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Abstract of “ New Directions for Design-Space Exploration of Low-Power Hardware
Accelerators ” by Kumud Nepal, Ph.D., Brown University, May 2015

Hardware accelerators and custom computing platforms are being widely used in

high-throughput computation domains. With the wide usage, there is also an in-

creasing need to operate these hardware accelerators in resource-constrained envi-

ronments.

In this dissertation work, we address two different ways of exploring possibilities

for producing low-area and low-power hardware accelerators. First, we propose an

analytical modeling of design metrics such as area, power, and throughput for hard-

ware accelerators. Accelerators have various tunable implementation parameters,

both at the algorithm and hardware levels. Physically synthesizing every possible de-

sign permutation to discover optimum implementations is highly inefficient given the

exponentially large search space. We propose sampling a small fraction of the design

space and using these samples to train analytical models that will accurately predict

area, power, throughput for other unexplored parameter combinations. By doing

this analytically, we take away a bulk of the time-consuming synthesis process. We

also use these mathematical models to accurately formulate various multi-objective

optimization trade-offs between area, power, and output accuracy.

For the second part of this dissertation, we pursue an idea we learned from the

first part that computational accuracy of circuit implementations within certain

application domains can be traded-off to make accelerators consume less area and

power. We introduce a novel idea for automated synthesis of approximate circuits

directly from their behavioral descriptions. By applying transformations that intro-

duce a controlled amount of error, we make a number of approximate variants of

the original circuits. We also realize a streamlined design space exploration process



so that the creation of newer approximate variants does not cause an exponential

increase in the design space.

Finally, we study various techniques to expand the search scope for better ap-

proximate designs and achieve significantly better power savings without additional

loss in output accuracy. We also propose a first-of-its-kind methodology to perform

targeted approximations on timing-critical paths of a custom circuit hardware accel-

erator so as to reduce its delay. We use this delay reduction to use standard voltage

scaling and make additional savings on power consumption.
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Chapter 1

Introduction

Hardware accelerators and custom computing circuits are becoming widely used in

real-time image processing, video analytics, machine learning and signal process-

ing. Their use in surveillance, scientific research, smart camera technologies and

automotive industries is becoming ubiquitous [8, 7, 16]. Traditional microproces-

sor designs have reached diminishing returns on instruction-level parallelism. Sim-

ilarly, simply increasing clock frequencies to speed up software implementations is

becoming increasingly difficult because of the dangers of thermal and power runoff

[44, 55, 80]. While multi-core implementations of algorithms are possible in soft-

ware with threaded applications, there are more benefits today to shifting the pro-

gramming model for high-throughput to other computing platforms such as Graphic

Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and/or cus-

tom Application Specific Integrated Circuits (ASICs) or Application Specific Signal

Processors (ASSPs).

GPUs have become increasingly programmable and are very suited for data-level

1
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parallelism and high bandwidth data proessing and transfer. Compared to Intel Core

i7’s with 2000 MHz DDR3 RAMs which have a peak bandwidth of 48GB/s, GPUs

are capable of reaching over 150GB/s bandwidth with over 1TFlops/sec peak per-

formance [80]. Similarly, dedicated ASICs remove the slow and generic architectural

limitations of software-based systems. ASSPs exploit the parallelism and efficiencies

of the digital signal processors (DSPs) and hardwired application-specic accelera-

tors, usually managed by a standard controller core like ARM, or PowerPC [65].

Similarly, FPGAs are ideal for inexpensive platforms to implement high-throughput

solutions. Their reconfigurability allows for iterative refinement and validation of a

design implementation until desired goals are achieved. With programmable logic

elements, registers, lookup tables (LUTs), Block RAMs (BRAMs), DSP blocks, and

digital clock managers, FPGAs, by themselves or as parts of a heterogeneous system,

have the capability of parallelizing algorithms on various hardware modules, making

them superior in instrumenting tasks that require high throughput.

This prolific use of different hardware accelerator platforms leads to an increased

demand for even higher computational capabilities and necessitates the need for

processing larger data sets at higher throughput. This becomes more challenging

because most of these high-performance platforms are also used in highly resource

constrained environments where reduced power consumption becomes imperative. A

lot of custom hardware accelerators in the form of heterogeneous systems or inde-

pendent solutions are being increasingly used in embedded systems/mobile platforms

where circuit area and energy efficiency both become imperative. Therefore, adding

more hardware resources to solve the throughput problem may not lead to a feasible

solution.

In this thesis, we turn our focus on two different hardware accelerating plat-

forms - FPGAs and custom ASICs and explore options of how we can make use
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of these accelerators with as little power and area cost as possible. We observe

that hardware accelerators in these forms, specially those that can be used for im-

age/signal processing or machine learning applications offer many algorithmic and

hardware design parameters. Carefullly chosen combination of these parameters can

lead to outcomes with the desired throughput, power, design area and arithmetic

accuracy. Faster design-space exploration techniques as well as smarter synthesis

methodologies can help designers explore options to get to optimum hardware ac-

celerator implementations with low area footprints and reduced power consumption.

These implementations can then be used to either increase accelerator throughput

at the same area/power specifications or lower area/power numbers at the same

throughput levels, based on the preferences and needs of the designers.

In the following sections, we discuss some of the approaches we develop and

implement in order to do efficient search and synthesis of hardware accelerators.

1.1 Fast Design Space Exploration of Hardware

Accelerator Implementations

Accelerating a particular algorithm in hardware is a challenging task as the large

number of possible algorithmic and hardware design parameters lead to different

accelerator variant implementations, each with its own metrics such as performance,

area, power, and arithmetic accuracy characteristics. A design that is efficient in

throughput can have large area and higher power consumption implications. Simi-

larly, a design that takes care of area and power constraints could face accuracy and

performance setbacks. Given the different configurations of hardware and software

parameters possible for implementation, finding the ‘sweet spot’ for design imple-
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mentation that meets all design requirements can be a time-consuming process.

As a result, designers are interested in exploring tens of algorithmic and hard-

ware design parameters without doing explicit enumeration of each permutation.

Works have been done in trying to evaluate different combinations of design param-

eters to see their impact on circuit behavior and topology — some involve reducing

number of possible parameter configurations and doing experiments [28, 72], while

others propose following an analytical methodology to model the design space math-

ematically [17, 36, 46, 71]. Predicting design metrics like power for various archi-

tectures and micro-architectures has been commonly done in a lot of work as well

[31, 37, 45, 48, 49, 50, 57, 64, 74, 82] .

Regardless of the methodology used in implementing fast design space explo-

ration, intelligent ways to discover the impact of hardware/software design parame-

ters and the inherent interactions between them as a means to study their true impact

on final design metrics, are still lacking. Sensitivity analysis of design parameters as

a means to reaching optimality in making efficient hardware accelerators still remains

an area relatively less explored. For any fast design space exploration methodology,

it is imperative that an accurate relationship be established between each of the

design parameters and their power, throughput, area and arithmetic accuracy impli-

cations. Typically, with existing research, designers need to make educated guesses

about the interactions between different variables to identify appropriate variables

for use in exploration purposes.

In this thesis work, we try to tackle this problem of doing accurate parameter

sensitivity and parameter-interaction analysis, and thereby eliminate the guesswork

on the designers’ part. We adopt mathematical modeling methodologies or efficient

design search and automate the process of discovering dependencies between design
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parameters - thus making analytical design metric model predictions closer to ac-

tual measurements. The proposed approach involves sampling the large design space

and then using regression models and statistical inference from the samples to create

mathematical models that estimate the target metrics (such as area, power, through-

put) over the entire design space. The analytical model generation process involves

automated parameter-interaction analysis and the selection of the most important

design variables whose impact individually or in interaction with other variables of

the accelerator implementation affects design metrics the most.

The effectiveness of this methodology is demonstrated by applying it on two

image processing algorithms implemented on an FPGA platform and evaluating

both hardware and algorithm parameters for design space exploration. Only a few

samples from the design space are physically implemented on the FPGA and their

design metrics then used for training analytical models eventually used as scalable

models for accurate design metric prediction.

1.2 Approximate Custom Computing Circuits as

Low-Area/Power Hardware Accelerators

In search of designs that are optimum in the multi-faceted way, researchers are

developing new circuit topologies and methodologies for increasing efficiency as well

as reducing energy consumption. A relatively newer methodology is the development

of approximate circuits and computers that produce good-enough computations for

applications and algorithms that may not require 100% computational accuracy,

with the idea of either increasing circuit throughput or reducing area and power

consumption.
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Our own work on fast design-space exploration techniques have shed some light

on the possibility of using circuit accuracy as a parameter for design optimization.

For instance, we were able to use arithmetic accuracy of a circuit implementation as

a tunable design parameter for design optimization by studying truncation of certain

number of bits from some computational kernel variables.

Similar ideas of sacrificing some accuracy for design optimization in terms of

throughput and/or area/power have become popular lately. Often, it is the case

that trading-off reasonable arithmetic accuracy in circuit implementations of algo-

rithms, specially in the fields of machine learning, signal processing and computer

vision can yield low area/power variants within acceptable output correctness. Many

algorithms from these domains tend to show inherent error resiliency and their in-

tegrity is not compromised by controlled perturbations in their underlying compu-

tations. In this thesis, we leverage this circuit resiliency in implementations from

certain domains by giving up a controlled amount of arithmetic accuracy to obtain

less complex circuits, thereby reducing area footprints and power consumption.

Approximate computing circuits are more relevant today from two aspects [54]:

• With aggressive transistor scaling, devices are being pushed to the limits of

their reliability. In addition, ways to improve silicon die yield is always being

explored. Approximate computing circuits can be a good solution in these

situations where error-resilient parts of circuits (or parts of them) can be op-

erated on the unreliable parts of the chip and the more error-prone parts can

be implemented on the reliable parts. This can certainly come in handy in

imminent dark-silicon scenarios in the chip-manufacturing industry.

• Many of the applications in emerging mobile and embedded device market
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can be approximate - mostly because of their use in imaging/video applica-

tions where there is inherent noise/redundancy and computation precision loss,

which they are inherently tolerant to. Also, most of these applications incorpo-

rate human perception and there is no perceptual difference in small deviations

in outputs for a lot of these applications [13, 24].

Most existing works in approximate computing can be broadly categorized in to

two categories. There has been a lot of research on run-time methodologies where

circuit inaccuracy is a result of run-time parameters like supply voltage [9, 11, 29,

59, 77]. More controlled design-time methodologies where approximations are in-

tentionally introduced on a specific part/component of the circuit have also been

proposed [4, 14, 30, 32, 78]. Whether it is run-time approach or design-time approx-

imation, there are some limitations. Specific quantitative error control for run-time

methodologies like standard voltage scaling can be non-trivial. For the other ap-

proach where inaccuracies are introduced by design, designers are usually required

to have at least some degree of familiarity with the circuit functionality and/or its

response to different run-time and design-time decisions.

In this thesis, we devise new techniques for approximate computing as a means

to optimize designs for area and power, and eliminate some of the problems seen

in existing approximation methodologies. We work directly on behavioral descrip-

tions that capture the algorithmic intent of the circuit; and thus raising the level

of abstraction enables a larger range of approximations that are not possible to ap-

ply at low-level design specifications. This enables us to work on more global and

scalable approximation efforts without needing to have any prior knowledge about

the algorithm or its circuit implementation. We draw inspiration for our work from

the recent advances in software engineering targeted for automatic bug identification
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[81]; however, we investigate methods that are suitable for hardware designs.

1.3 Multi-Objective Exploration and Optimizations

We extend the idea of regularized design space exploration and approximate com-

puting to do smarter design search and multi-objective optimizations. With ana-

lytical models derived from L1 regularization, we formulate non-linear optimization

methodologies that enable us to optimize accelerator designs with respect to certain

selected metrics while imposing constraints on other metrics. These chosen metrics

and their values are selected to optimize designs within specifications of their target

deployment.

We define cost functions and objective functions for various design metrics and

derive different optimization formulations like: i) optimizing an accelerator’s power

under accuracy constraints; ii) optimizing an accelerator’s design area within a given

power budget; iii) minimizing accelerator architectural area under accuracy con-

straints; and iv) optimizing accelerator design area under throughput constraints.

There have been some work in optimizing design metrics after co-exploration,

specially for throughput or power. For instance, works have been done to explore

variety of architectural as well as algorithmic design choices to find optimum param-

eters for area and throughput constraints [12, 33, 70, 75]. However, most approaches

presented in these work need to explore a large set of the design space for each plat-

form to be able to perform their optimization via interpolation of the measured data.

Our approach hopes to solve this problem by being able to analytically optimize de-

sign metrics by making use of the relative small design space we need to sample,
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thanks to the previously-mentioned contributions of the L1 regularization processes.

We also investigate the approximate computing methodologies proposed earlier

and explore ways to make the automation as well as design search process smarter and

better. We study different methodologies to evaluate fitness of approximate designs

and compare their impact on power and area savings as well as output accuracy. We

first instrument an iterative evolutionary approach to approximating a circuit design

and propose an efficient way to choose design(s) from a particular iteration that is

amenable to more transformations without deviating much from the original circuit

correctness.

Inspired by the Non-dominated Sorting Genetic Algorithm II (NSGA2) we also

implement a selection methodology at each iteration of our approximation flow so

that Pareto-optimal points are constantly searched for from the design variants gener-

ated [19, 18, 25, 73]. Different non-dominated fronts of optimality and design fitness

are created based on whether design points are dominated by other design points

generated during an iteration, and also based on their spread from each other. Non-

dominated design points represent designs that are optimal in the multi-objective

sense, whereas the spread measure helps in identifying uniqueness of designs and

serves as a better ‘genetically diverse’ feed for future approximations. This process

ensures a global optimum selection from all rounds of approximations selecting a

parent design that is multi-objectively ‘optimal’ instead of being trapped on a local

optimum during the iterative refinement. We compare this global-optimality aware

approach with an individual fitness ranking instrumentation where fitness is defined

as a linear combination of weighted objectives like accuracy and power savings.

In addition to refining the design selection proces for approximate variants gen-

eration, we also introduce a novel approach where we apply targeted approximations
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on timing-critical paths of circuits so as to reduce their circuit delay. Once circuit

delay is reduced, we can use the net timing slacks to make use of standard voltage

scaling processes to futher optimize approximate designs for better savings in power

consumption.

1.4 Thesis Contributions

To summarize, this thesis makes the following contributions:

• We develop regression-based techniques to train mathematical models for var-

ious design metrics such as power, area, arithmetic accuracy and throughput

for accelerator platforms like the FPGA. We propose the use of L1-regularized

least squares method to assess all possible interactions between the input de-

sign variables and use only the relevant ones to design the best model for power,

area and accuracy under these variables. Our method completely automates

the process of identifying the best model for each metric and is able to obtain

92% model accuracy by exploring as little as 0.42% of the vast design space.

• Given this automated design exploration methodology, we also develop formu-

lations for multi-objective optimization by leveraging the best models devel-

oped from L1 regularization for power, arithmetic accuracy and area in order

to show different important design optimizations, such as minimizing power

consumption under maximum arithmetic error tolerance, minimizing area for

a given power budget, minimizing area under error limit restrictions, and max-

imizing accuracy over throughput constraints. Finding best configurations us-

ing modeling and non-linear optimization allows for a 340× speed-up over a

manual-brute force design space exploration.
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• We develop a novel toolflow called ABACUS, which automatically generates

approximate designs from input behavioral descriptions of circuit implementa-

tions. Behavioral descriptions capture the algorithmic structure of the circuits,

and thus, ABACUS transformations are of global nature rather than limited

to a particular sub-circuit. This ensures that no prior knowledge of the design

or the algorithm be needed for our approach to work efficiently. With ABA-

CUS, we make the process of generating the variants transparent to the design

flow, and thus, different design flows (e.g., ASICs or FPGAs) can be used and

subsequently all standard synthesis optimization techniques are applicable on

the approximate variants.

• We introduce ways to automatically identify timing-critical paths in a circuit

and apply prioritized approximations on them first. This enables generation of

approximate circuits that are not just smaller and use less area, but also run

faster. This timing enhancement is coupled with a voltage scaling scheme with

the ABACUS flow for additional savings in power consumption.

• We demonstrate that ABACUS can be integrated with complementary meth-

ods for approximate circuit generation (e.g., using an approximate adder, or

even using fault-prone circuitry in implementation). By exploring local and

global optimality aware fitness evaluation approach like NSGA-II and imple-

menting some more one our own, we show a huge design-space can be explored

in an efficient matter to generate circuits that consume up to 80% less area

and power.
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1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 provides background and related work

on established design-space exploration and circuit approximation methodologies.

Several methods in which some of the current research work choose design parame-

ters and use them to explore the design space are presented. Similarly, related work

on currently accepted and used approximate circuit generation techniques are stud-

ied. In Chapter 3, we introduce our L1 regularized methodology for design-space

exploration and show the benefits of using this approach over brute-force enumera-

tion as well as other commonly used analytical modeling works. We also study some

of the multi-objective optimization formulations we discussed in Section 1.3. In

Chapter 4, we present the high-level approximation methodology we have developed

in generating optimal circuit and systems directly from their high level behavioral

descriptions. We detail the implementation of our methodology called ABACUS

and show why this methodology is superior over other works in approximate com-

puting. We show the effectiveness of our approach by testing it on three different test

benches from three domains, viz. machine learning, signal processing, and computer

vision. In Chapter 5, we show how the design selection methodologies in Chapter

4 can be refined for more inclusive design space exploration. We also introduce our

novel timing-critical path prioritized approximation techniques and its possible cou-

pling with standard voltage scaling in Chaper 5. Finally, Chapter 6 presents our

conclusions and future work.



Chapter 2

Background and Previous Work

In this chapter, we will present some fundamentals of design-space exploration and

review various techniques proposed in prior literature. We will start out by describing

some of the metrics that are important from the design point of view. We will then

address specific methodologies to obtain designs that are considered optimal in terms

of these design metrics. We will look for specific cases of optimization done so far for

hardware accelerators, with greater focus on analytical modeling of the design space

as well as inexact circuits and approximate computing as a means for obtaining low

area/power circuit alternatives.

13
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2.1 Important metrics for consideration in digital

design

2.1.1 Power Consumption

Power consumption of any circuit is an important factor to consider while exploring

the design space in the pursuit of optimal circuit designs. The optimality in regards

to power, or energy, has become critical with the advent of smartphones, tablets and

mobile computing platforms with limited battery lives and limited means to cooling

devices. As a designer, it is imperative to know the fundamentals of power/energy

consumption and methodologies to reduce it. Thus, we will begin by first reviewing

the sources of power consumption in digital circuits:

CMOS power has two main components, namely, dynamic and static power:

P = Pdynamic + Pstatic

= Pinternal + Pswitching + Pstatic

(2.1)

where P is the total power consumed by a circuit, Pdynamic is the power consumed

when there are logic switching activities, and Pstatic is the power consumed when the

circuit is idle. Dynamic power, Pdynamic can be further divided into short-circuit

power or internal power, Pinternal and switching power, Pswitching.

The switching power, Pswitching, arises from charging and discharging of load

capacitances when there are transitions between logic ‘0’ and logic ‘1’ levels, and is
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usually the dominating component of power consumption. It is computed by:

Pswitching = αCV 2f (2.2)

where α is the activity factor or simply the fractions of the circuit components

switching; C is the switching capacitance of the circuit, V is the supply voltage

and f is the operating frequency. As is clear from Equation 2.2, switching power is

affected quadratically by the supply voltage and linearly by the operating frequency

of the circuit. The short-circuit component of dynamic power arises from the short

period of time when both the pull-up and pull-down network in a logic gate are open,

creating a direct short-circuit path from VDD to GND. This, from the design point

of view is usually negligible provided that gates are sized properly such that rise/fall

delays have similar magnitudes.

With aggressive technology scaling and packing of more and more transistors in a

single die, static power has become a dominant factor in power consumption. Static

power is a function of static current and the supply voltage, and can be expressed

as:

Pstatic = IstaticV (2.3)

The static current itself depends on various factors like process parameters such

as transistor gate-oxide thickness, threshold voltage as well as external parameters

like temperature. All these factors can lead to sub-threshold channel current leakage:
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Ileakage = I0e
Vgs−VT

nVT [1− e−
Vds
VT

]
(2.4)

where I0 =
Wµ0CoxV 2

the1.8

L
, VT = KT

q
is the thermal voltage, Vth is the threshold

voltage, Vds and Vgs are the drain-to-source and gate-to-source voltages respectively.

W and L are the effective transistor width and length, respectively. Cox is the gate

oxide capacitance, µ0 is the carrier mobility and n is the sub threshold swing coeffi-

cient. It is important to note that static power is a growing concern among designers

as increasing number of transistors are placed on a single die due to shrinking de-

vices and more heat generated by these devices due to their switching at rather high

frequencies. The dissipated heat translates to higher operating temperatures, which

eventually lead to higher leakage current, as shown in Equation 2.4 by the exponential

relationship of current with temperature. In short channel devices, source and drain

depletion regions advance into the channel influencing the electrical field around the

terminals. The phenomenon is called short-channel effects and indirectly contributes

to threshold voltage drop thus also contributing to further leakage currents.

As a designer, there are many things to consider for design optimality and it is

extremely important to devise power saving techniques that can be incorporated well

in to smart design space exploration methodologies. In methods we propose in this

thesis work, we try to reduce both dynamic and static power by mostly reducing the

number of gates in a design, or simply, by reducing the logic complexity of a design.

This eventually contributes to both dynamic and static power reduction by reducing

number of active gates and switching capacitance.
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2.1.2 Design Area

Design area, like power, is an important factor to consider during design space ex-

ploration. The advantages of considering low-area designs are multi-folds:

• Smaller circuits are correlated with low power consumption. As explained in

the previous section, static power is a function of number of transistors/devices

in a circuit, among others. This can be minimized substantially by considering

smaller circuit designs with fewer transistors. Also, smaller area implies smaller

switching capacitance, and thus minimizes dynamic power consumption as well.

• Smaller circuits have potentially faster execution times because of lower switch-

ing capacitance and smaller critical path delays.

• A smaller area design is economical from a fabrication and production point of

view. Area determines manufacturing cost and determines the yield of produc-

tion. Research works shows that die costs are proportional to the fourth power

of the area [2]. Thus, it is evident that optimizing circuit area will reduce costs

while providing more computation per unit area of the wafer.

In light of the above-mentioned factors, we will use area as an important con-

straint in the design space exploration processes to help find optimal design points.

2.1.3 Timing and Throughput

Circuit delay or timing is inherently related to the area of a design — larger designs

with high gate-counts will potentially have a longer critical path, thus increasing
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delay in a particular circuit operation. We will use this idea as a corollary — ap-

proximate circuits compared to their accurate counterparts are more likely to have

superior timing characteristics because they have fewer gates needed to compute a

signal or value and consequentially take less time to do computations.

Similarly, circuit delay is related with the supply voltage of a system. Com-

plementary Metal Oxide Semiconductor (CMOS) technology used widely in today’s

circuits can be accurately modeled as lumped resistances and capacitances. This

implies that performance of the circuits are directly dependent on the inherent re-

sistances and capacitances in the circuit.

2
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Figure 2.1: Simple RC network modeling of a circuit.

If a circuit is modeled as a simple resistor-capacitor network as seen in Figure 2.1,

the voltage, v(t), across capacitor C at time t, can be modeled as seen in Equation

2.5:

v(t) = V [1− e
−t
RC ] (2.5)

R and C are the device resistance and capacitance. The product, RC is also

called the τ , or the time constant, and is the measure of circuit delay or specifically,

the time taken for the capacitor to charge by about 63.2% of the supply voltage.
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A higher supply voltage translates to a lower effective resistance because there is

more current and hence makes circuits faster. Thus, as a designer it is imperative to

take into account device resistances, capacitive loads (which increase with number

of circuit components) as well as given supply voltage to meet good timing behavior

for a design.

Overall circuit performance, as measured by overall timing, is also directly re-

lated with circuit throughput. Throughput in the simplest terms can be defined as

the number of computations per unit time. Throughput is usually dependent on and

affect other circuit parameters and metrics like area and power. More area (more

devices running in parallel) could potentially increase the throughput of the circuit

but it also comes at a cost of increased area and power. Similarly, increasing the fre-

quency of a device is likely to increase the throughput of a system but that increases

design power consumption.

It is important, as well as difficult to find the sweet spot where all three metrics

are optimized in a design. That is where a smart design space exploration comes in

handy. We will talk about that next.

2.2 Design Space Exploration

Design space exploration is essentially exploration of different viable options for a

design prior to its actual physical implementation. As we mentioned in Section 1.1,

for any particular design implementation, there could be hundreds, thousands or

even millions of ways of doing the physical implementation. Enumerating over every

single possibility for its feasibility as a final implementation does not make much
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sense. This is where doing an effective design space exploration comes in handy. A

good space exploration can help a designer in many ways [38], including:

• Rapid prototyping: Design space exploration can be used to generate a set

of prototypes and generation of these prototypes and the design parameters

used are helpful in understanding design dynamics, such as the weight of each

parameter on various design metrics, their importance and interdependence.

• Optimization: Design space exploration can be used to optimize designs for

various design metrics - area, power, throughput, timing etc. Eliminating bad

design choices from the very beginning of the exploration process can lead to

a very cost-effective way of reaching optimality goals.

• System Integration: Design space exploration can also be used to find best

configurations of various components within an inclusive system to meet a

global design constraint.

Our attempt at design space exploration in this thesis will consider all three

advantages. That is, we will use smart design space exploration techniques that

will pay special attention to interdependence of design variables and use them to

assemble various components on hardware accelerators to carry out multi-objective

optimizations. Our methodologies offer a new approach compared to those found in

the literature.

2.2.1 Synthesis and Compiler Level Techniques

There have been a few work in prior literature about high level synthesis tools cou-

pled with compiler techniques used for automated design space exploration. These
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techniques use the compiler’s awareness complimented with manual programmer

intervention to produce various possible implementations of a single design. Au-

tomation in design space search process implemented at the compiler level may lead

to exploration options, that otherwise may not be seen by the designer or are simply

tedious to implement manually.

A common example of where compiler level space exploration is achieved is in

hardware implementations that incorporate a number of coded loops. In pursuit

of a good hardware implementation that exploits parallelism to produce a good

computation throughput, designers manually apply loop transformations such as

loop-unrolling [72]. For example,

always @(posedge clk)

begin

for (i=0; i<65; i++)

begin

for (j=0; j<65; j++)

begin

out[i] <= out[i] + (in1[i+j] * in2[i]);

end

end

end

can also be written as:

always @(posedge clk)

begin

for (i=0; i<65; i=i+3)

begin

for (j=0; j<65; j=j+3)

begin

out[i] <= out[i] + (in1[i+j] * in2[i]);

out[i+1] <= out[i+1] + (in1[i+j+1] * in2[i+1]);

out[i+2] <= out[i+2] + (in1[i+j+2] * in2[i+2]);

end

end

end
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Loop unrolling exposes instruction-level parallelism at the expense of hardware

resources. In the example shown above, unrolling exposes operator parallelism to

high-level synthesis by allowing all the multiplications to be performed in parallel.

However, unrolling also increases the amount of data a computation requires and

can be memory intensive. Thus too much unrolling can lead to a heavy memory

bound implementation and leave computation resources idle for a lengthy period of

time. It is hard to come up with a good space-time tradeoff just by looking at a loop

implementation.

Tools where the programmers must manually determine the unroll factor and

location and impact of loop unrolling on design metrics are available [53]. Other

automated methodologies that discover which loops are beneficial to be transformed

(among other compiler optimization techniques - like scalar replacement, dead-code

elimination) by collaborating between parallelizing compiler technology and high-

level synthesis tools have been developed [72]. For such automated implementation,

estimates derived from behavioral synthesis of a small sample of the huge design

space are used to predict space-time tradeoffs for the design and to figure out when

it is beneficial to devote more resources to storage or computation. Results show

that a mere 0.3% exploration of the design space was able to derive a design that

closely matches the best performance within the design space and was smaller than

other designs with comparable performance.

2.2.2 Pareto Optimal Techniques

For design space exploration processes involving multi-objective optimization, there

may be more than one optimal design. While one design may be better in one partic-

ular design objective, there may be another or multiple others that could be better
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in other explored objectives. Therefore, optimality for these kinds of optimization

can be represented as a Pareto front that represents points which are better than

all others in the design space in at least one design objective. A simple illustration

of pareto optimality in a design space with two design objectives is shown in Figure

2.2. The line connecting the outer set of points represents the optimal set of de-

signs. There are several works in prior literature that make use of pareto optimality

techniques for design space exploration. We discuss some of them hereafter.
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Figure 2.2: Pareto optimality in a design space.

Single Factor Analysis

An approach using Single Factor Analysis (SFA) is presented [60]. SFA changes

design parameters in an isolated fashion - one at a time until all possible parameter

assignments for each parameter are obtained. This process is repeated for each

design variable and results of SFA can be used to create a regression model to

predict optimal designs for given design budget. The effectiveness of this process

would depend highly on the kind of models derived from initial isolated experiments
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with individual parameters.

This approach has been extended to generate Pareto optimal points in a design.

Pareto points in a design space are those points which are better than all others in

at least one design objective. In their work, authors first determine the significance

of each parameter is by observing the maximum change seen for a given parameter,

which is then normalized to a value between 0 and 1 [67]. This is done for each

parameter of interest and the parameters are eventually sorted by their normalized

weight values. To take interdependence between design parameters into account,

two highest-impact parameters are considered and all possible interactions between

them are generated. Results are filtered for Pareto points and the resulting set of

intermediate Pareto points are then used with the third most impactful parameter

to generate a new set of design points. Pareto points are constantly pruned after

each parameter consideration.

While the Pareto generation methodology using SFA is helpful, it may fail to

see all possible interactions between parameters because it is primarily focused on

generating Pareto optimality near base configurations chosen by the designer. Some

other intricate interdependencies may be ignored.

Parameter Interdependency Graph

Other works have been done in pre-identifying interdependencies among design pa-

rameters and finding all Pareto-optimal configurations of parameterized System-on-

Chip (SOC) architectures [28, 27]. An architecture consisting of a processor, two

caches, buses, and memory, with each component having numerous parameters, is

explored. While there are many interdependencies between parameter groups, some

groups have only a few possible assignments. Each of these parameter groups is
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searched exhaustively and local Pareto points are identified, thus avoiding an ex-

haustive global exhaustive search. From these local Pareto searches, the designer

can identify parameter interactions represented in what is called a Pareto Interde-

pendency Graph (PIG).

This work is shown to be much faster than SFA, searching less than 1% of all

possible configurations; however, one big problem still exists: PIGs are to be imple-

mented manually, requiring the designer to identify and choose interactions between

design parameters. Another limitation with this approach is that all dependencies

are given equal significance and in reality, this is likely not true.

Randomized Approaches

Several other randomized search approaches have also been developed to find Pareto

points faster without having to know interdependencies beforehand [68]. Quite a few

of these approaches start with a random subset of configurations and start exploring

the design-space with the goals of identifying Pareto-optimal points. The idea is to

start out at a few possible configurations and then use some guidance towards optimal

Pareto points [3, 5, 6]. This guidance can be evolutionary in process, first choosing a

few good designs and then combining features from them to further evolve the design

space, much like genetic algorithms. Some researchers have ompared [21] multiple

genetic algorithms like the Strength Pareto Evolutionary Algorithm (SPEA2) [85, 84]

and Non-dominating Sorted Genetic Algorithm (NSGA-II) [19] in terms of perfor-

mance and runtime to come up with Pareto optimal points.

Similarly, Pareto Simulated Annealing and Pareto Reactive Tabu Search are some

other randomized search methodologies used in Pareto optimal design points for ef-

fective design space exploration. While these methods are quite effective in producing
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good Pareto optimal points, their execution runtimes are long.

Design of Experiments Paradigm

Design of Experiments (DoE) was first presented as a set of experiments that gives

information about design parameter interactions and their impact on the output [61].

With these sets of experiments, a few things can be found:

• whether each parameter affects output positively or negatively

• which parameters contribute to the output

• how these important factors interact with one another.

DoE can be used with Pareto generation methodologies for smart design space ex-

ploration [68]. In this multi-phase approach, the first phase automatically generates

a parameter interdependency graph with weighted edges. Running algorithms such

as Plackett-Burman [61], a set of experiments are conducted to evaluate parame-

ter interdependency. For example, if setting parameter A to its high level increases

runtime by 10ms, and doing the same to parameter B increases it by 15 ms, the

estimated runtime for when both are high would be 10+15=25ms. A physical imple-

mentation of the design is done setting the parameters A and B to these same values

to see the validity of the estimated values. If implemented and estimated values are

different, it suggests that there is some interdependency between the two parameters;

the difference is stored as ‘edge error’ which essentially serves as the weighted edge

value for parameter interdependence. Next, the second phase starts with the pair of

parameters that has the highest edge value and a subset of these parameter values

is used to generate exhaustive data for that particular pair of configurations. Local
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Pareto points are selected out of these configurations. If a parameter has more than

three possible configurations, intermediate configurations are explored by generating

local Pareto regions and guiding the designer towards configurations that would be

of more interest.

Again, as effective as the DoE methods may be in doing design space exploration,

they can be slow because of the inherently slow processes of generating parameter

interdependencies, creating local Pareto fronts and filling in intermediate configura-

tions from these information.

2.2.3 Regression based Machine Learning Techniques

Use of analytical models using design parameters to evaluate design metrics for a

large design space have also been explored. Methodologies that relate accelerator

parameters like speed and other metrics of the circuit analytically using statistical

analysis and similar mathematical modeling have been developed and studied [17,

36, 46, 71].

These studies propose ways to formulate a design metric as a function of the

input design parameters and try to estimate the metric function to fit the actual

data as closely as possible.

Normally, macro-models for power, area, throughput expressed in a mathematical

form are characterizations of these metrics derived from a few sample configurations

of the design parameters. A small number of designs from the huge design space

is usually sampled and their corresponding impact on the design metric is logged.

Finally these logged real metric measurements along with their parameter configu-

rations are analyzed by statistical regression using curve fitting or machine learning
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tools to get the estimation function for the metric.

Generating accurate analytical models is important but not easy. To realize a

statistical regression model, it is first important to establish a relationship between

each of the design parameters and the various metrics used to define the ‘goodness’

of a design, such as power, throughput, area and arithmetic accuracy implications.

Typically, with an understanding of the sensitivity to each of these metrics, ad-hoc

models are formulated using experimental observations.

Let’s say a design metric y depends on four different input parameters x1, x2, x3,

and x4. These parameters reflect the dependency of the output metrics on algorithm

and/or hardware design parameters. A linear model representing the relationship

between these input variables and the design metric is given by y = c0 + c1x1 +

c2x2 + c3x3 + c4x4; a pure quadratic model is given by y = c0 + c1x
2
1 + c2x

2
2 + c3x

2
3 +

c4x
2
4 +c5x1 +c6x2 +c7x3 +c8x4; and a quadratic model with interaction terms is given

by y = c0+c1x
2
1+c2x

2
2+c3x

2
3+c4x

2
4+c5x1x2+c6x1x3+c7x2x3+c8x1+c9x2+c10x3+c11x4,

where c0, . . . , cn are coefficients that give the weights of each of the n terms in the

model. Cubic and interactive cubic models are similar to quadratic and interactive

quadratic except for the added degree in the model polynomial function.

The model that best represents the design metric characterization depends on

which parameters are more sensitive than others and which parameters interact to

affect the output. If and when these parameter sensitivity and interactions are

carefully chosen, analytical models can lead to very fast and accurate design space

exploration. This is exactly what we explore in this thesis — an analytical ap-

proach to doing fast and smart design space exploration by taking advantage of the

reconfigurability of hardware accelerator platforms like the FPGA.
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2.3 Approximate Computing

Like we mentioned in Section 1.2, not all designs require 100% accuracy. Many al-

gorithmic implementations in the domains of computer vision, machine learning and

computer graphics can allow controlled error in their underlying computations and

still perform within reasonable accuracy boundaries. This gives designers ways to

complement other design space exploration methodologies by considering approxi-

mate computation as a part of it as well.

The benefits of studying and exploring approximate computing can help designers

in multiple ways:

• Low Area/Low Power Circuits: Approximate Computing can perform approxi-

mations on data-types, data-structures, arithmetic operators and such, thereby

making the circuits less complex and in effect reducing area footprints and

power consumption
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Figure 2.3: Illustration of a possible low-area approximate circuit.

• High Throughput Circuits: If area and power are not tightly constrained, the

designer can focus on increasing circuit throughput by using multiple instances

of these smaller, less complex approximate versions in parallel.

In this thesis, we look at approximate computing as a way of creating less complex

custom computing circuit implementations by introducing approximations by design.
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Figure 2.4: Illustration of a possible high-throughput approximate system.

Our focus will be on reducing power and area, but it is also possible to target this

technique for reducing circuit delay. There have been two circuit approaches when

it comes to doing approximate custom computing, viz. run-time approximation

and design-time approximation. We discuss these two approached in the next two

subsections.

2.3.1 Run-time approximation techniques

A very popular run-time approximation technique is Dynamic Voltage Scaling (DVS),

where as the name suggests, the supply voltage is dynamically adjusted in order

to save power [11, 62, 29, 63, 59]. Recall from Equation 2.2 that dynamic power

dissipation of a system is directly proportional to the square of the supply voltage

provided to it. As can be seen from discussion in Section 2.1.1, by scaling down the

voltage, there is a large potential for power saving. However, lowered supply voltage

will also affect circuit timing as discussed in Section 2.1.3. Circuit delay increases

with lowered power supply and this may lead to functional as well as timing errors

in the system, which can translate to circuit behavior that is only approximately

correct. From a designer’s perspective this would be the same as an approximate

circuit that has some defects otherwise and produces functional errors within possibly

an acceptable range.
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The potential disadvantage to this method is that reduction in supply voltage

may cause intermittent functional errors that are not easy to quantify. There has

been research focused on ways to quantify and mitigate such errors that come from

supply voltage reduction, but the solutions usually come at the expense of runtime

and additional area.

For example, a technique named RAZOR is used to dynamically detect and

correct timing errors caused by dynamic voltage scaling [22]. The key idea behind

RAZOR is to tune the supply voltage by monitoring error rate during operation,

thereby eliminating the need for voltage margins. As shown in Figure 2.5, a RAZOR

flip-flop is introduced where pipeline data are double sampled, once with a fast clock,

and again with a time-borrowing delayed clock. A comparator, that is tolerant to

metastability then compares the two data samples and in case of discrepancy, uses

a misspeculation recovery mechanism to restate correct behavior for any circuit.

Figure 2.5: RAZOR implementation [22].
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2.3.2 Design-time approximation techniques

In more recent years, direct logical approximation has been studied as an alternative

approach, where designers intentionally introduce functional inaccuracies in their ap-

proach as a means of saving power or area. This approach is fundamentally different

from the aforementioned run-time approach where functional errors are introduced as

a by-product of not meeting timing specification. Today, most approximation work

on circuit design is done by deducing some sort of a ‘short-cut’ logical derivation so

as to reduce either circuit delay and/or area and power consumption. Arithmetic

functions such as adders and multipliers may also be approximated (for delay, area,

and/or power advantages) by making changes at the algorithmic, logic, or transistor

levels. Some of these methodologies are described in the subsections to follow.

Micro-architecture level approximation

Researchers propose data value speculation schemes as opposed to value prediction

schemes for use in processors [39]. Processors commonly use branch prediction to

speculatively execute instructions and while various schemes are used for branch

prediction, there are not many works on prediction and approximation of arithmetic

values. The authors discuss two basic designs for arithmetic approximating units,

using a ripple carry adder as an example, and ultimately include these modifications

on a MIPS architecture model. They design ‘incomplete’ adders for computation of

results earlier than the worse-case completion time, and study the effects of this on

the probability of errors, as well as design a ‘temporarily’ incomplete adder which

is clocked at a rate that will violate worst-case design. Same authors also consider

the use of these approximate adders and other execution units in speculative execu-

tion of instructions for possible enhancement in system performance by increasing
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instructions per cycle.

Similarly, approximation concepts have been applied to various stages of a su-

perscalar processor like execution, rename logic and issue logic, by implementing

approximate adders and Booth multipliers [51]. Similar approximation techniques

like implementing adder and multiplication logic for the average case situation rather

than worst case scenarios are used to save circuit delay and increase frequency.

Algorithm-level approximation

Approximation by reducing complexity has been explored in several works at the

algorithm level. Researchers have implemented an H.264 video encoder in software

and have instrumented a real-time scheme for determining computational complexity

[34]. A fast Mode Decision (MD) method is presented which reduces computational

complexity by simply adjusting and approximating some of the encoding parameters.

By defining a single quality loss metric based on both bitrate loss and distortion,

it is shown that complexity parameters can be dynamically tuned so as to achieve

faster encoding.

Other works have proposed a similar approximation for Motion Estimation (ME)

scheme used in H.264 /MPEG-4 encoding. A Run-Time Adaptive Predictive Energy

Budgeting (enBudget) scheme for energy-aware ME is presented that predicts energy

budget for different video frames and different Macroblocks (MBs) in an adaptive

manner considering run-time changing scenarios and available energy, video frame

characteristics, and user-defined coding constraints while maintaining a reasonable

computational accuracy [66].
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Figure 2.6: Error Tolerant Adder II from [79].

Logic synthesis approximation

Over the past few years, there have also been some work targeting approximation

at the logic synthesis or optimization level of abstraction. A fast adder is proposed

where for two n bit integers added, the longest sequence of propagated signals is

approximated as logn on average [83]. This approximation leads to inaccurate but

faster adders. A similar approximation scheme is presented where addition is per-

formed by splitting the input operands into two parts: an accurate part that includes

several higher order bits and the inaccurate part that is made up of the remaining

lower order bits as shown in Figure 2.6 [79]. While the accurate part performs normal

operation, the inaccurate sets of bits go under a parallel set of addition operations

where no carry signal is generated or taken in at any bit location, thus avoiding the

carry propagation delay. To minimize overall error, every bit position from left to

right is checked for the inaccurate part and if both input bits at that location are ‘0’

or different, normal addition is performed. However, if both input bits of a particular

portion are logic ‘1’, then the checking process is stopped and all output bits to the

right of that bit location are approximated to ‘1’. Therefore by reducing the carry

chain and performing addition in two separate parts, overall circuit delay is greatly

reduced.
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A common technique among researchers for generating approximate adders is set-

ting the carry bits across accurate and inaccurate segments to zeros. This approach

may have some weakness, however — using a constant ‘0’ as the carry-in at the cutoff

point of the critical path, leads to negatively-biased errors because ‘0’ is always an

underestimation of the carry-in bit. Similarly, using a ‘1’ produces positively-biased

errors because of over-estimation. The proposed solution is to take in the carry-in-

bit from the bit immediately before the propagate chain. If the inputs are random,

every bit has a 50% chance of being either a ‘0’ or a ‘1’ and ultimately an unbiased

additive result will be produced at the output [32].

Another approximation work proposed a 2×2 inaccurate multiplier, where its

logic functionality is altered by modifying the Karnaugh Maps (K-map) [43]. For

example, by representing the result of 3 * 3 using three bits (111) instead of four

(1001), it is possible to significantly reduce the complexity of the circuit, thus reduc-

ing area and power consumption. These changes are made with small probabilities

for larger output functions thus ensuring circuit correctness for the most part. The

authors show an area reduction of 50% could be achieved.

A similar logic synthesis approach has been proposed where approximate is done

by complementing some of the minterms in a logic function so that they can be

minimized using a K-map minimization technique [69]. This helps in reducing the

number of literals from the original minimum cover for a logic function and thus

reduces circuit area. A heuristic is developed to perform exhaustive search for one

or two minterms that can be complemented in a logic function description. About

9.43% literals could be reduced for a 1% error rate threshold using this approach.

In a slightly different approach, researchers first derive a Quality Constraint

Circuit (QCC) to formulate the problem of approximate synthesis [78]. The original
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circuit, approximate circuit and a Quality function, Q, form the QCC. The error

constraints that are to be satisfied for a successful generation of an approximate

circuit are encoded in Q. The QCC takes in primary inputs to the original circuit as

its own inputs. In the QCC primary outputs from the approximate circuit that do

not cause the Q function to report a ‘0’ are considered valid. The authors then try

to find out a set of input values for which the primary output of the approximate

circuit is unaffected, meaning it doesn’t change the Q function. These values are

called Approximate Don’t Cares (ADCs). By synthesizing the logic using the ADC

information without violating the Q function, acceptable approximations for logic

synthesis is derived. Power savings from 1.15×-1.75× for 1% accuracy degradation

and 1.3×-5.25× savings for a 20% degradation is reported, while area savings between

1.1×-1.85× and up to 4.75× is reported for similar tight and relaxed error constraints

respectively.

Gate-level approximation

Gate-level approximation techniques have been equally explored for approximation.

A “Lower-Part-OR-Adder” is proposed where a p bit addition is divided into m and

n bit additions where m + n = p [52]. As seen in Figure 2.7, from the p bits from

each operand for the adder, the m most significant bits are passed throughout a

conventional adder and the lower n significant bits are ‘added’ using an OR gate.

Essentially, by performing the bit-wise OR operation, the addition is underestimated.

Again, logic simplification this way leads to area as well as power savings. Use of

these imprecise adders in fuzzy and neural network fields work well enough for needed

computational accuracy at a much reduced area, power and delay cost.

In other work, researchers have redesigned data path modules using approxima-
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Figure 2.7: Lower-Part-OR-Adder from [52].

tion techniques in order to reduce circuit delay and increase manufacturing yield [20].

The idea is to accept a reasonable amount of error in the system, introduced by de-

sign, to increase yield of chips which would otherwise may have been ‘defective’. Es-

pecially chips containing data path modules are used in applications such as images,

video, audio, graphs, games, etc and are considered for approximation. Gate-level

simplifications such as simply transforming an AND gate to logic ‘0’ and transform-

ing a two-input X-OR gate to a two-input OR gates are done for approximation

purposes. These approaches are applied in synthesis of bigger ripple carry adders,

carry-skip adders, and carry look-ahead adders and reductions of up to 10.3%, 6.4%,

and 42% are achieved for delay, area and yield improvement respectively. Similar

approximation to adders where lower significant bits are truncated so that output

accuracy is not greatly affected is another idea discussed as ‘Sloppy Addition’ [4].

Transistor-level approximation

Approximation is also done by simplifying logic complexity at the transistor level.

A conventional mirror adder is simplified by reducing the number of transistors and

internal node capacitances and five different approximate versions are proposed to

ensure minimal errors in the full adder truth table [30]. These approximate full

adder cells are then used in larger implementations as building blocks of other DSP
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systems. Approximate adders, in the form of ripple carry adders and carry save

adders are used to replace their accurate counterparts for only the least significant

bits.

2.4 Improvements for Design Approximation

We have seen from the previous sections that design approximation is an emerg-

ing topic of interest in the research field. It has been studied at various levels of

abstractions with positive results in circuit delay, area and power consumption im-

provements. As signal processing, machine learning or data mining applications

continue to go through rapid development and grow to be much more complex and

power consuming, the benefits that these conventional methodologies can offer have

become somewhat limited. Hence the effort of circuit optimizations has been shifted

to exploring the possibility of multi-level approximate circuits or architecture-level

approximation [14, 78]. Nevertheless, these efforts are either confined to logic ap-

proximation either at the Boolean or gate levels or demand high application-specific

knowledge.

There truly is a lack of methodology that can work directly on the behavioral de-

scription of a circuit, without having to know any information about its functionality

beforehand. This is where our work becomes useful. We explore the possibilities of

circuit optimizations and smart design space exploration by looking at approximate

computing from an angle not explored before — working directly at the behavioral

level description of a circuit as an attempt to exploit higher-level transformations

and their potential positive effects on design metrics. The work proposed in this

thesis can be generalized to all circuits and will not focus on improving a particular

arithmetic unit or a particular data-path. It works rather at a much higher level
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of abstraction exploring opportunities to approximate arithmetic units, data-types,

circuit code structure, among others to generate scalable imprecise circuits while still

performing at a reasonable accuracy margin.



Chapter 3

Analytical Method for Fast Design
Space Exploration

In Chapters 1 and 2, we discuss the need for a fast way to do design space explo-

ration of hardware accelerators. We also present some of the analytical methods that

are used to do so. However, there are still unanswered questions about how these

models are chosen or how to accurately identify and define parameter sensitivities,

interactions and their impact on the final design objectives. In this chapter, we aim

at making the analytical modeling and parameter selection and weighing process

automated.

We turn our focus on FPGAs as our hardware accelerator platform; however, our

general approach is applicable to other accelerators as well. FPGAs are becoming

widely used in real-time image processing, which is used in surveillance, scientific re-

search, smart camera technologies and automotive industries [7]. Their reconfigura-

bility gives them an edge over other platforms when it comes to both prototyping and

implementation of algorithms involving high-throughput computation. We observe

that FPGA-based accelerators, especially those that are used for image processing

40
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Figure 3.1: Illustration of the idea of using regression based modeling for design space exploration
and finding important designs based on objectives and constraints. Each star on the graph on the
right represents a design variant and the dashed line represents the Pareto frontier. Designs shown
in dashed yellow boxes represent optimal designs given by the optimization framework while the
ones in blue represent the training set.

and similar applications, offer many algorithmic and hardware design parameters,

which when properly chosen, can lead to outcomes with the desired throughput,

power, design area and arithmetic accuracy. However, identification of the right

configuration of parameters to obtain optimal designs may not be an easy process.

While reconfigurability offers opportunities for fast and iterative prototyping, the

process to discover optimum design implementations can still be time-consuming if

every possible design point were to be physically synthesized and characterized.

We propose a fast design space exploration methodology possible on reconfig-

urable accelerator platforms. We demonstrate how such methodology can be used

to converge accurately and swiftly on design points that represent design optimality

across dimensions like design power, accuracy, area and throughput. The main ob-
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jective of this work is to be able to give the designers a faster and more efficient way

of automatically selecting the best configurations of the most impactful parameters

in a system.

A simplified illustration of our problem statement and proposed solution is pre-

sented in Figure 3.1, where we have a system with three design parameters: x, y

and z. The total design space for this system consists of any permutation of these

three design parameters. Each design dissipates power differently and has certain

arithmetic accuracy. Assume we are interested in figuring out which design gives us

the best trade-off between power and accuracy, i.e. we want to design an accelerator

that dissipates as little power as possible while its accuracy is still maintained at an

acceptable level. Toward that goal, we first identify accurate models for the design

metrics. Thereafter, to find the optimal design variants, we feed the results from the

predicted accuracy and power metrics from regression modeling into an optimiza-

tion framework. The optimization framework presents a subset of those variants

that create a Pareto frontier (dashed green line on Figure 3.1), where the frontier

points do not dominate each other in both accuracy and power, but dominate other

non-frontier points. The Pareto frontier points represent the optimal trade-off be-

tween arithmetic accuracy and power. It is up to the designer to pick from these

optimal designs (marked as dashed yellow boxes in the design space) depending on

the allowed accuracy and/or power budget. By doing all this automatically, we take

the guesswork out of the designer’s part and greatly reduce the time and resource

needed for an efficient design space exploration.

Before moving forward, let’s define some of the terms that are commonly used in

the discussion in subsequent sections.



43

1. Design metrics: Measureable output of a design such as area, power consumption,

throughput, and arithmetic accuracy.

2. Design parameters/variables: Adjustable design choices that can have various

configurations. Design choices can be at the algorithm level or at the hardware

architecture level.

3.1 Analytical Modeling of Design Metrics

To speed up design exploration, we propose to sample the large design space and

then use regression models and statistical inference from the samples to obtain ana-

lytical models that accurately describe the different characteristics of the system as

it pertains to power, area and throughput. In this way, our approach is similar to

that proposed in prior works [36, 47]; however, our specific applications are different.

To evaluate the design metrics for any combination of parameters, the models can

be queried with any possible values of the parameters involved. In the following sec-

tions, we will outline our model generation and validation methodology as well as the

optimization framework that uses these models to solve multi-objective optimization

problems.

3.1.1 Design Sampling and Characterization

Following DoE principles as discussed in Section 2.2.2, it is important to sample a

subset of the design space but in a uniform way to capture the essential features of

the design.We do this by selecting design combinations randomly from within the

design space. We incorporate possible minimum and maximum configurations of
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each of the parameters in our training samples so that we consider the full range of

the design space. In this way, the models output predictions that span the range of

possible designs such that our optimization framework can identify the configurations

that lead to optimal designs.

These sample combinations are implemented in the design and the resultant

metrics characterized from real measurements and/or from synthesis tool results.

3.1.2 Training Set Generation and Regression Analysis

The characterized results will help train the model generation process towards achiev-

ing accurate analytical models. To realize a statistical regression model, it is first

important to establish a relationship between each of the design parameters and

their power, throughput, area and arithmetic accuracy implications. Typically, with

an understanding of the sensitivity to each of these metrics, ad-hoc models can be

formulated using experimental observations. Let’s say a design metric y depends on

four different input parameters x1, x2, x3, and x4. A particular model could be used

to express the dependency of the output performance metrics on the various param-

eters.For instance, a linear model representing the relationship between these input

variables and the design metric is given by y = c0 + c1x1 + c2x2 + c3x3 + c4x4; a pure

quadratic model is given by y = c0+c1x
2
1+c2x

2
2+c3x

2
3+c4x

2
4+c5x1+c6x2+c7x3+c8x4;

and a quadratic model with interaction terms is given by y = c0 +c1x
2
1 +c2x

2
2 +c3x

2
3 +

c4x
2
4 + c5x1x2 + c6x1x3 + c7x2x3 + c8x1 + c9x2 + c10x3 + c11x4, where c0, . . . , cn are

coefficients that give the weights of each of the n terms in the model. Cubic and

interactive cubic models are similar to quadratic and interactive quadratic except

for the added degree in the model polynomial function
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To train the models and obtain the coefficients, the mathematical models are fit

to the measured samples using least squares estimation. Note that while the model

could be non-linear in its variables, it is linear in its coefficients. If k design space

points have been sampled, the design choice values are plugged into corresponding

variables in the model to get a design matrix X. For instance, if the chosen model

is y = c0 + c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4, then

X =



x1
2
|x1=a11 x2

2
|x2=a12 x3

2
|x3=a13 x4

2
|x4=a14 1

x1
2
|x1=a21 x2

2
|x2=a22 x3

2
|x3=a23 x4

2
|x4=a24 1

...

x1
2
|x1=ak1 x2

2
|x2=ak2 x3

2
|x3=ak3 x4

2
|x4=ak4 1



is the data set for different combinations of design variables, where aij is the value of

the jth term resultant from the algorithm-design parameter values at the ith sample

point. The k measured values for the desired objective y are set up in a vector,

y = (y1, y2, . . . , yk). Thus, the entire set of samples can be represented as

X


c1

...

c4

 + ε = Xc + ε = y,

where ε is a vector that gives the impact of non-modeled phenomena or noise on the

outputs of tool estimates and measurements. Then the model coefficients, ĉ, that

minimize the total squared error (i.e., ||y −Xc||2) is given by

ĉ = (XTX)−1XTy,
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where XT is the transpose of X.

3.1.3 Use of L-1 Regularization in Model Generation

While regression techniques like the one discussed above have been used by previous

works in design exploration, we identified a number of shortcomings:

• If there are interactions between two or more variables, a model derived from

merely the individual relationships between isolated design parameters and the

design metric would not be accurate.

• To capture the interactions between different algorithm and design parameters,

the designers might need to make educated guesses on the interactions between

the variables to identify the appropriate terms in the model. These educated

guesses are usually guided by design-of-experiment methods. In all cases, a

large number of models with different interaction terms are generated, trained,

and the closeness of each model to the measured metrics is evaluated.

To address this limitation and to automate the process of identifying the closest

model to the measurements, we propose the use of L1-norm based regularization. In

this case, we start with a model that captures all possible interactions between the

algorithm-design parameters. Then we can solve for ĉ by minimizing

||y −Xc||22 + λ||c||1,

where ||y − Xc||22 is the total squared error, and ||c||1 represents, the L1-norm or

the summation of the absolute value of all coefficients of c, i.e.,
∑n

i=1 |ci|. The mini-

mization of the L1 norm of c attempts to sparsify the coefficients c [41]. Coefficients
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that get relatively small numerical values indicate interaction terms that are not

important towards estimating the target metrics. By suppressing interactions or

features that are irrelevant to the model during training, we avoid the problem of

overfitting the model to the given training set of samples. Overfitting reduces the

accuracy of the model when queried with non-training samples. Alternatively, an L2

regularization approach could be considered where ĉ is solved for by minimizing

||y −Xc||22 + λ||c||22,

This approach however minimizes the L2 norm, essentially penalizing coefficients

with higher magnitude square terms more. This does not filter out the noise in a

model and keeps sparse features in the model selection process which may result

in model over-fitting. Using a regularization parameter λ, which penalizes all coef-

ficients equally, the unwarranted complexity of the design matrix that stems from

these irregularities can be reduced. With L1 regularization, if λ is zero, then the

c coefficients in the design matrix are not regularized. However, if we vary λ over

a range of values, the regularization process is able to suppress insignificant terms.

The coefficients at each λ are used to cross-validate the predicted model outputs

with a different set of measured values in order to compute the error for a design

objective. As shown in Figure 3.2, the λ which gives the smallest percentage error in

this process is the optimal value to be chosen for maximum suppression of irrelevant

terms. This makes the model generation process much more intelligent and removes

any guesswork on the part of the designer.
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Figure 3.2: Relationship between the error for a design objective and λ, least error observed from
coefficient set generated at λ = 17.

3.2 Multi-Objective Optimization Framework

Once the best model representing the design objective is obtained, we will be able

to:

1. Plug in different design parameters to estimate design metrics, with each design

metric (e.g., power, area, arithmetic accuracy) having its own model. The

scalability and accuracy of the design models can be controlled and smoothly

tuned by adjusting the number of samples for the model.

2. Incorporate the model into non-linear optimization formulations with an ob-

jective and under one or more model constraint(s). If a designer is studying

two metrics, say yA and yB, these formulations will enable him/her to carefully

design an architecture with focus on one or the other design variable, making

it more efficient in the direction of either objective.

Multi-objective optimization problems mentioned above can be solved using stan-

dard non-linear optimizing techniques, as presented in [10]. With an objective func-
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tion for yA (e.g, power) to be optimized under a constraint function yB (e.g., arith-

metic inaccuracy) bounded by constant M , our optimization could be expressed as

minimize yA(x) subject to yB(x) ≤M,x ∈ Rn

We solve this optimization formulation using interior point algorithms [26]. In

interior point methods, the constraint and the objective functions are first translated

into a single unconstrained problem using a logarithmic barrier function. Then the

optimal design parameters for the objective function are obtained by searching for

points where the gradient of the barrier function is zero, using first and second order

partial derivatives and a Lagrange multiplier.

We will specifically solve these multi-objective problems to identify the optimal

values for the algorithm and design parameters of our case study accelerator under

various power, area, and arithmetic accuracy objectives and constraints.

3.3 Test Cases

To evaluate our methodology we consider two cases of hardware accelerators that can

be and are used in a wide range of image processing and video analytics applications

— one for image deblurring and the other for block matching using sum of absolute

differences. Both accelerators were built in-house as a part of the research work

in collaboration with colleague Onur Ulusel. The accelerator implementations are

based on algorithms which involve high-throughput computation and processing of

High Definition (HD) or bigger image sets. More details on the algorithm themselves

and the accelerator architectures as well as the design parameters can be found in
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our previously published work [76]. A brief description is given in sections hereafter.

3.3.1 Image Deblurring

Image deblurring is performed by a filtering operation over the image, which is one

of the fundamental operations of image processing applications. The accelerator is

developed for deployment within a real-life image processing system mounted on

a unmanned air vehicle system for surveillance. The real-life setting of the accel-

erator has put tight requirements on its throughput, power, area, and arithmetic

accuracy, which motivated the need for our proposed modeling and multi-objective

optimization methodology.

The filtering operation in our implementation is performed as

ID(i, j) =
∑
k

∑
l

I0(i+ k, j + l)H(k, l),

where ID(i, j) and I0(i, j) are the deblurred and original pixel intensities at coordi-

nate (i, j) and H(k, l) is the deblur filter value at index (k, l). Our implementation

uses input (I0) and output (ID) images with 12-bit pixels and deblur filters (kernel)

of varied sizes and fixed-point bit-widths.

Our accelerator has a number of algorithmic and hardware design parameters, the

values of which determine its final metrics (e.g., power, design area, and arithmetic

accuracy). Parameters that are chosen by the designer are expected to have an

impact on the constraint metrics and thus their selection requires an understanding

of the inherent nature of the algorithm and the design (e.g., parameters that affect
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the number of critical resources in the hardware or the accuracy of the algorithm in

the software). However, the designer does not need to understand exactly how these

parameters may affect the design constraints. Our goal is to simplify the process of

selecting optimal parameters and interactions by enhancing the least squares based

modeling methodology by an L1 regularization process. L1 regularization, as we

have previously mentioned, suppresses irrelevant parameter and interaction terms

between them and selects only those that have an impact on the constraint metrics,

thereby highlighting design choices that may not have been obvious to the designer.

We chose two algorithmic parameters and two architecture parameters for our

exploration study for the image processing test-case. We used kernel bit-width and

kernel window size as our algorithmic choices and the DSP adder structure (and the

number of registers used to synchronize inputs between the adders) as well as the

running DSP block frequency as the tunable hardware parameters. As previously

mentioned, the testbench accelerator development was a collaboration between the

author and his colleague and implementation particulars can be found in greater

detail in previously published work [58, 76].

3.3.2 Block Matching

Similarly, a block matching algorithm was implemented on an FPGA platform to

accelerate the process of finding motion vectors between two frames of a video se-

quence and matching pixel blocks between the frames. Block matching is a sliding

window operation performed over video sequences and is commonly used in motion

estimation and video compression applications as well. Block matching partitions

a given frame into non-overlapping N×N rectangular blocks and tries to find the

block from the reference frame in a given search range that best matches the cur-
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rent block. The measure of similarity between the blocks is computed by Sum of

Absolute Differences (SAD). For our design, we perform full search block matching

over a search window in a reference frame to determine the best match for a block

in a current frame. The search for the best matching block is based on the search

criterion of minimum SAD.

We used this particular implementation as a platform for design exploration

as well. There were three algorithm parameters and two architectural ones. The

algorithm parameters included pixel bit-width length, search window size, and the

size of the non-overlapping rectangular blocks between the two frames. We studied

the number of processing elements (PEs) as the sole architecture parameter in this

particular implementation.

3.4 Experimental Results

Our hardware accelerator prototypes use a 40 nm Xilinx XC6VLX240T FPGA with

240,000 logic elements and 768 DSP blocks. Xilinx ISE Design Suite 12.4 is used for

physical synthesis and Mentor Graphics Modelsim 10.1b is used for functional and

timing simulations of the design. MATLAB is used for regression and optimization.

To evaluate our accelerator performance for the image deblurring system, we use a

number of sample images that are captured from the aerial vehicle platform. For

evaluation of the block matching architecture, results are computed using sample

video sequences obtained online [1]. The design metrics are estimated as follows:

• Throughput: For the deblur design, throughput is measured as the number of

pixels deblurred per cycle. In all our design variants, we ensure the design meets
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an operating frequency of 125 MHz and 8 pixels/cycle deblur. We relax this

limitation for the block matching algorithm and make throughput a variable

that depends on design parameters. Throughput for this particular example is

measured in terms of frame rate — how many 720p HD frames we can perform

block matching on, per second.

• Area: Area for the deblur example is measured by the number of DSP blocks

used by the accelerator, since DSPs are the most critical resource. For the block

matching architecture, since DSPs are not used, we measure the area metric

using total number of look-up tables (LUTs). Each logic element in the FPGA

used is composed of 8 registers and 4 LUTs. For purpose of uniformity, we

convert the number of registers to equivalent LUTs and use the total number

of LUTs as our measurement for area of the design.

• Accuracy: To estimate the accuracy of a particular deblur accelerator variant,

we compute the mean square error (MSE) between a sample image data and its

deblurred result from the accelerator. The MSE is the average of the squared

differences between the image pixels and its deblurred result as produced from

the accelerator variant. In the case of the block matching algorithm, we use

MSE between reference block and the current block relative to the results ob-

tained from the base implementation: 32×32 window size, no pixel truncation

and 64 PEs.

• Power: To estimate the power dissipation of the accelerator, we followed two

approaches. The first approach uses Modelsim on the routed design to esti-

mate signal activity and then provides this result to the Xilinx XPower tool

to estimate power. The second approach measures the incremental power con-

sumption of our prototype board directly using an external digital multimeter

(e.g., Agilent 34410), where the incremental power is the difference between
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the reset state power and the execution state power of the design. The first

approach estimates true power dissipated by the architecture only, while the

second approach accounts for all the additional system power (e.g., FPGA and

memory) that is associated with the computations of our accelerator. The in-

cremental system power is the real cost that the end user incurs. For variation,

we use the XPower results with our block matching architecture analysis and

the board results for the deblur architecture. Consistency within each example

ensures the validity and accuracy of our methodology is not compromised.

3.4.1 Modeling Results

Image Deblurring

For the image deblurring accelerator, we implement the design parameters as men-

tioned in Section 3.3.1. We use factors of 1, 2, and 4 for time-division multiplexing

which correspond to a DSP clock frequency of 125, 250 and 500 MHz. The ability to

implement time-division multiplexing for the data stream feeding into DSPs is what

essentially allows them to run at up to 4 times the system frequency. We quantify the

DSP adder structure by using what we call pipeline depth. A DSP pipeline depth

is calculated by dividing the total number of DSPs used in all pipeline blocks by

the number of blocks used. We make four different choices of average DSP pipeline

depths between 3.3 and 11.5, each representing a unique arrangement of the DSPs to

perform a multiply-accumulate operation. For kernel bit-width, which are originally

represented as 18 bit signed fixed point coefficients, we vary the parameter from 8

bits to 18 bits. We also pick four random kernel sizes between 5×3 and 13×7. The

combinations of parameters create a design space with 3 × 8 × 11 × 45 = 11,880

possible design points that potentially lead to different accelerator design variants.
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Figure 3.3: Error percentage of power model over explored design space percentage.

Full physical synthesis (which includes placement and routing) of a particular

accelerator design takes about two hours on our quad-core based system, which

puts limitations on the ability to execute a brute-force exploration of all accelerator

variants. This motivates the need for fast design space exploration and optimization.

To obtain our samples, we fully synthesize and implement 50 deblur accelerator

variants with different parameter permutations; i.e., we only sample 50
11880

= 0.42% of

the entire design space. As outlined in Section 3.1.1, these design points are selected

randomly across the entire design space with the condition that the minimum and

maximum configuration for each parameter is used at least once. This guarantees

that any data point estimated by our predictor lies within the space covered by the

training set, and that the training set is representative of the entire design space.

We first analyze the closeness between the results of different regression models
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for power, area, arithmetic accuracy, and throughput against the measurements we

obtained from our samples. We show the comparison of the accuracies of the models

as an illustration of how our approach stands against traditional regression models

(linear, quadratic, etc.). All these models without L1 regularization have similar

run times (i.e., less than 0.2 seconds). The additional step of finding the right λ

parameter that minimizes the prediction error in the L1 regularization methodology

involves searching from a range and trying out all possibilities before a specific value

is chosen. In our approach, we varied λ from 0.0001 to 1000 and randomly picked

25 values within this range. Of these 25 values, we chose the one that leads to the

lowest error. This whole process took about 25 mins; however, it should be noted

that this a one-time overhead required for accurate model generation. Once the

model is derived, the process of physically implementing and synthesizing a design

can be eliminated — thus allowing for what would take two hours to be completed

in less than a second.

To train and evaluate the aforementioned model, we split our samples into two

subsets: a training subset is used to learn the model parameters, and a query subset

is used to validate the closeness of the model to the true measurements by taking the

average absolute error between the model predictions and the actual measurements.

For evaluation of the results, we follow the repeated random sub-sampling validation

methodology [42] and repeat our training and query set selection 100 times so that

any training bias is eliminated. For the purpose of this particular implementation,

we randomly chose 35 samples as training and the remaining 15 as query for each

iteration. Evaluation of predicted values from the model is validated by averaging

over these 100 runs.

To gain further insights into the effectiveness of various models, we evaluate the

relation between the mean error generated by the different models as a function
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Figure 3.4: Sensitivity of different parameters over the power estimation for the deblurring test
case.

of the training subset size. For example, we plot the results for the power model

used in the deblur example in Figure 3.3. The plot shows that the model obtained

using L1-regularization requires a slightly larger training set to stabilize due to the

presence of higher order terms. However, it performs better and stabilizes after a

certain percentage of the design space is explored for both accelerator setups. This

stability is reached after exploring 0.3% of the design space.

The model coefficients obtained from L1-regularization reveal the impact and

significance of different algorithm-design variables on the final outcome of his/her

design. However, because of the presence of quadratic terms and interactions, nu-

merical comparisons are not straightforward. To carry on an accurate evaluation,

we evaluate the sensitivity of the L1 model to different variables using a response

model tool. We plot the results, again as given for the power model for the deblur

example in Fig. 3.4. The solid line represents estimated power for each parameter

variation, given that all other parameters are kept constant. The dotted lines show
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the 95% prediction bands for the power value estimated, showing that if the predic-

tion was repeated with different samples, the estimated value would lie within the

range specified 95% of the time.

Sensitivity analysis pertaining to each parameter can help the designer under-

stand important parameter impacts on the design. In the case of the deblur test-case,

it can be inferred from the picture that average DSP pipeline depth has the highest

sensitivity on power dissipation as the power values vary the most for this param-

eter. The trend observed for DSP pipeline depth reflects the trade-off obtained by

varying the parameter as the smaller pipeline depths requires larger DSP groups to

perform the same number of computations with fewer delay registers for synchroniza-

tion. Therefore both small and large DSP pipeline depths benefit from this trade-off

from different ends in terms of power. The time-division multiplexing factor affects

power the most after average DSP pipeline depth, followed by kernel bit-width and

17
.5
6%

	
  

22
.5
5%

	
  

14
.7
6%

	
  

14
.2
5%

	
  

7.
48
%
	
  

16
.2
3%

	
  

19
.6
9%

	
  

2.
52
%
	
  

3.
22
%
	
  

2.
38
%
	
  

9.
22
%
	
  

9.
83
%
	
  

11
.0
8%

	
  

10
.7
2%

	
  

9.
22
%
	
  

0%	
  

5%	
  

10%	
  

15%	
  

20%	
  

25%	
  

linear	
   interac6on	
   quadra6c	
   purequadra6c	
   l1-­‐regularized	
  

M
ea
n	
  
Er
ro
r	
  %

	
  

Model	
  Fits	
  

Power	
  Model	
  

Area	
  Model	
  

Accuracy	
  Model	
  

Figure 3.5: Comparison of mean error percentage using different model fits for power estimation,
area and arithmetic accuracy models for the image deblur algorithm.
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size, which have similar impacts as time-division multiplexing. Time-division mul-

tiplexing has a quadratic relationship with respect to power which is caused by the

trade-off between the number of DSPs used and their running frequencies. Lower

values require more DSPs, while larger time-division multiplexing factors require

fewer DSPs running at higher frequencies. As expected, kernel bit-width has a lin-

ear interaction with power, since larger complexity in pixel arithmetic always results

in higher power dissipation. Kernel size also has a quadratic relationship with power

and power saturates for very large kernel sizes. The sensitivity results also align with

the individual trends we observed in our measurements.

The estimation accuracy of the different models used for power, area and arith-

metic accuracy metrics is given in Fig. 3.5 for a training size of 36, 9, 23 samples.

The results show that the models obtained from L1 regularization outperform other

models.

Block Matching

A similar experiment with the block matching algorithm gives us better results for

modeling done with L1-regularization. Given the fact that the L1-regularization

process sparsifies the model and just keeps relevant parameters and interactions,

results come out expectedly better than using other models. As seen in Figure 3.6,

regularized models are superior and predict closer values to XPower generated data

for all metrics (power, area, arithmetic accuracy and throughput) than any other

model tried. Again, details of the implementation and the modeling results can be

found in out previously published work [76].

L1-regularized model coefficients provide insight to the interaction of defined pa-

rameters with the constraint metrics.This demonstrates the usefulness of our method-
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Figure 3.6: Comparison of mean error percentage using different model fits for power estimation,
area and arithmetic accuracy and throughput models for the block matching algorithm.

ology at automatically detecting the combined effects of parameters on design con-

straints without relying on user input.

3.4.2 Multi-Objective Optimization Results

The mathematical models obtained through L1 regularization enable us to create a

numerical optimization framework to optimize the accelerator designs with respect

to certain selected metrics while imposing constraints on other metrics. These chosen

metrics and their values are selected to optimize the design within the specifications

of its target deployment.

We consider four optimization formulations, two each from either test appli-

cations: (1) optimizing the deblur design’s power under accuracy constraints; (2)

optimizing the deblur design’s area with a given power budget; (3) minimizing the

block-matching architecture area under accuracy constraints; and (4) optimizing the

block-matching design’s area under throughput constraints.
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Minimizing deblur design power under accuracy constraints We set up the

objective function to be equal to the mathematical model for power obtained from L1

regularization, and similarly we set a constraint function based on the mathematical

model of arithmetic accuracy. We experiment with setting different accuracy values

over a range. For each constraint value, we solve the numerical optimization problem

as discussed in Section 3.2 using MATLAB. The results from our experiments are

given in Figure 3.7, where we plot the resultant power of the system as a function of

arithmetic accuracy. We label solution points with the identified design parameters.

The results from the numerical optimization are intuitive as they show that relaxing

the accuracy constraint leads to reduced power dissipation. While it is impossible

to verify the optimality of these implementations without brute-force exploration,

we show high fidelity of our optimization results by implementing the designs with

the identified optimal parameters and evaluating their actual measurements. The

dotted red line in Figure 3.7 gives the results from the actual implementation strongly

indicating the validity of our optimization framework.
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Figure 3.7: Trade-off between power and accuracy of the deblur system.
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Minimizing deblur design area within a power budget In this second formu-

lation we use the mathematical model for the design area as an objective function,

and use the power function as a constraint. The area for the deblur design is defined

by the number of DSPs used and the model does not necessarily apply to the rela-

tionship between logic elements and power. We use different numerical values over a

range for the power constraint. We plot the results in Figure 3.8. The results from

numerical optimization show the trend that minimum number of DSPs reduces as

we relax the allowed power threshold. Although achieving a reduction in area re-

sources at the cost of increased power is not intuitive, the impact of the average DSP

pipeline depth makes it possible. In this particular case, all the design parameters

other than average DSP pipeline depth are aligned with their corresponding global

minimums. An increase in average DSP pipeline depths implies using fewer DSPs,

at the cost of additional synchronization registers, which results in increased power

dissipation compared to having smaller average DSP pipeline depth. For Figure 3.8,

the number of slice registers used ranges from 8812 to 7786 while the number of
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DSPs ranges from 102 to 108. While the total number of DSPs is based on both

the time-division multiplexing factor and the DSP pipeline depth, it is seen that

the minimum number of DSPs becomes solely a function of average-pipeline depth

for the given range for power. We also evaluate the measurements obtained from

implementing the identified optimal designs and plot the results by the dotted red

line. The results again show a high-fidelity trend as the results from our optimization

formulations.

Minimizing block matching area under accuracy bounds Here, we use the

area model for the block matching implementation as the objective function and try

to constrain it under a range of accuracy bounds. We vary our error in the system

from 0 to 0.1 relative MSE and observe the minimum area values we can achieve

for these constraints. As shown in Fig. 3.9, we see that minimum area required

for the design increases as we make accuracy requirements tighter. To achieve more

accuracy, the design requires more area because of minimal or no pixel truncation.
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The predicted results from the optimization formulation again align with the actual

area results of the designs and show high fidelity.

Maximizing block matching arithmetic accuracy given throughput con-

straints For accuracy under throughput constraints, the optimal solution is inde-

pendent of throughput and hence we get a constant minimum solution for arithmetic

accuracy at varying ranges of minimum throughput set for the system. This makes

sense just intuitively because throughput, which is associated with speed of com-

putations is unrelated with the accuracy of computations. The predicted minimum

error of 0.0297 is always close to the theoretical minimum of 0 relative MSE.
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3.5 Summary and Discussion

In this chapter, we explored the idea of using analytical modeling for design metric

characterization and prediction to be able to facilitate fast and accurate design space

exploration for hardware accelerators. We tested and demonstrated the validity of

our idea on two test cased implemented on an FPGA platform. The reconfigurability

of various parameters and the options they provide can lead to tens of thousands of

possible design implementations and choosing an optimal one without a methodical

process may be time-consuming. We have shown that by using regression modeling

and some machine learning techniques, we can accurately predict design metrics such

as area, power, throughput of a design, while sampling less than 1% of a vast design

space, and thus significantly cut down on exploration time. More importantly, we

have demonstrated that the use of L1 regularization gives us key benefits in establish-

ing the relevance and impact of the various parameters within a design. Compared

to previous regression techniques proposed in the literature, L1 regularization brings

about the following benefits:

• L1 regularization enables automatic discovery of the accurate mathematical

dependencies between the variables and the desired model outcome with no

need for guesswork from the designers. This accurate dependency results in

improved closeness between the results of the model and the actual measure-

ments.

• L1 regularization together with sensitivity analysis enables designers to assess

the relative impact of different changes in design variables on the final outcome,

which can help designers focus their design optimization efforts.
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These benefits of automated model generation and the resulting closeness of our

models to the measurements enables us to use this model to query directly for non-

sampled design points attaining a dramatic speed-up in design space exploration.

Since a full synthesis, place and route execution for our deblur design takes two

hours, and our model achieves its least error using only 35 samples (0.3%) of the full

11880 points design space, our L1 based model is able to achieve approximately a

340× speedup in design exploration with estimation errors of 7.48%, 2.38% and 9.22%

for power, area, and accuracy respectively. With the block matching algorithm, we

use only 18 samples from the entire design space for training, so our speedup is

approximately 90×. We report speedup for both examples as the ratio of the time it

would have taken to implement and synthesize the entire design space to the time it

takes to implement and synthesize only a few sample points for training and query.

The non-linear optimization framework implemented in MATLAB after the models

are generated for each metric takes about 0.1 seconds to run and is almost negligible

in comparison to the runtime taken for synthesis of the designs.

Thus, our mathematical models enable us to substitute the entire physical syn-

thesis and simulation flow and estimate directly the final accelerator metrics as a

function of different algorithm and hardware design parameters with speed and ac-

curacy. In addition to this, the experiments and methodology presented in this

chapter also open up newer avenues in the direction of design space exploration.

We made use of some tunable algorithmic parameters that directly impacted com-

putational accuracy of a design. In Chapter 4, we will present an idea of using

computational accuracy as a modifiable design parameter in order to realize designs

that are significantly better in terms of their area and power consumption.



Chapter 4

Design Space Exploration using
Behavioral Synthesis of
Approximate Circuits

In the previous chapter, we presented an approach for design space exploration using

analytical models for estimating design metrics such as area, power, thoughput.

These models were derived by first selecting only a small number of samples from

the vast design space and then using statistical inference and regression analysis

to converge onto accurate characteristic models. What we noticed during these

experiments was that for a certain class of applications (i.e.,multimedia, graphics,

computer vision and signal processing), algorithmic accuracy could be used as a

design choice as well. Since these applications have some inherent error tolerance,

adjusting the algorithm accuracy may be acceptable if it is within a certain error

margin as was discussed in Chapter 2.

In this chapter, we will discuss ways in which we can manipulate computational

accuray in various circuits and systems and leverage an algorithm’s tolerance to

output error to perform design space exploration in search of optimal designs. More

specifically, we will study the idea of approximate computing as a means to create

67
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circuit and system designs that perform within an acceptable range of accuracy and

yet show significant savings in power consumption and area footprint.

As discussed in Chapters 1 and 2, our methodology of creating approximate

variants of circuits directly from their behavioral RTL descriptions is the first of its

kind. Working on thhe higher level abstractions has its benefits — the designer does

not have to be familiar with the Boolean, gate, or transistor level implementations

of the ciruits. The appproach also allows for a higher-level view of transformation

and approximation that may have otherwise been missed by the designer. Given

these merits, our approach to using approximate computing as a design exploration

tool is appropriately called ABACUS, for Automated Behavioral Approximate Ciruit

Synthesis.

4.1 Behavioral Synthesis Flow

We discussed in Chapter 2 how most existing circuit approximation techniques aim

at generating approximate variants for standard sub-circuits (e.g., adders), given

their Boolean descriptions, or through manual modifications for specific applications

(e.g., DSPs). In contrast, we aim to generate approximate circuit variants for any

system from its high-level behavioral description.

In a basic design flow, the behavioral or register transfer level (RTL) code is first

generated by the designers from the design specifications. The code is then simulated

functionally using a number of representative testbenches and the simulation results

are evaluated to verify correctness of operation. The code is then compiled and

synthesized to a netlist using a design compiler, which also takes as input a standard

cell library for ASICs or the look-up table and cluster architecture for FPGAs. The
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Figure 4.1: Incorporation of ABACUS within standard design flows.

netlist is afterwards placed and routed to get the final area, timing, and power

metrics. We integrate ABACUS with traditional ASIC/FPGA flows but instead

of synthesizing a single exact code, multiple approximate code variants are also

synthesized at the RTL/behavioral level. As illustrated in Figure 4.1, these variants

are pushed through the standard design flow, and the approximate outcomes are

compared with the original exact design in terms of functional accuracy and hardware

design metrics such as power, area and timing. The evaluated outcomes are then

plotted and a Pareto frontier is computed to identify the approximate designs that

give the optimal accuracy-power trade-off.

To achieve our goal of generating approximate behavioral variants, we propose

(i) to capture the exact RTL or behavioral hardware description language (HDL)

design in an Abstract Syntax Tree (AST) structure; (ii) create the approximate
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design variants through transformations to the AST; and (iii) finally write back the

modified AST into readable RTL or behavioral HDL design. The new approximate

design is then pushed through the standard ASIC/FPGA flow for evaluation in terms

of accuracy and other design metrics. The AST is a convenient intermediate format

to work with as we apply approximations directly on the design and allows us to

easily go back and forth between a modifiable data structure and readable RTL

code.

4.1.1 RTL Parsing

An integral part of doing high-level approximate circuit synthesis is our approach

to take in an RTL convert it to a manipulative data structure(s). Approximations

are done over this data structure and the final results are read out in the form of

readable RTL itself. This is all done by capturing the behavioral description or the

RTL into what is called an AST. AST conversion is an important step that allows

our approach to be efficient in time, and coverage. The entire transformation process

is shown in Figure 4.2.

original exact 
design description 

AST modified AST approximate 
design description 

Figure 4.2: Overall methodology of ABACUS.

In an AST, each node represents an action to be taken by the behavioral code, or

an object to be acted upon [56]. Building an AST for a HDL syntax automatically
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captures all the concurrency that is in the design. Compared to a regular parsing

tree, the AST captures the logical structures of the statements and shows less of the

grammar structure, which makes it a better candidate to analyze and transform the

code. Compared to control flow graphs, ASTs are easier to use to produce readable

code.

Nodes in an AST are created out of the RTL or behavioral-level semantics. The

graph structure that is composed represents the semantics of the behavioral language

and not actually any inherent data/control dependencies. Consider the following

Verilog code for an adder:

always @(posedge clk)

begin

out <= in1 + in2;

end

Such a syntax tree, allows us to easily make transformations that may reflect

approximation of a circuit. For example, we can approximate the adder shown

in Figure 4.3, by replacing the add operation by bitwise-OR operation. An adder

inherently has an XOR functionality with added capabilities for carry generation and

propagation. XOR is probabilistically very similar to an OR gate. It can therefore be

expected that an adder changed fully or partially (only some bits) to a bit-wise OR

operation may produce a reasonably accurate result(depending on the application),

but at a lower cost for area and power consumption.

The adder to bit-wise OR transformation at the syntax tree level would produce

an AST as shown in Figure 4.4. The RTL code from this tree would then be regen-

erated as:
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ALWAYS 

DELAY CONTROL 

POSEDGE 

IDENTIFIERS:clk 

BLOCK 

NON_BLOCKING ASSIGNMENT 

BINARY_OPERATION:ADD 
 

IDENTIFIERS:out 

IDENTIFIERS:in1 IDENTIFIERS:in2 

Figure 4.3: Example AST created out of a simple vVerilog code for an adder.

always @(posedge clk)

begin

out <= in1 | in2;

end

The initial front-end parsing of the RTL to an AST is done using an open-source

tool called ODIN-II [35] which is primarily written in C with additional parser/-

compiler tools like Lex, Yacc, Flex and Bison. We added all of the tool’s backend

capabilities to perform RTL transformation and regenerate the modified approximate

circuit as readable synthesizable RTL.

The result is a novel tool that can read behavioral/RTL code, modify it to approx-

imate the underlying circuit representation and produce this new version in readable

behavioral format. The novelty in our ABACUS approach allows us to make au-

tomated transformations to any generic HDL design without the need to have any

a priori knowledge of the functionality or the semantics of the design. Hence, a
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ALWAYS 

DELAY CONTROL 

POSEDGE 

IDENTIFIERS:clk 

BLOCK 

NON_BLOCKING ASSIGNMENT 

BINARY_OPERATION:BITWISE_OR 
 

IDENTIFIERS:out 

IDENTIFIERS:in1 IDENTIFIERS:in2 

Figure 4.4: Example AST showing change from an adder to a bit-wise OR operation.

much broader range of transformations can be explored at the high level, leading to

a superior design compared to prior approaches.

4.1.2 Generating HDL-based Approximate Transformations

Since our technique works directly at the behavioral level, it is important to under-

stand what kind of transformations are possible and how these transformation may

affect circuit accuracy. Here, we present a set of transformation operators that can

be applied to the original HDL-based AST to yield meaningful approximate designs

for error-resilient applications. As described in Section 4.1.1 , whenever any of these

transformations is invoked, ABACUS automatically traverses through the AST and

searches for places in the AST where the change could be applied. We propose and

implement the following five transformation operators in ABACUS:

1. Data Type Simplifications: For applications dealing with massive data, trun-

cating the size of intermediate signals may be a good way to achieve power, delay

and/or area savings, since it reduces the requirements for the underlying hardware,
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especially for fixed-point arithmetic operations. ABACUS is capable of performing

truncation in two ways: first, by setting a number of the least significant bits to zero,

and second by truncating a certain number of significant bits for operands during

binary arithmetic operations and then shifting the result of the operation to get the

approximation. The latter transformation yields more significant power and area

savings. An example of this kind of simplification would be:

out <= in1 + in2;

transformed to:

out <=in1 + {in2 [7:3], 3’b000};

FA	
   FA	
   FA	
   FA	
   FA	
   FA	
   FA	
   HA	
  

FA	
   FA	
   FA	
   FA	
   HA	
  

in1[7] in1[6] in2[5] in1[4] in1[3] in1[2] in[1] in1[0] 

in2[7] in2[6] in2[5] in2[4] in2[3] in2[2] in2[1] in2[0] 

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[0] 

out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[0] 

in1[7] in1[6] in1[5] in1[4] in1[3] 

in2[7] in2[6] in2[5] in2[4] in2[3] in1[2] in1[1] in1[0] 

Figure 4.5: Illustration showing how truncation can reduce hardware complexity of an 8-bit adder.
FA represent full adders and HA represent half adders.
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What effectively happens here, as seen in Figure 4.5, is that the adder shrinks

by three bits. If in1 and in2 are both eight bits, the original statement when syn-

thesized would be represented as an array of seven full adders and a half-adder for

the least significant bit. When the bit-truncation is applied on the last three bits,

the statement synthesizes as three full-adders for the most significant three bits, and

one half-adder for the fourth significant bit. Since in2 is truncated by three bits, the

three bits of in1 will be directly registered at the output register at its least three

significant bit locations. This shrinking of the adder directly impacts circuit area

and power.

2. Operation Transformations: We may choose to substitute an arithmetic

operation with one or more arithmetic operations that use less power and hardware

area. For example, arithmetic additions could be replaced by bitwise ORs as shown

in Section 4.1.1, or a multiplication could be replaced by shifts and an addition

or by simply addition. Also, a standard adder or multiplier could be replaced by

an approximate unit from the ones proposed in the literature [32, 4, 30]. Thus,

our behavioral-based approach can easily leverage approximate Boolean arithmetic

circuits. One example of an operator transformation could look like:

out <= in1 * in2;

transformed to:

out <= in1 + in2;

which could go through further transformation as:

out <= in1 | in2;
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3. Arithmetic Expression Transformations: There are cases where near similar

arithmetic structures appear in the same statement description. Through a trans-

formation, these near-similar structures could be transformed to similar structures

so that they may be shared and simplified. For instance, we can approximate the

expression

(w_i * x_i) + (w_j * x_j)

with substitutions to the variables or the constants, such as substituting xj by xi

leading to

x_i * (w_i + w_j)

or substituting wj by wi leading to

w_i * (x_i+x_j)

thus saving one multiplier. We can simplify computations by sharing common or

similar operands and get good approximations. We can also delete or swap some of

the AST nodes to get newer or smaller arithmetic expressions that could potentially

lead into smaller sub-circuits than the original one.

4. Variable-to-Constant Substitution Transformations: Simulation results

of the original design contain useful information about the numerical characteristics

of the design variables. This information can guide the transformation operations.

For instance, if an intermediate variable derived from a certain arithmetic operation

appears to be a constant or has a small standard deviation in the simulation results,
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then we can substitute it with a constant based on its average value, thus saving

unnecessary computation. ABACUS implements this feature by reading simulation

results from the original exact design to identify design variables that are constant

or are within a 10% standard deviation. These design variables are candidates for

substitution by a constant based on their simulation results.

5. Loop Transformations: ABACUS automatically unrolls loops in behavioral

descriptions. Loop unrolling is typically used as a compiler transformation tech-

nique; however, in our case we use automatic unrolling in the pre-compiler phase of

the behavioral description of an algorithm. By unrolling loops, we uncover instances

where we may be able to apply operator and/or data-type simplification transfor-

mations. In addition, the unrolling can be done in an approximate way by skipping

certain iterations and substituting the outcomes of these iterations from the results

of prior iterations. A simple example of loop unrolling is given below:

sum[0]=result[0];

for (i=1; i<=5; i++)

begin

sum[i] = sum[i-1] + result[i] ;

end

transformed to:

sum[0] = result[0];

sum[1] = sum[0] + result[1];

sum[2] = sum[1] + result[2];

sum[3] = sum[2] + result[3];

sum[4] = sum[3] + result[4];

sum[5] = sum[4] + result[5];

which now allows for futher transformation such as:
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sum[0] = result[0];

sum[1] = sum[0] + {result[1][7:3], 3’b000};

sum[2] = sum[1] + result[2];

sum[3] = sum[2] + result[3];

sum[4] = sum[3] | result[4];

sum[5] = sum[4];

4.1.3 Effective Design Space Exploration

Application of the proposed transformation types can lead to a combinatorial ex-

plosion in possible approximate design variants — there are multiple transformation

types possible, and each operator can be applied at several locations. Also, the

AST resultant from one set of transformations can be used as input for another set

of transformation in what can be a series of additive transformations. A permuta-

tion/combination and the addition of all these possible transformations can result in

tens of thousands of possibilities to choose from for identifying optimal designs. To

effectively explore and identify the Pareto frontier of optimal trade-off designs, we

propose the following iterative stochastic greedy algorithm that continuously evolves

the approximate designs by doing multiple iterations of transformations to identify

the Pareto frontier that gives the optimal trade-off between accuracy and power.

Algorithm Approximate Design Space Exploration

Input: original exact design

Output: approximate design variants

1. Let O1 = original design

2. while i ≤ N

3. while j ≤M

4. do pick a transformation operator at random;

5. apply the operator to Oi to yield Aj;
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6. evaluate accuracy of Aj over input data sets

7. if accuracy of Aj is within threshold

8. then

9. synthesize Aj;

10. V = V ∪ Aj;

11. Use results from Steps 6 and 9 to evaluate the fitness, Fj,

of Aj;

12. else goto step 4;

13. identify Ak, k ∈ {1, . . . ,M}, with best Fj;

14. let Oi+1 = Ak;

15. return V

We couple a simulation and a synthesis tool with ABACUS to evaluate accuracy

and design metrics respectively. The algorithm goes throughN iterations, where each

iteration attempts M transformation operators. In steps 4-6 above, a transformation

operator is picked at random with some probability and applied to the current design

and the results are evaluated for accuracy. Accuracy of an approximate design is

averaged over a number of input training data sets. Approximate designs still need to

retain a minimum accuracy threshold for all input training data sets. If the average

accuracy measure meets an accuracy threshold then the design is considered a valid

variant and passed on to the synthesis tool in Step 9. The accuracy threshold is

pre-set to filter out bad design variants from the good approximate ones. A design

with accuracy less than this threshold will not be synthesized and is not further

considered for use with the tool. Using the accuracy results from Step 6 and the

synthesis results from step 9, the design variant is evaluated for fitness, which is

defined as

fitness = α× accuracy + (1− α)× power (4.1)
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In step 13, all M variants are ranked and the design with the highest rank for fitness

is used in the subsequent iterations as the parent design for transformations as given

in Step 14. ABACUS repeats these generations of transformations greedily to get

the best area and power saving results withing the prescribed accuracy constraint

until it reaches the defined limit for number of generations.

Whether an operator transformation is applied or not is dependent on a prob-

ability function to ensure no bias towards a particular operator. Furthermore, for

a given operator, the location where an operator is applied is also randomized with

a probability to ensure no bias towards a particular location. Thus the sequence of

applied transformations is stochastic in nature. During the iterative greedy proce-

dure, ABACUS keeps a log of accuracy, area and power values of each design variant

used along the way. A wide range of optimal designs at various accuracy and power

savings can be obtained in this manner and help in creating the Pareto frontier for

tradeoff between accuracy and other metrics. The designs that pass the final gener-

ation of mutations are also ranked for fitness; the highest ranked design represents

the behavioral description that has the lowest cost in terms of power dissipation and

area utilization while still meeting accuracy constraints.

Our methodology avoids explosive design space exploration by constricting the

design choices using a greedy heuristic. If every variant generated per generation

were to be used as an originating design for further design transformations, the run-

time needed for a full evaluation would increase with the number of generations as

a geometric series. Lets say, there are N iterations and M designs per generation.

This would mean that without the greedy approach, the number of designs to be

used as transformation seeds would increase as M0 +M1 +M2 +M3 + ...+MN , or

mathematically, (1−MN+1)
(1−M)

. With ABACUS, the number of designs increases linearly

with N so the final number of designs to be used for exploration would be MN . The
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speedup in runtime would hence be (1−MN+1)
MN(1−M)

. So for 20 iterations with 5 variants

per generation, the speedup would be about 1.2× 1012.

4.2 Test Cases

We instrument our approximation techniques in three test-cases representative of

three different domains that are amenable to inexact computing. We have a finite

impulse response (FIR) filter implementation from the signal processing domain,

a perceptron classifier from the machine learning domain and a Block-Matching

algorithm that is extensively used in computer vision and graphics. These test-cases,

which are all written in Verilog HDL, are described in more detail hereafter.

1. FIR filter: We implement a 25-tap FIR filter that takes in an audio signal and

convolves it with a low-pass filter coefficient array, essentially creating a 1-D filtering

effect. The quality of an approximate version of this design is assessed using Mean-

Squared Error (MSE) on the amplitude of the audio signals generated. The MSE for

the original FIR filter circuit is computed with an 16-bit sign-extended fixed point

coefficient and image input compared against a floating point implementation done

in software.

2. Perceptron Classifier: A perceptron classifier is a commonly used application in

machine learning. A perceptron takes an input data, denoted by vector x, and pre-

dicts the class (e.g., -1 or +1) of x by computing sign(wTx), where w is the weight

vector and sign(·) is a function that outputs 1 if its argument is positive and -1 oth-

erwise. The perceptron essentially defines a hyperplane to separate the training data

into two classes. Perceptrons are also capable of classifying non-linearly separable

points by mapping the input points to another space where they are linearly separa-
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ble, i.e., sign(wTφ(x)), where φ(·) is the mapping function. Our perceptron test case

uses a quadratic function to map the input space. The input data set consisted of

1000 randomly generated two-dimensional points from two classes. Classification re-

sults are compared against the ground-truth and hence, the total percentage change

in classification outputs is considered as the accuracy metric.

3. Block Matcher: Block matching is a technique commonly used in motion estima-

tion and video compression applications. Block matching partitions a given frame

into non-overlapping rectangular blocks and tries to find the block from the reference

frame in a given search range that best matches the current block. The measure of

similarity between the blocks is computed by sum of the differences. For our design,

we perform full search block matching over a search window in a reference frame to

determine the best match for a block in a current frame. Our particular test case

works on 16×16 block sizes from a 352×288 frame sequence. The quality of a design

is assessed using Peak Signal to Noise Ratio (PSNR).

The main hardware design characteristics and quality of these test benches are

summarized in Table 4.1.

Design Class of #Lines Area Power Quality Quality
Application (um2) (mw) Measure

FIR filter Signal Processing 265 37776.96 2.74 MSE 99.55%
perceptron Machine Learning 188 40389.12 6.89 classification error 83.55%

block matching Computer Vision 1277 80272.44 30.41 PSNR 30.54 dB

Table 4.1: Characteristics of test cases used.
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4.3 Experimental Results

We have implemented our ABACUS tool and integrated it with a standard industrial-

strength flow comprised of Synopsys Design Compiler and Mentor Graphics Model-

Sim. We used commercial 65 nm technology libraries.

For each design, a total of six data sets were used to train and evaluate ABA-

CUS. Three data sets were used to generate the approximate designs as described

in Section 4.1.2, and another three were used to assess the accuracy of ABACUS

for the experiments of this section. Using different data sets in the experimental

results eliminates possibility of generating approximate variants overfitted for one

particular set of input data. In all experiments, we report the average accuracy of

the three data sets. We used weight of 0.6 as α in Equation 4.1 for fitness evalu-

ation. ABACUS was applied to the computational data-path parts of the designs,

but the control signals in the designs were not modified. Using ABACUS, we were

able to automatically apply multiple iterations of transformations on each test bench

to identify the approximate designs with optimal trade-offs between accuracy and

power.

For all these testbenches, ABACUS generates readable approximate variants and

makes the entire code evolution process transparent to the designer. Consider the

code snippet below, taken from the original behavioral code for the perceptron ex-

ample.
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always @(*)

begin

sum_temp[0]=result[0];

for (i=1; i<nSVs; i=i+1)

begin

sum_temp[i] = sum_temp[i-1] + result[i];

end

end

This code snippet goes through behavioral approximations outlined earlier and

transforms as follows:

always @(*)

begin

sum_temp[0]=(sum_temp[2] | result[3]);

sum_temp[1]=(sum_temp[0] | result[1]);

sum_temp[2]=(sum_temp[1] | result[2]);

sum_temp[3]=({result[0][15:3], {3’b000}});

sum_temp[4]=(sum_temp[3] + result[4]);

sum_temp[5]=(sum_temp[4] + result[5]);

end

Figures 4.7, 4.6, and 4.8 plot the accuracy vs. power saving results for all approx-

imate designs generated by ABACUS for the FIR, perceptron, and block-matching

designs, respectively. The x-axis gives accuracy and the y-axis gives power savings.

A subset of all these points create a Pareto Frontier (solid red line), where the fron-

tier points do not dominate each other in both power and accuracy. The red star

indicates the original exact design in the population. The runtimes of ABACUS are

mostly dominated by the runtime of the ASIC design flow. On a cluster computing

system with nodes operating at a maximum frequency of 2.8 GHz, 3 CPUs and 24

GB RAM, it took 92 seconds, 20 seconds and 56 seconds for generating one instance

of the FIR, perceptron and the block matching benchmarks respectively. A total of

8 generations with 10 iterations were run for all test cases.
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Figure 4.6: Results from various approximate designs and the Pareto Frontier for the perceptron
test bench.

In Table 4.2, we highlight results from the best approximate designs that kept

within a maximum of 8% degradation in accuracy compared to the original designs.

The results show that we are able to obtain significant savings in power consumption

(upto to 76%) with these approximate designs with very modest degradation in
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Figure 4.7: Results from various approximate designs and the Pareto Frontier for the FIR test
benches.
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Figure 4.8: Results from various approximate designs and the Pareto Frontier for the block-
matching test bench.

accuracy. Figure 4.9 illustrates the results from the perceptron approximate design

of Table 4.2. Figure 4.9.a gives the true classification of the data points into the two

classes (class A and class B). Figure 4.9.b gives the classification of both the original

and approximate hardware (HW) designs on the same data points. The true-true

case is when both HW designs correctly predicted the classes of the data points, while

the false-false case is when both HW designs incorrectly predicted the classes of the

data points. The false-true case is when the original design predicted incorrectly,

but the approximate design predicted correctly. Finally, the true-false case is when

the original design predicted correctly, but the approximate design incorrectly. The

figure shows very few points in the true-false case, and almost balanced in number by

Design #Iter Accuracy Accuracy Power Area
Threshold Achieved Saving Saving

perceptron 8 76.9% 83.6% 41.6% 38.7%
FIR 8 91.6% 91.0% 32.5% 50.3%

block matching 8 28.1 dB 30.3 dB 12.7% 12.5 %

Table 4.2: Results from ABACUS for the three test benches for an allowed 8% degradation to
accuracy.
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points in the false-true case. As a result the approximate design attains comparable

accuracy to the original, while achieving 47.6% power savings.

Finally, Figure 4.10 shows a comparison between an original implementation

and an approximate counterpart for a motion vector field created during the block-

matching algorithm. Original motion vectors are shown in yellow while the motion

vectors in error stemming from an approximate algorithm that allows a 13% error

in output are shown in red.

We also compared the results generated by ABACUS to a commonly used tech-

nique in approximation as described in Section 2.3, where approximate versions of

standard components are used in place of the accurate ones. We truncated 3 bits off

a set of multipliers for the perceptron and block matching implementations and 3

bits off a set of adders for the FIR implementation. Results are shown in Figure 4.11

for designs that maintain the same accuracy. Our method obtains superior results

for all three benchmarks. This supports our claim that ABACUS is capable of mak-
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Figure 4.9: (a) Classification of input data into two classes, (b) comparison between original and
approximate designs.
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Figure 4.10: Motion vectors from original and approximate block-matching circuits.
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Figure 4.11: Results for use of conventional technique by use of approximate multipliers compared
to results from ABACUS.

ing global arbitrary approximations that may not be obvious to the designer but

produce better results. Finally, Table 4.3 breaks down the amount of data types,

operators and arithmetic expressions transformed by ABACUS for the three designs

in Figure 4.11. The wide distribution of approximations carried out certainly result

in better power savings than applying a single approximation technique.
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Design Data Operators Arithmetic
Types Expressions

perceptron 7 2 0
FIR 21 10 10

block matching 34 59 12

Table 4.3: Number of some of the major transformations made in the three benchmarks.

4.4 Summary and Discussion

In this chapter, we explore the idea of using computational accuracy as a relevant

parameter for design-space exploration. The idea stemmed from our work in Chapter

3 where we used the algorithmic accuracy as a design choice to achieve low area, low

power and even high throughput circuits. In this chapter, we present a novel way

of doing effective design-space exploration of circuits and systems using the idea of

approximate computing and leveraging the error resiliency of certain algorithms. We

present a behavioral synthesis toolflow that is capable of generating and synthesizing

circuits with reasonable error tolerance and significantly less area consumption and

power dissipation. While the exact values for these metrics can be highly application

dependent, we are able to show with our three test cases that we can get up to 60%

savings on both power and area for some designs. Our tool, ABACUS, requires no

application domain knowledge and applies global transformations that may not be

obvious to a designer. These features make it unique compared to previous work in

the field of approximate circuits. We also demonstrate the advantages our approach

provides over traditional techniques (such as simply using an approximate version of

an arithmetic operator).

In the next chapter, we will implement different methodologies and algorithms

for design space exploration and fitness selection as an enhancement to the itera-

tive greedy heuristic methodology discussed in this chapter. With better selection
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techniques and fitness-ranking mechanism for approximation, we will show that the

process of design space exploration using approximation of computational accuracy

can be further streamlined and can result in bigger savings in both area and power.

We will also discuss how our methodology can be extended to target timing-critical

paths optimization and approximation to be able to reduce circuit delay and thus

incorporate complimentary power-saving techniques by doing dynamic voltage scal-

ing.



Chapter 5

Exploration Refinements

In Chapter 4, we studied the idea of behavioral synthesis of approximate circuits

as a means to achieve significant power and area savings in hardware accelerator

implementations. Our novel contribution in the form of the ABACUS toolflow val-

idated the applicability of approximating circuits directly at their behavioral level.

Working at the highest level of abstraction on arbitrary algorithms and circuit im-

plementations gave us an edge over other related works in the field that require the

designer to work at Boolean or gate levels or at least have some prior knowledge of

the inherent properties of the algorithm.

In this chapter, we will explore optimizing and enhancing some of the methodolo-

gies we instrumented in Chapter 4 for design space exploration and design selection

for iterative approximation. Alongside different exploration techniques, we also in-

troduce a novel critical-path aware approximation technique that makes it possible

for complementary and well-tested power saving techniques like standard voltage

scaling to save extra power.

91
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5.1 Fitness Selection Algorithms

As mentioned in Section 4.1.3, the various transformations applied to a behavioral

code can lead to a combinatorial explosion in the number of possible approximate

design variants. To streamline the process of design exploration and keep the number

of design variants space from increasing exponentially, we proposed a linear-scaled

approach for fitness selection. We used the best-ranked individual from each genera-

tion of iterations as the parent design for the evolutionary process propagation. This

poses a potential problem where design exploration could follow a locally optimum

path and not search for points outside a local population pool that could have po-

tentially given better results. In this chapter, we explore and analyze a comparative

study of some other design search techniques and fitness ranking methodologies. We

test these various schemes on the same three test-benches using similar procedures

as for the linear-scaled methodology described in Chapter 4.

5.1.1 Non-Dominated Sorting Genetic Algorithm based Se-
lection

The linear-scaled fitness ranking scheme introduces unnecessary limitations because

it picks only one ‘best’ design as the new transformation seed from each round of

transformations, which could potentially waste savings that could have resulted from

other unexplored points. Furthermore, considering the best design that is local to a

particular generation rather than for the entire population may lead to sub-optimal

exploration.

To resolve these issues, we explore a second fitness selection methodology based

on the Non-dominated Sorting Genetic Algorithm (NSGA-II) [19, 18, 73]. NSGA-II
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is a popular technique used to select multiple optimal parents for crossing-over in

genetic algorithms. The fact that this methodology can have multiple individuals

with the same fitness rank makes it suitable for our own study — we can use more

than one design point as transformation seeds each iteration to widely explore the

design space. The NSGA-II process comprises of two main phases:

1. assigning fitness to population members based on non-dominated sorting; and

2. preserving diversity among solutions with same level of fitness.

The first phase involves classifying the population under study into multiple

Pareto fronts, where each design point of the population is assigned a front with a

fitness rank. Designs that do not have any other designs dominating them in at least

one of computational accuracy or power savings will all be given the same highest

fitness rank, say r1. Points dominated only by r1 designs will form the second front

with a rank of r2 and so on. This procedure continues until all design points in the

entire population are given their respective fitness ranks.

Once all possible ‘best’ designs from the entire population — the ones with

the highest rank, r1, are identified, they are further filtered for uniqueness. The

uniqueness of a design is computed based on its average difference in accuracy and

power savings from its adjacent neighbors. In other words, uniqueness is a measure

of how dense the population is around a particular design point. Two designs are

considered not unique to each other if their accuracy and power savings are similar.

In the second phase of the NSGA-II selection process, individuals that have the same

fitness rank but are still far away from each other in terms of uniqueness are favored

over individuals that are close to each other. This allows for selection of unique

approximate designs with the same fitness that will subsequently produce unique
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mutants.

As with the linear-scaled selection scheme, the design space exploration process

starts with the single original design as the current design, shown in the algorithm

below. Then in steps 2 - 14, it proceeds to generate M × Nsel total variants for N

generations, identifying best design candidates using the NSGA-II selection process

in step 11. In steps 13 and 14, these multiple best designs are stored and then used

one by one as transformation seeds for subsequent generations.

Algorithm Global NSGA-II fitness based exploration (nsga2-global)

Input: original exact design

Output: approximate design variants

1. Let Nsel = 5 number of parent designs to pick after each NSGA-II slection

2. while i ≤ N

3. while s ≤ Nsel

4. Let Os = original design

5. while j ≤M

6. do pick a transformation operator at random;

7. apply the operator to Oi to yield Aj;

8. evaluate accuracy of Aj over input data sets

9. if accuracy of Aj is within threshold

10. then

11. synthesize Aj;

12. V = V ∪ Aj;

13. Use results from Steps 9 and 12 and NSGA-II se-

lection to evaluate the fitness, Fj, of Aj;

14. else goto step 7;
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15. identify AS, S ⊂ {1, . . . ,MN}, with best F ;

16. let Os+1 = Ak, k ∈ {1, . . . , S};

17. return V

By considering multiple best designs in the entire population and using only the

most unique among them as transformation seeds, we hope to make our design space

exploration more effective and inclusive. However, given we can now use multiple

parent transformation seeds per generation, we need to be careful with the expansion

of the possible design search space. To keep the exploration process in check, we

select five designs with the best fitness ranks from each generation for transformation

propagation as shown in the above algorithm. Instead of generating, for example,

ten new design points from one local best point as with the linear-scaled selection

scheme, we generate two new design points from five globally best designs in the

NSGA-II based selection scheme. So the total number of possible points generated

per generation is the same for both processes and by that virtue, runtime of the

NSGA-II based exploration will be the same as the linear-scaled methodology.

Figures 5.2, 5.1, and 5.3 show the entire design population as well as the pareto-

tradeoff between power savings and accuracy for the selection and exploration pro-

cess. The global fitness selection methodology performed poorly compared to the

original linear-scaled methodology (Figures 4.7, 4.6, 4.8) in terms of power savings.

This can also be seen in Table 5.1. The poor result can possibly be attributed to the

fact that the global NSGA-II selection policy always selects the best designs from

the global population pool generated up to a certain point to avoid getting stuck

in local optima. This could, however, mean that if globally best points come from

earlier generations, the selection process could keep picking the same designs and

this may lead to the design not going through many rounds of transformations to
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Figure 5.1: Results from various approximate designs and the Pareto Frontier for the perceptron
test bench using the global NSGA-II selection scheme.
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Figure 5.2: Results from various approximate designs and the Pareto Frontier for the FIR test
bench using the global NSGA-II selection scheme.

30.230.330.430.530.6
Accuracy (dB)

1

0

1

2

3

4

5

6

7

P
ow

er
 S

av
in

g 
(%

)

Figure 5.3: Results from various approximate designs and the Pareto Frontier for the block
matching test bench using the global NSGA-II selection scheme.



97

perceptron FIR block matching
linear-scaled 61.87 40.29 14.34
nsga2 global 56.93 42.41 5.43

Table 5.1: Highest power savings(%) for the nsga2-global algorithm compared to linear-scaled.

give a particularly higher power saving.

As for generating a better spread of designs in terms of accuracy, however, the

NSGA-II selection methodology performs better than the original linear-scaled ap-

proach. We had all experiments run for 8 generations of transformations attempting

to generate 10 variants per generation, with the whole process repeated three times.

Given the possible 240 unique variants, the linear-scaled selection methodology was

able to produce only 212, 233 and 165 unique variants, while the NSGA-II produced

237, 234 and 226 respectively for the FIR, perceptron and the block matching test

benches. Remember the ABACUS technology is designed to produce a unique variant

only if it passes a certain accuracy threshold; if a parent design repeatedly generates

unacceptable designs, the tool will pass on that iteration and move on to the next.

That NSGA-II consistently produces more unique variants than linear-selection sup-

ports the advantage of using multiple best designs which are unique themselves. A

corollary of this advantage is that it takes less time for the NSGA-II methodology

to generate as many acceptable unique approximate variants as generated by the

linear-scaled selection mechanism.
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5.1.2 Hybrid Selection Methodology

The linear-scaled and the global NSGA-II based fitness selection methodologies de-

scribed earlier have their own strengths and weaknesses. The linear-scaled methodol-

ogy with local optimum selection ensures that a design from a particular generation

is representative of all the rounds of changes up to that point. In other words, a de-

sign generated in the last generation will have transformations added up from all the

generations before it. This will greatly reduce the logical complexity of the original

circuit resulting in greater area and power savings. However, as discussed earlier,

the local scope used for selection of the best design can still cause the design search

process to get stuck on a local optimization path. The NSGA-II based selection

scheme solves this problem by considering the global population and choosing more

than one parent design to be used as transformation seeds for future generations.

However, choosing globally optimum points for population generation and propa-

gation can have its own problems — if good approximate designs are generated in

the initial generations of transformations, the selection algorithm may repeatedly

select these globally optimum points as transformation seeds, limiting the scope of

potential improvements arising from designs with more cumulative changes from all

generations.

In light of that, we propose a third fitness selection and exploration scheme that

is a combination of both the linear-scaled fitness ranking scheme and the NSGA-II

selection scheme. This approach will select one best design from a local population

pool and additional designs from the overall population generated up to that point.

Both local and global optima design points will be considered for use as transforma-

tion seeds every generation.

With this hybrid methodology, we generate four new parent designs every gen-
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eration, three of which will be the best designs selected using NSGA-II scheme. The

remaining one will represent the best design from that particular generation and will

be selected using the linear-scaled fitness scheme. This single locally optimum de-

sign will generate four approximate variants in the subsequent generation while the

three selected by the NSGA-II process will generate three, two and one approximate

variants respectively based on their uniqueness ranks. This way, a fair diversification

is maintained in the population among designs generated from the local optima and

the variants generate from the global optima.

For all schemes, we run ABACUS flow for same number of generations with the

same number of possible variants in each, thus keeping design space exploration

runtimes consistent across all of them. Figures 5.4, 5.5, and 5.6 show the design

space explored and results generated for the hybrid selection methodology. Table

5.2 shows the highest savings recorded with the same methodology. In terms of

spread of the variants, the hybrid methodology produces 235, 227, and 185 unique

variants out of a possible 240 for the FIR, perceptron, and block matching algorithms

respectively. These spread numbers as well as maximum power savings are generally

better than the linear-selection methodology. Given it contains the virtues of both

the linear-scaled as well as the NSGA-II selection schemes, the hybrid methodology

gives the designer a good spread of designs to select from as well as good power

savings numbers, thus providing for a better and meaningul design trade-off. Also,

as with the NSGA-II selection, the hybrid methodology generates acceptable designs

within an accuracy margin faster than linear-scaled methodology because of the

multiple transformation seed selection.
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Figure 5.4: Results from various approximate designs and the Pareto Frontier for the perceptron
test bench using the hybrid selection scheme.
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Figure 5.5: Results from various approximate designs and the Pareto Frontier for the FIR test
bench using the hybrid selection scheme.
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Figure 5.6: Results from various approximate designs and the Pareto Frontier for the block
matching test bench using the hybrid selection scheme.
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perceptron FIR block matching
linear-scaled 61.87 40.29 14.34

hybrid 70.00 41.62 16.91

Table 5.2: Highest power savings(%) for the hybrid selection algorithm compared to linear-scaled.

5.1.3 Variants of Exploration Methodologies

To make a comparative case-study about various exploration methodologies and

study the effects of their inherent properties, we carried out multiple variants of the

NSGA-II selection and hybrid methodologies. By altering some properties of the

methodologies we explained in Sections 5.1.1 and 5.1.2, we look at what changes

may be brought about in the overall exploration process and accuracy-power saving

trade-offs obtained from it. We explain some of the variant approaches we realized

below.

1. NSGA-II local selection (nsga2-local): In this approach, we implement the

NSGA-II selection methodology but instead of selecting multiple best designs from

the global population pool, we select multiple best designs from the local generation

after each iteration. This algorithm is similar to the linear-scaled methodology in

terms of its local scope but chooses more than one best designs from each generation.

2. Weighted NSGA-II global selection (weighted-nsga2-global): A second

variant of the NSGA-II algorithm is implemented by weighing the multiple best

designs selected from the entire global population. The best designs from the entire

population are selected by assigning them to ranked Pareto fronts and then further

filtered by their uniqueness. But instead of selecting five parent design after each

generation and generating equal number of variants from each as in the global NSGA-
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II approach presented in Section 5.1.1, we select four parent designs and weigh the

best designs based on their linear-scaled fitness (as in Equation 4.1). From these

four parents, we generate four, three, two and one variants respectively according to

their ranks. This ensures the number of variants generated every generation remains

the same as with earlier methodologies.

3. Weighted NSGA-II global selection with no crowdedness measure

(weighted-nsga2-global-nodist): This selection methodology is very similar to

the previous one, but the global NSGA-II selection algorithm is stripped off its sec-

ond property where uniqueness of a design is measured based on its closeness to

its adjacent neighbors. The uniqueness of design is an important factor in genetic

algorithms where you may want to cross two unique and different parents together

for cross-over. However, in an evolutionary algorithm like ours where mutations are

made randomly on an individual, two or more parent designs with similar accuracy

and power savings could produce approximate variants with entirely different accu-

racies based on the location of transformations made. Hence, we experiment with

an exploration method where multiple best designs are selected from ranked Pareto

fronts but without being filtered for their uniqueness factor. Instead, they are all

ranked by the linear-scaled fitness formula which combines weighted accuracy and

power savings for each design into a fitness rank. Four best-ranked designs from the

best Pareto front each generate four, three, two and one variants respectively based

on their linear-scaled fitness.

4. Weighted NSGA-II local selection (weighted-nsga2-local): This is the

same as variant 2 but instead of selecting best transformation seeds from the global

population, multiple best designs are selected from the population local to each

generation. In addition to the Pareto ranking, designs from same Pareto front are

ranked according to their weighted combination of accuracy and power savings and
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four best ranked designs are used as parent designs in the subsequent generation.

5. Weighted NSGA-II local selection with no crowdedness measure (weighted-

nsga2-local-nodist): This methodology is the same as variant 3 but it selects best

designs from the local population after every generation instead of the global pop-

ulation up to that point. Also, filtering by uniqueness factor is taken out of the

algorithm as in variant 3.

6. Hybrid methodology with no crowdedness measure (hybrid-nodist): .

This methodology is a variant of the hybrid methodology presented in Section 5.1.2,

but as with some of the other variants described above, we take away the property of

the NSGA-II selection algorithm to filter for designs with less crowdedness. Instead

best designs selected from the global population pool are ranked according to their

fitness given by the combined weighted accuracy and power savings. The single local

optimum point selected for use as transformation seed after every generation remains

unaffected.

7. Savings per error based selection methodology (slope): This methodol-

ogy is a distant variant of the original linear-scale selection methodology. Instead of

ranking every design by the linear combination of its weighted computational accu-

racy and power savings, we rank it by power savings per computation error, which

we call its slope for simplicity. For example, an approximate design with 40% power

savings with 30% error will be ranked lower than a design with 20% power savings

with 2% error.

From the results shown in Tables 5.3, 5.4, and 5.5, it is seen that the hybrid

methodology which has the merits of using multiple best designs including both lo-

cal and global optimum points as transformation seeds performs consistently well
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Methodology Max. Power Savings(%) Highest Accuracy Achieved(%)

linear-scaled 61.63 83.50

nsga2-global 56.93 83.56

nsga2-local 72.8 83.54

weighted-nsga2-global 21.37 83.58

weighted-nsga2-global-nodist 14.75 83.58

weighted-nsga2-local 15.61 83.57

weighted-nsga2-local-nodist 12.68 83.57

hybrid 72.9 83.60

hybrid-nodist 71.99 83.48

slope 71.23 83.55

Table 5.3: Comparison of maximum power savings and highest computational accuracy achieved
for different exploration methods used for the Perceptron test bench, for error tolerance up to 40%.

Methodology Max. Power Savings(%) Highest Accuracy Achieved(%)

linear-scaled 40.29 96.13

nsga2-global 42.41 92.3

nsga2-local 42.71 91.80

weighted-nsga2-global 39.97 95.47

weighted-nsga2-global-nodist 39.32 92.99

weighted-nsga2-local 41.74 91.41

wighted-nsga2-local-nodist 44.15 92.53

hybrid 41.62 92.39

hybrid-nodist 39.17 95.23

slope 36.76 93.30

Table 5.4: Comparison of maximum power savings and highest computational accuracy achieved
for different exploration methods used for the FIR test bench, for error tolerance up to 10%.

Methodology Max. Power Savings(%) Highest Accuracy Achieved(dB)

linear-scaled 14.34 30.45

nsga2-global 5.43 30.47

nsga2-local 3.53 30.49

weighted-nsga2-global 15.79 30.45

weighted-nsga2-global-nodist 13.12 30.46

weighted-nsga2-local 14.76 30.46

weighted-nsga2-local-nodist 16.13 30.47

hybrid 16.91 30.45

hybrid-nodist 16.47 30.47

slope 12.21 30.47

Table 5.5: Comparison of maximum power savings and highest computational accuracy achieved
for different exploration methods used for the block matching test bench, for PSNR ≥ 30.45.
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yielding both good maximum power savings and highest computational accuracy

achieved. It also seems like filtering designs for uniqueness according to their close-

ness to adjacent neighbors produces generally good results. Compared to the linear-

scaled methodology proposed in Chapter 4, the hybrid selection process is a signif-

icant improvement. The savings from the two methodologies discussed in Section

5.1.1 and 5.1.2 compared to the linear-scaled methodology is shown in Figure 5.7.

Results are averaged for the three sets of experiments run for 8 generations and 10

possible variants per generation.
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Figure 5.7: Power Savings for the testbenches given by the linear-scaled, NSGA-II selection based
and hybrid selection based design-exploration methodologies.

5.2 Techniques for Additional Power Savings

One of the biggest features of our approximation methodology used for design space

exploration is that complementary power saving techniques can be applied on top

of the ABACUS flow to obtain bigger power savings. As discussed in Section 2.3.1,

common run-time power saving techniques like standard voltage scaling can be cou-
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pled with our approximation techniques. Such run-time optimization methodologies

can allow designers to obtain even better savings in power consumption in the post-

design phase of an ASIC development cycle. In this section, we explore the possibility

of using approximation for reduction of circuit delay, which will make way for the

use of standard voltage scaling to further reduce power consumption.
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Figure 5.8: The new ABACUS flow with voltage scaling added in the post-design phase.

5.2.1 Targeted Critical Path Approximation

Along with our goals of reducing circuit area and power consumption, we also make

special optimizations on approximate circuits so that they run faster than their orig-

inal counterparts. To ensure circuit delay is reduced, we implement a technique that

applies targeted approximations on the timing-critical paths of an implementation.

Approximations are usually done on random locations of a circuit based on transfor-
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mation probabilities as discussed in Section 4.1.3. However, to realize circuit variants

with better timing, we make changes to this approach and prioritize approximations

along the timing-critical paths in a circuit first. By aggressively approximating the

critical path, we hope to obtain circuits that have less logic complexity because of

the transformations applied and also demonstrate positive timing slacks during the

synthesis process.

Our approach to critical path prioritized approximation involves reading the

timing report after the original circuit synthesis and then parsing out the relevant

paths with the longest data arrival times. We extract information about the longest

paths in the circuit and apply aggressive transformations on all arithmetic opera-

tions involved in these paths. Regular transformations are then performed based on

randomized probabilities on rest of the circuit. Prioritizing approximations on the

timing-critical paths is highly application dependent — if a circuit implementation

has relatively large number of parallel running timing-critical paths, aggressively

approximating all the paths to reduce circuit delay may cause a big hit in output

accuracy given majority of the circuit paths will now have been approximated. How-

ever, it opens the possibility of approximate circuits with less power consumption.

As far as we know, our targeted critical path optimization approach to approximate

computing is a first of its kind.

5.2.2 Standard Voltage Scaling

If targeted critical path optimization contributes to positive timing slacks in circuit

implementations, the circuit can be synthesized against all available voltage corners

keeping other synthesis parameters constant. First, regular circuits are synthesized

at a nominal supply voltage to generate netlists that are then resynthesized at other
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Figure 5.9: Illustration of how a lower voltage value at which the circuit can still run without
additional timing errors can be obtained from available synthesis results and interpolation.

available voltage corners. Using the same netlist across different supply voltages

ensures that the circuit remains exactly same during resynthesis. If there is positive

timing slack at nominal voltage, timing slacks at all voltage corners are recorded

and a simple curve fit and interpolation is used to determine a lower supply voltage

point at which the circuit has close to zero timing slack as shown in Figure 5.9. This

process allows us to run the approximate circuits with no timing errors but with

lower supply voltage, thereby contributing to a lower dynamic power consumption.

5.2.3 Results from Critical Path Approximation and Voltage

Scaling

By exploring more inclusive exploration algorithms and critical path targeted ap-

proximation as well as dynamic voltage scaling based on timing slacks obtained from

approximations, we are able to improve on power as well as area savings compared

to our own work presented in Chapter 4.

Using the hybrid methodology complemented with critical path approximation
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Figure 5.10: Power savings for the testbenches given by the linear-scaled, NSGA-II based selection
and hybrid selection methodologies. Additional power savings obtained from voltage scaling also
shown.

and standard voltage scaling, we were able to achieve up to 10% additional power

savings on our testbenches. This is shown in Figure 5.10.

Table 5.6 details this improvement in power savings from using the newer hybrid

exploration methodology that combines the merits of the linear-scaled as well as the

NSGA-II based selection, over simply linear-scaled selection presented in Chapter 4.

It also demonstrates additional percentage savings that comes from voltage scaling.

We achieve 3.35%, 29.75%, and 31% improvement in power savings for perceptron,

FIR and block matching testbenches respectively.

Design Linear-scaled Linear+VS Hybrid Hybrid+VS Improvement

perceptron 61.63 66.62 70.00 79.97 29.75%
FIR 40.29 40.29 41.64 41.64 3.35%

block matching 14.30 15.61 16.91 18.381 31.00%

Table 5.6: Improvement on maximum power savings from using an enhanced selection and explo-
ration methodology as well as standard voltage scaling (VS) over a linear-scaled selection method-
ology.
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Figure 5.11: Results for use of conventional technique by use of approximate adders and multi-
pliers compared to results from ABACUS.

As in Chapter 4, we also compare results generated by ABACUS with the new

hybrid methodology and voltage scaling to the same traditional technique where ap-

proximate versions of standard components are used in place of the accurate ones.

Results are shown in Figure 5.11 for designs that maintain same accuracy. Expect-

edly, our method obtains superior results for all three benchmarks.

5.3 Summary and Discussion

In this chapter, we explored some new fitness selection algorithms for the iterative

evolutionary methodology we developed for approximating circuits at the behavioral

level. In addition to this, we developed and added a feature to our ABACUS tool

that automatically identifies timing-critical paths in a circuit and applies targeted

approximations on them first. This enables generation of approximate circuits that

are not just smaller and use less area but also run faster. We couple the timing
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enhancement achieved from this approach with standard voltage scaling to run ap-

proximate circuits at a lower supply voltage, thus giving us extra power savings.

All these features make our methodology unique compared to some of the previ-

ous work in the field of design space exploration of hardware accelerators. We used

approximate computing as a pathway to explore the design space, and showed that

our methodology works with applications from various domains like signal process-

ing, computer vision and machine learning. With negligible degradation to output

accuracy, we were able to achieve power savings of up to 80%. We also developed

the platform for standard voltage scaling by applying approximation optimizations

on timing-critical paths in circuit implementations. This targeted approximation

approach allowed us to get as much as 10% additional savings. Coupled with better

scoped and inclusive exploration process, we demonstrated our work presented in

this chapter yielded up to 31% better savings in power consumption compared to

methodologies presented in Chapter 4.



Chapter 6

Summary of Dissertation and

Possible Future Extensions

As hardware accelerators and custom computing circuits are becoming increasingly

popular to meet the demands of high throughput computing and real-time data pro-

cessing, the need for solutions that perform in highly resource-constrained environ-

ments is increasing as well. The use of these high performance computing platforms

and accelerators in embedded devices, airborne systems and mobile platforms has

called for designs to be optimized for area and power.

In this thesis, we turned our focus on different accelerator platforms like the

ASIC and the FPGA and explored options on how we can make multi-objective

optimizations on such designs. We explored various design exploration methodologies

and methodically tuned algorithmic as well as architectural design choices to derive

efficient paths towards design optimality.

112
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6.1 Summary of Results

In Chapter 3, we presented novel ways to perform fast design space exploration with

examples tested on an FPGA platform. We explored the idea of using analytical

modeling for design metric characterization. With various architectural and algo-

rithmic parameters, each tunable to different settings, the total design space that

arises from these parameter perumatations is exponentially large. Physically imple-

menting each of these possible design variants is virtually impossible. As a solution

we proposed to use regression modeling with L1 regularization to sample less than

1% of the vast design space and accurately predict the various design metrics like

area, power, throughput of a deisgn for unexplored design points.

We implemented two test cases — first, an image deblurring algorithm and sec-

ond, a block matching algorithm representative of the designs we wanted to optimize.

From these designs, we identified algorithmic as well as hardware parameters that

were tunable to get different variants of the design with different power, area, and

sometimes even different computational accuracy characterizations. We used L1

regularization-based regression methodology to automatically use and identify the

relevant design parameters that affect these various design metrics. By sampling

a meager 0.3% of the possible design space, we showed that analytical models ob-

tained were consistently accurate over 90% for the rest of the unexplored design

space. The fact that less than 1% of the design space had to be physically explored

to get such accurate results meant we also achieved a 340× improvement over a

brute-force physical implementation of every single design point possible. Lastly,

we also used these accurate models for area, power and computation accuracy to

formulate multi-optimization frameworks and answer imporatant questions about

optimizing design objectives under various constraints. We investigated how we can
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tackle design questions such as minimizing design power under accuracy constraints,

or minimizing design area within a power budget. By using mathematical models

for the various design objectives we wanted to optimize, we were able to replace the

long and time-consuming synthesis process in to a fast analytical approach.

More importantly, Chapter 3 gave us unique ideas about using computational

accuracy of an algorithm as a negotiable design metric that could be used for novel

design exploration techniques. In Chapter 4, we used this motivation and pursued

the idea of trading off output accuracy of algorithms to achieve low area and less

power consuming circuits and systems. We showed that certain domains like multi-

media and graphics, signal processing, machine learning, among others are naturally

amenable to introduction of inaccuracies in their underlying computations. Using

this fact to our advantage, we developed a first of its kind tool called ABACUS that

produces approximate variants of a circuit automatically from its behavioral/RTL

descriptions.

With the proposed tool, we first parsed a behavioral circuit description to an Ab-

stract Syntax Tree (AST) and then applied reasonable transformations that reduced

the circuit complexity at the cost of reduced computational accuracy. Accuracy

thresholds were defined beforehand and the tool performed within prescribed error

margins. To streamline the production and exploration of new designs, we realized

an iterative greedy algorithm and performed approximation changes on the original

design iteratively for a number of predefined generations. A linear-scaled fitness

ranking system based on weighted combination of the computational accuracy and

power savings of each individual approximate design is used to select the ‘best’ de-

sign for use as transformation seed for subsequent generations. We demonstrated

that our automated approximation methodology worked successfully on three test

benches — a perceptron classifier, an FIR filter, and a video block matching algo-
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rithm implementation. For one of the test benches, we were able to achieve over

40% savings in power and area consumption with as little as 8% accuracy degra-

dation. What makes our methodology really stand out among related work is the

fact that it performs better than approximating just a set of adders or multipliers

and implements a more global scope of transformations without the designer having

to know anything about the algorithm beforehand. Behavioral descriptions capture

the algorithmic intent of the circuit; and thus raising the level of abstraction enables

a larger range of approximations that are not possible to apply at low-level design

specifications.

While in Chapter 4 we presented the novel idea of using behavioral approximate

synthesis as a way to do effective design exploration, we focused on fine-tuning ex-

ploration techniques and the approximation toolflow in Chapter 5. We implemented

a few different methodologies to improve the fitness ranking system for approximate

designs presented in Chapter 4. We introduced a Pareto frontier based fitness selec-

tion methodology derived from the NSGA-II genetic algorithm that chose more than

one best design per generation, thus expanding the scope of exploration. We also

presented a hybrid methodology that included the merits of both the linear-scaled

fitness selection methodology based on selecting the local optimum from a popula-

tion and the NSGA-II methodology that chose multiple best designs from the entire

global population. This methodology by itself turned out to have 8.4%, 1.3%, and

2.3% better power savings than the linear-scaled methodology of Chapter 4 for the

perceptron, FIR and block matching algorithms respectively.

In addition to this more inclusive search and fitness selection approach, we also in-

troduced a novel idea of performaing targeted approximations on the timing-critical

paths of a circuit to reduce its delay. Performing agressive critical path approxi-

mations allowed us to use circuits with less delay at lower supply voltages to take
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advantage of extra power savings obtained from standard voltage scaling. We ob-

tained as much as 10% power savings just from critical path approximation and

voltage scaling on one of our test benches. Coupled together with the hybrid fitness

selection methodology, we were able to gain up to additional 31% power savings

compared to the approximation and exploration methodologies of Chapter 4.

As a whole, we introduced a novel set of ideas such as analytical modeling and

multi-objective optimization of design metrics, as well as approximate computing

as potentially very high yield design space exploration techniques. Hardware accel-

erators that operate in various favorable domains and have to operate in resource-

constrained environments can certainly benefit a lot from our proposed and validated

ideas in this dissertation.

6.2 Future Work and Possible Extensions

The work presented in this dissertation can be extended in several directions. By

combining the analytical modeling presented in Chapter 3 and automated synthe-

sis of approximate circuits presented in Chapter 4, we can speed up the process of

design space exploration of optimal hardware accelerators even more. For approxi-

mate circuit synthesis, we can investigate empirical regression models that estimate

the outcomes from the physical design flow in terms of area, timing, and power,

without executing the actual design flow. By modeling a physical outcome (e.g.

power, accuracy) as a mathematical function, we can use some of the design vari-

ables used in approximate circuit synthesis process like number of iterations unrolled

in a behavioral code and locations of transformations applied. These functions can

be validated for accuracy by using a number of samples to identify the best pa-
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rameters that minimize the total square error between the function estimates and

the actual outcomes first, and then cross-validating later. The functions can then

substitute the entire design flow for the other non-sampled designs, speeding up the

design space exploration process significantly.

In the future, we can also make the approximate circuit generation process

smarter by pre-processing the behavioral code for accuracy hot-spots. There are

many locations in a behavioral code description of the circuit that are more amenable

to transformations than others. While we implemented a similar idea of prioritizing

approximations over areas that are timing-critical to reduce circuit delay, we can

also realize similar methodologies for reduction of power consumption or computa-

tional error caused. By keeping a history of transformations made and their impact

on power and area consumption and computational accuracy, code hot-spots can be

discovered and can be used to make smarter choices about where and when to apply

approximations.

Another area of possible work in the future could be in the use of directives to

guide approximations through various parts of a behavioral HDL code. Behavioral

circuit descriptions can have both control logic as well as data path descriptions.

Our current methodology is favorable for changes in the data path but will still work

if changes are made in the control logic. Like we mentioned earlier, our methodology

does not require any application domain or architecture knowledge. Errors caused

by a change in the control logic of an implementation are very likely to be large

enough to be detected by our accuracy checking mechanism and a variant with such a

transformation would be automatically discarded. Nevertheless, some input from the

designer may be useful in guiding the approximate circuit generation. By inserting

directives in the behavioral code to indicate to our tool which areas can withstand

changes and which may be untouchable, we can generate acceptable variants faster
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and save a lot of time in design space exploration.

Our methodology for fast and automated behavioral synthesis of approximate

circuits can be used in various circuits and systems optimization frameworks. Here

we provide a brief overview of some of the possible project extensions we can pursue

in the future.

Use in dynamic power management

There could be cases, for example, when the system may not require computation

with the highest possible accuracy. An approximate computing circuit component

can be deployed for low power mode operation and can be switched with an exact

version of it in a simple coarse-grain fashion. For example, when low-power mode

is enabled, the outputs from the approximate circuits are selected and the exact

circuit is power-gated by using sleep transistors, and vice versa as shown in Figure

6.1. Switching to the approximate version of the circuit component can help save

both dynamic and static power. This may become more and more relevant in the

e x a c t 
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Figure 6.1: Illustration of a possible power management system using approximate circuits for
low power consumption
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imminent Dark Silicon era in the semiconductor industry. Dark Silicon is essentially

the number of transistors that will have to be switched off in a multi-processor

system to keep it under given power budget [23]. Dark Silicon has become relevant

and inevitable way of controlling leakage power given aggressive technology node

scaling and the packing of more transistors per chip.

The disadvantage of coarse-grain multiplexing is that it can incur a significant

area overhead due to the need to implement exact and approximate circuits entirely.

However, this can be minimized if the exact and approximate circuits can share

many common modules or subcircuits that are identical to both of them. Using the

similarities between the two versions that arise from the operation of our synthesis

algorithm, we can leave portions of the code unmodified if they are deemed critical

to accuracy.

Use in redundancy circuits

Using redundant approximate circuits for concurrent error detection and correction

can lead to less area and power overhead while still producing outputs that are close

to original circuits [15, 40]. Figure 6.2 shows an approximate version of a circuit used

as an error checker running in parallel with the exact version. The same concept can

approx.	
  
circuit	
  

original	
  circuit	
  

inputs bounded	
  
error	
  

checker	
  

error 

outputs 

Figure 6.2: Illustration of an approximate system used for redundancy robustness
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be followed to use approximate circuits in modular redundancy circuits. As long as

the outputs of the original and approximate versions differ only within a reasonable

bound, the ciruit could be considered error-free.

If an error is indeed discovered, in case where the exact circuit and approximate

circuit vary beyond an acceptable threshold, the error needs to be corrected. Stan-

dard error correction techniques with possible voter mechanisms can be realized to

deal with such a case.
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