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BROWN UNIVERSITY

Abstract
Efficient Multi-Task Learning for Augmented Reality

by Austin FUNK

Augmented reality (AR) is a rapidly growing technology with a wide variety of ap-
plications, from medical research to entertainment. AR is generally governed by a
single input from a camera, especially on low resource devices. In contrast, there is
a wide range of potential tasks that often want to be performed in tandem, including
semantic segmentation, normal estimation, and depth mapping. Multi-task learning
(MTL) models provide a viable solution in contexts with notable compute constraints
by replacing several models with one. Despite this, current MTL models struggle to
perform inference quickly on mobile and edge devices, severely limiting applications
that rely on real-time input data. Improving the speed of prediction on edge devices
would increase the breadth and depth of current AR applications in several important
fields, allowing for the use of constant video input in many parallel tasks.

This thesis presents a characterization study and novel, MTL-specific innovations.
The study identifies two types of encoder backbones, convolutional neural networks
(CNN) and transformers, and benchmarks several different architectures within each
category, identifying broad bottlenecks and drawbacks for each type. This analysis
motivates a series of experiments and methodologies that work in tandem for signif-
icant speedups, including multi-processor utilization, split model hardware schedul-
ing, and inference pipelining. Each methodology and combination was benchmarked
using real time input, providing important insight into practical engineering strategies.
Multi-processor scheduling resulted in a maximum FPS improvement of 28.2% over its
comparable CPU-bound model. With both scheduling and pipelining, FPS increased
by approximately 79.3% over the baseline.

HTTPS://WWW.BROWN.EDU
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Chapter 1

Introduction

Interest in augmented reality (AR) has only grown in recent years. The number of
papers related to AR1 is approximately 932,000, with approximately 225,000 of them
published since 2021. Even greater interest has been seen in deep learning, especially
large language models (LLMs) and generative AI. "Attention is All You Need" [40],
which introduced transformer-based models as a viable and more promising replace-
ment for traditional convolutional neural networks, has over 160,000 citations as of
this writing. The overlap between the two sectors has tremendous potential, including
in medicine [15], architecture [10], and entertainment [33]. The primary roadblock is
resource management; ResNet-50 [20], a convolutional encoder that accepts images as
input, has over 25 million floating point weights. The weights alone conservatively
require over 100 megabytes of storage, and this is for a model from 2015. Transformer
based architectures can have tens of billions of weights; GPT-3 [3], has around 175 bil-
lion.

Potentially more important than the storage cost is the latency of any potential
architecture. Using the example of GPT-3, the response time from a prompt is not as
important as its accuracy. Given a complex prompt or the expectation of a complex
answer, most companies and researchers have determined that greater latency is rea-
sonable, as shown by the latest "Reasoning" options that many LLMs now provide.
In contrast, augmented and virtual reality contexts are very sensitive to latency. If a
visual output is expected to replace the original camera input, the rate at which out-
put frames are produced must be fast enough to avoid motion sickness. This caveat
also severely limits the batch size of input frames, considering that every frame should
be as evenly temporally spaced as possible to minimize user discomfort. Passing an
input tensor, say of dimension 224 ↑ 224 ↑ 3 in the case of ResNet, through tens of
layers of computationally expensive multiplications is therefore prohibitive in low la-
tency, low resource applications. This bottleneck is even more defined when analyzing
transformer-based architectures, which are newer, bigger, and more common in cur-
rent research. This thesis, therefore, focuses primarily on improving runtime for hard-
ware running transformer-based architectures, specifically using the Swin transformer
[28] developed by Microsoft.

This leads us to the introduction of the two foci of this thesis. The first is a char-
acterization study of machine learning models on mobile and edge devices using a
newly developed Android application called BeAR, or Benchmarking in Augmented

1per Google Scholar
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Reality. BeAR was developed specifically for real time, real life reporting of how var-
ious multi-task learning (MTL) models interact with edge and mobile devices. This
study examines the benefits of MTL models over traditional models for edge-based
AR applications, and how different baseline MTL models perform in real scenarios.
This data is then used to identify bottlenecks in processing, leading to minor appli-
cation speedups and novel approaches to performing inference with MTL models for
AR.

The second focus of this thesis is on the methodologies that were experimented
with, including dynamic processor selection, manual processor and thread assign-
ment, hardware scheduling models using a splitting technique unique to MTL, and
a combination of scheduling and pipelining for parallelism and significant improve-
ments over sequentially executed inference. Analysis shows that the combination
of these techniques with efficient MTL models produces promising real-world run-
time improvements over naïve, hardware and/or model agnostic execution. Multi-
processor scheduling results in a maximum FPS improvement of 28.2% over its com-
parable CPU-bound model. With both scheduling and pipelining, FPS increases by
approximately 79.3% over the baseline.
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Chapter 2

Background

2.1 Modern Deep Learning
Deep learning and computer vision have been intertwined for a long time in the con-
text of computer science research [20] [28] [27]. With deep learning, the goal is to write
a program to find a set of equations and values that can produce correct outputs given
unknown inputs. The definition of correct, and what those inputs and outputs look
like, is dependent on context. LLMs are a topical example of deep learning, where the
input and output are both text, though recent developments in multimodality have
challenged this notion [18].

A more relevant example is centered around the MNIST dataset, a seminal series
of 70,000 labeled 28 ↑ 28 images of handwritten digits between 0 and 9, inclusive [27].
The motive behind creating this dataset was to write a program that could correctly la-
bel a handwritten digit with a high level of accuracy, an effort by the US Postal Service
to help read zip codes. This context, then, is one where images of a specific size are ex-
pected to be identified and classified based on common characteristics, which would
be a near-impossible task to complete manually. The MNIST challenge would cause
the development of the first well-known and effective convolutional neural networks
(CNNs). More details and their relevance to this work will be discussed in section
2.1.1.

Transformer-based architectures have been at the forefront of machine learning
research since Google Brain’s "Attention is All You Need" [40] in 2017. Attention in
deep learning is a method of relating distant information, such as a word at the begin-
ning of a sentence to a word at the end of the sentence. While attention wasn’t a new
development [34] [41] [2], Vaswani et al. were the first to suggest that convolutional
and recurrent layers weren’t necessary. Today, there are several successful applications
of transformers for vision tasks, including Swin [28], one of the models used in this
thesis.

2.1.1 Convolutional Neural Networks (CNN)
The first CNN was developed for the 1989 paper "Handwritten Digit Recognition with
a Back-Propagation Network" [27], though CNNs wouldn’t take off until "ImageNet
Classification with Deep Convolutional Neural Networks" [26], colloquially known as
AlexNet. CNNs work by gathering local information in images via convolution, or
cross-correlation in the world of signal processing.
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G(i, j) =
k

∑
u=↓k

m

∑
v=↓m

w(u, v) ↑ I(i + u, j + v) (2.1)

FIGURE 2.1: Cross correlation for discrete signals.

Tensors of learnable weights are "dragged" across labeled training data (see fig-
ure 2.2)1, encoding the information into a high dimensional space that can be used
for classification, or upscaled with more convolutions into a new image. Researchers
found that when these image convolutions are placed in sequence, they are able to get
remarkably good results. AlexNet proved that deep-layered networks were not only
feasible, but better than the competition, achieving sub-25% error for the first time in
the ImageNet challenge’s history [26]. CNN research would dominate for the next
five years or so, peaking with ResNet [20] with a maximum of 152 layers compared to
AlexNet’s 5.

FIGURE 2.2: Visualization of image convolution [23].

2.1.2 Transformers
Transformers were initially designed for text-to-text applications, however in the orig-
inal paper the authors acknowledge the potential for vision applications [40]. Scaled
dot-product attention, the methodology for attention described in Vaswani et al., uses
the equation in figure 2.3 to determine learnable weights. It can be understood as a

1w is the weight kernel, k and m are half the height and width of the weight kernel respectively, I is
the original image, and G(i, j) is the resultant pixel at (i, j). Often, k and m will be equal.
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Attention(Q, K, V) = Softmax(
QKT
↔

dk
)V (2.2)

FIGURE 2.3: Scaled Dot-Product Attention [40].

search function, where a query Q is applied to a series of key-value pairs K and V with
the goal of finding weights that correctly predict values. Multi-head attention extends
scaled dot-product attention to incorporate previous layers, eliminating the issue of
disappearing gradients with previous recursive neural networks (RNNs) without us-
ing subpar, non-parallelizable methods for layer memory [21].

A relevant aspect of the Transformer architecture is the use of an encoder and
decoder, as seen in figure 2.4. The encoder is shown on the left accepting the current
inputs while the decoder is on the right accepting all previous outputs2. The impact of
this clear split in the model architecture is explored further in section 2.2.

Swin [28] is a Transformer backbone published in 2021 that aimed to solve one

FIGURE 2.4: Transformer architecture [40].

of the biggest problems with applying Transformers to vision tasks: Images contain
far more information than text prompts, which makes it difficult to apply visual input
directly, due primarily to insurmountable training times. Swin tackles this by intellec-
tually borrowing from CNNs; images are divided into larger segments, then a shifting
window groups these segments3 for self-attention. Figure 2.5 shows a comparison be-
tween Swin and ViT [14], a predecessor that didn’t shift windows or vary window size
across layers.

2The outputs are shifted by one to verify that the output at i only depends on outputs from positions
less than or equal to i ↓ 1, i.e. only the known outputs.

3Unlike ViT [14], window sizes are dependent on the layer.
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FIGURE 2.5: A strategy comparison between Swin and ViT.

2.2 Multi-Task Learning (MTL)
Most innovations in deep learning have been agnostic to any metrics except accuracy
and inference time [39] [36]. While both of these metrics are important, things like
power and temperature become increasingly relevant in low resource environments,
such as with mobile and edge devices. MTL is a promising way to balance fewer re-
sources with acceptable accuracy.

The term "multi-task learning" [5] was first used in 1997, defining the method-
ology as one that learns multiple tasks in tandem, allowing them to influence each
other in a shared representation space. This allows inference over multiple tasks with
a single model, which exactly fits into the problem statement of inference for AR: One
image needs to produce multiple outputs for minimal energy, space, and time. In many
modern applications, this takes the form of an encoder-decoder model similar to the
Transformer [40], with the distinction that MTL models utilize multiple decoders for
separate tasks, as seen in figure 2.6. Relevant applications of MTL models are discussed
in sections 2.4.1 and 2.4.2.

FIGURE 2.6: A high-level layout of MTL execution.
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2.3 Scheduling
Modern computers, including many mobile and edge devices, have both multiple pro-
cessors and multiple types of processors. The idea behind scheduling is to optimize
hardware and its usage for specific categories of tasks, as opposed to or in tandem
with the optimization of software algorithms. It is most often used in high efficiency
systems, including real-time mobile and edge applications.

Scheduling can be applied at all layers of the hardware stack. At the PE4 level,
scheduling solutions utilize different memory units to maximize data reuse and limit
data movement. An example strategy is SOC-MOP [7], which stands for "(s)ingle
(o)utput feature map (c)hannel - (m)ultiple (o)utput feature map plane (p)ixels". This
strategy, then, maximizes pixel reuse over a single channel in the output image, which
is ideal for convolutions. MOC-SOP, which stands for "(m)ultiple (o)utput feature map
(c)hannel - (s)ingle (o)utput feature map plane (p)ixel", is optimized for reuse over a
single pixel with many channels, making it ideal for fully connected layers. There are
many other strategies that try to strike a middle ground, or attempt reuse across all
maps (such as Eyeriss).

# P = Output a c t i v a t i o n h e i g h t , Q = Output a c t i v a t i o n width
# M = Output c h a n n e l s , C = Input c h a n n e l s
# R = F i l t e r h e i g h t , S = F i l t e r width
# N = Batch s i z e , Z = Output , I = Input , W = F i l t e r
for p1 in range ( P1 ) :

for q1 in range (Q1 ) :
for m1 in range (M1) :

for c1 in range ( C1 ) :
p a r a l l e l _ f o r p0 in range ( P0 ) :

p a r a l l e l _ f o r q0 in range (Q0 ) :
for r in range (R ) :

for s in range ( S ) :
for n in range (N) :

for m0 in range (M0) :
for c0 in range ( C0 ) :

Z += I * W

FIGURE 2.7: Example loop nest for SOC-MOP.

This method of scheduling is lower level than this work goes since the purpose
is not to design new hardware, but to optimally use existing hardware. Some of these
strategies, such as loop reordering and tiling, will be discussed again briefly in section
4.1.1. Scheduling, as far as this work is concerned with it, will occur at the processor
level, specifically how best to distribute workloads over space and time on a given sys-
tem. Experimentation in later sections takes into account an NPU and CPU, though
the discoveries and strategies can easily be applied to other types of processors, such
as GPUs or TPUs.

4Processing Element.
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2.4 Machine Learning in Relevant Applications
The problem this thesis wishes to address – that of bringing the capabilities of modern
machine learning to low resource environments – is not new or unexplored. An un-
derstanding of previous work is essential for understanding the context and novelty
of this thesis.

2.4.1 Mobile
Bringing deep learning to mobile or low resource environments is an open research
question, though not without progress. Some general methods for faster inference and
lower memory requirements include quantization, sparsity, and pruning [4].

• Quantization replaces 32 bit floating point values with smaller representations in
the model’s weights, such as 16 bit floating point values, 8 bit integers, or even 4
bit integers [12] [43]. This can occur in the training stage [17], but is more often
employed post-training [44].

• Sparsity takes advantage of predictable multiplications, most often by zero, by
replacing classic sequential representations with sparse data structures. One way
to do this is with a sparse tree, where each tree layer could be a tensor dimension
in a simple case, or the relationships between nodes can be far more complex and
optimized [19].

• Pruning is the process of removing features from a model that contribute nothing
or very little to the accuracy of the output, though determining exactly which
features can be removed is extremely difficult [8].

FIGURE 2.8: A conceptual representation of Compressed Sparse Fiber [37],
one way to efficiently represent and store a sparse matrix.

Previous hardware restrictions made learning and inference on mobile devices espe-
cially challenging, but recent research has brought about NPUs, which are processors
designed for neural networks [22]. NPUs are becoming increasingly important in the
age of AI, with over 189,000 papers on the topic5. While papers exist with detailed,
low-level benchmarks [29] [38], few results exist for real-time data with practical sys-
tem overhead, which is important for broad application.

5per Google Scholar.
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2.4.2 Augmented Reality
The application of deep learning to AR exists in several major fields [10] [33] [15]. Many
solutions attempt to evade hardware deficiencies by utilizing the cloud [13], however
the transfer of data wirelessly can be computationally expensive and increase latency,
while also being limited by the availability of a stable internet connection.

There is relatively little research related to multi-task learning in augmented real-
ity applications. AdaMTL [31], developed in SCALE lab, is a framework that learns
alongside the model to identify which tasks require which layers, then adaptively ac-
tivate only the necessary layers at inference time. This allows for a significant reduc-
tion in latency, energy use, and computational complexity when compared to the same
model without the framework. This is a training-focused approach to improving edge-
based inference for AR, compared to this work’s focus on pretrained MTL models and
hardware utilization.

FIGURE 2.9: A visualization of how AdaMTL interacts with a model at
inference time [31].

Another relevant example are models that learn on egocentric data [25]. Kapidis
et al. applied multi-task learning to egocentric data because they wanted to allow dif-
ferent tasks to influence each other, which resulted in an increase in object detection
accuracy over other state-of-the-art models. This is further evidence that MTL models
are preferable to single-task models for augmented reality; not only does MTL have
lower resource requirements, but it can match or increase performance compared to
traditional models.
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Chapter 3

Characterization of Vision Models

There has been significant research surrounding profiling different vision architectures
[39] [36], but relatively few that focus more directly on how these architectures respond
to real devices with limited hardware. Benchmarking multiple models – ResNet and
Swin – across several architecture types on two different devices helps to reveal real-
istic expectations and performance bottlenecks to be addressed. The devices used for
this study were a Samsung Galaxy S24 smartphone (figure 3.2a) and the Vuzix M4000
AR glasses (figure 3.2b), identified by their respective processors in relevant tables.

3.1 Modeling Performance
The primary goals of this study were to determine:

1. How do modern CNNs compare to Transformers?

2. What bottlenecks exist and how can they be addressed?

Some initial metrics were recorded before postprocessing improvements were made,
hence why some relevant metrics are excluded; such cases are clearly labeled.

3.1.1 Benchmarking in Augmented Reality (BeAR)
A benchmarking application for AR on mobile devices was previously developed by
SCALE lab under the name ARBench [9]. Due to limited customizability, device in-
compatability, and a desire for metrics based on real-time camera data, Benchmarking
in Augmented Reality (BeAR) was developed. BeAR is specifically designed for MTL
models, giving researchers an extensive suite of metrics recording options, multiple
input methods, and all of the experimental execution methods discussed in chapter 4.
BeAR also supports an unlimited number of model outputs, making it ideal for MTL.
Figure 3.1 shows a version of the app on the Vuzix M40001. The modular design of
the app allows for easy additions, including in output methods, settings, and model
availability. All of the data collected for this thesis was done using BeAR, and is hosted
on GitHub2 along with a detailed README.

1https://www.vuzix.com/products/m4000-smart-glasses
2https://github.com/scale-lab/BeAR-app
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FIGURE 3.1: Testing BeAR on the Vuzix M4000.

Image Processing

BeAR accepts image inputs via device storage (for single images) or via the device’s
camera (for image streams, i.e. video). Images go through minimal preprocessing,
only a format change and dimension change if necessary. Output data can be postpro-
cessed in a variety of ways as specified by the user. Most depth processing is done
by converting a single channel intensity output to RGB, resulting in a black and white
heat map. Segmentation processing for all metrics is done with a color map, where a set
number of colors are predetermined to decrease compute cost. There is also an option
to convert colors over a gradient for outputs with many channels. Image processing is
done quickly by utilizing JNI, a programming interface that allows Java applications
to run C++ code.

Software Hierarchy

BeAR centralizes inference to a single monitoring object, which is stored inside a con-
troller object that’s accessible to the UI. Scheduling (seen in section 4.1) is done by hav-
ing the user specify an encoder file and any number of compatible decoders, then cre-
ating different runtime sessions for each that specifies which processor to use. Pipelin-
ing (seen in section 4.2) takes the infrastructure of scheduling and launches concurrent
threads, using a synchronized queue for inter-process communication.

3.1.2 Relevant Metrics
Determining which metrics to give attention to can be determined by looking at the
approaches of previous work; AdaMTL [31] accounts for energy usage and inference
time, and eAR [13] focuses primarily on power consumption to increase battery life.
Due to the usage of primarily preexisting, pretrained models, and the desire for real-
time camera input for benchmarking, model accuracy is not directly accounted for.
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(A) The S24 from the AT&T product page. (B) The Vuzix M4000 from the product page.

FIGURE 3.2: Devices used for benchmarking.

When relevant, such as in section 4.1 when using pretrained models becomes less fea-
sible, accuracy metrics are reported. However, the purpose of this study is to determine
how to optimize hardware utilization, not how to optimize the model itself3.

Therefore, the metrics recorded by BeAR for analysis are reported in table 3.1
along with their relevant units. Any important notes, such as the reliability of each
metric, can also be found in this table.

Metric Units Notes
Inference Time Milliseconds (ms) N/A

Inference +
Postprocessing

Milliseconds (ms) N/A

Frames per Second FPS N/A
CPU Usage Percent Difference Unreliable due to

interfering processes
Memory Usage Megabytes Unreliable due to

interfering processes
Battery Usage Percent Difference Requires > 1s of runtime

Power Consump-
tion/Energy

Microwatt-Hours Requires > 1s of runtime

Current Microamps Requires > 1s of runtime
Temperature Delta Degrees Celsius N/A
Final Temperature Degrees Celsius N/A

TABLE 3.1: Recorded hardware metrics for characterization.

3Quantization is used at various points for benchmarking due to parallel research from Harb Lin
(shangran_lin@brown.edu).
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Device Inference Time (ms) Frames per Second
Snapdragon 8 Gen 3 (S24) 136.35 4.38

8 Core Qualcomm XR1 (M4000) 502.83 1.82

TABLE 3.2: Runtime differences with ResNet-50 between devices.

Device Power Consumption
(mWh)

Temperature
Delta (→C)

Final
Temperature (→C)

Snapdragon 8 Gen
3 (S24)

0.43 0.30 28.2

8 Core Qualcomm
XR1 (M4000)

22.53 0.33 32.67

TABLE 3.3: Energy and temperature differences with ResNet-50 between
devices.

3.1.3 CNN Performance
The primary CNN used pre-optimization was ResNet-50 due to its popularity and
balance between accuracy and size. After changes to postprocessing, ResNet-18 was
also tested to compare both models with minimal interference from other internal
processes. Both models were pretrained from MTLKit [1] with image dimensions of
(224, 224) and two tasks, normals detection and segmentation. These tasks differ from
the tasks used for benchmarking the Swin-based models in section 3.1.4 due to the
number of output channels available in different datasets and a need to maintain con-
sistency across transformer models, specifically with respect to the dataset chosen for
the quantized Swin-based model.

Table 3.2 compares average inference time and FPS of ResNet-50 over three 10
second4 trials on both devices. Table 3.3 compares temperature and energy data over
those same trials. The S24 outperforms the M4000 by a significant margin in runtime,
FPS, and power usage over time, but comparable in terms of temperature difference.

Table 3.4 compares average inference time, runtime with postprocessing, and FPS
for ResNet-50 and ResNet-18 on the S24 over ten trials, each 10 seconds in length. Table
3.5 contains power consumption and temperature data for this same set of trials. The
boost in performance for ResNet-50 is due to better postprocessing, frame throttling,
and allowing basic ONNX runtime optimizations. ResNet-18 outperforms ResNet-50
in 4 out of 5 metrics, falling short only in average temperature increases, though these
metrics don’t account for accuracy.

The average temperature delta for both models is concerning; assuming a linear
increase in temperature, it would take ResNet-18 just under 2 minutes to raise the de-
vice’s temperature 10→C, and ResNet-50 just under 5 minutes for the same temperature
increase. Long term usage is therefore infeasible without extreme temperature control.
Attempts to control temperature are discussed in section 4.1.1.

The runtime for ResNet-18 is over 52% faster than ResNet-50 on average, at a sig-
nificant decrease in accuracy in the context of machine learning. For classification,

4Longer trials were shown to have very similar results due to diminishing returns, i.e. the number of
frames processed after 10 seconds is great enough to gather valid data.



Chapter 3. Characterization of Vision Models 14

Model Inference Time (ms) Runtime (ms) Frames per
Second

ResNet-18 73.08 77.34 10.62
ResNet-50 110.17 114.75 6.97

TABLE 3.4: Runtime differences between ResNet-50 and ResNet-18.

Model Power Consumption
(mWh)

Temperature
Delta (→C)

ResNet-18 0.23 0.84
ResNet-50 0.27 0.34

TABLE 3.5: Energy and temperature differences between ResNet-50 and
ResNet-18.

ResNet-18 has a top-1 accuracy of 69.6% and ResNet-50 has a top-1 accuracy of 76.9%
[35]. For segmentation specifically on the Cityscapes dataset [11], ResNet-18 has an
MIoU5 of approximately 60.0% and ResNet-50 has an MIoU of approximately 71.2%
[32]. Therefore, the primary bottleneck for ResNet models is temperature, and differ-
ent layer counts provide a tradeoff between accuracy and runtime.

3.1.4 Transformer Performance
Swin style encoders were chosen for benchmarking due to the abundance of versions,
parallel research being done in SCALE lab on quantizing Swin models, and high rel-
ative accuracy compared to other image-based transformers [28]. Swin has been de-
veloped in various sizes, specifically Tiny, Small, Base, and Large, with each having
progressively more parameters and slight changes to model architecture6. Swin en-
coders can be paired with a large variety of different tasks; the two tasks chosen for
benchmarking were depth7 and segmentation due to their relevance to AR applica-
tions and availability of training data via NYUv2D [30]. Combining the four encoders
with the same depth and segmentation decoders gives us a collection of models we
call SwinDS-#, where the # is replaced by the identifying initial of the encoder8. A
quantized9 version of SwinDS-T is referred to as SwinDS-Q throughout this work. Ta-
bles 3.6 and 3.7 compare four models, excluding SwinDS-L due to its infeasibility in
mobile applications, using the same metrics and methods seen in section 3.1.3 using
the Snapdragon 8 Gen 3 (S24).

The comparison between the various SwinDS iterations is clear; SwinDS-T has
the highest FPS and lowest power consumption compared to its other unoptimized
counterparts at the expense of accuracy, and quantizing it with int8 precision results in
further improvements, again at the expense of accuracy. The more interesting compar-
ison is with the convolutional models. ResNet-18 and SwinDS-Q have nearly identical

5Mean Intersection over Union is a common metric for evaluating models with image outputs.
6A few examples include layer count and embedding size.
7Sometimes referred to as "saliency" in literature [31].
8For example, the model SwinDS-B uses the Base encoder.
9The model was quantized to int8 precision by Harb Lin.
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Model Inference Time (ms) Runtime (ms) Frames per
Second

SwinDS-B 319.34 323.89 2.95
SwinDS-S 196.96 201.79 4.59
SwinDS-T 113.03 117.49 7.53
SwinDS-Q 73.37 86.95 9.54

TABLE 3.6: Runtime differences between SwinDS models.

Model Power Consumption
(mWh)

Temperature
Delta (→C)

SwinDS-B 1.03 0.23
SwinDS-S 0.55 0.35
SwinDS-T 0.32 0.32
SwinDS-Q 0.22 0.02

TABLE 3.7: Energy and temperature differences between SwinDS models.

average inference times, yet SwinDS-Q ends up with a lower FPS due to a more dra-
matic postprocessing step. ResNet-18 was trained using the Pascal VOC dataset [16]
expecting 8 channels for segmentation, while SwinDS-Q was trained with the NYUv2
dataset [30] expecting 20 channels for segmentation. Figure 3.3 shows two plots, one
for inference time and one for FPS, comparing ResNet-18 and SwinDS-Q.

(A) Average FPS over each trial. (B) Average inference time over each trial.

FIGURE 3.3: Plotted comparison of the fastest SwinDS variant versus the
fastest CNN variant tested.

Considering that inference time is nearly equivalent for ResNet-18 and SwinDS-
Q, SwinDS-Q is preferred due to its slightly lower energy consumption, significantly
lower temperature delta, and more modern architecture. It should be noted that ResNet-
18 isn’t quantized, so there is still some potential speedup to be had, though the accu-
racy decrease might be prohibitive.

The data presented cannot be used to make broad claims about all CNNs or all
Transformers. However, both ResNet and Swin architectures and prominent, high
performing backbones in each of their respective categories, therefore making them
reasonable baselines to design around. The primary bottleneck for both backbones is
inference time. Studies show that in non-AR contexts, the minimum recommended
FPS is 15 for interactive tasks [6]. More recent studies suggest that much higher frame
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rates are necessary to prevent motion sickness in virtual reality, upwards of 120 FPS
[42]. ResNet-18, the highest performing model in terms of FPS, runs at under 11 FPS,
far from even the minimum for interactive tasks. Optimizations discussed in chapter 4
must therefore focus on inference time for the sake of viability, but other metrics should
still be considered, primarily energy and temperature.
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Chapter 4

Hardware-Software Co-design

Based on characterization metrics and the corresponding analysis, we propose meth-
ods focusing on full hardware utilization, primarily looking to improve FPS without
sacrificing energy or temperature. The methods also looked to utilize the unique archi-
tecture of MTL models, using scheduling, pipelining, and multithreading to take full
advantage of the available hardware and flexibility of exchangeable decoders.

4.1 Hardware scheduling for MTL Models

Using different processors, especially those optimized for machine learning1, is ex-
pected. First, we will look at baseline scheduling metrics utilizing the Samsung Galaxy
S24’s neural processing unit (NPU), then take advantage of the natural division in MTL
models to spread the load of inference across processors.

4.1.1 Naïve Scheduling on the NPU
Simply running the same models on the NPU instead of the CPU results in the same or
worse performance. Tables 4.1 and 4.2 report metrics utilizing only the S24’s NPU over
10 trials of 10 seconds each, averaged. SwinDS-Q is excluded due to incompatibilities
with NNAPI2, which is necessary for NPU utilization on Android devices.

Compared to tables 3.4, 3.5, 3.6, and 3.7, ResNet-18 experienced an approximate
10.0% drop in performance across time-based metrics, an 8.7% increase in energy us-
age, and a 34.5% drop in average change in temperature; ResNet-50 experienced a

1Examples include programmable GPUs and Google’s TPU [24], which is more similar to an ASIC.
2Documentation can be found here: https://onnxruntime.ai/docs/execution-providers/NNAPI-

ExecutionProvider.html.

Model Inference Time (ms) Runtime (ms) Frames per
Second

ResNet-18 81.08 85.87 9.65
ResNet-50 129.31 135.07 6.55
SwinDS-T 109.71 114.33 7.70

TABLE 4.1: Time metrics for the best performing CPU models when run
on the NPU.
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Model Power Consumption
(mWh)

Temperature
Delta (→C)

ResNet-18 0.25 0.55
ResNet-50 0.40 0.82
SwinDS-T 0.36 0.83

TABLE 4.2: Energy and temperature metrics for the best performing CPU
models when run on the NPU.

Loop Order Thread Count Tile Size Postprocessing Time (ms)
H↗W↗C 1 Full 50.1
W↗H↗C 1 Full 51.1
H↗W↗C 1 H/2, W/2 52.4
H↗W↗C 2, over W0 H/2, W/2 51.8
H↗W↗C 1 H/4, W/4 51.8
H↗W↗C 2, over W0 H/4, W/4 53.1
H↗W↗C 2, over W Full 49.9
W↗H↗C 2, over H Full 54.0
H↗W↗C 4, over W Full 64.5

TABLE 4.3: Metrics from different loop orders and tiling strategies.

14.8% drop in execution time, a 6.4% drop in average frames per second, a 48.1%
increase in energy usage, and a 141.2% increase in average change in temperature;
SwinDS-T experienced a 3.0% increase in execution time, a 2.3% increase in frames per
second, a 12.5% increase in energy usage, and a whopping 405.0% increase in average
change in temperature.

Despite minor improvements to runtime for SwinDS-T, utilizing the NPU without
considering other methods of optimization is insufficient for faster frame rates, energy
usage, and thermal concerns.

Tiling and Loop Reordering

A relatively small sample of experiments were conducted with various tiling and loop
ordering strategies, specifically for postprocessing. Table 4.3 was recorded using ResNet-
18. Note that the recorded postprocessing times are high due to other methods not
being active in tandem.

Even with multithreading, it was found that any amount of tiling resulted in
slower or equivalent postprocessing speeds, and that loop reordering was irrelevant.
This was determined to be because of compiler optimizations and significant enough
cache sizes such that tiling only added overhead without speedups and that loop re-
ordering had no effect. Future experiments should focus on data stationary approaches
for inference, such as output stationary or row stationary [7]. However, the abstraction
seen in Java’s NPU and GPU interactions make this a difficult task, and therefore may
be better explored using tools other than BeAR.
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Time Period (s) 0↗10 10↗20 20↗30 30↗40
Processor NPU NPU CPU CPU

FPS 6.83 7.32 4.22 4.40
Final Temperature (→C) 29.6 31.4 31.4 32.6

Temperature Difference (→C) 0.0 1.8 0.0 1.2

TABLE 4.4: Timeline of frame dip when throttling. Using SwinDS-T,
Threshold manually set to 30.0→C.

Dynamic Processor Selection

One of the major concerns with deep learning on AR devices is overheating, consid-
ering the proximity of the device to users. This presents more severe safety hazards
when compared to deep learning on other device types. One of the more conventional
methods for temperature control is system throttling, which has the negative effect of
drastically increased latency. A better approach is to find a middle ground between
throttling and overheating, finding aspects of a system that can be dialed down when
thermals climb beyond safe thresholds.

We experimented with dynamic processor selection. The idea behind this strategy
is to alternate between available processors anytime one of them reaches an unsafe
temperature. However, we found that this approach to be ineffective due to the NPU
and CPU computing data at different speeds, which caused a severe dip in frame rate
(see table 4.4). Another failure of this strategy was that, even when switching to the un-
derutilized processor, overall system thermals continued to rise, albeit slightly slower
than without processor switching. The tradeoff of slower thermal throttling for much
worse throttling didn’t make sense, and thus didn’t make it into the final product. Fu-
ture work could explore switching between models with the same class of backbone
and outputs, such as between SwinDS-S and SwinDS-T, similar to "Play It Cool: Dy-
namic Shifting Prevents Thermal Throttling" [45]. This idea could also be extended to
quantized models for decreased latency at the cost of accuracy.

4.1.2 Utilizing MTL Architectures for Scheduling
The division between the encoder and decoders, as well as there only being one expen-
sive encoder for several computationally cheaper decoders, makes MTL models ideal
for hardware scheduling. Specifically, splitting MTL models allows for more options
in how hardware is allocated per section of the model. We experimented with different
scheduling schemes, analyzing the effect of each permutation of the encoder/decoders
on the CPU/NPU. We discovered significant frame rate improvements compared to
the CPU-bound baseline based on the performance metrics discussed in chapter 3.

Division Drawbacks

There are two primary drawbacks with splitting models. The first is that the pro-
cess of splitting a model and integrating it with an existing system can be nontrivial.
While MTL models are easier to find split points in than other models due to the clear
encoder-decoder structure, these splits are very rarely as simple as the one depicted
in figure 2.6. For example, Swin encoders output four different resolutions of feature



Chapter 4. Hardware-Software Co-design 20

Encoder
Time (ms)

Encoder +
Decoder

Time (ms)

Frames per
Second

Power Con-
sumption

(mWh)

Temperature
Delta (→C)

Encoder on NPU, Decoders on CPU
105.15 204.92 4.27 0.13 0.39

Encoder on NPU, Decoders on NPU
154.37 266.21 3.60 0.27 0.68

Encoder on CPU, Decoders on CPU
189.95 285.69 3.33 0.35 0.59

Encoder on CPU, Decoders on NPU
233.21 346.99 2.83 0.23 0.35

TABLE 4.5: Split SwinDS-T with four possible combinations for en-
coder/decoder scheduling.

maps to be used for various decoding tasks, which makes directing encoder outputs
to decoder inputs difficult, depending on how each decoder in the system is imple-
mented [28]. From a software perspective, it would be ideal for decoders to accept
all four encoder outputs as input, but the effects this has on performance compared
to only accepting relevant feature maps is untested. Moreover, determining exactly
where to make a split in a model sometimes requires a deep understanding of the
model’s underlying architecture, which is not ideal for quick prototyping.

The second drawback is the increase in overhead, especially in Java applications.
While a model split into its components should theoretically take up the same amount
of memory as a whole model, new metadata and inference environments3 for each
component can easily balloon. The current design requires the encoder and decoders
to each be separate files, which leads to 1 + n inference environments, where n is the
number of decoders. Each inference environment can add tens of milliseconds to every
loop, which is difficult to make up for, especially in real-time applications.

Sequential Execution Results

Utilizing the S24’s CPU and NPU, there are four obvious scheduling permutations4.
The model used for benchmarking has a SwinDS-T encoder and two custom decoders5

due to limited pretrained decoders for this specific application. All data was averaged
over ten seconds each, then averaged over ten trials. This should be considered a base-
line for section 4.2.

Compared to previous trials in chapter 3, runtimes in table 4.5 are much greater,
the worst being scheduling with the encoder on the CPU and decoders on the NPU.
However, the scheduling case with all parts of the model on the CPU should be much
closer to SwinDS-T in table 3.6, but instead we see a runtime increase of over 53%.
Testing shows that overhead from multiple ONNX models does not cause the entirety
of this effect, especially considering that encoder runtime on its own is greater than full

3See ONNX runtime documentation for more information.
4Other permutations would involve dividing the number of decoders in a model between processors.
5These decoders were constructed using PyTorch’s prebuilt modules and trained on NYUD [30] for

segmentation and depth.
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model runtime in table 3.6 in all configurations except with the encoder on the NPU
and decoders on the CPU. This suggests issues with the models rather than with the
scheduling process itself. Therefore, a fairer comparison encompasses only split mod-
els, with CPU-CPU being the baseline.

NPU-CPU scheduling outperforms all other configurations in four out of five met-
rics, falling behind CPU-NPU in temperature delta by approximately 11.4%. CPU-
NPU performs worse in all speed metrics and is squarely middling in power consump-
tion. NPU-NPU outperforms CPU-CPU by 8.1%, which is significantly greater than the
whole model’s equivalent metric of 2.3% in table 4.1. However, due to its dominance
in four metrics and close second place in the last metric, NPU-CPU is the ideal choice
for split Swin MTL models in most applications. NPU-CPU boasts a 28.2% increase
in FPS over the baseline CPU-CPU configuration, though this may not hold true for
CNNs or drastically different Transformer architectures.

4.2 Low Latency Pipelining for MTL Parallelism
To fully utilize the benefits of MTL-focused hardware scheduling, parallelizing the ex-
ecution of model segments is essential. However, the amount of parallelism possible is
severely limited by the need for low latency. Some parallelization is achieved through
assigned a CPU thread to each decoder, which can then either compute inference it-
self or send the computation to the NPU. Another, more drastic form of parallelism
is pipelining. Specifically, MTL models are ideal for splitting and scheduling, so the
natural extension is to compute these pieces of architecture on different processors in
parallel. Every time the encoder finishes computing a feature map, it can store it (or
its address) in a shared queue that the decoders are waiting for, then request another
camera frame. While the decoders are transforming the current feature map into recog-
nizable information, the encoder is processing the next image. The amortized latency
of the system is therefore max(ER, DR), where ER = encoder runtime and DR = total de-
coder and postprocessing runtime. Figure 4.1 shows this process are a graph between
cycle numbers, where a cycle’s length is equal to max(ER, DR), and a stream of image
inputs. MTL layers that share a column are computed in parallel.

The method chosen in this work for evaluating the efficiency of the pipelining
strategy is a comparison between the sequential runtime and the real frame rate in
milliseconds. To provide bounds for our analysis, an ideal two stage pipeline would
produce metrics twice as fast as a process with no pipeline and a pipeline is considered
a net negative if it is outperformed by the baseline. This can be represented as a per-
centage of the maximum performance based on the runtime of the encoder, which is
calculated using the equation in figure 4.2. Percentages based on both Encoder + De-
coder Time (ms) and 2 ↑ Encoder Time (ms) are presented in table 4.7 since the latter
metric accounts for stall time while the decoder waits for the encoder or vice versa.

Table 4.6 demonstrates why pipelining is so powerful: even with runtimes6 greater
than the runtimes in table 4.5, the frame rates of the pipelined process are consistently
higher. NPU-CPU improves by 39.8%; NPU-NPU improves by 49.4%; CPU-CPU im-
proves by 33.0%; and CPU-NPU improves by 44.5%. Compared to the baseline of

6Both those with just the encoder and those with the whole of inference and postprocessing.
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FIGURE 4.1: Two stage pipelining strategy for MTL inference.

P = (1 ↓
M ↓ 1000

FPS
M

) ↑ 100% (4.1)

FIGURE 4.2: Percent of ideal improvement P, where M is the maximum
possible improvement.

CPU-CPU, NPU-CPU improves by 79.3%; NPU-NPU improves by 61.6%; and CPU-
NPU improves by 22.8%. With these improvements applied to metrics in tables 3.4
and 3.6, a theoretical 19.04 FPS could be achieved for ResNet-187 and 17.11 FPS for
SwinDS-Q. This is still significantly below the desired 120 FPS to prevent motion sick-
ness in VR [42], but is a clear step closer. More experimentation will have to be done
in regards to motion sickness given the vast difference in user experience between VR
and AR, specifically glasses like the Vuzix M40008. Both models would have latencies
between 50 and 60ms.

Compared to sequential execution, energy usage and the temperature delta mostly
increased for pipelined inference. For comparison, the maximum power consumption
in table 4.5 is 0.35mWh, compared to the minimum in table 4.6 of 0.36mWh. The maxi-
mum temperature delta sequentially was 0.68→C while the minimum was 0.62→C, with
the next minimum at 0.74→C. Pipelining, while great for pure runtime, has a negative
energy and temperature tradeoff that could lead to overheating and throttling, dimin-
ishing the potential runtime improvements.

7This assumes a similarity to how Transformers behave on NPUs that may not hold true for CNNs.
8The Apple Vision Pro, a commercial and modern AR capable device, has a base frequency of 90Hz,

or 90 FPS. A table with other commercial device frame rates can be found here, though most are not AR
capable: https://www.uploadvr.com/study-120fps-important-to-avoid-sickness/.
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Encoder
Time (ms)

Encoder +
Decoder

Time (ms)

Frames per
Second

Power Con-
sumption

(mWh)

Temperature
Delta (→C)

Encoder on NPU, Decoders on CPU
141.52 277.64 5.97 0.42 1.04

Encoder on NPU, Decoders on NPU
144.62 263.40 5.38 0.36 0.62

Encoder on CPU, Decoders on CPU
209.68 322.79 4.43 0.41 0.74

Encoder on CPU, Decoders on NPU
222.18 326.51 4.09 0.45 0.85

TABLE 4.6: Split SwinDS-T with four possible combinations for en-
coder/decoder scheduling while pipelining.

Percent of Theoretical Maximum Improvement
Encoder + Decoder

Time (ms)
2 ↑

Encoder Time (ms)
Encoder on NPU, Decoders on CPU

60.33 59.18
Encoder on NPU, Decoders on NPU

70.57 64.26
Encoder on CPU, Decoders on CPU

69.93 53.83
Encoder on CPU, Decoders on NPU

74.88 55.02

TABLE 4.7: Effectiveness of pipeline, according to equation 4.1.



Chapter 4. Hardware-Software Co-design 24

The percent of theoretical maximum improvement P as defined in equation 4.1
tends within the 60 to 75% territory when analyzing based on ideal workload parti-
tioning, i.e. where M = Encoder + Decoder Time (ms). When calculating the true val-
ues of P, we get a range roughly between 50 and 65%. The difference between the ideal
and actual values gives insight into optimal hardware scheduling for Transformer-
based MTLs. NPU-CPU differs from the ideal value by only 1.15 percentage points,
the smallest gap by far, and NPU-NPU differs by 6.31 percentage points. In contrast,
CPU-CPU differs by 16.10 percentage points, and CPU-NPU differs by 19.86 percent-
age points. Smaller gaps between ideal and actual percentages suggests more balanced
workloads for pipelining, which is ideal for maximum speedups. Ordering based on
this difference, it would seem that running the encoder on the NPU is the most impor-
tant thing to do for balanced pipelining, then running the decoders on the CPU is less
important but still preferable. However, there is just not enough data to make broad
generalizations for all Transformers or all MTL models, so these conclusions remain
tied to specifically SwinDS-T.
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Chapter 5

Conclusion

Determining how best to apply deep learning to AR-capable edge devices remains
an open question. This work takes the community one step forward by providing a
benchmarking framework specifically for MTL, applying scheduling and pipelining to
MTL models that takes advantage of their unique structure, and recording data and
analysis for some of the most common and powerful MTL models currently available.
The hardware-aware improvements designed in this thesis show very promising re-
sults for Transformer architectures, even when compared to more polished CNNs that
dominated vision tasks for decades. With these results and developments also come a
new host of potential research directions that are worth anticipating.

5.1 Results
By combining processor-level scheduling, architecture-level pipelining, and unique
benchmarking methodologies, this work was able to identify a path towards a 79.3%
improvement for a Swin-based MTL model over its sequentially executed and CPU-
bound baseline. This strategy got within 1.15% of the experimentally determined ideal
distribution of compute in a two stage encoder-decoder pipeline. The tradeoff for
these runtime improvements are energy and thermals, which is difficult to sacrifice
with edge and mobile devices, especially in the face of throttling. Therefore, each rea-
sonable scheduling distribution was thoroughly benchmarked and analyzed, allowing
easy customizability for various applications. Less successful improvement methods
were also discussed to help steer future development and research.

5.2 Future Work
• Software development for BeAR is essential for future research to allow for greater

customizability, reliability, and usability. Details can be found on the projects
GitHub page.

• The methodologies in this paper could also be applied to other models, including
other Transformers or CNNs, to identify ideal high-level hardware configuration.

• Overheating and temperature throttling continue to be important, unsolved is-
sues.
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• Tying this work in with more model specific improvements, such as quantization,
sparsity, and pruning could lead to even further speedups with a lower energy
and thermal cost.

• Applying lower level scheduling and pipelining could lead to further improve-
ments for specific hardware.

• Attempting these same improvements in a software other than Java could be
a great novelty, especially if they still perform real-time inference with camera
input.

• Minimizing latency from pipelining (even with only two stages) would lower the
rate of motion sickness while using AR.
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