detection, first is the supervised

thresholding method which needs training data set, and the second is the unsuper-

vised clustering method, which does not require any training data set.

• To create realistic chips, we add 20-40% process variations (PV) to gate lengths,

widths and oxide thickness which can hide Trojans. To cover a wide range of vari-

ations, in our experiment we set five different PV levels with different standard

variances which are obtained from realistic spatial variability models. We also add

Gaussian noise to our thermal maps to mimic real noise in infrared measurements.

• We design virtual Trojans with power consumption varying from 0.05% to 0.2% of

total IC power consumption. To evaluate the accuracy of our Trojan localization

method, we place the virtual Trojans in ten different locations in the chip.

• We present an extensive set of simulation results with four different benchmarks

with realistic chips and very small Trojan sizes. We show that our proposed methods

are able to detect and locate Trojans with power consumption as small as 29.6 µW

very efficiently and accurately. We also evaluate the impact of thermal noise and

chip voltage on the Trojan detection accuracy.
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The organization of this section is as follows. Section 5.4.2 provides the necessary

background on Trojan detection. In Section 5.4.3 we outline the thermal and power frame-

work for our proposed Trojan detection procedure and in Section 5.4.4 we describe our

2DPCA analysis. Section 5.4.5 describes various Trojan detection methods and Section

5.4.6 describes our localization procedure. In Section 5.4.7 we discuss the impact of noise

in thermal maps and measures to improve detection results. In Section 5.4.8 we present

our experimental setup and present our results to demonstrate the effectiveness of our

approach, and finally, Section 5.4.9 summarizes our main results.

5.4.2 Background on Trojan detection

Hardware Trojans are implemented by unsought chip modifications by traitorously chang-

ing or tampering with the chips to provide opportunities for later exploits including con-

trolling, monitoring, or spying the chip contents or secret keys [96, 97, 106]. Trojans can

be very hard to detect, since they may be often inactive, only triggered as needed in target

time intervals. Due to the increasing complexity of the contemporary chips and lack of

controllability/observability to the chip internals post-silicon, the traditional structural and

functional tests are becoming ineffective in targeting Trojans. Invasive reverse engineer-

ing methods are slow, destructive, and expensive. Thus, devising noninvasive methods for

examining the ICs and detecting Trojans has been recognized as a challenging research

problem.

Reports of instances of malware in military chips have triggered research and inves-

tigations into the Trojan detection problem [23]. The utilized tests for Trojan detection

include current-based methods, using static or dynamic currents [80, 79, 76, 100], delay-

based approaches [43, 51, 67], as well as simultaneous consideration of various current

and delay testing methods [48]. In current-based approaches, both regional testing of cur-
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rent sums [80, 79], and translation of the currents to the gate-level [76, 100, 48] were

pursued. While current-based methods can potentially provide a good characterization on

smaller circuits, the presently available methods either need additional probes to the chip

for regional current measurements [80], or necessitate formation and solving very large

system of equations that are highly sensitive to noise and process variation [76, 100, 48].

Delay-based detection methods have less components on each path and are easier to scale,

but they suffer from the known problem of inadequacy of external test vectors for sensi-

tizing all possible paths.

One of the early work in this area [4] utilized the dynamic current (power) measure-

ments by destructive testing of a few ICs from the design to build signatures. The assump-

tion was that the fingerprint did not contain any malware. The existence of Trojan(s) in

other chips were verified by noninvasively comparing against the signatures formed by

destructive testing. Another path taken early for Trojan detection was to use verification

and functional testing methods. This approach simulates the inputs and then checks the

corresponding outputs for the desired patterns [102, 6]. Functional testing suffers from the

state-space explosion and lack of targeted verification output (since the Trojan behavior is

not known in advance). Therefore, its scope and effectiveness is rather limited.

The typical assumption for current- and delay-based Trojan detection approaches is

that a golden model of the chip can be formed by post-layout simulations. The struc-

tural properties of the manufactured chips under investigation are then compared with

this model. Such detection becomes more challenging for newer technology nodes with

surging random process variation which makes it hard to distinguish Trojan effect. What

further complicates the problem is the large space of possibilities for Trojan exploit type

and location.

An effective set of techniques pursued in this category is gate-level characterization
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[99, 76, 100, 48] which works well with both delay and current measurements. This

method measures the chip’s delay or current for a number of test vectors. Assuming that

the currents (delays) linearly add up, a linear system is then constructed from the measure-

ment set. Solving the system of linear equations translates the side-channel characteristics

to smaller gate-level structural properties. While effective, this suite of techniques does

not perform well for larger chips with more gates, higher accumulated measurement noise,

and more sophisticated process variation models. The existing gate-level characterization

and Trojan detection techniques are evaluated on smaller benchmarks, where the perfor-

mance of the method is the best. Note that, approaches based on regional testing of accu-

mulated current which have a higher resolution only work for certain types of packaging

and measurement probes [80, 79].

To mitigate the above discussed challenges, we propose to use the post-silicon power

mapping framework presented in Chapter 3 to obtain very high resolution thermal and

power maps. Our proposed method utilizes these very high resolution thermal and power

maps in order to detect IC Trojans which results in a very high sensitivity Trojan detection

technique.

5.4.3 Proposed Multimodal Trojan Detection Framework

Hardware Trojan detection is the process of detecting chips that are infected with un-

wanted Trojan circuitry and verifying the trustworthiness of the manufactured chips upon

return to the clients. This new step requires defining a post-manufacturing step to vali-

date the chips conformance with the original specifications, which is called silicon design

authentication. In this work, we propose an entirely new multimodal framework for post-

silicon Trojan detection using the thermal and power maps of the ICs running practical

benchmarks.

133



T1 T2 

, 

…. 

chip2 

…. 

p1 p2 

, 
chip1 

, …. 

Trojan chips 

Authentic chips 

Trojan chips 

Authentic chips 

Design-time 
Power  

Es#mate	
  Residual	
  
Thermal	
  Maps	
  

Thermal-­‐to-­‐Power	
  
Inversion	
  

2DPCA	
  

2DPCA	
  
Trojan	
  Detec#on	
  	
  
Using	
  Power	
  Maps	
  

By	
  Training/Clustering	
  

Trojan	
  Detec#on	
  
Using	
  Thermal	
  Maps	
  	
  

By	
  Training	
  

Figure 5.25: Proposed Trojan detection framework using thermal and power maps.

Figure 5.25 shows the framework of the proposed multimodal Trojan detection meth-

ods using post-silicon thermal and power characterization. The individual test modes

are based on the chip temperature maps and power maps respectively. In the beginning,

workloads or test patterns are applied to the integrated chips and the runtime steady-state

or averaged infrared thermal maps T1,T2, ... are collected under realistic loading condi-

tions. Our purely thermal map based Trojan detection method is able to detect and locate

very small size Trojans. To further increase the Trojan detection resolution, we propose to

invert the thermal maps to accurately estimate detailed spatial power maps, which corre-

sponds to our second mode and can be used to perform power map based Trojan detection.

We propose two Trojan detection techniques involving two-dimensional Principal Com-

ponent Analysis (2DPCA) using the characterized thermal and power maps. Depending

on the the availability of data from prior tests (training data) of chips that known to be be-

nign, either of the two Trojan detection methods can be used on the residual power maps.

The first requires a set of trainings chips to classify the Trojan infected chips and uses
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thresholding techniques. If no chips for training are available, then the second technique

using unsupervised clustering can be applied. Note that we perform unsupervised cluster-

ing only with the inverted power maps, but not with the thermal maps. Because the natural

clusters created by the features of the thermal maps are not properly distinguishable, the

unsupervised clustering method is not effective in case of the thermal map based method.

We describe the details of our proposed framework components in the rest of this section.

a. Thermal Mode

In the proposed procedure, infrared imaging is used to obtain thermal maps of post-silicon

chips for Trojan detection. Modern integrated circuits use flip-chip packaging, where

the die is flipped over and soldered to the package substrate. By removing the package

heat spreader, one can obtain optical access to every device on the die through the sili-

con backside. So, we can obtain optical access to the die under test through the silicon

backside by removing the packages’s heat spreader. Silicon is transparent in the infrared

spectral region and this transparency allows the capturing of thermal infrared emissions

using infrared imaging techniques [59, 17, 84, 33]. An infrared-transparent heat sink, for

example, silicon window based heat sink with mineral oil, has to be used to remove heat

during operation of the IC [82]. The details of infrared imaging are given in Chapters 2

and 3.

For real chips, workloads of steady nature typically takes around tens of seconds to

reach the steady state. The thermal maps need to be captured after the chip temperature

had reached steady state. Some workloads might not have a steady nature, in that case, the

thermal maps can be captured for 30s and averaged over time.

For the purpose of this work, we first apply random vectors to the ICs and get the
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estimated power trace of each block by Primetime-PX. We then use HotSpot [39] thermal

simulation tools to create the steady state thermal maps of various test bench circuits

as described in Section 5.4.8. We denote the steady-state thermal maps obtained using

design-time simulations of the original authentic chip by A1,A2, ... for each benchmark.

We perform Monte-Carlo simulations of the original chip at various PV corners to get

power consumption under various process variation scenarios. By using Hotspot thermal

simulation we produce the thermal maps for chips under test, which is represented by

T1,T2, ... for each benchmark. In a real scenario, these thermal maps can be obtained by

infrared imaging from the backside of the die. It is possible to use the thermal maps for

Trojan detection, but the sensitivity is less than the Trojan detection using power maps. If

power mapping of the thermal maps is not available, these thermal maps can be used for

Trojan detection as described in Section 5.4.4. We use authentic thermal maps A1,A2, ...

as the training set and perform our Trojan detection methods of 2DPCA on the thermal

maps under tests T1,T2, ... for Trojan detection as described in Section 5.4.4.

b. Power Mode

This section describes the power characterization of the chip. The power is obtained by

inverting the thermal maps using quadratic optimization framework. The chip power and

temperature are related by the heat equation, which can be discretized as follows by linear

matrix formulation as described by Equation (3.5) in Chapter 3,

Rp + e = T, (5.22)

where T is the thermal map that gives the measured temperatures at every pixel of the

imaging system. The continuous power signal is represented by a vector p that gives the
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Procedure: Thermal to power inversion method
Input: Design time minimum power pmin, Thermal maps under test T, Thermal
resistance matrix R
Output: Residual power map pr

Find design time minimum thermal map, Tmin = Rpmin;

Find residual thermal map, Tr = T− Tmin;

Solve quadratic programming: min ‖Rpr −Tr‖2 + ‖pr‖1, such that pr ≥ 0.

Return solution of the quadratic programming pr

Figure 5.26: Thermal to power inversion methodology.

power density at a set of discrete die locations and the vector e denotes measurement

noise in the infrared imaging system. The matrix R represents the thermal resistivities

between different locations and is called the modeling matrix. The formulation of the

matrix R is given in detail in the following works [17, 84]. For each specific chip, the

matrix R can be estimated either by analytical methods, by simulation or experimentally

on the real chip. We create matrix R by HotSpot simulation, by dividing the chip into

10 × 10 blocks, and exciting each block at a time. Thermal map corresponding to one

excited block represents one column in the matrix R, this way we estimate matrix R for

each chip column by column basis. The lower bound of the block size is limited by the

precision of infrared camera. The minimum resolution of a midwave infrared camera

is 5 µm. Detection accuracy increases as the block size decreases. There is a trade-off

between the size of the blocks and computation time because as the block size decreases,

the number of blocks increases, and Hotspot simulation time increases. Here we make a

trade-off between the resolution and accuracy based on our experiments.

Given the thermal map vector T and matrix R, the objective is to find the best power

map vector p that minimizes the total squared error between the temperatures as computed
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from the estimated power p and the thermal measurements. For our case, we first subtract

the thermal maps Tmin corresponding to minimum estimated design time power pmin,

from the thermal maps T of chips under test, where Tmin = Rpmin, and then invert the

residual thermal maps, Tr to get the residual power estimates pr. We want the estimates

to be of the shape that only the blocks affected by Trojan have non-zero values while all

other blocks remain zeros, which naturally leads us to finding sparse solution. Therefore,

we add a regularization term in our quadratic programming to minimize the `1 norm of

the power map, that is to minimize ||pr||1. The thermal to power inversion methodology

is summarized in the algorithm given in Figure 5.26. We apply our detection technique

described in the following sections on the residual power maps.

We show an example of a thermal and power maps running workloads in Advanced

Encryption Standard (AES) cipher chip with 40% process variation and 59.3 µW Trojan

in Figure 5.27, which are used for Trojan detection. Figure 5.27(a) shows thermal map

generated by HotSpot, Figure 5.27(b) shows the residual thermal map after subtracting the

design-time minimum thermal map. We divide the chip into 10x10 blocks and estimate

the residual spatial power maps using optimization formulation. The chip dimension is

163 × 163 µm2 and each block size is 265.7 µm2. Figure 5.27(c) shows residual power

map estimated with previous thermal to power inversion method [37] and 5.27(d) shows
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regularization, and d) Residual power map with `1 regularization.
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the estimated residual power map using the proposed optimization formulation with `1

regularization. The Trojan location is shown in both the power maps. We can see that

the power map become more sparse after using `1 regularization, which makes it easier to

detect and locate the Trojan.

5.4.4 Two-dimensional Principal Component Analysis

Principal Component Analysis (PCA) is a classical feature extraction and data representa-

tion technique widely used in the areas of pattern recognition and computer vision. PCA

is mathematically defined as an orthogonal linear transformation that translates the data

to a new coordinate system such that the greatest variance by any projection of the data

comes to lie on the first coordinate (called the first principal component), the second great-

est variance on the second coordinate, and so on. Two-dimensional principal component

analysis (2DPCA) developed by J. Yang is an image projection technique that makes use

of the spatial correlation information to achieve better performance than conventional one-

dimensional PCA [104]. The basic idea of 2DPCA is to project image A, anm×n random

matrix, onto a projection vector x by the following linear transformation:

y = Ax (5.23)

The discriminatory power of x is evaluated by the total scatter of the projected samples

where the following criterion is adopted:

J(x) = tr(Sx) (5.24)
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Sx is the covariance matrix of the projected feature vectors of the training samples and

tr(Sx) is the trace of Sx. The covariance matrix Sx is given by the following equation:

Sx = E[(y − Ey)(y − Ey)T ]

= E[((A− EA)x)((A− EA)x)T ]

(5.25)

So,

tr(Sx) = xTE[(A− E(A))T (A− E(A))]x = xTGtx (5.26)

where Gt is the image covariance (scatter) matrix. Suppose there are totally M image

samples for training, then

Gt =
1

M

M∑
j=1

(Aj − Ā)
T

(Aj − Ā) (5.27)

The optimal projection axes, xopt,1,xopt,2, ...,xopt,d, are the eigenvectors of Gt correspond-

ing to the largest d eigenvalues.

Feature Extraction and Identification: In our experiment, for purely thermal based de-

tection, 1000 thermal maps, A1,A2, ...,A1000, of authentic chips are used to evaluate the

optimal projection axes xopt,1,xopt,2, ...,xopt,d. Then the extracted thermal feature matrix

B is defined by

B = [Āxopt,1, Āxopt,1, ..., Āxopt,d] (5.28)

For a given set of testing ICs, a feature matrix Bi is obtained for each IC after the transfor-
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mation by 2DPCA. For power based detection method, instead of using authentic thermal

maps to build the feature matrix, the inverted power maps from authentic chips are used.

5.4.5 Trojan Detection Methods

We use the obtained feature matrix B, by the 2DPCA analysis for our Trojan Detection

in two different ways. First, if trusted data from known chips are available for training,

a supervised thresholding method is used. Second, if no prior known data are available

for training, an unsupervised clustering technique is applied. Both the techniques are

described in following section.

a. Supervised Thresholding method

The distance between the testing feature matrix Bi and the authentic feature matrix B is

calculated by,

d(B,Bi) = ‖Bi −B‖2 (5.29)

where ‖Bi −B‖2 is the Euclidean distance between Bi and B. If the distance is larger

than a certain threshold, the testing IC is identified as Trojan inserted. The threshold is

related to false positive rates and obtained by applying the method to a set of authentic

chips. For example, if we have 1000 authentic chips as training sets whose distances to

golden chip are d1, . . . , d1000, and we want to make the false positive rate within 1%, then

the estimate of threshold is the value dividing {d1, . . . , d1000} into two sets, one has more

than 990 chips and the other has less than 10 chips. The supervised thresholding method

is applied to both thermal based Trojan detection and power based Trojan detection 2.

2The supervised thresholding method is formulated by the co-author Kangqiao Hu.
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b. Unsupervised Clustering Method

Clustering is the most important unsupervised learning problem; it finds a natural grouping

in a collection of unlabeled data and organizes objects into groups whose members are

similar in some way [24]. As described in Section 5.4.3, we construct the residual power

maps of the chips under test from the thermal maps. These detailed power maps with

residual powers for each block have spatial groupings which can be used to distinguish

chips under two different clusters, with and without Trojan. Since it is unsupervised, it

means there is no learning step, and the algorithm does not need any prior knowledge,

other than inputs which are the detailed power maps. This approach is suitable when we

do not have a set of training chips in hand.

Appropriate Feature Selection: For clustering, it is very critical to choose an appropri-

ate feature to be used for the partitioning. It influences the shape of the clusters as some

elements may be close to one another according to one feature metric and farther away

according to another. We have explored possible metrics to be used as a means for cluster-

ing our chips into two clusters of authentic chips and Trojan injected chips. We have the

detailed residual power maps with m× n blocks of the chips under test, which we use for

Trojan detection. To get a high resolution, we divide the chip layout into numerous blocks,

which results in a high dimensional data set. One approach to cope with the problem of

excessive dimensionality is to reduce the dimensionality by combining features. Some of

the metrics or features that we have explored for clustering are maximum block power,

variance among the block power, and spatial gradients among the block powers. The rea-

son to use these features to distinguish between authentic and Trojan chips is that if there

is a Trojan in the chip, then the maximum block power and variance among the block

powers increases. Likewise, spatial gradients in the power maps also increase, which can

help in detecting the Trojans. Another useful approach to tackle high dimensional data
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is to perform principal component analysis. We have explored the principal components

derived by the 2DPCA analysis earlier and used the norm of the feature vectors found in

the feature matrix, which yields the most accurate Trojan detection rate.

In Figure 5.28 we plot the spatial gradients of the power maps in vertical and horizontal

direction for process variation of 20% and 40%. We can see that natural clustering patterns

are prevalent in the power maps, and gradients is a suitable feature to distinguish between

the authentic chips and Trojan chips when process variation is 20%. We can observe

that as the process variation increases, the two clusters start to overlap, as a result some

of the chips become unidentifiable which makes Trojan detection harder. This problem,
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Figure 5.28: a) Gradients of power maps with PV 20%, b) Gradients of power maps with
PV 40%, c) 1st and 2nd component of feature matrix with PV 20%, and d) 1st and 2nd
component of feature matrix with PV 40%.
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Figure 5.29: Unsupervised clustering flow.

which arises from the process variation, can be overcome by using 2DPCA. Using the

norm of the feature vectors found in the feature matrix B in Section 5.4.4, we observe

that even with 40% process variation, two clusters are properly distinguishable. We have

used one trojan per chip and at one location for the purpose of this experiment. In case

where there are more than one trojan, and different trojan locations, the clusters will be

more distinguishable because there would be more variations in the feature matrices. As

a result, detection rate will be higher. We use the norm of the feature matrix obtained

by doing 2DPCA on the residual power maps for our clustering feature. Our clustering

process is shown step-by-step in Figure 5.29. We propose to use spatial density based

clustering DBSCAN method to distinguish chips infected with hardware Trojans.

Density-based spatial clustering: (DBSCAN) is a data clustering algorithm proposed

by Ester et al. [26]. It is a density-based clustering algorithm because it finds a number

of clusters starting from the estimated density distribution of corresponding nodes. The

advantage of DBSCAN is that unlike other popular clustering algorithms, such as k-means
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clustering, the accuracy of the clustering is not effected by the shape of the clusters. The

spatial distribution of the clusters from authentic and Trojan chips can have any arbitrary

shape making DBSCAN suitable for our case.

DBSCAN requires two parameters: eps and the minimum number of points required to

form a cluster minPts. The eps is estimated from the data set, which is the geometric mean

of the data. The ε-neighborhood is defined as the region that is covered with the given eps.

The minPts is the minimum number of members that a cluster can have. It starts with an

Procedure: DBSCAN based Trojan Detection
Input: Infrared-based residual power estimates for each block for chips under test, Pr

as m× nx × ny matrix, where m is the number of chips and (nx × ny) is the number
of blocks
Output: Return Trojan infected chips

Perform 2DPCA on Pr to get feature matrix B, which is m× nx × ny matrix

For i = 1, 2...m:

a. Find `2 norm of Bi, Pm(i) = ||Bi||2;

Estimate ε and minPts from Pm

Mark all points in Pm as unvisited

For each unvisited point p:

a. Mark p as visited;

b. Find ε-points, all neighbourhood points;

c. if ε-points < minPts: mark p as outlier;

d. else if p already in a cluster, add ε-points to the cluster;

e. elseif p not already in a cluster, start a new cluster and add ε-points to the
cluster;

Return the outliers as Trojan chip

Figure 5.30: Unsupervised DBSCAN clustering for Trojan detection.
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arbitrary starting point that has not been visited. This point’s ε-neighborhood is retrieved,

and if it contains sufficiently many points, a cluster is started. Otherwise, the point is

labeled as noise. If a point is found to be a dense part of a cluster, its ε-neighborhood is

also part of that cluster. Hence, all points that are found within the ε-neighborhood are

added, as is their own ε-neighborhood when they are also dense. This process continues

until the density-connected cluster is completely found. Then, a new unvisited point is

retrieved and processed, leading to the discovery of a further cluster or noise. DBSCAN

algorithm for clustering is a well-known method, and there are various implements of the

algorithm. We follow the DBSCAN routine formulated by Daszykowski et al. [20]. Our

Trojan detection procedure is described in Figure 5.30.

5.4.6 Trojan Localization

The inherent low-pass filter of heat conduction function makes it hard to accurately locate

the Trojan, since most of the high frequency components are lost in the thermal maps [17].

With the detailed spatial power characterization technique these frequency components are

well recovered in the power maps. We use the estimated residual power maps to locate the

Trojans in the chip by finding the maximum power location in the Trojan detected chips:

arg max
i,j

pr(i,j) (5.30)

where pr is the estimated residential power map and (i, j) is the grid position index. For

more generalized cases, such as ICs with multi-Trojan, we detect local maxima points as

the possible positions of the Trojans.
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5.4.7 Impact of Thermal Imaging Noise on Trojan Detection

In this section, we discuss various noise sources that are present in the thermal imaging

system and how it effects our proposed Trojan Detection methods. We describe methods

to mitigate the effect of noise to improve Trojan detection results.

The main sources of noise in the infrared imaging system as discussed in Chapter 4

are: (1) thermal noise, (2) digitization noise, (3) dark noise, and (4) flicker noise [36].

Thermal noise is caused by agitation of charge carriers and is present in all electronic

devices. The analog-to-digital converter in the infrared camera causes the digitization

noise. Dark noise is due to the random generation of electron-hole pairs in the quantum

detectors which is usually present in photosensitive devices. Flicker noise is related to the

trapping and detrapping fluctuations of charge carries at the transistor interfaces. The first

three noise sources fall under the category of frequency-independent white noise which is

the major source of noise in thermal imaging [10]. The presence of noise in the thermal

images can deteriorate the Trojan detection by hiding Trojans or by creating false alarms.

We mainly focus on mitigating the effect of white noise in the thermal images in this work.

By using a larger integration time, the effect of white noise can be reduced dramati-

cally. Integration time is defined as the time for which the thermal images for one single

test are collected and averaged. As described in Section 5.4.3, the thermal maps in vector

form is denoted by t. Let Ti(s) denote the temperature of pixel i at time s as recorded by

the thermal imaging system, and let Ip denote the integration period of the measurements.

Then the temperature magnitude, Ti, of pixel i is given by

Ti =
1

Ip

∫ Ip

0

Ti(s)ds (5.31)

147



If there is no noise in the measurements, then we expect Ti to exhibit no stochastic behav-

ior. However, noise in the measurements lead to a stochastic process where Ti is a random

variable. Since white noise has a Gaussian distribution, by increasing the integration time

the standard deviation of the thermal signal which is responsible for the amplitude of noise

can be reduced. From the central limit theorem, we know that the standard deviation of

the average of a number of samples of random variable has 1√
sn

dependency on the num-

ber of samples, sn. Thus, by increasing the integration time, we can reduce white noise

proportionally to the square root of integration time [10].

5.4.8 Experimental Setup and Results

To test our proposed Trojan detection methods, we provide sophisticated simulation re-

sults which mimic a realistic experiment setup with process variation and then test four

different benchmarks. We vary Trojan sizes and locations across the chips3. We provide

the experimental results of two approaches. First, the thermal map based method which

is more efficient in terms of computation time but less accurate; this does not require the

thermal to power inversion procedure which increases detection time. Second, the detailed

spatial power based method is used which is very accurate and can detect and locate very

small Trojan; this requires the residual thermal to power inversion with l1 regularization

procedure.

3The addition of process variation, using four benchmarks for creating thermal maps, Trojan design and
insertion to chip layout was done by the co-author Kangqiao Hu.
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a. Experimental Setup

Process Variation: To characterize real-world ICs accurately, we add 20− 40% Process

Variation (PV) to the gates’ parameters. We use multi-level quad-tree approach to model

the spatial within-die PV [3]. Higher levels of the quad-tree structure reflect the spatial

correlations in larger scale while lower levels reflect the spatial correlations in smaller

scale [3]. The effect of PV on dynamic power is neglected in our experiment since it is

insignificant compared to the effect of PV on leakage power. Since Isub is the dominant

component of leakage power, we assume that the leakage current is equal to sub-threshold

current. We add PV to gates’ length, gates’ width and gates’ oxide thickness as [94]. In

our experiment we set 5 different PV levels with variation of 20%, 25%, 30%, 35% and

40%, which introduces ±0.5% to ±3% variation to total power consumption.

IC Benchmarks: Four benchmarks from Opencores that are developed with Hardware

Description Language (HDL) are used in our analysis: 1) 128-bit Advanced Encryption

Standard (AES) cipher, 2) 32-bit MIPS Processor (MIPS), 3) Reed-Solomon (RS) Decoder

and 4) Joint Photographic Experts Group (JPEG). Table 5.3 gives the basic information

of benchmarks including number of gates, core size and total power consumption with

standard voltage 1.1V at 1 GHz. We used Design Compiler synthesis tool from Synopsys

to map the benchmarks to Nangate 45nm library and used Primetime-PX from Synopsys

to estimate the average power consumption during a certain period with random vectors.

We used Cadence SoC Encounter RTL compiler for floor planning, placing and routing,

and Hotspot [39] for IC temperature simulation.

Trojan Design and Insertion: We have designed Trojans modules with power consump-

tion varying from 0.05% to 0.2% total IC power consumption. Our Trojans do not have

any specific functional modules but certain power consumption triggered by the test pat-

terns that are used to evaluate the minimum size of Trojan that can be detected. Despite
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Test bench No. of Gates Core Size (µm2) Nominal Power (W )

AES 10610 163× 163 0.0732

MIPS 8661 195× 195 0.0494

RS Decoder 23224 394× 394 0.12

JPEG Encoder 269970 1094× 1094 1.4675

Table 5.3: Test benches

the Trojan type, sequential or combinational, the power consumption ratio of the Trojan

circuit and the IC is the only factor that impact our detection results. The Trojan circuits

are implemented using the same standard cells as the ICs with a constant core utilization

of approximate 70%. We divide the IC area into 10 × 10 blocks and insert one Trojan

per chip into the blank space within these blocks. The impact of core utilization will be

studied in the future work. For each benchmark at different PV levels, 10000 chips with

one Trojan per chip of different sizes inserted in different locations are generated. With

different PV levels, different Trojan sizes, different Trojan locations 100,000 chips of each

benchmark are generated for testing.

b. Results

We conduct and report the results of five experiments.

1. In the first experiment, we perform our supervised thresholding Trojan detection

technique on high resolution thermal maps, and report results for four different

benchmarks. We also analyze the effect of false positive rate on Trojan detection

rate.

2. In the second experiment, we present results of two different Trojan detection meth-

ods using residual power maps. We assess our detection results with four different
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benchmarks and five different process variations.

3. We create Trojan infected chips with ten different Trojan locations. We compare our

Trojan localization method under various benchmarks and process variation.

4. The fourth experiment evaluates the effect of thermal noise in an infrared imaging

system on the detection results. We use different integration times and compare the

accuracy of the Trojan detection.

5. In the fifth experiment, we increase the voltage of the chip from 1.1V to 1.2V, and

assess the effect of increasing voltage on the Trojan detection results.

Experiment 1. In the first experiment we perform Trojan detection on high-resolution

thermal maps. Based on the method proposed in Section 5.4.4, we first calculate the

optimal projection vectors for each benchmark. All the thermal maps are simulated by

HotSpot in 2n × 2n grids. n depends on the die size and the resolution of infrared camera,

5× 5µm2. Thus, the thermal resolution of MIPS and AES is 32× 32 grids, RS Decoder is

64×64 grids and JPEG is 128×128 grids. The thermal maps with resolution 2n×2n have

2n eigenvectors in total. The number of eigenvectors that are used for feature extraction is

determined by the magnitude of corresponding eigenvalues. Here we use benchmark AES

as an example. We select eigenvectors corresponding to the first 10 largest eigenvalues as

the optimal projection axes. Then the average thermal map of 1000 authentic chips are

Figure 5.31: Golden feature matrix extraction.
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used to extract the golden feature matrix B as shown in Figure 5.31. For each chip under

test, the distance of its feature matrix and the golden feature matrix is computed.

As we mention in Section 5.4.4, the testing IC instance is identified as an authentic

chip or a Trojan infected chip by a certain threshold that is associated with detecting false

positives. Based on the distance histogram, we apply a kernel function to estimate the

empirical probability distribution function (pdf) f(d) for the authentic instances, where

d denotes the distance from the golden feature matrix. Therefore, for a certain threshold

dth, the false positive is α = 1 − F (dth). By this, we fix the false positive to a certain

value and observe how the false negative changes. Figure 5.32 shows that as the false

positive increases, the detection rate increases while the false negative decreases. The

controllability of the threshold helps us to easily adjust the algorithm to trade off false

alarm and detection rate according to different detection requirements.

Detection Results under Different PV Level: The impact of PV is the most important

factor that affects the performance of Trojan detection methods. Table 5.4 shows that with

the fixed false positive rate, as the magnitude of PV increases, the detection rate decreases.

Figure 5.32: With fixed PV (0.2) and nominal voltage value (1.1V), the detection rate of
AES under different false positive.
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Detection Rate %
Benchmark Trojan Size (uW)\PV(%) 20 25 30 35 40

39.50 80.0 2.0 2.2 2.7 3.0
59.30 26.5 19.1 15.4 16.3 11.4

AES 79.00 86.5 67.2 54.4 43.5 31.2
98.80 99.7 96.7 89.9 77.6 64.9
119.00 100.0 100.0 100.0 96.5 90.8
58.60 32.0 19.7 11.7 8.0 5.6
87.80 60.6 39.0 23.3 16.5 10.8

MIPS 117.00 81.8 62.6 40.1 26.0 17.7
146.00 91.1 77.8 58.2 39.4 27.6
176.00 92.4 88.5 73.7 55.9 39.3
96.80 5.4 5.0 2.7 2.3 2.3
145.00 9.8 7.5 4.3 4.8 3.7

RS Decoder 194.00 21.2 13.4 9.1 7.3 4.8
242.00 36.2 22.2 12.5 9.3 6.1
290.00 57.0 38.1 20.9 12.8 10.1
43.90 3.2 3.1 2.0 2.0 1.5
176.00 8.0 7.8 7.5 8.0 3.3

JPEG 307.00 15.0 13.0 11.1 10.5 4.5
439.00 25.8 21.2 20.6 15.5 10.3
571.00 50.1 45.6 30.5 18.5 11.1

Table 5.4: Trojan detection rate using thermal maps

The detection rate decreases in the following order: AES, MIPS, RS Decoder, JPEG. The

main difference among these three benchmarks are the total power and the core size. If

we define power density, as ρ =
P

Score
, where P is total power and Score is the size

of the core, we notice that ρ decreases in the same order as performance, which means

ρAES > ρMIPS > ρRS > ρJPEG. The chip with higher power density will generate more

heat during the same period. Thus, a larger temperature gradient is formed, which makes

the region with Trojan more prominent.

Experiment 2. In this experiment, we apply our supervised thresholding and unsuper-

vised clustering techniques proposed in Section 5.4.5 on detailed residual power maps.

These high resolution power maps results in a very high sensitive Trojan detection. Over-

all, the power mapping approach has a much higher sensitivity than the thermal mapping

approach. The main reason for the dramatic improvement from thermal mapping to power
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mapping is the proper recovery of the high frequency components of the power map. We

plot detection rates for four benchmarks with tens of Trojan sizes and under five differ-

ent process variations in Figure 5.33. We define detection rate and false positive rate as

follows,

DetectionRate = NTD/NT (5.32)

FalsePositiveRate = NFD/NF (5.33)

where NTD is the total number of detected Trojan chips, NT is the total number of Trojan

chips, NFD is the number of authentic chips that is detected as Trojan and NF is number

of authentic chips.

We present detection results from our two different approaches, the supervised thresh-

olding in Figure 5.33a and unsupervised clustering method in Figure 5.33b. We observe

that the supervised thresholding has a higher detection rate than the unsupervised method,
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Figure 5.33: Detection rates for four benchmarks using power maps (1.1V), under dif-
ferent process variation level, a) Supervised thresholding technique and b) Unsupervised
clustering technique.
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Detection Method Supervised Thresholding Unsupervised Clustering
Detection Rate % Detection Rate % False Positive Rate %

Benchmark Trojan Size(uW)\PV(%) 20 25 30 35 40 20 25 30 35 40 20 25 30 35 40
29.6 85 81 71 59 53 89 72 68 43 44 5 11 12 6 8
39.5 98 93 86 80 66 99 83 61 61 54 5 10 4 6 7
49.4 98 99 97 91 81 99 82 79 63 63 5 6 8 4 6
59.3 100 100 99 99 97 100 94 87 76 84 5 4 5 4 5
69.2 100 100 100 100 99 100 97 97 91 88 5 1 4 4 5

AES 79.0 100 100 100 100 100 100 98 100 95 96 5 1 4 2 5
88.9 100 100 100 100 100 100 99 100 100 99 5 1 4 3 5
98.8 100 100 100 100 100 100 100 100 100 100 5 1 4 3 5

109.0 100 100 100 100 100 100 100 100 100 100 5 1 2 3 4
119.0 100 100 100 100 100 100 100 100 100 100 5 1 2 3 4
43.9 69 51 44 33 33 61 28 33 22 23 6 3 5 4 4
58.6 85 65 51 49 49 78 42 38 35 31 6 3 4 5 4
73.2 90 81 67 62 50 78 62 53 50 43 5 3 4 5 4
87.8 96 90 76 72 77 89 74 64 55 63 5 2 4 4 4

102.0 100 93 84 84 84 95 83 82 76 73 4 2 4 3 4
MIPS 117.0 100 99 93 90 80 100 93 87 85 72 5 3 4 3 3

132.0 100 97 98 93 94 100 94 96 88 86 4 2 3 3 4
146.0 100 100 97 98 94 100 99 97 94 89 4 2 3 3 4
161.0 100 100 100 98 100 100 99 98 96 99 4 2 3 3 4
176.0 100 100 100 99 100 100 100 100 99 99 4 2 3 3 4
72.6 59 48 41 43 35 44 37 39 39 29 3 4 6 8 7
96.8 70 66 57 53 47 60 53 48 41 40 3 4 4 6 7

121.0 81 78 70 57 58 73 69 56 58 44 2 4 3 7 5
145.0 91 91 80 71 74 89 80 69 57 64 3 3 3 4 5
169.0 91 86 82 82 81 82 79 76 75 73 2 3 3 3 3

RS Decoder 194.0 98 97 88 86 76 94 92 83 78 69 1 2 3 4 4
218.0 95 94 94 85 84 93 89 89 83 76 1 0 2 2 3
242.0 100 100 94 94 82 100 99 92 88 79 1 0 2 2 3
266.0 98 98 98 93 97 97 95 95 91 93 1 0 2 2 3
290.0 100 100 97 97 98 100 99 97 96 92 1 0 1 2 2
43.9 20 10 11 11 8 19 14 10 13 10 9 13 8 11 11

176.0 49 38 23 18 16 35 23 17 17 20 4 8 7 11 11
JPEG 307.0 62 54 48 43 39 54 47 43 40 36 5 5 8 11 11

439.0 70 67 69 48 45 63 49 63 43 39 3 3 6 7 7
571.0 85 81 74 70 66 78 70 67 63 59 3 3 4 6 6

Table 5.5: Trojan detection results using power maps

which is expected. The advantage of the unsupervised is that we do not require any prior

data set for the training purpose. One can observe the trend that detection rate increases

as the Trojan sizes increase, and decreases with process variation as expected. From the

table, we see that we are able to detect Trojan as small as 29.6 µW. The detection rate

for each benchmark follows the same order as we have seen in the thermal map results in

Experiment 1. The detection rate performance follows the same order as the power density

of the chip, detection rate of AES > MIPS > RS DEC > JPEG.

For the supervised thresholding, we are able to fix the false positive rate to 1%. Since

the second method is unsupervised, there is no way to fix the false positive rate in that

case. We add the corresponding false positive rate for the clustering method in Table 5.5

for comparison purposes. The false positive rate increases as the Trojan size decreases. For
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smaller Trojan sizes, we also see that false positive rate increases as the process variation

goes up. Table 5.5 lists all the experimental results with residual power mapping.

Experiment 3. In this experiment, we present results of our Trojan localization method

under various benchmarks and process variations. The sparsification process makes it very

easy to localize the Trojan. Once a chip is identified as an infected chip, we simply use the

estimated residual power map to locate the Trojan by finding the maximum power location.

We compute the Euclidean distance of the estimated location and the real location. By

normalizing the distance to the chip core dimension we get the normalized localization

error. Figure 5.34 shows the normalized localization error for four different benchmarks,

AES, MIPS, RS Decoder and JPEG with five different process variations and five different
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Figure 5.34: Normalized localization error with five different PVs and four benchmarks,
a) AES, b) MIPS, c) RS Decoder and d) JPEG.
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Trojan sizes. We can see the Trojan localization error increases with increasing process

variation. Also, as the Trojan size decreases, it becomes more difficult to localize Trojan

under the same process variation.

Experiment 4. In this experiment, we add white Gaussian noise to our thermal maps to

mimic a real infrared imaging system which has standard deviation of 10mK. We select

benchmark MIPS with process variation of 30% for this experiment. We add Gaussian

noise to all our thermal maps, and then change our integration times. As discussed in Sec-

tion 5.4.7, the white noise in infrared imaging is indirectly proportional to the square root

of the integration time (IT). We then perform our residual power mapping as described in

Section 5.4.3 on the integrated thermal maps. We apply the Trojan detection method with

clustering as presented in Section 5.4.5 on the residual power maps. Figure 5.35 shows

the detection results. ‘With Noise(IT-1)’ is the case where noise has been added to the

thermal maps, and integrated over one frame, (IT-100) is integrated over 100 frames, (IT-

1000) is integrated over 1000 frames. If the camera frame rate is 100 Hz, then 100 frames

correspond to integration over 1s, 1000 frames is integration over 10s. ‘No Noise(IT-1)’

stands for where no thermal noise has been added to the thermal maps. We see that as

the integration time increases, the detection rate with noisy thermal maps approaches the
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Figure 5.35: Detection rate for MIPS with PV 30%.
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Figure 5.36: Detection rate for MIPS with 1.1 and 1.2 V (PV 30%).

detection rate without noise. We conclude from this experiment that, the white noise that

is present in the thermal maps can be compensated with increasing the integration times.

Experiment 5. We selected benchmark MIPS with PV 30% for this experiment and per-

formed thresholding detection method. Figure 5.36 shows the results for two voltage

cases, 1.1V and 1.2V. The plots show that there is not much difference since by increasing

the voltage, the power of the Trojan and the power of variation caused by PV are both

increased.

5.4.9 Conclusions

We described a novel multimodal post-silicon framework using spatial thermal and power

maps in order to detect and locate Trojans in modern ICs as the third application for

post-silicon power mapping. We developed two different Trojan detection methods, su-

pervised thresholding and unsupervised clustering technique utilizing post-silicon power

maps. These power maps can also reveal the Trojan location very accurately. We intro-

duced `1 regularization in the thermal to power inversion to exploit the sparsity of the

residual power maps. Using proposed multimodal methods, we are able to detect Trojans
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which consume power as small as 29.6 µW. To create realistic chips, we added 20-40%

process variations, our results show Trojan detection is inversely proportional to the pro-

cess variations as it can hide Trojans. We added Gaussian noise to our thermal maps, and

showed that the effect of infrared imaging noise on the detection rates can be mitigated

by increasing the image integration time. We also compared detection results for different

chip voltage settings.
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5.5 Summary of the Applications of Post-silicon Power

Mapping

In Section 5.2, we used our proposed DC power mapping methodology to estimate the

spatial power distribution of an embedded soft processor and a real quad-core processor.

We performed thermal to power inversion of the embedded processor with different set-

tings while running practical applications. For the quad-core processor, we have proposed

techniques to model leakage power through the use of thermal conditioning. These leak-

age power models were used to yield fine-resolution leakage power maps and within-die

variability trends. Various workload scenarios from the SPEC CPU2006 benchmarks are

used to estimate and analyze runtime spatial power maps. The basic applicability of our

AC-based techniques is also presented using a real dual-core processor.

In Section 5.3 we proposed new directions for post-silicon power mapping method-

ologies where thermal maps reconstructed from sparse thermal sensor measurements are

used in place of infrared thermal maps. The proposed method provide good power map-

ping accuracy for real processors while reducing the cost drastically. We explore vari-

ous frequency domain techniques for the full thermal characterization, such as, k-LSE,

CS-L1 MIN, and the CS-STOMP. Using a sophisticated experimental setup, we evaluated

our techniques using various computing devices; dual-core processor, FPGA test chip and

a quad-core processor with various applications.

Section 5.4 presents a novel multimodal framework utilizing post-silicon spatial ther-

mal and power maps in order to detect and locate Trojans in modern ICs. We proposed two

different Trojan detection methods, supervised thresholding and unsupervised clustering

technique utilizing post-silicon power maps. These power maps can also reveal the Trojan

location very accurately. To exploit the sparsity of the residual power maps we added `1
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regularization in the thermal to power inversion procedure. Using proposed multimodal

methods, we are able to detect Trojans which consume power as small as 29.6 µW. We

added 20-40% process variations to gates’ length, gates’ width and gates’ oxide thickness

which results into 0.5-3% variation in total chip power consumption. These variations,

which are present in real modern ICs, hide Trojans and makes Trojan detection more dif-

ficult. To mimic real infrared imaging, we added Gaussian noise to our thermal maps, and

showed that the effect of infrared imaging noise on the detection rates can be mitigated by

increasing the image integration time. Detection results for different chip voltage settings

are also compared. One limitation to our approach is that we assume the Trojan circuitry

is consuming a certain amount of total power. In case the Trojan is not activated during in-

frared imaging by specific runtime applications it will not consume any significant amount

of dynamic power, and Trojan can remain undetected. But the Trojan will contribute to

more leakage power which is dependent on temperature. By increasing chip temperature,

the effect of Trojan leakage power can be detected, which can aid in the Trojan detection.
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Chapter 6

Summary of Dissertation and Possible

Future Extensions

In this dissertation, we proposed techniques for post-silicon power characterization of

various computing devices, such as, FPGAs and multi-core processors. We addressed

main challenges in a post-silicon power characterization process, and proposed methods

to overcome such challenges. Utilizing the proposed framework, we presented three dif-

ferent applications of post-silicon power mapping. We verified all our proposed methods

through extensive set of experimental results using various test chips. In this chapter,

we summarize our contributions by highlighting the main results, and discussing possible

future research directions.
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6.1 Summary of Results

In Chapter 3, we presented a novel framework for spatial post-silicon power characteriza-

tion using the infrared emissions from the back side of the silicon die. Various challenges

of thermal to power inversion procedure are investigated. We demonstrated mathemati-

cally and empirically how challenges such as inherent lowpass filtering, discretization, and

measurement errors could all compromise the accuracy of power estimation. We proposed

techniques from regularization theory to improve the accuracy of post-silicon thermal to

power inversion. Furthermore, we have provided experimental techniques to compensate

for the varying emissivity of different chip materials and to measure the thermal resistance

model matrix. We designed a highly modular, reconfigurable test chip based on an array

of micro heaters that are precisely placed in a grid pattern. Our test chip and realistic

infrastructure enabled us to validate our methodology by comparing its power estimates

against the injected spatial power density maps. Our realistic experimental setup provided

deep insights on the challenges that are involved in post-silicon power characterization and

confirmed that our methodology works very well in practice providing power estimation

improvement of 30% over previous approaches. Our results also quantified the effect of

the two main challenges of post-silicon power mapping, noise and spatial filtering.

In Chapter 4, we investigated the use of AC thermography techniques for quantitive

power mapping that is relevant to design-related applications. We demonstrated analyti-

cally and experimentally that using AC excitation reduces measurement noise and spatial

heat diffusion. We devised techniques for realistic estimation of the parameters of the

thermal to power model matrix, and we devised numerical techniques to invert the ther-

mal emissions into power estimates. We designed a test chip to scientifically evaluate the

accuracy of AC inversion techniques compared to DC techniques. Our test chip enabled

us to create any desired spatial power maps with different excitation frequency. Using a
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number of constructed intricate power patterns, we demonstrated that our technique can

dramatically improve post-silicon power mapping. The average error reduced from 40%

at DC to about 8.5% using proposed AC methods. To quantify the noise in our system, we

analyzed and quantified the signal-to-noise ratio of infrared thermal maps. We showed the

impact of AC excitation frequency on noise and spatial filtering of the thermal maps. We

also quantized the effect of integration time on noise. We analyzed the power mapping re-

sults for different AC excitation frequencies and integration times, and linked these results

to the SNR analysis.

In Chapter 5, we presented detailed methods and experimental results for three differ-

ent applications of our power mapping framework. Firstly, we implemented our proposed

post-silicon power mapping techniques on FPGAs and multi-core processors. For power

characterization of FPGAs, we embedded a soft processor in FPGA test chip, and used

our power mapping methodology to estimate the spatial power distribution of the soft pro-

cessor during operation. For multi-core processors, we devised accurate finite-element

models that relate power consumption to temperatures. By using thermal conditioning

methods, we proposed to model leakage power through infrared thermal measurements.

These leakage power models were used to yield fine-resolution leakage power maps and

within-die variability trends for multi-core processors. We analyzed the power consump-

tion of different blocks of a quad-core processor under different workload scenarios from

the SPEC CPU2006 benchmarks. Our results revealed a number of insights into the make-

up and scalability of power consumption in modern processors. We showed the impact of

increasing number of applications on the power consumption of different blocks. By us-

ing a dual-core processor, we demonstrated the applicability of our AC techniques in a

practical scenario.

Secondly, we proposed new frequency domain based methods for full thermal char-

acterization of real processors. We introduced reconstruction methods such as k-LSE,
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CS-L1 MIN, and the CS-STOMP, which enable us to reconstruct fine-grain thermal maps

from sparse sensor measurements accurately. By utilizing the full reconstructed thermal

maps, we proposed an alternate method to the infrared imaging for our post-silicon power

mapping procedure. This approach can reduce the cost of post-silicon power mapping

drastically. We demonstrated experimental results on a FPGA test chip with several arti-

ficially created power patterns and relate the power mapping accuracy to the spatial fre-

quency of the power maps. We utilized a multi-core processor with real benchmark ap-

plications to show that our proposed thermal sensor based method shows relatively good

accuracy compare to the infrared based power mapping.

Thirdly, we investigated the use of multimodal post-silicon spatial thermal and power

maps in order to detect and locate Trojans in modern ICs. We developed two different Tro-

jan detection methods, supervised thresholding and unsupervised clustering technique.

Through an extensive set of benchmarks and experiments, we demonstrated that using

high resolution thermal maps increases the Trojan detection sensitivity. To improve the

sensitivity further, we inverted the residual thermal maps to detailed spatial power maps

which are then utilized for Trojan detection. To exploit the sparsity of the residual ther-

mal maps, we added `1 regularization in our power mapping procedure which improves

detection rate. These power maps can also reveal the Trojan location very accurately. Us-

ing proposed multimodal methods, we were able to detect Trojans which consume power

as small as 29.6 µW. We have demonstrated that detection rate is directly proportional

to the power density of the chip, and the Trojan size. Process variation changes power

profile of the chip and complicates the Trojan detection. To account for die process vari-

ation, we added 20-40% Gaussian random variations to gates’ length, gates’ width and

gates’ oxide thickness. Our results show Trojan detection is inversely proportional to pro-

cess variations. In real infrared imaging setup, thermal maps have various measurement

noise. Since we utilized thermal tool Hotspot for creating all our thermal maps, we added
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Gaussian noise to our thermal maps to mimic real infrared setup. We have shown that by

increasing integration time the white noise can be minimized to improve detection rate.

We also compared different chip voltage settings, which did not show much effect on the

detection results.

6.2 Possible Research Extensions

This dissertation can lead to the following possible research directions:

One possible extension to the current power mapping framework is to handle transient

analysis. The relationship between temperature and power in transient analysis can be

described using state space models. In particular, the temperature vector T[k + 1] at time

k+ 1 is linked to the temperature vector T[k] at time k and the power consumption p[k] at

time k by T[k+ 1] = AT[k] + Bp[k]. Transient analysis can follow a similar approach to

the one described in this work, where T[k + 1] and T[k] are measured using the camera,

and A and B are learned in a similar way to the approach used to learn R.

Another possible future extension of the post-silicon power mapping is applying the

power mapping procedure to 3D ICs. 3D circuits are lucrative future directions in the

IC industry due to smaller footprint, lower potential cost, heterogeneous integration and

shorter interconnects. But heat build up within the stack could be a major constraints in

the design of 3D structures. Post-silicon power mapping can aid in the thermal and power

design issues. The modeling matrix can be built using Finite Element Modeling procedure

in a similar way as described in Chapter 5. Once the modeling matrix is build, power

mapping procedure with Rp = T as described in Chapter 3 altered according to the 3D

design, can be used. In Chapter 5 we proposed an alternative way for post-silicon power
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mapping using reconstructed thermal maps from sparse thermal sensor measurements.

This alternative way can be also be used to extend the 2D power mapping framework to the

3D power mapping in future. In the case of 3D IC power mapping, thermal sensor readings

can be used to get access to thermal status within the 3D stacks. The reconstructed thermal

maps from the thermal sensor measurements can be used for 3D post-silicon thermal to

power inversion.

For future work of AC-based framework, higher excitation frequencies can be investi-

gated to find the limits of AC techniques. In this work, we have shown basic applicability

of the AC procedure in a dual-core processor, which can be extended to a more detailed

full power mapping procedure for multi-core processors. Furthermore, the AC techniques

can be used in many scenarios to reduce the effect of noise and spatial lowpass filtering,

such as, thermal sensor noise and process variation noise in Trojan detection. As a future

extension of the hardware Trojan application, the AC thermography framework described

in Chapter 4 can be incorporated to the multimodal Trojan detection framework to increase

the detection accuracy.

There are several other applications for the post-silicon power mapping framework.

Most importantly, the post-silicon power estimates can be used to close the loop between

pre-silicon modeling and post-silicon characterization, where one can leverage the post-

silicon results to improve the accuracy of different design-time thermal and power model-

ing tools.
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