

FPGA Based Hardware Acceleration:
A Case Study in Protein Identification

Submitted by Aaron Richard Mandle
In partial fulfillment of the requirements of the degree of Bachelor of Science with

Honors in the Division of Engineering at Brown University
4/22/08

1

Prepared under the direction of
Professor Sherief Reda, Advisor

Professor Jennifer Dworak, Reader
Professor Gabriel Taubin, Reader

2

Abstract

There exists a large and expanding base of existing software that has been developed and

tested. Currently developing a dedicated hardware accelerator requires concurrently developing a

software front-end specially designed to interact with the accelerator. This process is both time-

consuming and limits the flexibility of both the software and the hardware.

To this end, we develop a methodology by which critical algorithms in existing software

projects can be quickly identified and accelerated using FPGAs. Additionally, we develop software-

hardware partitioning strategies and determine the best approach to minimize the communications

overhead while allowing for the maximum speedup and scalability of the solution.

We demonstrate the feasibility of this process by developing a hardware accelerator for an

open source protein identification software project. We implement a loosely coupled coprocessor

interfaced across the PCI bus, which is capable of independently executing an algorithm critical to

the results of the program. We achieve a speedup of 2.59 in the accelerated function. Additionally,

opportunities for further refinement of the design are explored.

3

Table of Contents
1 Section 1: Introduction to FPGAs and Hardware Acceleration .. 6

1.1 Field-Programmable Gate Arrays ... 6

1.1.1 Logic blocks .. 7

1.1.2 Routing ... 7

1.1.3 Embedded Elements ... 8

1.1.4 Advantages .. 9

1.2 Hardware Acceleration Methods... 9

1.2.1 Data Transfer .. 10

1.2.2 DMA ... 11

1.2.3 Common Acceleration Strategies ... 11

1.3 Hardware-Software Co-design ... 12

1.4 PCI Interface ... 13

1.4.1 Address Spaces ... 14

1.4.2 Command/Byte Enable ... 14

1.4.3 Bus Control ... 14

1.4.4 List of Required Pins ... 15

1.5 Overview of Tools.. 15

1.5.1 GiDEL PROCSpark II Board... 15

1.5.2 GiDEL PROCWizard ... 16

1.5.3 Altera Quartus II .. 16

2 Accelerating Protein Identification Case Study.. 18

2.1 Mass Spectrometry ... 18

2.1.1 Ionization ... 18

2.1.2 Tandem Mass Spectrometry .. 19

2.1.3 Protein Identification .. 19

2.2 Prior Work.. 20

2.2.1 X!Tandem .. 20

2.2.2 Inspect .. 23

2.2.3 Hardware Based Approaches .. 24

2.3 Objective ... 25

2.4 Analysis and Characterization .. 25

2.4.1 Benchmarks ... 25

4

2.4.2 Code Profiling ... 28

2.4.3 Algorithm ... 29

2.5 Accelerator Design ... 31

2.5.1 Architecture Design ... 31

2.5.2 Register Based Approach ... 31

2.5.3 DMA Transfer, Array Depth of One .. 33

2.5.4 DMA Transfer, Multiple .. 35

2.6 Host Software .. 38

3 Results ... 39

3.1 Future Work... 39

3.1.1 Software.. 39

3.1.2 Batch Transfers... 39

3.1.3 Soft-processor Co-processor ... 41

4 Conclusions .. 41

5 Appendix .. 43

6 References .. 48

5

Table of Figures

Figure 1: A basic logic block .. 7

Figure 2: FPGA Routing .. 8

Figure 3: Hardware-Software Partitioning Graph .. 13

Figure 4: GiDEL PROCSpark II .. 16

Figure 5: Example Spectra ... 19

Figure 6: Model and acquired spectraxvi... 21

Figure 7: Determining match significancexvi ... 23

Figure 8: Inspect Program Flow ... 24

Figure 9: Register Based Dot Function ... 32

Figure 10: DMA dot-array depth of one... 33

Figure 11: DMA dot-array depth greather than one .. 37

Figure 12: Division of accelerator run-time ... 39

Figure 13: Data transfer scaling .. 40

Figure 14: Time saved per integer tranferred... 41

Figure 15: X!Tandem callgraph ... 44

Figure 16: Inspect callgraph ... 45

Figure 17: Register-based design floor plan ... 46

Figure 18: DMA based floor plan .. 47

file:///E:\Thesis\Thesis%20Final.docx%23_Toc196545701

6

1 Section 1: Introduction to FPGAs and Hardware Acceleration

Data processing involving complex algorithms is increasingly common. Whether it is video

editing, speech recognition, or analyzing experimental data, high volumes of data must be processed

as quickly as possible. Computers are able to handle a wide variety of calculations but are general

computing devices and thus not optimized for any single calculation. Application specific integrated

circuits, or ASICs, are able to perform specific calculations much faster than a similar software

routine. Unfortunately, ASICs are expensive to make and require flawless designs. Once they are

fabricated, their logic cannot be altered. FPGAs offer a balance between the speed of ASICs and the

flexibility of software.

1.1 Field-Programmable Gate Arrays

FPGAs are reconfigurable hardware chips that can be reprogrammed to implement varied

combinational and sequential logic. FPGAs are low cost compared to ASICs and have the

advantage of being quickly reusable. Their reprogram-ability offers great flexibility and the

opportunity to quickly develop a prototype of a circuit. While not as fast as ASICs, FPGAs have an

advantage in low volume prototyping and proof of concept applications. FPGAs allow hardware

designs to the quickly and cheaply validated

 An FPGA is made up of an array of programmable logic blocks. These logic blocks are

connected by reconfigurable sets of wires which allow for signals to be routed according to the

definition of the circuit. Custom circuits are defined by a user in a programming language,

specifically intended to describe hardware.

 Programming languages designed to describe hardware are known as hardware descriptive

languages, or HDLs. The two most common HDLs are Verilog and VHDL. Both Verilog and

VHDL offer a system by which code can be encapsulated and reused as well as a level of abstraction

7

for the programmer. Once written, HDL is compiled and translated into a configuration which is

then transferred to the FPGA itself. This configuration fills in the logic blocks and correctly routes

the signals within the FPGA such that the circuit described by the HDL is implemented in

hardware.

1.1.1 Logic blocks

 The most basic element an FPGA is a logic block. A logic block consists of a lookup table

connected to a multiplexer, which chooses between the output of the lookup table and a flip-flop

connected to the output of a lookup table intended to allow for storing values as a register. This

design is able to implement arbitrary functions limited only by the size of the lookup table. These

logic blocks are chained together to provide lookup tables in any size or configuration necessary.

Logic blocks are connected together in local groups known as logic block clusters. Within a logic

block cluster of logic blocks are fully connected to one another

Figure 1: A basic logic block
i

1.1.2 Routing

 In order to connect the logic blocks in a meaningful manner, the outputs and inputs must be

routed correctly. This requires the use of reconfigurable routing. Routing is organized into a grid of

wires connected to each other via programmable switches. These switches are turned on and off

based on the desired path of a signal. Ideally, the length of the connections should be kept as short

as possible as longer wire segments result in larger delays.

8

 Logic block clusters are interfaced with routing channels through connection blocks. These

connection blocks allow a logic block cluster to be either disconnected or connected to the routing

channel. This prevents multiple drivers on the same wire and avoids bus contention.

Due to the fact that there is not a wire connecting every output from a logic block cluster to

every other input to a logic block cluster, signals must not only be routed from logic block to wire,

but also from a wire to wire. This wire to wire routing is done using switch blocks. Switch blocks

allow for the transfer of a signal on one wire to another wire. The topography of the wires and logic

block clusters varies from design to design. There is a trade-off between delay and IC area, which

must be addressed by the FPGA designer.

Figure 2: FPGA Routing

1.1.3 Embedded Elements

 Many FPGAs also include commonly used elements as non-reconfigurable hardware in their

designs. Commonly included hardware elements are embedded memory, multipliers, barrel-shifters,

and fast adders. These included embedded elements do not need to be implemented in

reconfigurable hardware, and thus free up valuable resources on the FPGA. Additionally, it is often

9

possible to implement a non-reconfigurable version of an element in considerably less space than

the reconfigurable version would require.

1.1.4 Advantages

 Unlike software, when an algorithm is implemented on an FPGA the process can be

parallelized such that many independent calculations can be performed concurrently. It is this ability

to parallelize an algorithm which makes a hardware accelerator such an enticing prospect. The

ability to quickly and cheaply prototype hardware algorithms makes the use of FPGAs ideal for an

endeavor such as this.

1.2 Hardware Acceleration Methods

The overarching goal of hardware acceleration is to increase the speed at which data can be

processed by using custom hardware specifically designed to implement a specific routine. By doing

so, the software can be sped up in two ways.

The first advantage is that the CPU is able to process other data, while the computation

necessary for the accelerated routine is offloaded to the coprocessor. This makes the computation

appear to be essentially free to the processor. The only time the processor must spend on the

computation is the time that it takes to set up the coprocessor to begin its calculation and the time it

takes to receive the results. As long as the overhead necessary to communicate with coprocessor is

less costly than performing the actual computation, a speedup is realized.

The second potential gain is realized when the hardware accelerator is structured in such a

way that it is able to calculate the result a faster than the software. In this case, the communications

overhead, and the runtime of the hardware accelerator must be less than the time the software

implementation of the same algorithm would take. If this condition is met the algorithm will be

accelerated whether or not the processor is processing data in parallel with the coprocessor.

10

Ideally, both conditions would be met, where the processor is able to process data

concurrently with the coprocessor and the custom hardware is faster than a software

implementation. It is not however strictly necessary for the custom instruction to be faster than

software implementation. It is only necessary that the overhead to begin the calculation is less costly

than the calculation itself and that there is processing which can be done independent of the result

of the accelerator.

1.2.1 Data Transfer

 One of the main bottlenecks in hardware acceleration is data transfer. To ensure a fast data

transfer, the hardware accelerator should be closely coupled to the main processor. An accelerator

on the same die as the processor, for example, would be able to transfer data between itself and the

processor faster than a coprocessor connected over USB. In general, it is desirable to have lower

communications overhead when connecting the accelerator to processor.

Possible interfaces include USB, Ethernet, serial, and PCI. Any interface can be

implemented if the hardware necessary for the controller can be fit onto the FPGA. When choosing

an appropriate interface it is important to consider the latency and bandwidth. The bandwidth of an

interface describes the rate of data transfer. As previously described, it is important that it does not

take longer transfer the data to the coprocessor than it would to process the data on the processor.

The latency of an interface is also an important characteristic to consider. A high latency

connection means that the data sent will arrive after a longer delay than a low latency connection. If

latency and bandwidth seem like very similar concepts, it may be instructive to consider the

following example. If a video signal is sent around the world, there will be a significant delay

between the time it is sent and the time at which is received. This is due to the latency of the signal

traveling around the world. At the same time, this signal arrives fully intact with all of the bits sent

11

eventually received. The number of bits received every second describes the bandwidth of the

signal.

1.2.2 DMA

 Direct Memory Access, or DMA, allows for memory access to be done independent of the

central processing unit. This allows for higher transfer speeds for blocks of data. Instead of

requiring the processor to copy each piece of data from the source to the destination, the use of

DMA allows the processor to simply initiate a DMA transfer and then continue another task while

the DMA controller handles the data transfer. This allows for significantly faster transfer speeds as

well as higher utilization of the processor.

1.2.3 Common Acceleration Strategies

The main strategy behind successful hardware acceleration is to convert temporal

calculations into spatial calculation. This is accomplished by expanding the algorithm into multiple

parallel calculations.

Often, arrays are used to calculate values. A systolic array, for example, consists of

numerous data processing units connected by a mesh of wires. Data is streamed in one or both

sides of the array and stored in a data processing, where an operation is performed on the values.

Once the desired operation has been performed and results can be streamed out in a similar fashion.

Such an array offers highly parallel computations as each data processing unit is able to operate

independently and concurrently. Such arrays are commonly used for multiplication.

While the process of parallelizing an algorithm is often specific to the algorithm, the general

approach is to determine which portions of the algorithm can be executed in parallel. A dedicated

computational unit is then created for each part that can be parallelized. Once all the individual

parts have been calculated, their results are combined for the final result. This is a common strategy

12

known as divide and conquer in which one task is divided up into smaller tasks, the results of which

are recombined at completion.

One commonly used method for creating a hardware accelerator is to build a “system on a

programmable chip” or SOPC. A SOPC consists of a soft-processor, which is loaded into the

reconfigurable fabric of the FPGA.A custom instruction is then added to the soft-processor. This

allows for easy integration of the hardware with a processor and allows for a high-degree of

customization.

1.3 Hardware-Software Co-design

The goal of hardware-software partitioning is to determine which pieces of the project are

best suited for hardware and which pieces of the project are best suited for hardware. This

partitioning is driven by factors such as cost, efficiency, and speed.

When accelerating a routine for speed, it is desirable to minimize the bus traffic in hardware

and software as well as to maximize the concurrency of the hardware and software process. In

doing so, the total of runtime of the routine is minimized.

In order to determine the best place to separate the hardware from the software, the software

must be profiled. The goal of profiling is to identify possible pieces of software that can be made

into hardware and to determine which ones would most benefit from translation to hardware as well

as where the greatest gains in performance can be found.

Profiling offers an overall view of the software from the project can be broken up into

different tasks. These tasks can be represented as nodes on a graph where their edges represent the

communications overhead between them. Depicted as such, the problem of partitioning the

software and the hardware becomes a minimum-cut problem from graph theory in which the weight

13

of the edges crossing the boundary between software and hardware tasks is minimized. A diagram

of such a representation can be seen below.

Figure 3: Hardware-Software Partitioning Graph
ii

In the minimum-cut problem, the goal is to separate two groups which are connected by links

while keeping the values of the links traversing between the two groups to a minimum. When the

software and hardware are partitioned with the minimum weight of edges crossing the boundary, the

minimum communications overhead costs will be incurred.

1.4 PCI Interface

The PCI bus provides a method for transferring data between the software side of the

application and the hardware accelerator. It allows for full-featured programming on the host

computer to take advantage of the hardware accelerator. The main problem with this approach is

the complexity of the interface.

 The actual specification is controlled by the PCI special-interest group which sells the

specifications. There are four different modes in which the PCI bus can operate, Synchronous,

Transaction/Burst, Bus mastering, plug-and-play. The clock runs at 33 MHz standard but some

computers can also support 66 MHz .

14

1.4.1 Address Spaces

 PCI has three distinct address spaces that can be written to: configuration space, memory

space and I/O space. Both Memory and I/O are at dynamic addresses. The configuration space is

the address starting at 0 for all PCI boards. This allows the host to read information about the

capabilities and requirements of the board without initially knowing anything about it. PCI cards do

not talk directly to the CPU but rather communicate through the PCI bridge which does translation

for the CPU There is a 32-bit address and data bus on which the address requested is written and

data is passed. These pins are bi-directional. Data is transferred between a bus master and a slave, or

target.

1.4.2 Command/Byte Enable

The master drives the C/BE[3:0] signals during the address phase which indicates the type

of memory transfer which is to occur. During the data phases the C/BE signals is used to indicate

which of the four bytes is valid (Each byte is ¼ of the 32 bits of the address and data bus).

C/BE[3:0] Command Types
 0000 Interrupt Acknowledge

0001 Special Cycle
0010 I/O Read

0011 I/O Write
0100 Reserved

0101 Reserved
0110 Memory Read

0111 Memory Write
1000 Reserved

1001 Reserved
1010 Configuration Read

1011 Configuration Write
1100 Memory Read Multiple

1101 Dual Address Cycle
1110 Memory Read Line

1111 Memory Write and Invalidate

1.4.3 Bus Control

15

In order for either the target or the master to pause a transaction the IRDY and TRDY can

be de-asserted. Valid data is transferred on each clock edge when both IRDY and TRDY are

asserted. To request ownership of the bus the REQ signal is asserted and the bus arbiter will inform

the requester that the request has been granted by asserting the GNT signal.

1.4.4 List of Required Pins

The pins that must be implemented to comply with the PCI standards are as follows:

Required Pins

AD[31:0]

C/BE[3:0]

PAR

FRAME

TRDY

IRDY

STOP

DEVSEL

IDSEL

PERR

SERR

REQ

GNT

CLK

RST

Optional Pins:

AD[63:32]

C/BE[7:4]

PAR64

REQ64

ACK64

LOCK

INTA

INTB

INTC

INTD

SBO

SDONE

TDI

TDO

TCK

TMS

TRST

1.5 Overview of Tools

1.5.1 GiDEL PROCSpark II Board

 To implement the hardware, we made used of the GiDEL PROCSpark II board. This board

implements the entire PCI interface and the provided software creates a driver for the board. This

provides an abstraction layer and allows the user to interface with the board without managing the

PCI interface directly.

16

 The PROCSpark II consists of an Altera Cyclone II with “33,216 logic elements (LEs), 35

embedded multipliers, and over 483 Kbits of on-chip RAM”iii FPGA, external DRAM as well as 2

DMA’s with an available 400 MB/s throughput. iv

Figure 4: GiDEL PROCSpark II

1.5.2 GiDEL PROCWizard

 The GiDEL PROCWizard software tool allows the user to define an interface on the FPGA.

The user can choose from libraries of pre-existing interfaces. Registers, memory, and PCI interfaces

can all be added from the program. Additionally, users can specify modules in which they will place

their own custom HDL code.

Once the design has been fully specified, the user is able to generate HDL in their choice of

languages, as well as generate a wrapper C class with which software can interface with the design.

The system allows for rapid creation of a software-hardware interface and allows for easy

partitioning of the custom logic, which is to be implemented on the PCI.

1.5.3 Altera Quartus II

The Altera Quartus II IDE is used in this project for its compiler, linker and fitter. While

the PROCWizard generates the necessary interfaces and HDL code, it does not have the ability to

17

synthesize it. The Verilog files generated by the PROCWizard are synthesized using the Quartus

tool. Additionally, the custom hardware is written and simulated within the Quartus environment.

18

2 Accelerating Protein Identification Case Study

Proteins are complex molecules which perform the functions necessary for life. Each protein

consists of a different string of amino acids. This string of amino acids dictates the function of the

protein.v To understand the workings of biological organisms it is critical to understand the working

of proteins, and to do so, they must first be identified.

In order to study proteins, it is necessary to have a reliable and accurate method for

identification. The two primary methods of protein identification are Edman degradation and mass

spectrometry. Edman degradation works by separating off amino-acids one at a time from a peptide.

These amino acids can then be identified using either chromatography or electrophoresis. Though

Edman degradation is a slow, labor intensive process it has the advantage of requiring only a very

small sample of the protein to be sequenced.

2.1 Mass Spectrometry

Mass spectrometry, on the other hand, is fast and largely automated but requires a

significantly larger sample of the protein and generates a huge amount of data which must be

processed. Mass spectrometry works by first breaking a sample into ions at the ion source. These

ions are then separated and sorted based on their masses. The amount of ions corresponding to

each mass is then detected, and the resultant data is analyzed.vi This method is faster than Edman

degradation, but its speed is currently limited by the time it takes to process the large amounts of

data between sequencing each peptide.vii

2.1.1 Ionization

 The first step in performing a mass spectrometry measure is to create the charged particles

which are subsequently measured. The most common method of ionization consists of

19

bombarding a simple with high-energy electrons. This method is known as electron ionization, or

EI. In order for this method worked a simple must be in a highly diluted gas phase. The impact of

high energy electrons breaks the protein into ions.

2.1.2 Tandem Mass Spectrometry

 Tandem mass spectrometry is a general term describing techniques whereby

ions are run through mass spectrometric analysis twice. Fragmentation of the ions occurs between

the stages of the tandem mass spectrometer.

2.1.3 Protein Identification

A protein identification study consists of the following steps: First the mass of the protein to

be analyzed is measured with extremely high accuracy by mass spectrometry. Next, the protein is

broken apart using an enzyme. Trypsin is a commonly used enzyme. This digested protein is run

through a mass spectrometer. The results of this run are called a peptide map. For non de-novo

protein identification, this is often enough information to determine the protein.

The data generated by the mass spectrometry process consists of spectra relating the relative

intensity of each ion with the charge/mass ratio of the ion. An example of such a spectrum can be

seen below:

Figure 5: Example Spectraviii

20

A single run in a mass spectrometer can produce thousands of spectra. In the case of

protein identification, these spectra are then compared to a pre-existing database of proteins. As the

database increases in size, the number of included identifiable proteins also increases. This increases

the number of comparisons that must be done and thereby increases the runtime

2.2 Prior Work

There are two main commercial software packages available for protein identification from

mass spectrometry data, Sequest and Mascot. These programs are closed source and proprietary.

As such they are of limited use for researching improvements to algorithms.

2.2.1 X!Tandem

Two open source protein sequencing software packages are also available. One, known as

X!Tandem, is developed by the Global Proteome Machine Organization. The X!Tandem workflow

is as follows:ix

1. read XML input parameter files;

2. read protein sequences from FASTA files;

3. read MS/MS spectra in common ASCII formats (DTA, PKL and Matrix Science);

4. condition MS/MS spectra to remove noise and common artifacts;

5. process peptide sequences with cleavage reagents, posttranslational and chemical

modifications;

6. score peptide sequences; and

7. create an XML output file capturing the best scoring sequences and some statistical

distributions relevant to the scoring process

21

The X!Tandem program has three main stages of searching for matching proteins. First,

proteins are quickly identified from their tryptic peptides. A tryptic peptide is a peptide made up of a

string of three amino acids. X!Tandem operates on the principle that, “For each identifiable protein,

there is at least one detectable tryptic peptide."xviii

 This offers a fast way to identify proteins as only a

small subsection needs to be matched to a database. Next, a database is created containing the

proteins identified in the previous step. Finally, mutations of the database are created to include

modified/non-enzymatic peptides. Unlike most programs however, X!Tandem only performs the

mutations on the database of pre-identified proteins. This significantly reduces the number of

proteins which must be modified and evaluated.xviii

The scoring of each protein is done by first computing the dot product of the measured

spectra and the model spectra. Only the matching spectral peaks are considered in the score. The

model spectrum consists simply of a list of the ions which should appear and does not take into

consideration the relative quantities of the ions. An example of these spectra can be seen below.

Figure 6: Model and acquired spectra
xviii

22

The dot product of the measured spectra and the model spectra is known as the y/b score,

or preliminary score, and is expressed by the following equation:

Where I is the spectrum intensities and P is a 1 or a 0 based on whether the peak was predicted by

the model spectrum. Y ions are “peptide fragment ions appear to extend from the C-terminus” and

b ions “extend from the amino terminus, or the front of the peptide”x

 From the y/b score, the hyperscore is calculated by multiplying the y/b score by the factorial

of the number of b and y ions assigned. This is calculation is based on the hypergeometric

distribution. The hyperscore is defined as follows:

 X!Tandem then makes a histogram of all the hyperscores for all the possible matches in the

database. The match with the highest hyperscore is assumed to be correct and all other matches are

ignored. xviii This match is considered to be significant if the hyperscore is greater than the

hyperscore corresponding to the x-intercept of all the other matches plotted on a log scale. This is

best illustrated with the following two graphs:

23

Figure 7: Determining match significancexviii

2.2.2 Inspect

The second open source sequencing algorithm is Inspect, created by the University of

California, San Diegoxi. Inspect uses de-novo sequencing to create a seed sequence with which the

database is selectively filtered such that only the portions which are most likely to contain the

sequence are searched. This significantly reduces the searching requirements of the software. A

diagram of this flow can be seen below.

As described in Tanner et. al, “InsPecT constructs database filters that proved to be very

successful in genomics searches. Given an MS/MS spectrum S and a database D, a database filter

selects a small fraction of database D that is guaranteed (with high probability) to contain a peptide

that produced S. InsPecT uses peptide sequence tags as efficient filters that reduce the size of the

database by a few orders of magnitude while retaining the correct peptide with very high

probability.”xii

24

Figure 8: Inspect Program Flow

Due to the open source nature of these projects, they will serve as a starting point and

baseline for hardware based improvements.

2.2.3 Hardware Based Approaches

 Currently, the only currently available hardware product designed to process spectra and

perform protein identification from mass spectrometry data is the Sage-N Sorcerer 2. It is designed

to operate in conjunction with multiple software systems and is a very complex, specialized and

costly product. The underlying architecture is unknown but it is advertised that it contains a 1.5

Terabyte redundant RAID array.xiii This level of hardware complexity will not be possible given the

scale of this project.

25

In the paper, “Hardware-accelerated protein identification for mass spectrometry,” Alex et.

al develop a system design for accelerating common algorithms found in de-novo protein

sequencing is proposed. This design makes use of an FPGA based accelerator and custom software

on the host computer. The entire project was built from the ground up and is intended to accelerate

de-novo sequencing and makes use of an accelerated database search to determine the individual

pieces of the sequenced protein.xiv

2.3 Objective

 The purpose of this research is to create a methodology for analyzing and evaluating

software for acceleration as well as to create a scalable method for accelerating protein identification.

To this end, we offer a hardware accelerator capable of performing calculations independent of the

main software routines. Additionally, we develop software-hardware partitioning strategies and

determine the best approach to minimize the communications overhead while allowing for the

maximum speedup and scalability of the solution.

2.4 Analysis and Characterization

2.4.1 Benchmarks

In order to understand the speed of the current algorithms, both available applications have

been benchmarked. The benchmarks were run on a 3.2 GHz hyper-threaded Pentium 4 with 706

spectra. The operating system kernel was the 2.6.20-16-generic Linux kernel. The times were

measured using the time command. Both the cRAP and ups FASTA databases obtained from The

Global Proteome Machine Organisation. The results from the benchmarking procedures can be

seen in the table below:

26

Program Run Times (706 Spectra)

No modifications

Inspect (2007.09.05) 0m 4.252s

X!Tandem (linux-07-07-01-2) 0m 7.468s

 Further data was collected on larger sized spectra, using a larger data base. For this

benchmark, the same 3.2 GHz hyper-threaded Pentium 4 machine was used, this time running

Windows XP. In addition to the cRAP and FASTA databases, the

Homo_sapiens.NCBI36.47.pep.all database was used, as obtained from peptideatlas.org. The spectra

which were analyzed were raw data from a plasma sample collected by the Human Proteome

Organization Proteome Project, and downloaded from peptideatlas.org. First these spectra were run

with no modifications:

Program Run Times (1733 Spectra)

No modifications

Inspect (2007.09.05) 37m 53.0781s

X!Tandem (win32-7-07-01-2) 0m 45.3s

The same spectra and database was run with the addition of a modification:

Program Run Times (1733 Spectra)

Modifications 57.022 Daltons @ C

27

Inspect (2007.09.05) 38m 16.0312s

X!Tandem (win32-07-07-01-2) 0m 46.751s

 Though the times differ by extremely large margins, neither program outputs an error, and

both were run according to the documentation available. In order to further showcase the

extravagant runtimes often encountered when processing ms/ms spectra, the following benchmark

was run using the benchmarks described in Zosso et. Alxv. This consists of a test spectra of 17

proteins run against the SWISS-PROT database. The results are as follows:

Program Run Times (1333 Spectra)

Modifications +16@M, +1@[AG], +80@[ST]

Inspect (2007.09.05) 1h 54m 18.0217s

X!Tandem (win32-07-07-01-2) 11m 58.332s

 Further testing was done to determine a typical run time. Spectra from the Sashimi data

repositoryxvi were run against the same SWISS-PROT databasexvii. These spectra are identified as

“Raft Flowthrough.” The results from this experiment show the lengthy amounts of time necessary

to run the spectra from a real scientific experiment. The same modifications as in the previous

experiment were used, but due to the increase in the number of spectra the run time rose

dramatically.

Program Run Times (56771 Spectra)

28

Modifications +16@M, +1@[AG], +80@[ST]

X!Tandem (win32-07-07-01-2) > 16 hours

 The analysis ran for over sixteen hours and still had not completed calculating the point

mutations. This magnitude of computational time effectively demonstrates the need to accelerate

the algorithm.

2.4.2 Code Profiling

 Once both programs had been benchmarked, they were profiled using cachegrind.

Cachegrind is an open source software tool which traces the execution of a program and returns a

trace of all the function calls made. The results from the profiling highlight the most critical pieces

of code. These critical pieces can then be translated into hardware and accelerated.

 For X!Tandem, the most critical function was found to be mscore_tandem::dot. This function

was called 2,763,582 times and accounts for 18.42% of the total run time. The callgraph for

X!Tandem can be seen below. The function mscore_tandem::dot scores a peptide given a mass

spectrum. This process is explained in the comments from the source code where it is noted,

“Convolution scores are the sum of the products of the spectrum intensities and the scoring weight

factors for a spectrum. Hyper scores are the product of the products of the spectrum intensities and

the scoring weight factors for a spectrum.”

In order to speed up this function, the main improvement will be to score as many of the

peptides as possible in parallel. The actual function is not very computationally intensive, but the

profiling shows that the function is called 2,763,582 times. The number of times this function has

to be run will be inversely proportional to the number of parallel scoring functions can be fit on an

29

FPGA. The more parallelized this function is the faster the overall code will run up to a point; the

entire program can only be sped up a maximum of 18.42% in accordance with Amdahl’s Law.

 Profiling Inspect provided surprising results. The second highest percentage of total run

time was spent in the function PrepareSpectrumForIonScoring. According to the profiling data,

24.77% of the total run time was spent in this piece of the code, which was only called 1,412 times

(twice for each spectra). This function primarily places each of the peaks into different “buckets” to

allow for easier scoring.

It should be noted that the highest percentage of total runtime is taken up by the function

TagGraphGenerateTags which runs for 27.35% of the program time, but over half of its run time

is spent on the quicksort algorithm. Since it is infeasible to implement quicksort in reconfigurable

hardware, it makes more sense to accelerate the PrepareSpectrumForIonScoring function. The

body of this function can be seen in Appendix A.

2.4.3 Algorithm

 Due to the greater use of the software package in the scientific community as well as the

accessibility of the code base, acceleration will be focused on the X!Tandem project. As previously

stated, the most time is spent in the function mscore_tandem::dot.

As explained by Brian Searle in his presentation, “X!Tandem works by matching the acquired

MS/MS spectra to a model spectrum based on peptides in a protein database. The model spectrum

is very simple, based on the presence or absence of y and b ions. Only matching spectral peaks —

the ones marked in the figure — are considered. Any peaks that don’t match, in either the model or

acquired spectra, are not used. X!Tandem’s preliminary score is a dot product of the acquired and

model spectra. Because only similar peaks are considered, this is the sum of the intensities of the

matched y and b ions. ”xviii

30

 Within mscore_tandem::dot, there are four key variables which are utilized in the core of

the algorithm. The variables and their assigned meanings are as follows:

m_lM m+H positive error

m_plSeq residue mass as an integer

m_fI intensity of the peak

m_pfSeq scoring weight factors

 The calculation done by the dot function is to compare all the m+H positive errors to the

residue masses, and when there is a match, the intensity of the peak is multiplied with the residue

mass and the product is added to the running score. At the end of the function both the total score

and the number of matches are returned. This operation can be seen in further detail below:

if(itType->m_lM == m_plSeq[a]){

 fValue0 = itType->m_fI * m_pfSeq[a];

 if(fValue0 > 0.0){

 lCount++;

 fScore += fValue0;

 }

 }

 }

}

This operation is executed in a loop for all the items in the m_vmiType vector as well as the

m_plSeq array. Both of these data structures have variable sizes, which makes the acceleration of

the algorithm more complex. The general approach to accelerating this algorithm will be to unroll

the for loops which compare every element of the m_vmiType vector with every element of the

31

m_plSeq array and perform all of the comparisons, multiplications and additions in parallel. This is

possible because there are no dependencies between iterations of the loops.

Loop unrolling is a method of optimization whereby the instructions called within a loop are

duplicated to form a longer sequence. This reduces the number of times the loop must be executed

and decreases the amount of overhead involved in the programs execution.

One complication with the algorithm is that the arrays do not have fixed lengths. This

requires the hardware accelerator to dynamically change its behavior based on the length of the

input arrays. Thus, while the loop can be unrolled partially, it cannot be unrolled fully as there is no

defined upper bound on the length of the arrays.

Another optimization technique, common sub-expression elimination, or CSE must be kept

in mind when translating the software to hardware. CSE makes use of already calculated values and

propagates them rather than calculating them two separate times. This is especially important in

software where the values cannot be computed in parallel. In hardware, this technique can be used

to reduce the size of the accelerator, but it is crucial to reuse values when doing so does not affect

the delay of the circuit.

2.5 Accelerator Design

2.5.1 Architecture Design

 The design of the accelerator is driven by delay, size constraints and operation overhead. In

order to maximize the speedup, we wish to implement as many accelerators on the available

hardware as possible. Additionally, we wish to minimize the delay for the obvious effect of speeding

up the calculations.

2.5.2 Register Based Approach

32

 The first method attempted was to use the FPGA to implement a custom instruction, but to

continue to control the execution step by step from the software. This was achieved by

implementing the inner the conditional multiplication and addition from the innermost loop of the

dot function. A block diagram of this implementation can be seen below.

 This method required constant attendance from the software and had considerable

overhead. Each and every value had to be transferred to the board individually. This substantial

overhead completely outweighed any performance increase the combinational conditional

multiplication and addition had to offer. As such this method performed worse than the software

version of the dot product.

 When implemented, this design took only 302 logic elements, roughly 1% of the available

area on the FPGA. The generated layout of this design can be seen in figure 17 in the appendix.

 While the area was miniscule, to complete an entire array 1024 values long took the

hardware version 500 microseconds while it only took the software 1.47 microseconds. Due to the

overhead, the hardware version was 340 times slower. Additionally, the software had to constantly

Clear

m_lM

m_fI

m_plSeq

m_pfSeq

Score

Result

Figure 9: Register Based Dot Function

33

monitor the hardware and feed data to it while it was running. While an unsuccessful accelerator,

this initial attempt underscores the importance of minimizing the communications overhead.

2.5.3 DMA Transfer, Array Depth of One

 This design utilizes the PROCSpark II board's DMA capabilities. The software opens a

DMA channel to the board and transfers all of the data at once. This allows the hardware

accelerator to calculate the result while the software performs other tasks.

 As a result of the nested for loops in the original algorithm, the hardware must have the

capability to revisit values. The dynamic size of the input arrays makes it impossible to statically

unroll the loop. As such, the hardware must be able to handle the loop itself. This is accomplished

by making use of FIFO buffers and looping the outputs back into the input. A block diagram of

this design can be seen below

Figure 10: DMA dot-array depth of one

34

The actual dot array is implemented by the logic shown in the appendix. It consists of the

same logic as is in the inner loop of the mscore_tandem::dot function. Two values are compared,

and the multiplication of the other two values is returned, dependent on the first comparison.

The following is the data flow for the calculation of a dot using the DMA accelerator with a dot

array depth of one:

1. All four arrays are transferred from the computer to the MultiFIFO buffers.

2. The array length, LENGTH, is reported to the accelerator

3. The start signal is given

4. The write-back multiplexers are set to route the data from the MultiFIFO to the simple

FIFOs and the data is moved to the simple FIFOs

5. The write-back multiplexers are set to route the data from the end of the Dot Array back

into the simple FIFOs.

6. The registers are primed with the first four values

7. For LENGTH values the m_lM and m_fI data are clocked out of their FIFOs and into

the dot array.

a. For LENGTH values the m_plSeq and m_pfSeq data are clocked out of their

FIFOs and into the dot array.

i. Each time a new value is read into the dot array, the result is added to the

accumulator.

8. The Result is written in the result register

9. The complete signal is sent back to the computer

35

 When implemented, this function takes 7,040 logic cells (21 percent of the Cyclone II). The

layout generated by the Quratus II tool can be seen in figure 18 in the Appendix. The calculation is

ready for the host after a certain time which varies according to the length of the arrays as follows:

 Tcalculation = Length1 * Length2 * 1/Fclock

 In general, the software will be delayed for only the time it takes to transfer the data to the

board. The host must initiate the transfer of data. This consumes a third of the time that computing

the full dot product in software would have taken. For example, to transfer 4096 32-bit integers to

the board takes 3.2 ms while for the software dot product it would take 9.4 ms to compute the result

will become available after an amount of time determined by the following formula:

TTotal = TTransfer + Tcalculation.

2.5.4 DMA Transfer, Multiple

 This design also utilizes the DMA capabilities of the board, and in addition, offers a speed

advantage over the single-depth accelerator described previously. This increase in speed, however,

comes at the price of area. In this design the values are clocked into the registers a certain depth

deep. This allows depth^2 conditional multiplication and adds to be performed and reduces the

number of times the second array data must be cycled through the simple FIFOs.

 The following is the data flow for the calculation of a dot using the DMA accelerator with a

dot array depth, ARRAY_DEPTH, of greater than one:

1. All four arrays are transferred from the computer to the MultiFIFO buffers.

2. The array length, LENGTH, is reported to the accelerator

3. The start signal is given

4. The write-back multiplexers are set to route the data from the MultiFIFO to the simple

36

FIFOs and the data is moved to the simple FIFOs

5. The write-back multiplexers are set to route the data from the end of the Dot Array back

into the simple FIFOs.

6. The registers are primed with ARRAY_DEPTH values from each of the four simple

FIFOs

7. The m_lM and m_fI arrays are filled with ARRAY_DEPTH data until all LENGTH data

have been evaluated. data are clocked out of their FIFOs and into the dot array.

a. For each set of ARRAY_DEPTH data the m_plSeq and m_pfSeq data are

clocked out of their FIFOs and into the dot array.

i. Each time the dot array is filled with ARRAY_DEPTH data, the results of

the comparisons and multiplies are added to the accumulator.

8. The Result is written in the result register

9. The complete signal is sent back to the computer

37

Figure 11: DMA dot-array depth greather than one

As with the previous DMA implementation, the software will be delayed for only the time it

takes to transfer the data to the board. The host must initiate the transfer of data. This consumes

half the amount of time that computing the full dot product in software would have taken. The

difference between this design and the single-depth version is the delay before the result become

available. For this version, the result will become available after an amount of time described by the

following formulae:

 TTotal = TTransfer + Tcalculation

Tcalculation = (Length1/Array_Depth) * Length2 * 1/Fclock

38

 Although the speed increases linearly with respect to Array_Depth, the dot-array size

(number of multiply/adds) increases with the square of Array_depth. As such it is necessary to

make a tradeoff between

2.6 Host Software

 In order to test the accelerators and verify their functionality test bench software was written

to interface the host computer with the hardware accelerator. The test bench software fills buffers

with data and transfers the data to the dot accelerator. The accelerator is also told the length of the

arrays to process and given the signal to start. While the board processes the data, the test bench

waits for the “complete” signal.

 The timing is measured using the C library, timer.h . Due to the fact that the resolution on

this timer is 1 ms, the operations were repeated multiple times in a loop, and the loop was timed to

gain a more accurate measurement.

39

3 Results

Transfer time took 78.8% of the total run time of the accelerated function, and currently

presents itself as the largest bottleneck to achieving higher performance. One possible solution to

this problem, batch transfers, is discussed below in the future work section.

Figure 12: Division of accelerator run-time

3.1 Future Work

3.1.1 Software

 In order to utilize the hardware accelerator, it is necessary to interface the hardware with the

existing X!Tandem project. Analysis of the software shows that the mprocess::score is the

controlling method for scoring. This function is where the all the possible cleavage peptides are

created given a sequence of peptides and each peptide is tested and scored. This method will be

altered to use accelerated dot function to score the peptides.

3.1.2 Batch Transfers

Calculation Time

Transfer Time

40

 As the DMA overhead penalty is minimized for large data transfers, it would be more

efficient to transfer multiple spectra to be analyzed at the same time. In order to accomplish this ,

the spectra to be analyzed must be accumulated and then transferred to the board as one DMA

transfer. This improvement has the potential to reduce the amount of overhead and CPU time per

dot.

 Data transfer times were measured for arrange of array sizes. The results of these

measurements show that data transfer rates scale favorably with respect to the array size. These

results can be seen in the figures below. The time saved per integer increases until 15,000 integers

are transferred, at which point the time savings remain constant. This suggests that it would make

sense to break the data transfers into groups of 15,000 integers each and process those as one batch,

thus reducing the overhead required.

Figure 13: Data transfer scaling

41

Figure 14: Time saved per integer tranferred

3.1.3 Soft-processor Co-processor

A possibility for reducing the amount of effort involved in translating a software routine into

a hardware routine is to include a full soft-processor as the accelerator. This soft-processor could

interface with the PCI bus and achieve the same data transfer rate as the custom accelerator using

DMA. The main advantage of using this setup would be that the processing could be done with

software routine loaded on the soft-processor. Additionally, existing tools such as Altera’s C2H

compiler could be leveraged to translate software routines directly into hardware. This work flow

would allow for even more rapid prototyping of hardware accelerators than what is possible when

writing a custom accelerator in Verilog.

4 Conclusions

A method for analyzing and characterizing an existing software project to find routines

suitable for acceleration has been demonstrated. A speedup of 2.59 was demonstrated. The

42

designated function was accelerated in a manner which cut the processing time for the main CPU to

approximately one-third of its original time for the specified function. The hardware accelerator was

interfaced with software on the host computer over a PCI bus. The use of DMA transfer over the

PCI bus coupled with a sequential hardware accelerator has been shown to provide an effective and

efficient way to accelerate a specific software routine to accelerate protein identification.

43

5 Appendix

module compareAndMult(m_lM, m_fI, m_plSeq, m_pfSeq, out);

input [31:0] m_lM;

input [31:0] m_fI;

input [31:0] m_plSeq;

input [31:0] m_pfSeq;

output reg [31:0] out;

reg [31:0] mult;

always@(m_lM or m_fI or m_plSeq or m_pfSeq) begin

 mult = m_fI*m_pfSeq;

 if(m_lM == m_plSeq && m_fI*m_pfSeq > 0) begin

 out = mult;

 end

 else begin

 out = 0;

 end

end

endmodule

44

Figure 15: X!Tandem callgraph

45

Figure 16: Inspect callgraph

46

Figure 17: Register-based design floor plan

47

Figure 18: DMA based floor plan

48

6 References

i Betz, Vaughn. "FPGA Architecture." University of Toronto.

<http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html>.

ii Reda, Sherief. "RC Principles: Software." Brown University, Providence. 4 Oct. 2007. Na
<http://ic.engin.brown.edu/classes/EN2911XF07/lecture08.ppt>.

iii Fienberg, Bruce. "GiDEL Ships PROCSpark II Development Board Featuring Altera’S Low-Cost
FPGAs." 25 May 2005. Altera. 18 Apr. 2008

<http://www.altera.com/corporate/news_room/releases/releases_archive/2005/products/nr-
cyclone2_procspark2.html>.

iv "PROCSpark II: Cyclone II - Based PCI Prototyping Board for Frame Grabbing, DSP, Imaging,

Vision, Rapid Prototyping." GiDEL. 14 Apr. 2008 <http://gidel.com/procSpark%20II.htm>.

v "U.S. Department of Energy Research News." 9 Apr. 2008
<http://www.eurekalert.org/features/doe/2001-06/drnl-pib061902.php>.

vi Gross, Jurgen H. Mass Spectrometry. Heidelberg: Springer, 2004.

vii Protein Identification Tutorial." IonSource 26 Oct 2007

<http://www.ionsource.com/tutorial/protID/idtoc.htm>.

viii Cook, Steven. "Spectroscopy." 10 Apr. 2008
<http://www.steve.gb.com/science/spectroscopy.html>.

ix Robertson Craig and Ronald C. Beavis, Bioinformatics, 2004, 20, 1466-7.

x "De Novo Peptide Sequencing." Ion Source. 19 Apr. 2008

<http://www.ionsource.com/tutorial/DeNovo/b_and_y.htm>.

xi “CSE Bioninformatics Group.” November 20, 2007.

<http://proteomics.bioprojects.org/Software/Inspect.html>.

xii Tanner, Stephe, Hongjun Shu, Ari Frank, Ling-Chi Wang, Ebrahim Zandi, Marc Mumby, Pavel A.
Pevzner, and Vineet Bafna. "InsPecT: Fast and Accurate Identification of Post-Translationally

Modified Peptides From Tandem Mass Spectra."

xiii "Sage-N Research Products." October 24, 2007.
<http://www.sagenresearch.com/products.html>.

49

xiv Alex, Anish. "Hardware Accelerated Protein Identification."

xv Zosso et. al. “Tandem Mass Spectrometry Protein Identification on a PC Grid”

xvi "Sashimi Data Repository." 17 Nov. 2007 <http://sashimi.sourceforge.net/repository.html>.

xvii "UniProtKB/Swiss-Prot." 17 Nov. 2007 <http://www.ebi.ac.uk/swissprot/>.

xviii Searle, Brian C. "X!Tandem Explained." Proteome Softwar Inc. Portland. Na.

