Soft Power Capping for Improved Performance of
Computing Systems

Honors Thesis submitted by Natalie Serrino
in partial fulfillment of the Sc.B with Honors in Computer Engineering
at Brown University

April 20, 2012

Prepared under the direction of
Professor Sherief Reda, Advisor
Professor Iris Bahar, Reader

Professor Rashid Zia, Reader

Table of Contents

23 1 T 3
(00 (P10 1 7<) ol S 0000 o001 L1 ot) . 4
1.1: MUItI-COTE ATCRIEOCTUT @..ooeeereerersrersirassrissssisssssssssssssisssssssssssssssssssssssssssassssssssssssssssssasssssssssssessnses 4
1.2: Power Consumption in Datacenters and Supercomputing Facilities 5
1.3: Power Capping and Dynamic Voltage and Frequency Scaling..........eonens 7
1.4: Multi-threaded APPIICALIONScceuveererreerisireriseerisssesisssesissssssssssssesasssessssssssssssssssssssssssasssssansess 9
1.5: RESEATCN OVEIVIBWeeoversrersisissrissssisssssssssssssisssssssssssssassses 10
1.6: EXPEIIMENEAL SEEUP.....couuerueerisserissserssissssesissesisssesissssssssssssssssssssssssssssassssssssssssssssasssssasssssssssns 12
Chapter 2: Previous WOrK ... sesssssssssssass 14
Chapter 3: Models and Methods ... 18
Chapter 4: The Power-Runtime Pareto Frontier and Initial Experimental
T 1 L, 29
4.1: The Power-Runtime PAreto FIONTIENeoneeosersseesisssesssssssssssssssssssssssssssssssssanss 29
4.2: Initial Experimental Results for Soft POWer CaPPINGcceomceomerismsersssessssssans 31
Chapter 5: An Improved Implementation of Soft Power Capping........ccuseresusarans 40
5.1 ENEIGY CTOAIES covverrereerieerisersesrissesisssesisssssisssssssssisssssissssssssssssssssssssssassssssssssssssssssssssassssanssssanes 40
5.2: ENEIGY CTEAILt SIZING couuueereeerseirissirisssersssssssssssssesisssesisssssssssssssssssssssassssssssssssssssssssssissssassssanss 42
5.3: An Adaptive Energy Credit Sizing AILGOTTtRMceeeveeerseersseirsseerssersseerissserisssesisssssans 49
Chapter 6: CONCIUSIONS ..o sssasass 57
2S5 (2] =) 1 Lol 59

Abstract

The costs associated with power and cooling are increasingly becoming the
largest cost of datacenter and supercomputer ownership. Power capping is a
necessary decision to manage these costs and maintain system stability, and
consequently dynamic power management policies are needed to optimize system
performance.

Most prior work in this area has focused on methods that satisfy hard power
capping, in which the instantaneous power may never violate the cap. We propose
soft power capping, where it is the average power rather than the instantaneous
power that must meet the budget. In some prior work, the concept of fine-grained
soft power capping is used implicitly, with frequency as the control knob. We
formalize the concept and extend it by using the number of active cores on the
processor as the control knob.

We provide a theoretical framework for predicting the performance of soft
power capped workloads and propose the concept of energy credits to control the
mode of execution in soft power capping. We propose two applications of soft
power capping. First, it provides an infinite set of power-performance tradeoffs,
whereas hard power capping provides a finite set. Second, soft power capped
workloads can outperform hard power capped workloads for the same power
consumption. Finally, we propose an algorithm to dynamically size energy credits
during runtime. We validate our proposed framework on a real quad-core based

system and demonstrate significant improvements in performance.

Chapter 1: Introduction

1.1: Multi-core Architecture

Over the past few decades, semiconductor-manufacturing technologies have
decreased the transistor feature size dramatically, from 10 um in 1971 to 32 nm in
2012. Smaller transistors allow for faster switching time and until recently, a lower
supply voltage. Because chip power consumption is proportional to the clock speed
and the square of the supply voltage, processor designers have for years been able
to simultaneously reduce the supply voltage and increase the clock speed of their
chips to maintain the same power consumption per unit area. However, it has since
become infeasible to scale down the supply voltage in transistors to the same
degree, even given smaller device lengths, due to the increased impact of leakage
power, noise and process variation on data integrity at low supply voltage levels.
Consequently, raising the clock speed also increases the power consumption of
chips today, because the supply voltages can no longer scale down accordingly.

Cooling systems have been developed to absorb the heat generated by the
increased power consumption of the chips, but the heat that can be practically
removed by economical cooling systems is limited. As a result, the growth in clock
speeds has slowed and it is necessary for chip designers to find new strategies of
increasing chip performance given these limitations on chip frequencies.

Today’s state of the art processor architectures now incorporate multiple
cores on a single chip to provide the increased performance that the industry is
expected to provide. An example of the organization of multi-core processors is

shown in Figure 1 for Intel i7-2600K 4-core processor. These chip multi-processors

(CMPs) simultaneously execute instructions in each core to increase the total
throughput compared to a single-core processor. Because CMPs rely on parallelism
to provide performance gains, workloads are broken into multiple threads, which
can be executed on different cores. Synchronization constructs and protocols are
also necessary to allow for the leveraging of the limited parallelism offered by
interdependent threads.

Due to the continued shrinking of transistors, more cores can fit on the same
chip area. Thus finding ways to exploit the thread level parallelism (TLP) in a given
workload has become a key challenge to achieve the computing performance gains

made possible by an increasing number of cores.

| Processor.

ineluding
S EL
- DMiand -

Figure 1: Die map depicting the layout of an Intel i7-2600K 4-core processor. Source:
http://www9.pcmag.com/media/images/243264-intel-core-i7-2600k-die-map.jpg

1.2: Power Consumption in Datacenters and Supercomputing Facilities
The rising cost of energy relative to other expenditures is a critical issue
facing modern datacenters and supercomputing facilities. Over the past decade, the

cost of power and cooling for datacenters has increased 400% [6], depicted in

Figure 2. These factors constitute the largest cost of datacenter ownership,
comprising up to 50% of overall spending. In 2009, datacenters consumed $4.5
billion dollars of energy, which accounted for over 1.5% of the total electricity in the
US [12]. Costs associated with power and cooling are projected to continue rising.
Consequently, a serious challenge for datacenters and supercomputing facilities
moving forward is the minimization of costs associated with power and cooling,
while still meeting the required performance goals. It is necessary to address these
costs through the management of system power consumption and operating
temperatures. Existing methods to control power and/or temperature, while still
optimizing overall system performance, include low power sleep or nap modes and

dynamic voltage and frequency scaling (DVFS).

Worldwide IT Spending on Servers, Power, and Cooling and

Spending Management/Administration Installed Base
(US$8) (M Units)
§300 50

I Power and Cooling Costs
3 Server Mgt and Admin Costs

250 W New Server Spending

40

§200
30

§150

20
$100

§50 10

0
'96 ‘97 '98 '99 '00 ‘01 ‘02 '03 ‘04 '05 '06 ‘07 '08 ‘09 '10
Rate of Server Management and Power/Cooling Cost Increase

Figure 2 (from [6]) depicts world spending on different server costs.

An additional challenge stemming from the need to manage power
consumption and temperature in datacenters is the necessity to do so in the face of
changing system constraints and workload characteristics. The datacenter cannot
control the resources made available to it by the power grid. In fact, the power
provided by the grid may change with its overall load and access to additional
energy reserves. Thus a datacenter may be faced with a fluctuating power supply
during the execution of its workloads, so it needs to adapt to these changing power
constraints during runtime without sacrificing performance unnecessarily. New
strategies to adjust the behavior of a system to meet dynamically changing
constraints on power and temperature have been explored, such as thread packing
[3] and online workload phase detection [8]. The techniques mentioned earlier
(DVFS, sleep and nap states) also have the capacity to be applied during execution

time to meet such constraints.

1.3: Power Capping and Dynamic Voltage and Frequency Scaling

Upper bounds on power consumption are necessary in servers due to
fundamental limits of a given system'’s capacity as well as the need to maintain
stable operating temperatures. Finding the optimal system configuration for a given
power budget is necessary to maximize performance and minimize energy
consumption.

Power caps are subject to change, and dynamic voltage and frequency scaling
(DVES) is a common technique of meeting different power budgets on the same

system. DVFS varies the supply voltage and clock speed of the system to produce

different power-performance tradeoffs. A higher clock frequency requires a
correspondingly higher supply voltage to maintain data integrity given a fixed
transistor length. Therefore increasing the frequency produces a generally linear
increase in runtime and a cubic increase in power, due to power’s quadratic
dependence with voltage and linear dependence with frequency.

A system utilizing DVFS selects the highest frequency that allows for power
consumption at or below the power budget. DVFS settings implemented on a per-
core basis or exclusively chip-wide. Because DVFS overheads are only on the order
of microseconds [1], it is an efficient control knob that can also be employed
dynamically for power budgets that change during runtime. Figure 3 shows the
power and performance of the PARSEC 2.0 benchmark blackscholes, running at
different DVFS settings on our 4-core system. The specifics of our system are

detailed in Chapter 3.

DVFS Power, Performance
300.00 ‘ 170.00

275.00
250.00 - L
225.00 - °
— 200.00 - o ®
©
> 175.00 8 o
150.00 -

125.00 7 PY @ Runtime [140.00
100.00 A

75.00 A ® Power
50.00 A o
25.00 ?

0.00 = T T T T T T T 120.00

1.60 1.73 1.87 2.00 213 2.27 240 253 2.67
DVFS Frequency (GHz)

160.00

150.00

1m

Runt

130.00

L
Total Power Consumption (W)

Figure 3: Power and runtime of the workload blackscholes by DVES Frequency.

1.4: Multi-threaded applications

To exploit the performance gains made possible by multi-core architectures,
individual applications are broken into multiple threads that can be executed
simultaneously on different cores. Exploiting the thread level parallelism (TLP) of
the workload is necessary to maximize throughput and minimize runtime. For the
sequential pieces of the workload, multiple synchronization constructs such as spin
locks or transactions are used.

Because servers implementing new power management techniques run a
variety of applications, the selection of a benchmark suite to evaluate new power
management techniques is important. The techniques being tested need to provide
benefits for a diverse set of workloads in order to be applicable to real systems. This
work utilizes the PARSEC 2.0 benchmark suite in all of our experiments [5]. The
PARSEC 2.0 benchmark suite targets “emerging applications”, which they define as
applications that are difficult but possible to execute well, and for which there exists
strong demand. These thirteen multithreaded benchmarks represent a diverse set of
applications, such as data compression, 3D rendering, and video encoding, for
different domains such as finance, computer vision, and data mining.

Each PARSEC 2.0 benchmark can be broken into a variable number of
threads. Parameters such as the rate of data sharing and the size of the working set
of the benchmarks are varied to evaluate the performance of processors under
different types of workloads. The proportions of floating point operations, reads,
and writes to the total number of instructions in the workload also vary, as do the

frequency of synchronization primitives, such as locks, barriers, and condition

variables. For example, an 8-threaded version of canneal, a simulated annealing
algorithm, uses 0.45 billion floating-point operations out of 7 billion total
instructions, and 34 locks. In contrast, an 8-threaded version of bodytrack, a
computer vision algorithm used to determine the pose of a human body, uses 6.08
billion floating point operations out of 14.04 billion total instructions, and 28,538
locks [5]. The diversity and relevance of the PARSEC 2.0 benchmark suite, as well as
its ability to be broken into a variable number of threads, make it a good metric for

the performance of our power management strategies for multi-core systems.

1.5: Research Overview

In this work we investigate a technique which seeks to improve the
performance of a server for a given power budget. Most of the previous work in this
area has relied on what we will refer to as hard power capping, in which the selected
settings must always produce power consumption at or under the power budget.
This technique is contrasted with our idea of soft power capping, where it is the
average power of the system that is capped rather than the instantaneous power
consumption. A soft power capped system switches between two modes of
operation during runtime, one consuming less power than the budget and one
consuming more power than the budget. These modes are balanced to achieve the
average power consumption specified by the cap.

The two control knobs that we consider in this work are DVFS and the
number of active cores on which the workload operates. Higher clock speeds as well

as higher number of active cores (cores turned ON rather than in a sleep state)

10

increase the power consumption of the system. As a result, the higher power setting
employs a higher frequency and/or a higher number of active cores than does the
lower power setting. The authors of [2] and [10] have shown the effectiveness of
soft power capping by varying frequency, so we focus in this work on improving
performance through soft power capping by switching of the number of active cores.

We first develop a theoretical framework for the power consumption,
performance, and energy consumption of a system employing soft power capping as
a function of the fraction of instructions in the workload executed in the higher
power setting. We implement soft power capping in a real system and compare
theoretical and experimental soft power capping data to show the soundness of the
theoretical model.

We show that soft power capping has two applications. First, it provides a
finer grained set of power-performance tradeoffs than does hard power capping
without the need to increase the number of settings of the system. Second,
employing soft power capping outperforms certain existing settings in a system for
the same power budget. We propose an implementation of soft power capping
based on energy credits, which are accumulated when the system uses less power
than the budget and spent when the system uses more power than the budget.

The subsequent chapters are organized in the following manner. Chapter 2
reviews related work. Chapter 3 describes our theoretical framework and
motivations for soft power capping. Chapter 4 discusses the power-runtime Pareto
frontier and our first set of experimental results for soft power capping. Chapter 5

improves upon the implementation of soft power capping discussed in Chapter 4 by

11

using energy credits, evaluates the performance of this improved version of soft
power capping, and proposes a simple algorithm to select the size of the energy

credit during runtime. Chapter 6 concludes the work.

1.6: Experimental Setup

All of the experiments in this work were performed on an Intel quad-core
Core i7 940 45 nm processor. Figure 4 shows the motherboard of our experimental
setup. The operating frequency of the processor is set using the Linux cpufreq
library, with nine equally spaced settings between 1.60 GHz and 2.67 GHz. The
operating system is the 2.6.10.8 Linux kernel OS. We used an Agilent A34401 digital
multimeter to measure the power consumption of the server. We used pfimon, a
performance-monitoring tool for Linux, to sample the power data from the
multimeter every 100 milliseconds. The power data from the system served as the

primary input to our control algorithm.

Figure 4: Motherboard used for experimental data, containing an Intel i7 processor.

12

The control algorithms were implemented through a MATLAB interface with
the pfmon utility. This algorithm was responsible for taking the power
measurements provided by the pfmon tool and adjusting the number of active cores
according to the policy. Dynamically switching the number of active cores was
accomplished through the migration of threads. We used the packing strategy
proposed by [3] so that the workloads could be launched with a set number of
threads. These threads are then packed on to a variable number of cores.

We utilized the PARSEC 2.0 benchmark suite [5] to evaluate the performance
of our soft power capping management policy. The benchmarks in the PARSEC 2.0
suite have the advantage of being broken into a variable number of threads. We
used four-thread versions of the benchmarks for our experiments and this

parameter was set using the command line option provided by the suite.

13

Chapter 2: Previous Work

The importance of effective power provisioning in the context of real
datacenters is explored in [11]. Fan et al. found that power capping can be effective
to allow additional machines to be hosted and also as a safety mechanism to stay
within the operating capacity of the datacenter. They evaluate the ability of DVFS to
reduce peak power consumption on a large-scale system, and conclude that it is an
effective technique. They also highlight the importance of power-efficiency during
non-peak power consuming phases of datacenter operation.

In [12], Harchol-Balter et al. determine that the optimal power allocation
strategy for a datacenter depends on multiple factors, such as the maximum and
minimum server frequencies, the power-to-frequency relationship in the
processors, the arrival rate of jobs and the configuration of the server itself. For
example, they show that in some cases it might be optimal to run fewer servers at
the highest operating frequency, and in other cases it would be more advantageous
to distribute that same amount of power among a greater number of machines
running at a lower frequency. They highlight the importance of finding the optimal
power allocation for a given datacenter, which can typically improve performance
by a factor of 1.4, but can reach as high as a factor of 5.

There has been significant progress in developing dynamic power
management policies for multi-core architectures to achieve the ultimate goal of
maximizing performance under a variable power cap [1], [2], [3], [4]. Our work

intends to expand on these works by proposing soft power capping as an additional

14

control knob, in particular by varying the number of active cores in the processor to
improve the overall performance of the server.

Isci et al. simulated four distinct global power management policies on multi-
core systems and analyzed the performance of each under a variable power budget
[1]. The control knob used for each of the policies is per-core DVFS with three
settings, whereas our work utilizes chip-wide DVFS with nine settings. The policy
that performed the best while meeting the power budget, MaxBIPS, performs an
exhaustive search of all 3N combinations of the cores’ DVFS settings, where N is the
number of cores in the system. MaxBIPS determines the optimal setting for each
core such that the overall performance is maximized and the power budget is met.
One drawback of this approach is that the number of combinations to be analyzed
increases exponentially with the number of cores in the system. As a result, while it
may be feasible to examine 81 (34) possibilities as it does in the four-core system
analyzed by their paper, it becomes impractical to do so as the number of settings
and/or the number of cores increases past a certain threshold.

Wang et al. also use per-core DVFS as the manipulated control knob for their
power management policy, and improve upon the work done by Martonosi et al. [2].
They guarantee that the power and temperature of the system remains at or below
the desired level by basing their power management policy on multiple-input
multiple-output (MIMO) control theory. This approach is more scalable than the one
proposed by Martonosi et al. because it does not rely on an exhaustive search of all
possible configurations or the assumption that performance and power for different

DVFS settings can be accurately estimated during runtime. Their control algorithm

15

uses the online power, performance, and temperature data as inputs to produce the
ideal DVFS levels for each core, which are then adopted by the system. These ideal
DVFS levels are then realized through the modulation of existing DVFS settings. For
example, they state that “to approximate 2.89 GHz ... the modulator would output
the sequence, 2.67, 3, 3, 2.67, 3, 3, etc, on a smaller timescale” [2]. Interestingly, this
approach to DVFS is a form of fine-grained soft power capping because it relies on a
low power mode and a high power mode to approximate a setting whose
performance and power consumption lies between the two modes. An important
distinction to note between our work and theirs is that Isci et al. run multiple copies
of a single-threaded workload on each core, whereas we use multi-threaded
applications.

Gandbhi et al. explore a different form of soft power capping (although they
also do not use the term itself) in their work, IdleCap, which achieves a given power
cap over a 1 second granularity timescale [10]. IdleCap exploits non-linearity with
respect to frequency in the set of possible power-performance settings of a server.
In other words, they improve upon the marginally decreasing gains in power as
frequency decreases by employing soft power capping. The low power mode
utilized by IdleCap is, as the name suggests, a completely idle state, and the high
power mode is a high-frequency state (3 GHz for their work). Alternating between
these two modes achieves a higher average frequency for the same power budget
compared to the existing frequency settings. As a result, they achieve better
performance for the same power budget by using soft power capping compared to

the static configurations available on the system.

16

Shi et al. explore the idea of instantaneous thermal cap violations [7]. They
find that by applying what they refer to as a soft thermal constraint, in which a given
temperature cap can be violated for a short period of time, as opposed to hard
thermal constraint that may never be violated, leads to better performance. This
idea of soft thermal constraints differs from our idea of soft power capping because
they do not guarantee that the average temperature will be at or below the
constraint, but rather that it will be satisfied for the majority of the workload’s
execution. The authors found improvements of 13% in a single core processor when
they allowed the temperature constraint to be violated by 10°C for 100 seconds.

Cochran et al. propose a technique that allows for a graceful transition in the
number of active cores in the system [3]. This technique, thread packing, is to break
the workload into multiple threads and then place those threads onto a variable
number of cores. The cores that are not assigned threads are automatically switched
into a low-power sleep state. For example, four threads may be allocated to four
cores, such that each core has one thread, and four threads can also be allocated to
two cores, such that each of the two active cores has two assigned threads and the
other two cores are in the sleep state. This technique allows them to introduce the
number of active cores in addition to chip-wide DVFS as a control knob for their
power management policy, because threads can be migrated between cores during
runtime. In contrast, thread reduction, in which the total number of workload
threads is changed, cannot be performed once the workload has started. Our work
relies on their technique of thread packing in order to change the number of active

cores in the system during runtime

17

Chapter 3: Models and Methods

We envision soft power capping by executing workloads in two phases: one
that has lower power consumption than the desired average power cap, and one
that has higher power consumption than the cap. We define mode as the
combination of clock speed and number of active processor cores. We use two
different modes in our execution of soft power capped workloads. The mode that
has the high power consumption should have a higher throughput than the low
power mode in order to gain performance benefits from soft power capping. In
order to better understand the advantages offered by soft power capping, we derive
the relationships of average power, runtime, and total energy consumption to the
fraction of instructions in the workload executed in the high power mode.

If a workload spends a total of ¢, seconds in the low power mode consuming
an average of P, watts, and ty seconds in the high power mode consuming Py Watts,
the average power consumption is as follows:

P - Pt +P, t,
AVG

41y
We can express this in terms of the fraction of instructions executed in the high

power mode (henceforth referred to as @) by substituting

1-a) o
L=ﬂ and tH _n
T, T,

18

where n refers to the total number of instructions in the workload and T;, and Ty
refer to the throughputs in the low and high power modes, respectively. We then

obtain the average power of the workload by the relation:

(I-0a)n o n
P, - T + P, T
P - L H
AVG (I-oa)n N o n
T, T,

L H

This reduces to the following equation for the average power of the workload:

1-
E;(Ta)+ﬂ,;?
(1) PAVG = Il _La) a =
+ E—
T, T,

The runtime of the workload can be constructed from the sum of the
runtimes of each phase:
t

t,+t,

total —

Substituting t; and ty as functions of a results in the following relation describing

the total runtime of the workload:

(I-0)n A an
TL TH

(2) ttotal =

Finally, we derive the total energy consumption of the workload, where E},
and Epx refer to the energy consumption of the workload in the low and high power
phases, respectively:

E, =E +E,

total —

We know that the energy consumption is the product of power and runtime, so we

express Etal as the following function of a:

19

1_ . .
.(a)n+PH_an
TL TH

(3) E =P

One caveat to these relations is that n, the total number of instructions in the
workload, varies with the mode in which the workload is executed. Figure 5 shows
the total number of instructions in the workload blackscholes, with respect to both
frequency and number of active cores. We observe a small variation in the total
number of instructions retired when the number of active cores is changed. This
difference (6% in this case) derives from the fact that a thread that is sharing a core
with other threads will take longer to relinquish a lock, because it is periodically
swapped out for other threads. Other threads attempting to acquire the lock will
therefore waste more instructions spinning on the lock. As a result, the total number
of instructions executed is smallest when each thread is allocated its own core,

because the relinquishing of locks is not inhibited. We do not observe significant

variation in the total number of instructions retired as a function of frequency.

Number of Instructions in Workload

2.00E+12
w
[
it
o
5 1.50E+12
7
£
= B 1.60 GH
S 1.00E+12 A z
_‘é B 213 GHz
2 5.00E+11 - %267 GHz
s
o

0.00E+00 -

1 core 2 core 3 core 4 core

Figure 5: The number of instructions in the benchmark blackscholes, by mode.

20

We account for these differences in our model by estimating n as a function
of o, where n; and ny are the number of instructions executed in the workload run
in the low power mode and high power mode, respectively:

4 n=(0-a)yn+an,

In our equations (1-4) there is no term accounting for any overhead resulting
from switching modes. The choice to exclude overhead in our theoretical framework
will be evaluated in Chapter 4, in which the predictions made by our theoretical
framework are compared to experimental results.

In order to predict the average power, energy consumption, total runtime,
and workload size of a soft power capped workload, we rely on the performance
data for prior workloads that remained in a given mode for their entire execution. In
other words, we calculate P, T1, n, and Py, Th, nu, and from the performance of a
workload that was run exclusively in the low power mode or high power mode. We
can improve the accuracy of our predictions by taking the data from the portions of
the workload that will correspond to its soft power capping phase. For example, we
can use the first 40% of the power and throughput data from a workload in the 2
core mode of execution if the soft power capped version of the workload will spend
the first 40% of its instructions in that same mode.

For a = 0.6, assuming a single transition from the low power mode to the
high power mode, Figure 6 shows the parameters P, and Py for the thirteen PARSEC
2.0 benchmarks, Figure 7 shows T;, and T, and Figure 8 shows n; and n;. In these
figures, the low power mode for all benchmarks uses 2 active cores at 1.60 GHz, and

the high power mode for the benchmarks uses 4 active cores at 1.60 GHz.

21

2,4 Core Power Consumption (P, P)
130
2 125 A
)
% B 2 core
A 120 A
Ery B 4 core
©
2
< 115 A
110
F ¥ L& & & & & & &
© & £ & & & & & &
& S & N & K
&S S P
& N &

Figure 6: Input values for the power parameters P, and Py to equations (1) and (3),
taken from experimental data the executing on 2 cores at 1.60 GHz, and on 4 cores at
1.60 GHz. In this example, a is 0.6, so the power values for the 2 core and 4 core mode

are taken from the first 40% and last 60% of each workload, respectively.

2,4 Core Throughput (T, Ty)

1.40E+10
1.20E+10 1
1.00E+10 1
8.00E+09 T W 2 core
6.00E+09 4 core
4.00E+09
2.00E+09 -

0.00E+00 -

Average Throughput (instructions/s)

Figure 7: Input values for the throughput parameters Ty, and Tu to equations (2) and
(3), taken from experimental data the workloads executing on 2 cores at 1.60 GHz and
on 4 cores at 1.60 GHz. In this example, a is 0.6, so the power values for the 2 core and
4 core mode are taken from the first 40% and last 60% of each workload, respectively.

22

2,4 Core Instruction Count (n, ny)

4.00E+12
3.50E+12 A
3.00E+12 A
2.50E+12 A B2 core
2.00E+12 A
1.50E+12 A
1.00E+12 A
5.00E+11 A
0.00E+00 -

B 4 core

Total Number of Instructions

Figure 8: Input values for the workload size parameters n;, and ny to equations (4),
taken from experimental data the workloads executing on 2 cores at 1.60 GHz and on
4 cores at 1.60 GHz. In this example, o is 0.6, so the power values for the 2 core and 4
core mode are taken from the first 40% and last 60% of each workload, respectively.

It should be noted that these equations apply to any form of soft power
capping utilizing two modes of operation. Frequency and the number of active cores
are both control knobs that can be manipulated by soft power capping, and
equations (1-4) are extendable to any two desired configurations given prior data
on power consumption, throughput, and number of instructions in each
configuration. However, as mentioned in the earlier chapters, our work is concerned
with soft power capping by changing the number of active cores. As a result that is
the context in which we utilize and validate the model.

Figure 9 shows the theoretical power consumption of our experimental

system using soft power capping while running the PARSEC benchmark ferret at

1.60 GHz and switching between 2 active cores and 4 active cores. The power

23

consumption varies with ¢, the fraction of the workload (by number of instructions)
spent in the 4 core state. Figure 10 shows the theoretical runtime of the system with
respect to a. Figure 11 models the theoretical energy consumption, and Figure 12
depicts the predicted total number of instructions in the soft power capped
workload. We choose to switch the workload between 2 and 4 cores for two
reasons, the first being symmetry. In both modes, each active core has the same
number of threads (2 and 1 per core, respectively), whereas for 3 cores there is an
inherent imbalance because one core must have an extra thread. Second, we wanted
to compare soft power capping to an existing configuration for the same power
budget. In this case, we can compare switching between 2 and 4 cores to a static
mode of 3 active cores, because the power-performance tradeoff of 3 active cores

for a given workload lies in between those of 2 and 4 active cores.

Theoretical Average Power

132

130 A

128 A

126 A

124 A

Power Consumption (W)

122 A

120 T T T T

0 0.2 0.4 0.6 0.8 1
x

Figure 9: Predicted average power for the workload ferret as a function of a, the
fraction of instructions executed in the high power mode

24

Theoretical Runtime

400
350 1
300 A
250 1
200 A

Runtime (s)

150 A
100 A
50 ~

0 T T T T

0.2 0.4 0.6 0.8
a

o
=

Figure 10: Predicted for the workload ferret as a function of a, the fraction of
instructions executed in the high power mode

Theoretical Energy Consumption

50000
45000 A
40000 A
35000
30000
25000 A
20000 A

Total Energy Consumption (KJ)

15000 A

10000 T T T .

o
o
[\
<
N
o
o)}
o
[oe]
=N

Figure 11: Predicted energy consumption for the workload ferret as a function of a, the
fraction of instructions executed in the high power mode

25

Theoretical Total Number of Instructions

1.9E+12

1.8E+12 A

1.7E+12 A

1.6E+12 A

Total Number of Instructions

1.5E+12 T T T T
0 0.2 0.4 0.6 0.8 1
a

Figure 12: Predicted energy consumption for the workload ferret as a function of a, the
fraction of instructions executed in the high power mode

The theoretical benefits of soft power capping are highlighted in Figure 13.
Figure 13 shows the power-performance tradeoffs of a system running at 1.60 GHz
on 2 cores, 3 cores, 4 cores, and the theoretical power-performance tradeoffs of
switching between 2 and 4 cores with « (the fraction of time spent running in the
high power mode, 4 cores) varying from 0 to 1. We can observe that there are a finer
grained set of power-performance tradeoffs made possible by soft power capping:
instead of being limited to discrete settings, there are an infinite number of settings

made possible by varying a.

26

Power vs. Runtime
132
4 core
130 1
_ 128 1 3 core
=
5 126 A
S
D
o.
124 1
122 1 2 core
120 Al s T L s
150 200 250 300 350 400
Runtime (s)

Figure 13: Predicted power vs. predicted runtime of ferret, for a (the fraction of
instructions executed in the high power mode) from 0 to 1. The experimental runtime
and power consumption of ferret in three static modes (2, 3, and 4 active cores, all at
1.60 GHz) are also shown. The improvement in runtime compared to the 3 core case

for the same power budget is marked with the red line.
We can also see that the theoretical performance of the soft power capped
configuration, with a set such that the power consumption is equal to the power
consumption of 3 cores, is faster and thus has a better performance for the same

power budget (the improvement is marked with the red line). As a result, we

propose two main applications of soft power capping.

1. Soft power capping allows the server to choose from a continuous,
infinite set of power-performance tradeoffs as opposed to the finite,

discrete set offered by hard power capping.

2. Soft power capped systems can outperform hard power capped systems

for the same power budget consumed by an existing mode.

27

Both applications improve server performance. The first does so by allowing
the server to run exactly at the cap, instead of selecting the best performing setting
that falls under the cap. The second application improves performance by achieving
a shorter runtime for the same average power consumption of an existing static
setting. The authors of [2] have shown the performance advantages provided by the
first application of soft power capping by switching the frequency. We build upon
their work by focusing on the implementation of soft power capping through
switching the number of active cores in the system, and extend the benefits of soft

power capping to the second application.

28

Chapter 4: The Power-Runtime Pareto Frontier and Initial
Experimental Results

4.1: The Power-Runtime Pareto Frontier

Each system mode has its power consumption and performance. For
example, Figure 14 plots the power consumption and performance for all possible
DVFS frequencies and number of core modes. The mode that achieves the shortest
runtime for a given power budget is therefore optimal when runtime minimization
under a power constraint is the goal. The power-runtime Pareto frontier denotes
the set of modes which produce the shortest runtime for a given power range. In
other words, for each point in the power-runtime frontier, there does not exist a
point which achieves both lower power consumption and lower runtime. These
modes which correspond to the points that lie on the frontier dominate the other
modes because they represent the set of optimal choices for runtime minimization
as a function of power. Figure 14 shows the power-runtime Pareto frontier for ferret
with all possible modes in our 4-core, 9-frequency system. The other workloads in
the PARSEC 2.0 benchmark suite have similar properties.

When energy minimization is the desired outcome, selecting configurations
which lie on the power-energy Pareto frontier is the optimal choice. For each of
those configurations, there does not exist another configuration which achieves
both lower power and lower energy consumption. Figure 15 shows the power-
energy Pareto frontier for ferret with all 36 (= 9 frequencies x 4 cores) existing

configurations of our system.

29

Power-Runtime Pareto Frontier
190
180 A
170 A
— 1601) =Pareto Frontier
E 150 A
5 ‘. ® 1 Core
% 140 A Y .. ® 2 Core
~ | ° °
130 * ‘. 0. 3 Core
120 ~ \‘F b ® 4 Core
—o—o
110 A
100 T T T
0 200 400 600 800
Runtime (s)

Figure 14: For each possible mode of execution on our system, the experimental power
and runtime for the benchmark ferret are plotted. The workload can be runon 1, 2, 3,
or 4 active cores at 9 different frequencies (ranging from 1.60 GHz to 2.67 GHz). The
power-runtime Pareto frontier, which consists of all configurations that have the
shortest runtime for a given power budget, is also marked.

Power-Energy Pareto Frontier

190

180

170 o

160 1 .
’§ [=Pareto Frontier
< 150 - ®
5 4 o ® 1 Core
= .
2 140 [° ® 2 Core

130 1 1 ‘o ‘ 3 Core

(]
120 1 e s
——g ® 4 Core
110 A
100
0 20000 40000 60000 80000 100000
Energy (J)

Figure 15: For each possible mode of execution on our system, the experimental power

and total energy consumption for the benchmark ferret are plotted. The power-energy

Pareto frontier, which consists of all configurations that have the smallest total energy
consumption for a given power budget, is also marked.

30

We observe that for both the power-runtime and power-energy Pareto
frontiers, it is always advantageous to run at the highest number of active cores
allowed by the power constraint, selecting for the frequency that fits the cap, rather
than running at a lower number of active cores and a higher frequency.

Our first application of soft power capping (finer grained power-
performance tradeoffs) seeks to increase the number of points along the power
runtime and/or power-energy Pareto frontiers. This allows the user to make a
better use of the full power budget allocated to the system, leading to better
performance. The second application of soft power capping (shorter runtime than
an existing static configuration for the same power budget) seeks to provide new
points which dominate existing portions of the power-runtime and power-energy
frontiers. Therefore soft power capping has the potential to increase the granularity
of the set of optimal system configurations in terms of runtime and/or energy, as

well as achieve lower runtime and/or energy of existing points on the frontier.

4.2: Initial Experimental Results for Soft Power Capping

We first implemented soft power capping by setting a timer in our control
algorithm which switched the system mode from the low power mode to the high
power mode after a certain time had elapsed during execution. There are a few
benefits to this approach. This setup implements soft power capping through a
single transition between the low power and high power mode, so it is a good base
case with which we can compare the experimental and theoretical data. It is also

very simple. There are also significant disadvantages. The user has to have oracle

31

knowledge about the specific workload in order to set the switching point to achieve
the desired o (the fraction of instructions executed in the high power mode) and
average power consumption. Additionally, it is a very coarse grained approach and
therefore the periods of violation of the power budget are long in duration. Figure
16 shows the power consumption for the workload ferret, executing a switch from 2

to 4 cores at 1.60 GHz for a = 0.6, for our timer based implementation of soft power

capping.
Power Consumption
140 - - ;
135} -
130} -
S
3 125 i
=
(@)
o
1207 -
115} T
110 : : : . .
0 50 100 150 200 250
Time (s)

Figure 16: Power consumption of a soft power capped workload (ferret). The initial
low power mode uses 2 active cores at 1.60 GHz and the high power mode uses 4 active
cores at 1.60 GHz. a (fraction of instructions executed in the high power mode) is 0.6.

It is important to evaluate what happens in the system during the switch to

see if there is overhead from the migration of threads, which we did not take into

account in our theoretical models. The switch itself could cause a momentary spike

32

in power. We see in Figure 16 that that is not the case: the power increases to its
final range without a temporary increase during or after the switch. Another
possibility for overhead could stem from cached data. A thread may be using cached
data from the memory in its original core, but when it is migrated to the new core, it
suddenly experiences cache misses because the copy of the data has not been
brought to the new core’s cache yet. In order to investigate this possibility, we plot
in Figure 17 the fraction of the number of instructions retired comprised by cache
misses for the workload in the soft power capped mode, (ferret), as well as the
cache misses for the workload run exclusively in the low and high power modes (2

and 4 active cores, 1.60 GHz).

Cache Misses Relative to Instructions Retired

0.035 . . : . : : :

0.03 ﬂ%ﬂ .
[72]
[0) A
3 0025 W W 1
Zo
()
<
S 0.02} i
O
C
S
5 0.015} .
I — Soft Power

0.01} 2 Core i

4 Core
0.005 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (s)

Figure 17: Cache misses as a fraction of total instructions retired for the soft power
capped workload, and the workload running exclusively in the low and high power
modes (2 and 4 cores at 1.60 GHz).

33

We observe a large degree of similarity in all three cases and that, for the soft
power capped case, its behavior remains constant throughout its duration. In other
words, there does not seem to be a spike in cache misses as a result of the switching
itself. Therefore there is not detectable cache-related overhead as a result of the
migration of core.

Figure 18, Figure 19, Figure 20, and Figure 21 depict the theoretical and
experimental average power, runtime, total energy consumption, and workload size
respectively, of ferret with the aforementioned low and high power modes as a
function of a (the fraction of instructions executed in the high power mode). We can
see that our experimental data matches very well with our theoretical predictions,

further justifying the accuracy of the models without a term dedicated to overhead.

Average Power
132

130 A

128 A

126 A

124 =—®—Experimental

Power Consumption (W)

Theoretical

122

120 - T T T T

Figure 18: The theoretical and experimental average power values for the workload
ferret are shown as a function of o, which is defined as the fraction of instructions in
the workload executed in the high power state. The low power state uses 2 active cores
at a frequency of 1.60 GHz, and the high power state uses 4 cores, also at 1.60 GHz.

34

Runtime

400
350
300
250

200

Runtime (s)

150 A —@— Experimental

100 A Theoretical

50 A

0 T T T T
0 0.2 0.4 0.6 0.8 1
a

Figure 19: The theoretical and experimental runtime values for the workload ferret
are shown as a function of a.

Theoretical Energy Consumption

50000
45000

—— ;
40000 Experimental

Theoretical

35000 A
30000
25000 A

20000

Total Energy Consumption (kJ)

15000 A

10000 . | T T

Figure 20: The theoretical and experimental total energy consumption values for the
workload ferret are shown as a function of a.

35

Workload Size

1.9E+12

=—®—Experimental

1.8E+12 Theoretical

1.7E+12

1.6E+12

Total Number of Instructions

1.5E+12 T T T T

Figure 21: The theoretical and experimental total number of instructions values in the
workload ferret are shown as a function of .

The theoretical models prove to be highly accurate in predicting the behavior
of soft power capping as a function of a for this implementation. Additionally, we
verify the two benefits of soft power capping described in Chapter 3 with our
experimental data in Figure 22, which shows the power-performance tradeoffs
provided by soft power capping by switching between 2 and 4 cores at 1.60 GHz.
Our experimental data confirms that the set of power-performance tradeoffs
become more fine-grained with soft power capping, and we can see that given the
correct value for o, alternating between 2 and 4 core is faster than using 3 cores for
the entire duration, for the same power budget. In Figure 23 we show the power-
performance tradeoffs provided by soft power capping when switching between 2

and 4 cores at 2.67 GHz.

36

1.60 GHz Power vs. Runtime

132

130 A

128 - —.—Experim-ental
E Theoretical
\: ® 2, 3,4Core
o 126 1
2
o
[

124 A

122 1

120 T T T T

150 200 250 300 350 400
Runtime (s)

Figure 22: Predicted and experimental power vs. runtime of ferret, for a from 0 to 1.
The experimental runtime and power consumption of ferret in three static modes (2, 3,
and 4 active cores, all at 1.60 GHz) are also shown.

2.67 GHz Power vs. Runtime
185
180 A
i —@— Experimental
— 175 Theoretical
[]
E 170 - 2,3,4 Core
)
2 165 -
~
160 A
155 A
150 T T T T T T T
100 120 140 160 180 200 220 240
Runtime (s)

Figure 23: Predicted and experimental power vs. runtime of ferret at 2.67 GHz, for a
from 0 to 1. The experimental runtime and power consumption of ferret in three static
modes (2, 3, and 4 active cores, all at 2.67 GHz) are also shown.

37

We show an updated version of the power-runtime Pareto frontier for ferret
in Figure 24. We add our experimental soft power capping data for switching
between 2 and 4 cores at both frequencies (1.60 GHz and 2.67 GHz). The 1.60 GHz
2-4 core switching dominates existing points but the 2.67 GHz 2-4 core switching
implementation is dominated by existing configurations. This result is in line with
our original observation about the power-runtime Pareto frontier: that it is
advantageous to select as many active cores as possible given the power constraint,
and after that select the highest frequency. Switching between 2 and 4 cores
achieves an “average” active core number of less than 4, so for a high frequency that

configuration is not advantageous.

Extended Power-Runtime Pareto Frontier

190

180 -

170 A

=Pareto Frontier

160 A
= 1.60 GHz S.P.
2 150 -
= 0. =@—2.67 GHz S.P.
E 140 - °® ‘. ® 1 Core

()
130 - e % % ® 2 Core
- [
120 A So— g 3 Core
[
110 A 4 Core
100 . . .
0 200 400 600 800
Runtime (s)

Figure 24: The power-runtime Pareto frontier for ferret, updated to include the soft
power capping results at 1.60 GHz and 2.67 GHz (switching between 2 and 4 cores)

38

However, for power budgets under 4 cores at 1.60 GHz, switching between 2
and 4 cores at 1.60 GHz is advantageous, because there are only a few discrete
settings made available to us by hard power capping in this power range. Let’s say
we have a power cap of 125 W. With our original set of modes available to use by
hard power capping, we are just under the 126.7 W needed to run at 3 cores at 1.60
GHz. The closest setting that meets our budget is running at 2 cores at 1.73 GHz,
which consumes 122.4 W of power and has a total runtime of 345 seconds.
However, if we use soft power capping, we can solve for a such that we are using up
all of our allotted power to achieve the best performance. We find that the best fit
for this case is o = 0.6 when we are switching between 2 and 4 cores at 1.60 GHz,
which leads to a runtime of 270 seconds. This change results in a 21.7%
improvement in runtime for a total power consumption that still fits the budget at
124.9 W. The finer-grained set of power-performance tradeoffs along the power-
runtime Pareto frontier offered by soft power capping in cases such as these make it

an attractive control knob.

39

Chapter 5: An Improved Implementation of Soft Power Capping

5.1: Energy Credits

The previous framework for soft power capping described in Chapter 4, in
which the control algorithm changed the number of active cores a single time after a
certain amount of time has passed, has its disadvantages. First, it requires oracle
knowledge of the duration of the workload in each static mode (2 core and 4 core, in
our previous examples) to select the correct switching point in order to achieve the
desired average power consumption. Second, it is coarse-grained and leads to
instantaneous violations of the average power cap that are long in duration, which
could be disadvantageous depending on the motivation for capping the power.
Finally, it relies on data from previous experiments rather than feedback from the
system to determine its behavior. Because workload behavior can change from run
to run, it is unable to ensure that it is actually satisfying the average power budget
desired by the user. We observe that a soft power capping that relies on feedback
from the system will meet the power budget with more accuracy because it can
adapt its behavior based on data from its current power consumption.

The main challenge of implementing soft power capping is determining when
the system should switch between the two settings, given that the workload could
terminate at any time. The system may spend time in the high power mode,
planning to make up for it in the low power mode later. If the workload terminates
too soon, however, the average power cap will be violated. Because we want to

guarantee that the power budget is satisfied, it is preferable to err on the side of

40

using less power than the budget than more. It therefore makes sense to build up a
certain amount of “credit” in the low power mode, spending it later in the high
power mode, to ensure that the average power consumption does not exceed the
budget.

We define the amount of credit that has been built up in terms of energy.. We
take the following equation to determine our current “energy balance”, where
Eprevious is the energy balance calculated from the previous time sample, Pegp is the
average power budget we are trying to pinpoint, Pmeasured is the current system
power, and Atime is the change in time since the previous sample. We define energy
credit to be the threshold for Epaiance that triggers a transition from the low power
mode to the high power mode.

(5) E\ance = E previous T (Peap = Prteasurea) Atime

When the system is in the low power mode, Ebalance grows, because its current
power consumption is smaller than the budget. Conversely, when the system is in
the high power mode, Epalance Shrinks, because the current power consumption is
higher than the budget. In the low power mode, when Epgiance reaches the energy
credit, the control algorithm then switches the system to be in the high power mode
so that it spends the balance that has just been built up. In the high power mode,
when Epalance reaches 0], the control algorithm switches the system back to the low
power mode to start accumulating the balance again.

By ensuring that Epaance remains positive, we can theoretically guarantee that
the average power consumption is always less than or equal to the required power

cap, no matter when the workload terminates. Another benefit of this approach is its

41

simplicity: the energy balance equation remains the same regardless of the current

operating mode, energy credit size, and power budget.

5.2: Energy Credit Sizing

For the nine largest benchmarks in the PARSEC 2.0 suite (blackcsholes,
bodytrack, facesim, ferret, fluidanimate, freqmine, raytrace, streamcluster, and
swaptions) we tested the performance of five different energy credit sizes: 10], 20],
30,40], and 50 J. We tested these energy credits on three different iterations of
soft power capping: switching between 1 and 4 active cores at 1.60 GHz for the same
budget allocated to 2 active cores at 1.60 GHz, switching between 1 and 4 active
cores at 1.60 GHz for the same budget allocated to 3 active cores at the same
frequency, and switching between 2 and 4 active cores at 1.60 GHz for the same
budget allocated to 3 active cores at that frequency. In doing so we are evaluating
the second application of soft power capping (better performance than existing
modes available by hard power capping). We chose switching between 1 and 4 and
2 and 4 cores because there is symmetry in thread allocation at 1, 2 and 4 cores. We
use 1.60 GHz because as we learned in Chapter 4, alternating the number of active
cores is only beneficial when there is not enough power to run at 4 cores.

Figures 25 and 26 show soft power capping applied to the same workload for
different energy credit sizes, power budgets, and types of mode switching. Figure 25
shows the power consumption of blackscholes when given an energy credit of 10 J,

switching between 1 and 4 active cores, for the power budget of 2 static cores, and

42

Figure 26 shows the power consumption given an energy credit of 50 J, switching

between 2 and 4 active cores, for the power budget of 3 active cores.

40 Blackscholes Soft Power Capping, 10J Credit
1 T T T T
Soft Power (1-4 core)
— 2 Core Power Budget
135}
130} b
S
o 125} 4
[e]
[U ’l TR
115¢ b
110 1 1 1 1
0 100 200 300 400 500
Time (s)

Figure 25: The power consumption of blackscholes using the energy credit
implementation of soft power capping. The low power mode uses 1 active core at 1.60
GHz and the high power mode uses 4 active cores at 1.60 GHz. The energy credit size is

10] and the power budget is the power budget consumed by 2 cores at 1.60 GHz.

43

130 Blackscholes Soft Power Capping, 50J Credit

Soft Power (2—4 core)
3 Core Power Budget

1251

Power (W)

120

115 . : : : : .
0 50 100 150 200 250 300 350

Time (s)

Figure 26: The power consumption of blackscholes using the energy credit
implementation of soft power capping. The low power mode uses 2 active core at 1.60
GHz and the high power mode uses 4 active cores at 1.60 GHz. The energy credit size is

50] and the power budget is the power budget consumed by 3 cores at 1.60 GHz.

Figure 27 gives the runtime speed up achieved by soft power capping for the

nine workloads with respect to the energy credit size for the 1 - 4 core switching
given the power budget of 2 cores. Table 1 shows the difference in power
consumption between the soft power capped workloads and the static workloads.
Figure 28 and Table 2 show the runtime speedup and difference in power
consumption for the 1 - 4 core switching implementation given the power budget of
3 cores, and Figure 29 and Table 3 show the runtime speedup and difference in
power consumption for the 2 - 4 core switching implementation given the budget of

3 cores.

44

Soft Power Speedup

16.00%

12.00%

Benchmark

H10] Credit
H 20] Credit
B30] Credit
B 40] Credit
B 50] Credit

Figure 27: Speedup of soft power capped workloads switching between 1 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 2 cores at
1.60 GHz) with respect to energy credit size.

Table 1: Percent difference in power consumption of soft power capped workloads
switching between 1 and 4 active cores at 1.60 GHz (compared to the power
consumption of the workloads running on 2 cores at 1.60 GHz) with respect to energy
credit size. The average for each credit size is bolded.

10 J Credit | 20 J Credit | 30 J Credit | 40 J Credit | 50 J Credit
blackscholes -0.25% -0.29% -0.22% -0.12% -0.06%
bodytrack -0.28% -0.33% -0.16% -0.29% -0.18%
facesim -0.20% -0.28% -0.39% -0.36% -0.46%
ferret -0.08% 0.05% -0.05% -0.02% 0.01%
fluidanimate -0.36% -0.29% -0.18% -0.06% -0.10%
fregmine -0.20% -0.16% -0.14% -0.11% -0.09%
raytrace -0.22% -0.27% -0.23% -0.13% -0.08%
streamcluster -0.32% -0.44% -0.21% -0.23% -0.26%
swaptions -0.18% -0.12% -0.19% -0.13% -0.18%
Average -0.23% -0.24% -0.20% -0.16% -0.16%

45

12.00%

8.00% A

4.00% A

Speedup

0.00% -

J
-4.00%%
Q

-8.00% -

Soft Power Speedup

B 10] Credit

20] Credit

B 30] Credit

40] Credit

‘@&@& ‘&\’5& & A&b& \\{;@& Q‘éov;\‘v Aéfzfg' B 50] Credit
\‘}\&z}\ & & ij@c c?g?f g

S s
Benchmark

Figure 28: Speedup of soft power capped workloads switching between 1 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 3 cores at
1.60 GHz) with respect to energy credit size.

Table 2: Percent difference in power consumption of soft power capped workloads
switching between 1 and 4 active cores at 1.60 GHz (compared to the power
consumption of the workloads running on 3 cores at 1.60 GHz) with respect to energy

credit size, with the averages for each size in bold.

10 J Credit | 20 J Credit | 30 J Credit | 40 J Credit | 50 J Credit

blackscholes 0.01% 0.06% -0.06% 0.04% 0.09%
bodytrack -0.26% -0.07% -0.07% -0.11% -0.08%
facesim -0.32% -0.24% -0.45% -0.31% -0.42%
ferret 0.01% 0.06% 0.15% 0.05% 0.30%
fluidanimate -0.22% -0.05% -0.08% -0.16% -0.14%
fregmine -0.04% 0.03% -0.02% -0.07% 0.00%
raytrace -0.04% -0.10% 0.10% -0.04% 0.08%
streamcluster -0.36% -0.30% -0.32% -0.10% -0.12%
swaptions 0.00% -0.13% -0.02% 0.06% 0.02%
Average -0.14% -0.08% -0.09% -0.07% -0.03%

46

Soft Power Speedup

10.00% -
8.00%
6.00%
Q.
= 10] Credit
S 4.000
g % M 20] Credit
o0 30 Credit
B 40] Credit
0.00% A B 50] Credit
-2.00%
&
s0\

Benchmark

Figure 29: Speedup of soft power capped workloads switching between 2 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 3 cores at
1.60 GHz) with respect to energy credit size.

Table 3: Percent difference in power consumption of soft power capped workloads
switching between 2 and 4 active cores at 1.60 GHz (compared to the power
consumption of the workloads running on 3 cores at 1.60 GHz) with respect to energy
credit size, with the averages in bold.

10 J Credit | 20 J Credit | 30 J Credit | 40 J Credit | 50 J Credit
blackscholes -0.04% -0.02% 0.13% 0.06% 0.05%
bodytrack -0.44% -0.13% -0.35% -0.26% -0.28%
facesim -0.48% -0.44% -0.34% -0.34% -0.15%
ferret -0.07% -0.02% 0.06% 0.13% 0.12%
fluidanimate -0.33% -0.33% -0.25% -0.21% -0.23%
fregmine -0.08% -0.09% -0.06% -0.01% -0.10%
raytrace -0.15% -0.09% -0.14% -0.14% 0.01%
streamcluster -0.34% -0.35% -0.38% -0.31% -0.24%
swaptions -0.12% -0.10% 0.12% 0.09% 0.04%
Average -0.23% -0.17% -0.13% -0.11% -0.09%

47

The maximum speedup achieved by soft power capping through the use of
energy credits is 16.1% compared to the static core case. The results indicate that
there is a definitive performance improvement as a result of using soft power
capping across all workloads and all energy credit sizes. Additionally, we can see
that the difference between the average power and the cap is negligible, indicating
that use of energy credits allows for a workload to precisely meet the power budget.

The choice of energy credit size is an interesting design decision and we can
see that different workloads perform better with different credit sizes. One benefit
of choosing a small energy credit size, such as 10], is that we don’t run the risk of
building up a large credit, only to have the workload terminate before we spend it.
Figure 26 illustrates this situation. However, a larger credit would be the better
choice when migration of threads happens frequently enough to create overhead. As
discussed in Chapter 4, for a single mode transition we do not notice any overhead
from switching, so it seems likely that in general, a smaller credit would perform
better due to the problem of building up unspent credit. This is reflected in the
average improvement with respect to energy credit in Figures 27, 28, and 29: we
can see that the smaller credits tend to perform slightly better. However this
relative advantage for smaller credits would have a significantly reduced impact
when used on longer-running workloads.

It is also possible that different energy credits have different average
throughputs, resulting in the better performance of one credit size over another. For
example, consider the case where there is a slight spike in power observed during a

mode transition. In this case, a large credit would perform better, because that spike

48

in power would use up a relatively smaller amount of the credit than would be the
case for a small credit. These types of variance are explored in Section 5.3, in which

we describe an adaptive technique for energy credit sizing.

5.3: An Adaptive Energy Credit-Sizing Algorithm

Although the results from Section 5.2 are promising, especially given the
correct energy credit size, it is not realistic to assume a server would be able to run
a workload multiple times to identify the best energy credit size. As a result, we
propose an adaptive algorithm, which predicts and selects the best energy credit
size from 10, 20, 30, 40, and 50] based on a search in the beginning of the workload.
[t iterates through one cycle of each energy credit and computes which one will
minimize runtime.

We assume in the following derivation that the n, the total number of
instructions, is fixed regardless of energy credit. Although the number of
instructions varies somewhat depending on the mode of execution for a workload,
as discussed in Chapter 3, we ignore these relatively small variations here. We also
assume that the average throughput of each mode is fixed for a given credit size.

We know that the total runtime for a workload is given by the following
equation, where tins is the average time per instruction:

tmtal =n tins
We can describe tins with the following relationship, where r;, and ry are the
times spent in the low and high modes for each energy credit cycle, and u; and ux

are the average throughputs for those modes:

49

n+ry

U+ Uy ry

ins

Because n is assumed constant, minimizing e is equivalent to minimizing
tins. As a result we calculate ry, ry, ur, and ux for each energy credit size in our search
period, and select the credit that minimizes tins.

Figure 30 shows the values for the average time per instruction (ti,s) with
respect to energy credit size computed online by our algorithm for the workload
blackscholes, given a 3 core power budget, and low and high power modes of 2 and
4 cores, respectively (all at 1.60 GHz). We can see that ti,s is smallest at 40], so our
algorithm selected 40] to be the credit size after the search period. Figure 31 shows
the power consumption over time for this example, where the search period in the

beginning can be identified.

Average Instruction Time
1.92E-10
~
L
§ 190E-10 1
+
S}
£ 1.88E-10 -
=
[%2]
=)
"~ 186E-10 1
)
[a)
£ 184E-10 1
=
1.82E-10
10] 20] 30] 40] 50]
Credit Size

Figure 30: Average time per instruction for each energy credit size during the sweep of
the workload blackscholes for a 3 core power budget and low and high power modes
of 2 and 4 cores, all at 1.60 GHz.

50

Blackscholes Soft Power Capping, Adaptive Credit Sizing

130
Soft Power (2-4 core)
— 3 Core Power Budget
125 1
S
R 11T T IO N T)) T N O | Y I
3 | [
o
120
115 : : : : : '
0 50 100 150 200 250 300 350

Time (s)

Figure 31: Power consumption of blackscholes executed with the adaptive credit sizing
algorithm. During an initial sweep of all of the credits (10, 20, 30, 40, and 50]), The
search period computes the average time per instruction for each energy credit and

selects the one producing the smallest time.

The performance improvements of each of the 9 workloads executed with
the adaptive energy credit algorithm compared to the static 2, 3 core base cases are
detailed in Tables 4, 5, 6, along with the energy credits selected for each workload
and the power difference from the base case. The speedups achieved for each credit

are also represented graphically in Figures 32, 33, and 34.

51

Adaptive Credit Soft Power Speedup
10.00% 1
8.00% 1
o 6.00%
=
o 4.00% 1
Q.
wn
2.00% T
0.00% |
N . & 2
QJ O > C
-2.00% ,é\o\ &’b &%" ‘@6 \&’b &\ &b \0(’ ‘«00 e,‘%
\13’ (< Q@ "b' ,QQJ Q’ﬁ '6\(‘ "DQ @
\‘bo ‘00 &b’ A\ Q,/b S
N R S
Benchmark

Figure 32: Speedup of soft power capped workloads switching between 1 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 2 cores at
1.60 GHz) using the adaptive credit sizing algorithm.

Table 4: Results from soft power capping with the adaptive energy credit algorithm,
for the 1-4 core switching given a budget of 2 active cores.

Credit Chosen (J) Speedup | Power Difference
blackscholes 40 -0.29% -0.21%
bodytrack 50 0.76% -0.08%
facesim 10 5.55% -0.34%
ferret 50 9.32% 0.04%
fluidanimate 30 2.58% -0.26%
fregmine 40 7.81% -0.11%
raytrace 20 3.97% -0.07%
streamcluster 30 6.65% -0.22%
swaptions 40 7.70% -0.05%
Average 34.44 4.89% -0.14%

52

Adaptive Credit Soft Power Speedup
10.00% -
8.00% A
6.00%
5 4.00% -
<
5]
2. 2.00% —
A . 0
0.00% -
) Q 4
N F & & & & ¢ & L
200% 3 & E S « F X
5 ~o°$ @ N .\&Q\ & & %&é %@Q*Q W
4,085 ® &
Benchmark

Figure 33: Speedup of soft power capped workloads switching between 1 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 3 cores at
1.60 GHz) using the adaptive credit sizing algorithm.

Table 5: Results from soft power capping with the adaptive energy credit algorithm,
for the 1-4 core switching given a budget of 3 active cores.

Credit Chosen (J) Speedup Power Difference
blackscholes 50 0.22% 0.12%
bodytrack 30 2.14% -0.06%
facesim 20 7.11% -0.38%
ferret 40 2.94% 0.20%
fluidanimate 40 3.99% -0.04%
fregmine 50 4.11% -0.05%
raytrace 10 -1.87% -0.06%
streamcluster 40 9.16% -0.26%
swaptions 50 5.82% -0.04%
Average 36.67 3.74% -0.06%

53

Adaptive Credit Soft Power Speedup

10.00% -
8.00% -
6.00% T
S 4.00% -
s Y70
(5]
2 2.00% -
m | 0 I I
0.00% ‘
F & & & & & <&
_2000 4.0 {b’ () 5 - N\ ,Q"b’ =) 0 {b’
/"cﬁ SIS S
Fl e N < & .~
4,085 ® &
Benchmark

Figure 34: Speedup of soft power capped workloads switching between 2 and 4 active
cores at 1.60 GHz (compared to the runtime of the workloads running on 3 cores at
1.60 GHz) using the adaptive credit sizing algorithm.

Table 6: Results from soft power capping with the adaptive energy credit algorithm,
for the 2-4 core switching given a budget of 3 active cores.

Credit Chosen (J) Speedup Power Difference
blackscholes 40 -1.80% 0.07%
bodytrack * 0.57% -0.23%
facesim 30 3.94% -0.31%
ferret 40 2.34% 0.02%
fluidanimate 30 7.27% -0.30%
fregmine 50 2.76% 0.02%
raytrace 20 2.44% -0.12%
streamcluster 50 8.98% -0.25%
swaptions 50 4.64% -0.08%
Average 38.75 3.46% -0.13%

*This workload terminated before it completed the sweep of all 5 energy credits.

54

The adaptive credit-sizing algorithm provides a maximum performance
improvement of 9.32%, with the average performance improvements ranging from
3.46% to 4.89%. These gains are comparable to the average gains achieved by the
static energy credit allocation, which range between 2.21% and 6.11%. We can see
that the average credit size chosen by our algorithm is in the mid to high 30s.
However, the static energy credit allocation strategy has the best performance
relative to the base case at 10] for two of our three soft power capping
configurations (1-4 core switching for the 2 core budget, and 2-4 switching for the 3
core budget) at 6.11% and 4.88% respectively. The second best performance for the
third configuration (1-4 core switching for the 3 core budget) is also at 10], with an
average speedup relative to the base case of 3.73%.

These findings suggest that there is an advantage of using a smaller credit
size that our algorithm is not taking into account. Our algorithm optimizes the time
per instruction, however, it does not take into account the possibility described
earlier, in which a large credit is built up but never spent due to termination of the
workload. Given a linear accumulation and spending of the energy balance, we can
expect to have a balance of half of our energy credit size left over after termination.
Consequently, our expected leftover balance given an unknown termination point
during a 10] credit run of a workload is 5], whereas our expected leftover balance
during a 50] credit run of a workload is 25 J. Assuming that the average power
consumption in each mode is the same regardless of energy credit, we are therefore
“missing out” on 20] of high power mode execution when we use a 50 | credit

compared to the 10] credit. An interesting future direction for this work could

55

therefore be biasing the algorithm toward smaller energy credit sizes for relatively
short workloads, so that it can be a more accurate predictor of which credit is
optimal. For long workloads, the algorithm could include recalibration periods in
which the sweep was performed again after some amount of time, and the optimal

credit was recalculated and reselected.

56

Chapter 6: Conclusions

Due to increasing costs of power-related expenses in computing systems,
power capping has become a common and effective technique for lowering total
operating costs of datacenters. There are powerful which allow the satisfaction of a
power budget that is subject to change while optimizing overall performance, such
as DVFS and sleep states. However, most of the focus today is on hard power
capping, in which the instantaneous power consumption of the system must always
be under a fixed budget. We propose and formalize the concept of soft power
capping, in which the instantaneous power consumption of the system may be
violated as long as the average power consumption remains at or below the budget.

We present a theoretical framework for predicting the performance of a soft
power capped workload given two modes of operation (one consuming more power
than the budget and one consuming less). In this work, our control knob for soft
power capping is the number of active cores in the system, but our theoretical
framework is extendable to any other knob, given two modes of execution. We
propose two applications of soft power capping. First, it allows the user to choose
between an infinite set of power-performance tradeoffs, in comparison with the
discrete set made available by hard power capping. Second, soft power capped
workloads can outperform their hard power capped counterparts even when their
power consumptions are the same.

We implement the proposed soft power capping method and compared our

experimental results to the results predicted by our models. The models, when

57

given empirical data from workloads running in fixed modes of operation, were
shown to be highly accurate in predicting the performance of a soft power capped
workload.

We improved upon the proposed soft power capping strategy discussed in
Chapter 4 using the concept of energy credit. For this method of soft power capping,
a workload builds up “credit” in a low power mode. Once that credit reaches a
certain threshold, the workload is then allowed to spend it in the high power mode.
We present the experimental results from using the energy credit based approach to
soft power capping for multiple energy credit sizes, where we see a maximum
improvement of 16.1% compared to non soft-power capped configurations. We also
confirm that the energy credit approach allows us to meet our power budget
precisely, with all deviations being smaller than 0.5%.

Finally, we propose an adaptive energy credit-sizing algorithm, which
predicts and selects the optimal energy credit size during runtime. This algorithm,
used in conjunction with soft power capping, produces average improvements
(relative to the hard power capped base case) between 3.46% and 4.89%, with a
maximum improvement demonstrated of 9.32%.

The performance improvements made possible by soft power capping make
it an attractive control mechanism for computing systems. Our energy credit-based
approach to soft power capping is simple and flexible and provides concrete
performance improvements, making it an effective power management protocol,
especially when used in conjunction with the adaptive energy credit-sizing

algorithm.

58

[

References

. C.Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis

of efficient multi-core global power management policies: Maximizing
performance for a given power budget. In MICRO, 2006.

Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-constrained
power control for chip multiprocessors with online model estimation. In
Proceedings of the 36th annual international symposium on Computer
architecture (ISCA '09). ACM, New York, NY, USA, 314-324.

Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011. Pack &
Cap: adaptive DVFS and thread packing under power caps. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-44 '11). ACM, New York, NY, USA, 175-185.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic knobs for responsive power-
aware computing. SIGPLAN Not. 46, 3 (March 2011), 199-212.

C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, June 2009.

D. Filani,]. He, S. Gao, et al. Dynamic Data Center Power Management: Trends,
[ssues, and Solutions. IntelTechnology Journal, page 59, February 2008.

Bing Shi, Yufu Zhang, and Ankur Srivastava. 2010. Dynamic thermal
management for single and multicore processors under soft thermal
constraints. In Proceedings of the 16th ACM/IEEE international symposium on
Low power electronics and design (ISLPED '10). ACM, New York, NY, USA,
165-170.

Ryan Cochran and Sherief Reda. 2010. Consistent runtime thermal prediction
and control through workload phase detection. In Proceedings of the 47th
Design Automation Conference (DAC '10). ACM, New York, NY, USA, 62-67.

C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, June 2009.

10. A. Gandhi, R. Das, J. Kephart, M. Harchol-Balter, and C. Lefurgy. Power

Capping Via Forced Idleness. In Proceedings of Workshop on Energy-Efficient
Design, 2009.

59

11. Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power
provisioning for a warehouse-sized computer. SIGARCH Comput. Archit. News
35, 2 (June 2007), 13-23.

12. Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. 2009.
Optimal power allocation in server farms. In Proceedings of the eleventh
international joint conference on Measurement and modeling of computer
systems (SIGMETRICS '09). ACM, New York, NY, USA, 157-168.

60

