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1 Introduction

With the widespread use of motion sensors in embedded devices such as phones

and smart watches, there is a vast amount of data available for analysis. Mo-

tion sensor data from these devices can be leveraged to provide a wide-range of

technologies such as health monitoring and activity tracking [8] [9]. However, in

order for these applications to be robust in real-world settings, we must account

for sensor inconsistencies that can significantly distort the data. For instance,

simply rotating an accelerometer sensor will vastly change its measurements.

We focus on applications toward gait recognition and discuss techniques for

handling variability in sensor data. We also propose a novel feature extraction

method for time-series data that leverages fractional order derivatives.

1.1 Gait Recognition

Gait recognition is a form of biometric security that attempts to identify a

user by their unique walking pattern. There are many different proposed meth-

ods for capturing gait measurements ranging from video analysis to floor sen-

sors [10] [11] [31]. Wearable motion sensors have gained growing interest for use

in gait recognition due to their ability to capture unique walking signatures [14].

As shown in Figure 1, the shape of each person’s accelerometer signal during

walking is identifiably different. Although our study focuses on accelerometers,

gyroscopes can also be used with similar effectiveness.

Conveniently, accelerometers can be found in almost all smart-phones. Sim-

ilar to the use of facial recognition for protection of smart-phones, gait recogni-

tion is a reliable method for verifying that your phone is in the right hands as you

walk around. Current research has shown promising results in this field when

data is collected in a controlled environment, but there is a significant drop-off
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(a) Subject 1 (b) Subject 2

Figure 1: Roughly seven steps of accelerometer magnitude data for two different
subjects

in performance when accounting for realistic variables such as arbitrary sensor

orientation and placement [1] [5] [6] [7].

2 Related Work

The main challenge when analyzing accelerometer data is the issue of orien-

tation. Accelerometers measure the direction and magnitude of acceleration.

However, the direction of acceleration is with respect to the axes of the sensor

itself (see Figure 2) and so rotating the sensor will also rotate your acceleration

data. This presents issues if your analysis depends on the raw three-dimensional

signal.

There have been many proposed approaches to calculate rotation-invariant

features from three-dimensional acceleration data. The simplest approach is

to analyze only the acceleration magnitude. This sacrifices potentially useful

information about the direction of acceleration. However, we can compensate

for this information loss by transforming our signal into rich 2D feature repre-

sentations using techniques such as the Short-time Fourier transform and the

continuous wavelet transform [18] [22] [23] [24] [25] [26] [27].

A more creative rotation-invariant method, proposed by Zhong et al., is to
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Figure 2: Axes of accelerometer. Figure taken from [17].

use the angles between each pair of acceleration vectors in the signal [1]. As

long as the orientation is consistent for all pairs of samples, the angle between

the vectors is invariant to rotation of the sensor. Similarly, Kobayashi et al.

use the autocorrelation matrix of the signal in the frequency domain as features

for their analysis [2]. Since the autocorrelation matrix of a three-dimensional

signal is estimated using the inner product of each possible pair of vectors in

the signal, this method indirectly leverages the rotation-invariant property of

inner products.

Another strategy is to represent our acceleration signal along components

that are independent of the sensor’s axes. For instance, Gadaleta et al. and

Mantyjarvi et al. use Principal Component Analysis to determine the direc-

tion of greatest variance and then transform the acceleration signal along this

axis [3] [19]. We can also use Independent Component Analysis to statistically

determine the axes along which our data is maximally independent. Since the

statistical properties of variance and independence are determined by the nature

of the user’s movement and not by the sensor, PCA and ICA are invariant to

sensor rotation.

Finally, Subramanian et al. attempt to correct for rotation factors by apply-

ing the Kabsch algorithm on each pair of acceleration signals to estimate their

relative orientations before computing their similarity. [4].

In addition to rotation-invariant feature extraction techniques, there are

many other steps in the analysis flow that contribute to handling inconsistent
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sensor data. This thesis will thoroughly address each stage of the machine learn-

ing pipeline starting with data preprocessing, then feature extraction and finally

classification.

Figure 3: Gait Recognition Pipeline

3 Data Preprocessing

Accelerometers are highly prone to noise and so it is important to first extract

meaningful signals before performing analysis. While the overall walking sig-

nature is crucial for gait recognition, each twitch and micro-movement of the

sensor will also factor into the readings. Accelerometers operate by measuring

the inertial force of a suspended mass. The accumulation of small vibrations of

this mass can cause high levels of noise. Denoising techniques such as averaging

are often implemented in the hardware of the accelerometer itself, but additional

inconsistencies arise when data is collected by a multitasking operating system

such as a smart device.
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3.1 Resampling

In smart devices it is impossible to retrieve measurements at a fixed frequency

since the processor is often running many different programs simultaneously

and cannot guarantee the exact timing that it executes its tasks. The standard

deviation of the accelerometer sampling frequency can be as high as 5Hz for a

typical smart-phone. When analyzing data from a multi-tasking operating sys-

tem, the first step is to resample the measurements to a fixed sampling frequency

using the timestamps of each sample. This will avoid temporal distortions of

our walking signal that occur if we assume that samples are equally spaced.

It is important to note that we can avoid the computational overhead of

resampling by using an embedded device with a real-time operating system.

This is ideal for wearable sensor applications since these devices can guarantee

precise sample timing. However, multi-purpose smart-devices are more widely

applicable and so we cannot rely on fixed sampling rates.

3.1.1 Cubic Spline Interpolation

One strategy for resampling is to approximate the walking signal as a piecewise

function of cubic polynomials [5]. We assign a cubic polynomial for each inter-

val between accelerometer samples with the condition that adjacent polynomials

are continuous at the point of overlap up to the second order derivative. This

can be formalized as follows:

Given a set of n + 1 data points xi, yi for i = 0, . . . , n where xi represents

the ith timestamp and yi represents the ith acceleration reading, we can fit the

following piecewise function to our data:
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S(x) =


C1(x) for x0 ≤ x ≤ x1

...

Cn(x) for xn−1 ≤ x ≤ xn

where Ci(x) is a cubic polynomial such that

Ci(xi) = Ci+1(xi)

C ′i(xi) = C ′i+1(xi)

C ′′i (xi) = C ′′i+1(xi)

Since each cubic polynomial has four coefficients we must solve for 4n vari-

ables. The boundary conditions for each polynomial gives us 4n constraints,

allowing us to have a closed form solution to the system of equations.

It can be proven that cubic spline interpolation minimizes bending while fit-

ting all data points [13]. Specifically, it minimizes the energy integral
∫

(d
2S(x)
dx2 dx)2

over all functions S(x) that fit the data. Minimal bending is desirable because

this is intuitively the smoothest fitting of our data.

Once we have approximated our data points as a piecewise polynomial func-

tion we can now evaluate our function at equally spaced time intervals in order

to resample to a constant frequency. Figure 4 illustrates how resampling can fix

temporal distortions that arise from a variable sampling frequency.

3.2 Filtering

Accelerometer data has a significant amount of high-frequency noise due to its

sensitivity. Since we are only interested in capturing the overall gait dynamics,

which are relatively low-frequency, we can apply a low-pass filter to reduce noise

in our accelerometer data. A standard low-pass filter is the Butterworth filter

which has a flat frequency response in the pass-band and can be tuned to sharply
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Figure 4: Resampling using Cubic Spline Interpolation to avoid temporal drift

cut-off high-frequency components [21]. This proves to be an effective method

for isolating our walking signal from the accelerometer noise. As you can see in

Figure 5, the Butterworth filter smooths out jagged edges of our raw acceleration

signal to create a waveform that better represents the overall movement. The

cut-off frequency and order of the filter were chosen in order to denoise without

eliminating distinguishing characteristics of the signal.

Figure 5: Effect of filtering on two seconds of acceleration magnitude data using
order 3 Butterworth low-pass filter with cut-off frequency of 8Hz
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(a) Raw Magnitude Signal (b) Circular Autocorrelation

Figure 6: Estimating the period of the raw acceleration signal using its circular
autocorrelation

3.3 Cycle Detection

The final preprocessing step is to segment our walking data into gait cycles.

This is necessary to ensure that our signal is consistently aligned. We break up

our walking signal into two-second segments each starting at the beginning of

a step. Our step detection algorithm first estimates the period of the gait cycle

(the amount of time to take two steps) and then finds the strongest peaks that

are approximately one period apart from each other.

3.3.1 Period Estimation

To estimate the period of the gait cycles we first calculate the circular auto-

correlation of the signal, which is the correlation of the signal with itself for

various time delays [5]. Note that these time-delays are applied circularly so

that the end of the time-delayed signal is shifted onto the beginning of the orig-

inal. There will be high values of correlation when the signal is delayed by a

multiple of its approximate period since this will result in maximal overlap. By

analyzing the time between peaks in the circular autocorrelation signal we can

easily determine the period. Figure 6 shows how this method reveals a clean

representation of our walking signal’s periodicity.
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The Weiner-Khinchin Theorem presents a simple method for calculating the

circular autocorrelation R(τ) for all possible time delays τ by multiplying the

Fourier transform of the signal with its conjugate and then transforming back

to the time domain [12]:

R(τ) = F−1(F(x) · F∗(x))

Each peak in the autocorrelation signal corresponds with a step and so we

estimate the period of a complete walking cycle as twice the average distance

between these peaks.

3.3.2 Peak Detection

Once we have estimated the period, finding the beginning of each gait cycle is

straight-forward. We simply find the strongest peak that is within a margin

of 20% of the estimated period. We evaluate the strength of each peak as the

relative height distance between its neighbors. Figure 7 shows how our peak

detection algorithm segments a raw walking signal into gait cycles.

Figure 7: Segmentation of raw walking data into individual gait cycles
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4 Feature Extraction

The next stage in our gait recognition pipeline is to extract meaningful charac-

teristics from our walking signal. For simplicity’s sake, our figures so far have

focused on displaying the acceleration magnitude; however, our walking signal is

three dimensional with an x, y, and z component that each contribute informa-

tion about the gait dynamics. By extracting the distinguishing characteristics of

these signals we can provide our classification model with more refined features

than the raw signal itself.

4.1 Statistical Features

A computationally efficient approach is to calculate simple statistical measures

of the signal. This includes calculating the mean, standard deviation, kurtosis,

range, energy, bandpower, etc. [14]. Each of these features are often calculated

for each dimension of the signal. This method sacrifices fine-grained informa-

tion about the walking signal for broad statistical summaries, which can work

well for classification problems with relatively few classes, but may not be suf-

ficiently complex for harder problems. In addition, the statistical features for

the individual x, y, z signals of the acceleration data are vulnerable to arbitrary

rotations of the sensor, which can lead to poor performance in realistic settings.

4.2 Rotation-Invariant Techniques

To maximize the amount of information in our feature representation, we hope

to leverage the direction of acceleration in addition to its magnitude. Unfortu-

nately, we cannot rely on a fixed orientation of the sensor because this will fail

in settings where the sensor is placed imperfectly. This seems like an impossible

challenge since the direction of acceleration is entirely dependent on the orien-

tation of the sensor. However, if we assume that the rate of the sensor’s rotation
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is slow, such that the orientation for consecutive readings is consistent, we can

still produce powerful features beyond just analysis of the magnitude signal. In

this section, we discuss various techniques that attempt to preserve some aspect

of the three-dimensional signal while maintaining rotation-invariance.

4.2.1 Inner Products

An insight made by Zhong et al. is that we can use the inner product between

acceleration vectors as a rotation-invariant feature [1]. The inner product can

be simplified as a measure of the angle between two vectors scaled by their

magnitudes. Intuitively, we note that no matter how you rotate this pair of

vectors, the angle between them will remain the same. In the special case

where the inner product is taken with respect to the vector and itself, we get

the vector’s magnitude. This rotation-invariant property of the inner product is

shown more formally below with the unitary matrix R representing an arbitrary

rotation on two accelerometer vectors a1 and a2.

〈Ra1, Ra2〉 = aT1 R
TRa2 = aT1 a2 = 〈a1, a2〉

We can leverage this property of inner products to create 2D feature represen-

tations of our signal that are rotation-invariant. By taking the outer product of

the three dimensional acceleration signal with itself, we can produce a matrix of

inner products between each possible pair of acceleration vectors. This matrix is

an estimate of the autocorrelation matrix of the acceleration signal and can be

used as our feature image. This technique can also be applied in the frequency

domain with similar effectiveness [2]. Taking this idea further, we can even use

the inner products between gradient vectors of the acceleration signal, which

has shown to be a rich feature representation as well [5].
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4.2.2 Principal Component Analysis

Principal Component Analysis is a statistical method for determining the di-

rections of greatest variance in our data. Since the direction of variance in our

acceleration data is completely determined by the user’s movement, it is invari-

ant to the orientation of the sensor [3]. More formally, given a 3× n matrix X

of acceleration data where n is the number of samples, we can perform PCA by

singular value decomposition of X into UΣV T where U and V are unitary ma-

trices and Σ is a diagonal matrix. UΣ is our desired projection of X along the

principal components (i.e. the right singular vectors). Since the singular value

decomposition of X is equivalent to the eigenvalue decomposition of XTX, it

is rotation invariant (let Y = RX for an arbitrary rotation matrix R acting on

our acceleration data X, we have Y TY = XTRTRX = XTX).

Once we have rotated our acceleration data along its principal components

we can use any method to extract features from our data and our feature vector

will remain rotation-invariant [19]. However, PCA is a statistical technique and

since our walking data is limited to approximately two seconds per segment it

is difficult to accurately find the true principal components.

4.2.3 Independent Component Analysis

Independent Component Analysis is another statistically-driven technique for

finding interesting directions in our data [20]. ICA attempts to find a rotation

of the data along components that are maximally independent from each other.

Independence can be measured by the non-Gaussianity of the component, which

is approximated by the kurtosis [15]. Applying ICA to our acceleration data

allows us to orient our data along statistically promising directions rather than

along the sensor’s axes. Unfortunately, ICA also introduces additional compli-

cations such as scaling and random permutations of the component ordering.
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Mantyjarvi et al. attempts to resolve this issue by ordering components based

on their kurtosis [19]. However, ICA remains vulnerable to the same challenges

as other statistical methods since it relies on larger acceleration signals for its

estimations.

4.3 2D Feature Representations

We can dramatically increase the expressiveness of our feature representation by

transforming our one-dimensional time-series waveforms into two-dimensional

feature maps. For instance, we can represent our signal in both the time and

frequency domain by performing either the Short-time Fourier transform or the

continuous wavelet transform [18] [28]. This gives us a much richer represen-

tation of our signal and allows us to use more powerful classification methods.

Analogous to tracking the frequency spectrum of our signal in time, we can also

construct an image representing the change in shape of our signal over time

using fractional order derivatives.

4.3.1 Short-time Fourier Transform

The Short-time Fourier transform is an industry standard technique for display-

ing the relationship between the time and frequency domain of a signal [28]. The

hope is that through taking the Fourier transform of small intervals of the signal,

we will be able to determine the frequency spectrum for local points in time. In

reality, we can only calculate a small range of frequencies if our time interval is

small. This is a significant issue when our signal is already short to begin with

(in our case two seconds). On the other hand, if we instead take the Fourier

transform of larger intervals of our signal, we then begin to lose locality in time.

This trade-off is unavoidable as it is impossible to have perfect precision in both

the frequency and time domain.
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Figure 8: Spectrogram of two-second magnitude signal calculated using Short-
time Fourier Transform

4.3.2 Continuous Wavelet Transform

The wavelet transform proves to be a much more effective method for generating

time-frequency mappings for short waveforms since it is better equipped for

producing local measurements of frequency. It has been well-studied as a form

of feature representation and has shown to be an effective tool for gait analysis

[18] [22] [23] [24] [25] [27] [28]. The main difference is that while the Fourier

transform represents the time-domain signal as a linear combination of non-local

sinusoids, the wavelet transform instead uses localized wavelets to analyze the

signal.

Figure 9: Morlet wavelet

Larger scalings of this wavelet represent smaller frequencies and so by con-

volving the time-domain signal with a range of scalings of the wavelet we can

create an image of the signal’s frequency spectrum with respect to time. This

is often referred to as a scaleogram given that it is technically a function of the
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scaling of the wavelet rather than of frequency. Most of the temporal infor-

mation content of the wavelet transform is concentrated in low scalings of the

wavelet (high end of the frequency spectrum) as these are the most local. As

the scaling increases, we once again sacrifice locality for frequency resolution.

Figure 10: Scaleogram of two-second magnitude signal calculated using the
continuous wavelet transform

4.3.3 Fractional Order Derivative Transform

While the previous methods are well-known, we also propose a novel method for

feature mapping that expresses equally rich information content. Extending the

notion of frequency in the previous methods to simply the rate of change, we

can construct an image that displays the spectrum of derivatives of our signal

using fractional order calculus. Specifically, we construct our image by taking

fractional order derivatives of our time-series signal at discrete increments rang-

ing from order zero to some fixed maximum order.

Integer order derivatives express valuable information about our signal such

as the rate of change and curvature at instantaneous points in time. By filling

in the gaps with fractional order derivatives, we can further refine our feature
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representation to contain non-local characteristics as well.

We can decompose fractional derivatives into two steps: integer order dif-

ferentation and fractional integration as shown below where α is the fractional

order and n is an integer.

Dα(x) = Jn−αDn(x)

We define fractional order integration by using the Cauchy formula for repeated

integrals where n is the number of consecutive integrations [16]:

Jn(x) = 1
(n−1)!

∫ x
0

(x− t)n−1f(t)dt

Approximating the factorial with the gamma function we have our fractional

order integral:

Jα(x) = 1
Γ(α)

∫ x
0

(x− t)α−1f(t)dt

Since fractional order derivatives are defined using integration over our sig-

nal, they represent non-local information. This allows them to capture more

general characteristics about the overall waveform than integer order deriva-

tives which represent instantaneous changes. Notice that this combination of

local and non-local temporal information is also a strength of the wavelet trans-

form. Unfortunately, fractional order derivatives are computationally expensive

to compute as we must compute an integral for each point in our signal.

The algorithm to transform the time-series waveform into a 2-D fractional

order derivative image is formally defined in Algorithm 1.
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Algorithm 1: Fractional Order Derivative Image

Data: a: array holding acceleration signal of length n, minorder:
minimum order of fractional derivative range, maxorder:
maximum order of fractional derivative range, m: number of
fractional order derivatives to calculate

Result: fodimage: m× n matrix representing the desired feature map
i = 0
for α in linspace(minorder, maxorder, m) do

fodimage[i, :] = Dα(a)
i = i+ 1

end
return fodimage

5 Classification

Depending on our choice of data representation, we have various techniques for

classification. Given a vector of statistical features we can simply use a fully

connected neural network or any other black box machine learning classifier

such as Support Vector Machines, k-Nearest-Neighbors, Decision Trees, etc. If

we instead choose to use a rotation-invariant signal such as the magnitude, vec-

tor angles, PCA or ICA, then we can use a 1D convolutional neural network to

classify our waveform. Finally, we can transform our raw waveform into a 2D

feature image and use 2D convolutional neural networks to analyze the images.

5.1 Convolutional Neural Networks

Convolutional neural networks detect meaningful features by convolving differ-

ent weight matrices over the input data. These weight matrices are called kernels

and are optimally tuned during training to detect the most relevant features for

classification. The convolutional layers then feed into a final subnetwork of fully

connected layers that perform the classification.

Rather than calculating statistical features by hand, we instead allow our
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network to find the optimal features in our data that maximize classification per-

formance. This proves to be a much more effective method than hand-crafting

our feature vector using heuristics.

However, given the high complexity level of these networks, we must be care-

ful not to overfit our training data. Fortunately, there are many techniques for

managing overfitting in CNN’s including the use of pooling and dropout lay-

ers. Pooling layers summarize the learned features by grouping them into small

subgroups and using only the maximum feature in the subgroup. This allows

us to simplify our feature map to make it more manageable. We can also use

dropout layers to regulate our network’s complexity. Dropout layers randomly

zero-out a fraction of the layer weights. This again reduces the complexity of

our network and forces all layer weights to meaningfully contribute to the net-

work. Our particular chosen neural network architectures for the 1D and 2D

cases are illustrated in Figures 11 and 12.

6 Experimental Results

In order to evaluate the performance of the previously described methods, we

applied each technique to the problem of gait recognition. In particularly, we

focused on performance in worst-case scenarios where we must contend with

measurement inconsistencies.

6.1 McGill Dataset

We used the McGill Dataset to test our methods because this is the closest

approximation to real-world use cases. In this dataset, walking data is collected

for twenty different subjects on two separate days. On each day approximately

fifteen minutes of accelerometer readings are recorded. Between days, subjects

changed their clothes and shoewear. In addition, there is no guarantee that
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Figure 11: Architecture for 1D convolutional neural network (not shown is
50% dropout layer after second convolutional layer). Figure was generated
using a software tool by Alex Lenail available at http://alexlenail.me/NN-
SVG/LeNet.html.

Figure 12: Architecture for 2D convolutional neural network (not shown is 25%
dropout layer after each convolutional and fully connected layer except for the
first). Figure was generated using a software tool by Alex Lenail available at
http://alexlenail.me/NN-SVG/LeNet.html.
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the sensor remained in the same orientation across days [7]. This dataset is

available at the following link: https://www.cs.mcgill.ca/ jfrank8/data/gait-

dataset.html.

6.2 Experimental Setup

We trained each model on 80% of the Day 1 walking data and tested on both

20% of the Day 1 data and 100% of the Day 2 data. During preprocessing,

we segmented the data into two-second walking signals as this is enough for

approximately two step cycles. We tested our methods on the harder task of

classification rather than authentication. The distinction is that in classification

our model must identify which person the walking signal belongs to rather than

whether it belongs to a particular person or not.

6.3 Results

We first show the effect of each preprocessing step on the overall performance

of our pipeline. Table 1 demonstrates that each additional step of preprocess-

ing contributes to the Day 2 performance. In each case, we evaluate the Day

1 and Day 2 test accuracy using the magnitude signal as our input vector to

a 1d convolutional neural network. This feature extraction and classification

method can be thought of as a baseline for rotation-invariant techniques since

the magnitude signal is the simplest such method. Note that each preprocess-

ing step is performed in conjunction with all steps in prior rows of the table.

For example, the bottom row represents the performance of using resampling,

walking detection and filtering all together.

It is important to note that the McGill dataset contains a significant amount

of non-walking data, which must be parsed out using a walking detection algo-

rithm. In our case we used Frank et al.’s suggestion of simply evaluating the
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mean of the absolute value of the magnitude for each segment and treating all

data below a certain threshold as non-walking data.

Method Day 1 Test Accuracy (%) Day 2 Test Accuracy (%)

Nothing 89.38 42.48

+ Resampling 84.83 46.11

+ Walking detection 98.01 55.28

+ Filtering 93.85 59.69

Table 1: Effect of adding various preprocessing steps

Finally, we evaluate each of the previously discussed feature extraction and

classification methods on the McGill Dataset. Note that in each case we use

consistent preprocessing steps of resampling, walking detection, filtering, and

cycle segmenting. We report the test accuracy for Day 1 and Day 2 for each

method in Table 2. A detailed description of each method is presented below

Table 2 for reference. Some of these techniques are well-known such as Principal

Component Analaysis (PCA), the Short-time Fourier transform (STFT), and

the continuous wavelet transform (CWT). Others are experimental methods re-

cently proposed by gait analysis researchers such as the inner product methods

(implemented here by calculating the autocorrelation matrix of either the time

or frequency domain signals) [1] [2] [5]. Finally, the fractional order derivative

imaging technique is our own novel contribution to this field.
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Method Day 1 Test Accuracy (%) Day 2 Test Accuracy (%)

CWT 96.51 67.02

FODI (our approach) 96.03 66.57

Time-domain Autocorr [1] 98.01 65.28

Freq-domain Autocorr [2] 98.15 65.22

HOS [6] — 64.50

STFT 95.62 59.77

Magnitude 93.85 59.69

PCA [19] 95.42 48.18

ICA [19] 91.42 47.89

TDEBOOST [7] — 42.40

Baseline 99.52 27.55

Statistical features 99.56 24.75

Table 2: Comparing Performance on McGill Dataset

CWT: We take the continuous wavelet transform of the acceleration magni-

tude signal using Haar wavelets to produce a scaleogram. We then use a 2D

convolutional neural network to perform image classification on the scaleogram.

FODI: We take the fractional order derivative image of the acceleration mag-

nitude signal using the method described in Algorithm 1. We then use a 2D

convolutional neural network to perform image classification.

Time-domain Autocorr: We take the outer product of the three-dimensional

time domain signal with itself to create a 2D image. This leverages the rotation

invariance of inner products which was first suggested by Zhong et al. [1]. We

then use a 2d convolutional neural network for image classification.
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Freq-domain Autocorr: We take the autocorrelation of the three-dimensional

Fourier transform signal to create a 2D image. We use a 2d convolutional neural

network for image classification. This method was proposed by Kobayashi et

al. [2].

HOF: We report the published results of Sprager et al. [6]

STFT: We perform the Short-time Fourier transform of the acceleration mag-

nitude signal to create a 2d spectrogram. We use a 2d convolutional neural

network for image classification.

Magnitude: We use a 1d convolutional neural network on the acceleration

magnitude signal.

PCA: We perform Principal Component Analysis to rotate the three-dimensional

acceleration signal onto its principal components [19]. We then use a 1d convo-

lutional neural network on the rotated signal.

ICA: We perform Independent Component Analysis on the acceleration sig-

nal to find the independent source signals [19]. We then order the sources ac-

cording to their kurtosis and input them into a 1D convolutional neural network.

TDEBOOST: We report the published results of Frank et al. who collected

the McGill dataset [7].

Baseline: We use a 1d convolutional neural network on the three dimensional
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acceleration signal. This is our baseline since it is the most straightforward

approach.

Statistical features: We construct a feature vector using the mean, standard

deviation, range, and energy of the x, y, z acceleration signals. We perform

classification using a fully connected neural network.

(a) Day 1 Test Accuracy per Subject (b) Day 2 Test Accuracy per Subject

Figure 13: Test Accuracy for each subject

We note that the test errors were not uniformly distributed over all subjects,

but certain subjects were significantly harder to classify on Day 2. In particular,

subject 4 changed from a loosely flowing dress to tight shorts and subject 14

changed from jeans to baggy shorts [7]. In Figure 13, we show the test accuracy

for each subject when using the magnitude signal as input to a 1D convolutional

neural network.

From our results in Table 2, we see that rotation-invariant techniques are es-

sential for high accuracy on the Day 2 data where sensor orientation is changed.

Neither ”Baseline” or ”Statistical features” account for rotation-invariance and

consequently perform worse than the rest of the methods for the Day 2 data.

However, by assuming a fixed sensor orientation, they are able to leverage ad-

ditional information about the direction of acceleration. This allowed them to
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outperform all other methods on the Day 1 data where the sensor orientation

remained constant.

The highest performing methods on Day 2 all used 2D feature representations

and leveraged the more sophisticated classification method of 2D convolutional

neural networks. However, this performance gain is at the cost of computa-

tional efficiency. Waveform-based feature representations such as ”Magnitude”,

”PCA”, and ”ICA” have a much smaller computational footprint in both the

feature extraction and classification stages, but performed worse than more com-

plex methods using feature images.

While the continuous wavelet transform proved to be most effective, our

novel method of fractional order derivative images (FODI) outperformed all

previously published research results on classification of the McGill Dataset.

This is an encouraging result and suggests that FODI’s can be used as an alter-

native method for extracting 2D feature representations from 1D waveforms.

7 Conclusion

In this thesis, we have thoroughly discussed each stage of the machine learning

pipeline for classifying time-series waveforms. In particular, we have focused

on applications to gait recognition with inconsistent sensor data and outlined

many approaches to mitigate the effects of sensor-induced factors. We first ex-

amined effective preprocessing techniques to resample, denoise, and align our

acceleration signals. We then enumerated various ways to transform our three-

dimensional signal into components that are either geometrically or statistically

invariant to sensor rotation. Next, we described methods to increase feature

complexity by transforming our waveform into a rich 2d feature representation.

Finally, we introduced state-of-the-art classification techniques using convolu-
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tional neural networks and evaluated the performance of each feature-extraction

method on the McGill dataset.

We discussed both well-known methods and recent experimental approaches,

and also proposed our own novel technique of using fractional order derivatives

for feature extraction. To our knowledge, this is the first use of fractional or-

der derivatives in this context. We found that our proposed method surpassed

previously published results and achieved comparable test accuracy to industry-

standard techniques such as the continuous wavelet transform.

There is still a long way to go for accelerometer-based gait recognition to

be adopted as a universal form of biometric security. To compete with current

forms of biometric security we expect gait recognition to reach an accuracy rate

above 95%. For comparison, Facebook’s DeepFace achieved a 97.5% accuracy

for facial recognition on the Labeled Faces in the Wild (LFW) dataset [30] and

fingerprint is accurate up to 99% according to a study by NIST [32]. However,

accelerometer-based gait recognition is not far behind more resource-intensive

forms of gait recognition such as camera-based methods. Rida et al. achieved

the state-of-the-art accuracy of 86.5% for camera-based gait recognition on the

CASIO Gait Dataset B [31]. Of course there are many different factors that

make it unfair to directly compare these results. We only include these num-

bers to have a general perspective regarding the state of the field.

In the future we would like to scale our methods to a greater number of

subjects. In order for gait recognition to be employed in real-world use cases,

we must be able to identify between a far greater number of subjects than the

twenty subjects of the McGill dataset. Since convolutional neural networks can

be easily scaled to handle more complex learning problems, we believe our pro-

posed pipeline will maintain high performance for a larger number of subjects.

We hope to test this using larger datasets such as the Osaka dataset, which
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contains walking data for 744 different subjects [29].

Although our results are specific to gait recognition, these general techniques

can be utilized in any machine learning application with periodic time-series

data. In addition, the methods for rotation-invariant feature extraction can

apply to any sensor data that has spatial dimensionality. We are interested to

pursue in the future how these techniques will translate for applications beyond

gait recognition.
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