
Abstract of “Machine Learning Methods for Combinatorial Optimization” by Abdelrahman Hosny
Ibrahim, Ph.D., Brown University, October 2023.

Combinatorial optimization problems are fundamental in many real-world applications, where the
goal is to find the optimal or near-optimal solution to a problem subject to constraints. However,
most real-world optimization problems are computationally intractable, especially ones with dis-
crete domains for the objective function. Traditional methods that solve optimization problems
typically rely on handcrafted heuristics for computationally-intensive decisions during the solving
process and overlook patterns in the input data for problems that are being solved repeatedly. This
leads to sub-optimal solutions and longer runtimes. To improve the solving process and the solu-
tion optimality, this dissertation introduces machine learning methods within the solving procedure
of existing algorithms. The premise is that machine learning methods can offer an efficient and
effective way to trim the search space of candidate solutions by exploiting the patterns and struc-
tures in the problem instance data, hence reducing the time required to find a (sub)optimal solution.

This thesis makes the following contributions toward the advancement of machine learning methods
for combinatorial optimization. First, we address the inefficiencies inherent in making local opti-
mal choices within the solver’s loop of a combinatorial algorithm. We propose a novel model-based
reinforcement learning (RL) methodology, designed to guide the solver towards decisions in local
optimizations that maximize future rewards. We showcase our method on the problem of Boolean
logic synthesis of hardware chip designs, where the quality of results (QoR) depends on the sequence
of optimizations applied. Our work improves on expert-crafted and heuristics-based approaches,
enhancing QoRs by an average of 13%. Second, we delve into the difficulties surrounding hyper-
parameter tuning within combinatorial solvers. While current practices adopt a few well-performing
configuration parameters and use them for new unseen problems, machine learning can help in se-
lecting instance-aware configuration parameters. Rather than training a model to directly predict
configuration parameters, we propose a new method based on deep metric learning, which enables
the selection of hyperparameters by identifying similarities in problems being repeatedly solved.
Empirical results on Mixed Integer Linear Programming (MILP) problems show that our method is
capable of predicting a solver’s hyperparameters that improve solutions’ costs by up to 38%, and is
practical to deploy on production environments. Third, we investigate the exploration-exploitation
dilemma in existing optimization algorithms. For large problem instances that necessitate prolonged
solving times, we present a model capable of predicting a solver’s outcome on scalable compute re-
sources. The goal is to let solvers explore more of the solution space, while maintaining the costs
of the provisioned compute resources. In scaling electronic design automation (EDA) workloads
to cloud environments, our method is able to predict the most promising exploration runs of an
optimization algorithm, while reducing the total compute costs by 35%. Finally, we advocate for the
development of next-generation combinatorial optimization algorithms that are native to hardware

2

accelerators such as GPUs. Instead of merely parallelizing existing algorithms’ implementations, we
propose a new approach grounded in contemporary deep learning frameworks that solves the Maxi-
mum Satisfiability (MaxSAT) problem through a single differentiable function. We demonstrate that
it is feasible to develop GPU-native methods for combinatorial optimization, despite their discrete
domains. This could have a significant impact on developing new approaches for tackling large-scale
optimizations.

Machine Learning Methods for Combinatorial Optimization

by
Abdelrahman Hosny Ibrahim
B. S., Assiut University, 2013

Sc. M., University of Connecticut, 2016

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
October 2023

© Copyright 2023 by Abdelrahman Hosny Ibrahim

This dissertation by Abdelrahman Hosny Ibrahim is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Sherief Reda, Director

Recommended to the Graduate Council

Date
George Konidaris, Reader

Date
Yu Cheng, Reader

Approved by the Graduate Council

Date
Thomas A. Lewis

Dean of the Graduate School

iii

Vitae

Abdelrahman Hosny was born and raised in Assiut, Egypt. He received his B.Sc. in Computer
Science from Assiut University, Egypt in 2013. He received his M.Sc. in Computer Science and
Engineering from the University of Connecticut in 2016. His main research interests are in utilizing
machine learning methods in combinatorial optimization problems with applications in chip design,
operations research, and mixed integer linear programming solvers.

abdelrahman_hosny@brown.edu

https://abdelrahmanhosny.me

Brown University, RI, USA

Selected Publications:

1. A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for
Logic Synthesis," 2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC), 2020, pp. 581-586.

2. A. Hosny and S. Reda. "Characterizing and optimizing EDA flows for the cloud." IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.9 (2021): 3040-
3051.

3. A. Hosny and S. Reda. "Automatic MILP solver configuration by learning problem similari-
ties." Annals of Operations Research (2023): 1-28.

4. A. Hosny, M. Neseem, and S. Reda. "Sparse Bitmap Compression for Memory-Efficient Train-
ing on the Edge." In 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 14-25.
IEEE, 2021.

5. A., Tutu, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim et al. "To-
ward an open-source digital flow: First learnings from the openroad project." In Proceedings
of the 56th Annual Design Automation Conference 2019.

iv

abdelrahman_hosny@brown.edu
https://abdelrahmanhosny.me

6. A. Hosny, and A. B. Kahng. "Tutorial: Open-Source EDA and Machine Learning for IC
Design: A Live Update." 2020 33rd International Conference on VLSI Design and 2020 19th
International Conference on Embedded Systems (VLSID). IEEE, 2020.

7. A. Hosny and S. Reda. “torchmSAT: A Progressive Neural Network Approach To The Maxi-
mum Satisfiability Problem.” Preprint.

v

Acknowledgements

This thesis would not have been possible without the constant support, guidance and inspirations of
many kind individuals. First and foremost, I would like to express my sincere gratitude to my advisor
and mentor, Prof. Sherief Reda, whose guidance, support, and valuable insights during the course
of my research has made this thesis possible. I would also like to thank Prof. George Konidaris and
Prof. Yu Cheng for being on my defense committee and taking the time to review my thesis.

I am extremely thankful for the productive collaborations with all my collaborators, Soheil
Hashemi, Mohamed Shalan, my advisor Prof. Sherief Reda, and many others during my work on
the OpenROAD project. My work would not have been possible without them. Specifically, I would
like to sincerely thank Prof. Andrew B. Kahng and Tom Spyrou for their valuable insights and
guidance. I would also like to thank my fellow colleagues at Prof. Reda’s group at Brown: Soheil
Hashimi, Hokchhay Tann, Sofiane Chetoui, Marina Hesham, Ahmed Agiza, Jingxiao Ma, Manar
Abdelatty and many others for making the last five years memorable.

I cannot express enough my immense gratitude to my wife, Menna Hasan, for her great care and
for being a one-of-a-kind supporter to me during all the high and low times of my PhD journey.
I would like to thank my parents and my siblings for their unwavering support and love. I have
learned a lot from them. Without them, none of what I achieved today would be possible.

Last but not least, the inspirations in this thesis could not have been accomplished without the
continuous encouragement of my friends. To Ali Nasser, whose constant inspiration and challenges to
push my limits have been invaluable, and to George Wilkes, whose limitless support during extended
study sessions has been a mainstay, I extend my heartfelt gratitude.

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Taxonomy of Optimization Problems . 2
1.2 Pathways for Machine Learning in Combinatorial Optimization 4
1.3 Thesis Contributions . 6

2 Background 9
2.1 Basic Concepts . 9
2.2 Greedy Algorithms . 10
2.3 Dynamic Programming . 11
2.4 Linear Programming . 13
2.5 Branch-and-Bound . 15

3 Sequential Optimization Using Reinforcement Learning 18
3.1 Introduction . 18
3.2 Related Work . 20
3.3 Method . 21

3.3.1 Background on Reinforcement Learning . 21
3.3.2 DRiLLS . 22

3.4 Empirical Results . 26
3.4.1 Design Space Exploration . 27
3.4.2 Comparison to Other Techniques . 27

3.5 Conclusion . 29

4 Hyper-parameter Tuning Using Deep Metric Learning 31
4.1 Introduction . 31
4.2 Motivation . 33
4.3 Related Work . 34

vii

4.4 Preliminaries . 38
4.4.1 MILP Formulation . 38
4.4.2 Graph Neural Networks . 38
4.4.3 Metric Learning . 39

4.5 Data Validation . 40
4.6 Method . 42

4.6.1 Learning MILP Similarity . 42
4.6.2 Predicting Configuration Parameters . 45

4.7 Empirical Results . 47
4.7.1 Dataset . 47
4.7.2 Experimental Setup . 48
4.7.3 Instance Embedding . 49
4.7.4 Prediction Accuracy . 51
4.7.5 Comparing to Baselines . 51

4.8 Conclusion . 53

5 Efficient Exploration Using Predictive Modeling 55
5.1 Introduction . 55
5.2 Preliminaries . 57
5.3 Related Work . 59
5.4 Method . 61

5.4.1 EDA Flow Characterization . 62
5.4.2 Runtime Prediction . 65
5.4.3 Optimizing Virtual Machine Provisioning . 68

5.5 Empirical Results . 71
5.6 Conclusion . 75

6 Fast GPU-native Combinatorial Optimization 76
6.1 Introduction . 76
6.2 Motivation . 77
6.3 Preliminaries . 79
6.4 Related Work . 80
6.5 Method . 81
6.6 Empirical Results . 85
6.7 Conclusion . 88

7 Summary and Possible Extensions 89
7.1 Summary of Contributions . 89
7.2 Potential Future Research . 92

A Data Management in Metric Learning 94

viii

B Dataset Details in torchmSAT 96

C Raw Results in torchmSAT 99

D GPU Acceleration in torchmSAT 104

Bibliography 107

ix

List of Tables

3.1 Multi-objective reward function in reinforcement learning 24
3.2 Area-delay comparison of logic synthesis optimization using reinformcement learning 30

4.1 Instance-aware solver configuration methods . 38
4.2 Mixed integer linear programming dataset . 47
4.3 Results of using deep metric learning for configuring solvers’ hyperparameters 52

5.1 System configuration used for EDA flow characterization 62
5.2 Results of minimizing the total cost of EDA cloud deployments using GNNs 73

6.1 Results of using backpropagation in solving MaxSAT 88

B.1 MaxSAT dataset . 98

C.1 Raw results for solving MaxSAT using backpropagation 100

x

List of Figures

1.1 Taxonomy of optimization problems . 2
1.2 Summary of machine learning methods for combinatorial optimization 4

3.1 DRiLLS framework architecture . 23
3.2 Traces of DRiLLS agent navigating the design space 27
3.3 Design area vs. delay trade-offs using DRiLLS . 29

4.1 Effect of configuration parameters on the solution cost using SCIP 32
4.2 Cost reduction by searching and evaluating the configuration space 33
4.3 A high-level pipeline of using metric learning for parameters configuration 34
4.4 Correlation between problem instance similarities and their solver’s configuration . . 41
4.5 Correlation between problem instances and their costs under different configurations 42
4.6 Overview of training deep metric learning model to learn problem similarities 43
4.7 Vector representations of MILP problem instances visualized using t-SNE 50
4.8 Results of using configurations from the nearest neighbor in the learned metric space 51
4.9 Similarity in the learned embedding space . 53

5.1 A reference EDA flow on the cloud . 57
5.2 Workflow of optimizing EDA cloud deployments . 61
5.3 Performance characterization of four representative EDA jobs 62
5.4 Routing speedup for different designs . 63
5.5 VM placement scenarios in a cloud environment. 64
5.6 Impact of VM placement on the total runtime . 64
5.7 Overall system architecture for analyzing and optimizing EDA flows on the cloud . . 65
5.8 Our proposed runtime prediction model for EDA jobs 66
5.9 Graph extraction from design netlist . 67
5.10 Graph convolution operation for chip designs . 67
5.11 Runtime as a function of the design size . 71
5.12 Runtime prediction errors using our GNN model . 72
5.13 Cost savings from running our multi-choice knapsack optimization algorithm 74
5.14 Further cost savings from choosing to run EDA jobs on spot VMs 74

xi

6.1 Existing MaxSAT solvers vs. our proposed backpropagation-based method 78
6.2 Overview of torchmSAT neural network architecture 82
6.3 Performance of torchmSAT as compared to the state-of-the-art MaxSAT solvers . . . 86
6.4 Running torchmSAT on CPU vs. GPU . 87

D.1 Running torchmSAT on CPU vs. GPU (10mins) . 105
D.2 Running torchmSAT on CPU vs. GPU (5mins) . 105
D.3 Running torchmSAT on CPU vs. GPU (1min.) . 106

xii

Chapter 1

Introduction

A mathematical optimization problem is a type of problem in which a specified objective function
is either minimized or maximized with respect to the domain of its input variables. These types of
problems are prevalent across a wide array of fields, including engineering design [166], operations
research [151], economics [73], and many others [189, 183]. They play a critical role in decision-
making processes and are essential in finding the most effective solutions for various challenges.

Over the decades, various techniques have been developed to identify optimal solutions for these
optimization problems [187]. Some of these methods are based on calculus, such as gradient descent
[33], Lagrange multiplier methods [25], or Newton’s method [138, 150], while others rely on numerical
or iterative techniques, such as the simplex algorithm [41] or simulated annealing [93]. These methods
have been widely used and have proven to be effective for a broad range of applications.

However, many real-world optimization problems are considered intractable, as they are part
of Karp’s NP-Complete list [83] – a collection of problems whose solutions are difficult to find in
polynomial time. Due to their inherent complexity, these problems pose significant challenges for
traditional optimization techniques, often requiring the development of novel approaches.

State-of-the-art algorithms for solving intractable optimization problems have primarily relied on
expert-crafted heuristics to find suboptimal solutions within a reasonable time [187]. These heuristics
are carefully designed to guide the search process in a way that leads to finding better solutions
faster than evaluating the entire solution space. Some examples of general-purpose heuristic-based
approaches include genetic algorithms [66], simulated annealing [93], and Tabu search [59]. Moreover,
problem-specific heuristics-based algorithms have also been well-established, such as Adaptive Large
Neighborhood Search (ALNS) [153] for the Vehicle Routing Problem [42], Open-WBO [125] for the
MaxSAT problem [56], and Meet-in-the-middle [68] for the Knapsack problem [86].

Despite their widespread application and success, these state-of-the-art algorithms often have
a limitation: they are generic in nature and do not take into account the specific characteristics
of the input data. This means that they may overlook potential gains that could be achieved by
making decisions based on patterns or structure in the data. As a result, there is an ongoing effort
to develop new optimization techniques that can better exploit the unique features of individual

1

2

problem instances, leading to more efficient and effective solutions [21, 98].
In this dissertation, we argue that leveraging problem-specific data can enhance the performance

of optimization algorithms by incorporating machine learning (ML) models, leading to improved
efficiency and solution quality. The main idea behind this direction is to utilize patterns and results
from previously encountered problem instances to inform and guide the search for optimal solutions
in new problem instances. Problem-specific data can be comprised of features and characteristics
of previously seen or solved optimization problems. By incorporating this data into the solving
process, ML models learn to identify patterns and relationships that can be exploited to enhance
the performance of optimization algorithms.

In order to introduce the various pathways for integrating machine learning in combinatorial
optimization, we first present a taxonomy of optimization problems in Section 1.1. The goal is to
set the context for the contributions of this dissertation. Next, we present a high-level overview of
the pathways we have studied in this dissertation in Section 1.2, and summarize our contributions
in Section 1.3.

1.1 Taxonomy of Optimization Problems

ConstrainedUnconstrained

Continuous Discrete

Optimization

Figure 1.1: Taxonomy of optimization problems

Optimization problems are often encountered in various contexts and can be formulated as either
minimization or maximization problems. In the case of minimization, the objective function is
represented as arg min

x
f(x), while for maximization, it is denoted as arg max

x
f(x). The complexity

of these optimization problems is often determined by the domain of their input variables, x, which
defines the search space that an algorithm needs to explore.

A high-level taxonomy of optimization problems can be visualized in Figure 1.1, which categorizes
them into various classes based on their characteristics. One such class is unconstrained optimization
problems, where the input domain has no explicit boundaries, or the boundaries are considered soft
constraints. In this scenario, the input variables x typically belong to the real number domain, i.e.,
x ∈ R. A well-known example of this type of problem is minimizing the loss function in a machine
learning model, where the input variables x represent the weights of the model.

On the other hand, constrained optimization problems introduce additional “subject to” terms
in the problem formulation, which restrict the feasible region of the input variables. For instance, if
the input values x are limited to a specific continuous range, such as x ∈ [1.5, 5.25], the optimization

3

algorithms must ensure the feasibility of the solution before determining its optimality. In this
case, the input domain is continuous, and algorithms need to account for these constraints during
the search process. In more challenging cases, the input variables x are restricted to a discrete
set of values, e.g., x ∈ 0, 1. Solving optimization problems with discrete input domains can be
extremely difficult, as finding the optimal solution often requires an exhaustive brute-force search.
This approach can quickly become computationally infeasible for problems with a large number of
input variables or complex constraints. In such cases, researchers often resort to employing heuristics
or approximation algorithms to find near-optimal solutions within a reasonable time frame.

State-of-the-art methods for constrained optimization often rely on handcrafted heuristics to
find a (sub)optimal solution within a reasonable time frame [39]. These methods typically employ
well-established optimization techniques, ranging from linear and integer programming to gradient-
based and evolutionary algorithms, to tackle various types of problems. Although these approaches
have proven to be effective in many cases, their reliance on generic problem-solving strategies may
limit their ability to exploit domain-specific knowledge or to adapt to the unique characteristics of
individual problem instances.

A vast number of solvers have been developed to address different variations of optimization
problems, depending on factors such as the objective function (linear or non-linear) and the con-
straints (continuous or discrete) [47]. By design, these solvers are meant to be generic and do not
make any assumptions about the numerical structure of the input variables. However, this gener-
ality comes at the cost of potentially overlooking valuable insights that could be gained from the
problem’s structure.

Over the last two decades, it has become increasingly apparent that many optimization prob-
lems are being solved repeatedly across various domains, generating a wealth of data that can offer
valuable insights into the optimization process [79, 143]. For instance, in the field of Electronic De-
sign Automation (EDA), optimizing integrated circuits is a critical aspect of developing new chips,
particularly in advanced technology nodes [79]. Likewise, combinatorial optimization problems have
numerous applications in operations research [143], such as last-mile delivery companies regularly
solving the vehicle routing problem as daily delivery tasks (stops and routes) change [114]. Despite
the repeated and frequent occurrence of these problems, the data generated during the optimiza-
tion process often remains untapped. Existing algorithms and generic solvers tend to overlook the
opportunity to leverage the patterns present in the input data for making more informed and ef-
fective optimization decisions. This gap in the current state-of-the-art methods presents a unique
opportunity for further research and development.

The primary goal of this dissertation is to explore possible avenues for systematically integrat-
ing domain-specific knowledge and historical data into the optimization process, with the aim of
enhancing the efficiency and solution quality of existing algorithms. By leveraging the wealth of
information available from previously solved problems, it is possible to develop new techniques or
augment existing methods that can adapt more effectively to the unique characteristics of individual
problem instances, ultimately leading to better optimization outcomes.

4

1.2 Pathways for Machine Learning in Combinatorial Opti-

mization

SOLVER

decisions

Problem Instance

Solution
(sub)optimal

3. Predictive Modeling for
Efficient Exploration-Exploitation

EDA on Cloud
DATE'21, TCAD'21

DRiLLS
ASPDAC'20

1. Sequential Local-to-Global
Optimization Decisions

2. Hyperparameter Tuning
MILPTune
ANOR'23

4. GPU-native
Combinatorial
Optimization
torchmSAT

Figure 1.2: Summary of our proposed machine learning methods for combinatorial optimization.

In this dissertation, we focus on constrained optimization problems, where various techniques
and methods have been developed to solve problem instances characterized by an objective function,
f(x), and a set of constraints for the input variables, x. The primary goal of these methods is to
find an optimal solution, either by minimizing or maximizing the objective function, while adhering
to the specified constraints and time limits. In recent years, machine learning (ML) models have
been integrated into the optimization process to improve solvers’ performance and adaptability. In
this context, we present a comprehensive recipe illustrating different approaches to incorporate ML
models into constrained optimization solvers, depicted in Figure 1.2. Our framework can be divided
into four main components: (1) sequential local-to-global optimization decisions, (2) hyperparameter
tuning, (3) predictive modeling for efficient exploration-exploitation, and (4) fast GPU-native com-
binatorial optimization. Each of these pathways plays a vital role in enhancing the solving process
and achieving better results within the given constraints and time limits.

Firstly, machine learning (ML) methods can be incorporated into the solving process of a numer-
ical solution, playing a critical role in determining local optimization decisions that affect the global
structure of the problem. In such scenarios, the iterative optimization process can be effectively mod-
eled as Markov Decision Process (MDP) [18]. A model-based reinforcement learning (RL) approach,
which utilizes learned models of the environment to plan and make decisions, can be employed in this
context [169]. Our research contributions, detailed in Chapter 3, demonstrate the development of a
reinforcement learning agent that successfully minimized the area of a chip layout while adhering to
specific timing constraints. This approach highlights the potential of model-based RL in addressing
complex optimization problems with multiple constraints. In a similar vein, researchers at Google
have also explored the benefits of model-based RL in chip design optimization. They developed an

5

RL agent capable of planning chip layouts for their Tensor Processing Units (TPUs) [127]. This
RL agent leverages a graph-based representation of the chip design problem, allowing for efficient
exploration and exploitation of the solution space. The success of this approach further underscores
the potential of model-based reinforcement learning techniques in addressing challenging optimiza-
tion problems with real-world implications. Expanding the scope of ML integration in optimization
problems, such as those addressed in chip design, can lead to more efficient and effective solutions
that account for multiple constraints and dynamically adapt to problem instances. By leveraging
the power of reinforcement learning and Markov Decision Processes, researchers and practitioners
can tackle complex numerical problems and develop better optimization algorithms.

Secondly, machine learning (ML) methods can also be integrated externally to the solving loop
of a generic solver (e.g. Mixed Integer Linear Programming solvers), playing a complementary role
in enhancing the optimization process. In this approach, the output of the ML model can be utilized
to tune the hyperparameters of the optimization algorithms. We present our research contributions
in Chapter 4, showcasing the potential of ML methods integrated externally to the solving loop. We
employ deep metric learning techniques to configure Mixed Integer Linear Programming solvers ef-
fectively. Deep metric learning focuses on learning meaningful distance metrics between data points,
which can be useful for configuring solvers based on problem instance similarities or differences.
Unlike supervised learning methods which are impractical to deploy in this context, predicting hy-
perparameter configurations from similar problem instances that are previously solved introduces
negligible overhead and is practical to deploy and continuously tune in production environments.

Thirdly, we address the exploration-exploitation dilemma in looking for an optimal solution
in a massive solution space. The hypothesis is that letting a solver explore more of the solution
space improves the solution quality, but also comes at a significant runtime and computation costs.
Therefore, in Chapter 5, we demonstrate how predictive modeling can be leveraged to help an agent
select the most promising solver runs to continue exploring while reducing the overall cost and
meeting time constraints. Expanding the integration of ML methods, both inside and outside the
solving loop, can significantly enhance the performance of optimization solvers. Collectively, we
show that supervised learning, metric learning and reinforcement learning are powerful methods for
enhancing solutions of existing solvers.

Finally, we call for a fresh view on approaching combinatorial optimization problems and present
a novel framework to model such problems as a single differentiable function capable of producing
fast approximate solutions. By leveraging ML acceleration hardware, such as Graphics Processing
Units (GPUs) or Tensor Processing Units (TPUs), and implementing GPU-native algorithms using
contemporary deep learning libraries, the backpropagation process can effectively become the solving
process, leading to more efficient and faster solutions. Unlike parallelizing classic algorithms on multi-
core environments, the idea behind this approach is to harness the power of specialized hardware and
ML techniques to optimize the solving process itself. By formulating the problem instance in a way
that is conducive to modeling as a neural network, researchers can tap into the inherent parallelism
and computational capabilities of GPUs and TPUs. To that end, our research contributions in

6

Chapter 6 approximates solutions to the Maximum Satisfiability Problem (MaxSAT), showing the
potential of leveraging GPU parallelism in such a context. We propose torchmSAT – a progressive
approach that continually refines and improves its solutions over time. One of the core advantages
of torchmSAT is its independence from a SAT oracle, a feature that differentiates it from traditional
MaxSAT solvers. This makes our method more self-sufficient and less reliant on external components.
Experimental results show that our method outperforms two existing MaxSAT solvers, and is on par
with another state-of-the-art solver for small to medium problem sizes. Additionally, torchmSAT
is able to benefit from GPU acceleration, allowing for more rapid exploration of feasible solution
regions. Despite some limitations, torchmSAT represents a promising step forward in GPU-native
combinatorial optimization algorithms.

In conclusion, the integration of machine learning models into the optimization process, whether
it be within the solving loop, externally, or through the prediction of feasible solutions, holds great
potential for improving the performance and adaptability of optimization algorithms. By combining
the strengths of ML techniques and specialized hardware, researchers and practitioners can tackle
complex optimization problems more effectively, leading to innovative solutions that address the
challenges of real-world applications.

1.3 Thesis Contributions

In this section, we outline the major contributions made in this thesis regarding the integration of
machine learning models into the optimization process of combinatorial problems.

DRiLLS: Deep Reinforcement Learning for Logic Synthesis. Logic synthesis requires
extensive tuning of the synthesis optimization flow where the quality of results (QoR) depends on
the sequence of optimizations used. Efficient design space exploration is challenging due to the
exponential number of possible optimization permutations. Therefore, automating the optimization
process is necessary. In this work, we propose a novel reinforcement learning-based methodology
that navigates the optimization space without human intervention. We demonstrate the training of
an Advantage Actor Critic (A2C) agent that seeks to minimize area subject to a timing constraint.
Using the proposed methodology, designs can be optimized autonomously with no-humans in-loop.
Evaluation on the comprehensive EPFL benchmark suite shows that the agent outperforms existing
exploration methodologies and improves QoRs by an average of 13%.

Characterizing and Optimizing EDA Flows for the Cloud. Design space exploration
in logic synthesis and parameter tuning in physical design require a massive amount of compute
resources in order to meet tapeout schedules. To address this need, cloud computing provides semi-
conductor and electronics companies with instant access to scalable compute resources. However,
deploying EDA jobs on the cloud requires EDA teams to deeply understand the characteristics of
their jobs in cloud environments. Unfortunately, there has been little to no public information on
these characteristics. Thus, in this thesis, we first formulate the problem of deploying EDA jobs to
the cloud. To address the problem, we characterize the performance of four EDA main applications,

7

namely: synthesis, placement, routing and static timing analysis. We show that different EDA jobs
require different compute configurations in order to achieve the best performance. Using observa-
tions from our characterization, we propose a novel model based on Graph Convolutional Networks
to predict the total runtime of a given stage on different configurations. Our model achieves a predic-
tion accuracy of 87%. Furthermore, we present a new formulation for optimizing cloud deployments
in order to reduce costs while meeting deadline constraints. We present a pseudo-polynomial opti-
mal solution using a multi-choice knapsack mapping that reduces deployment costs by 35.29%, with
minimal overhead to the total runtime. In addition, we describe a cloud-ready solution, called EDA
Analytics Central, for the continuous optimization of a design across an EDA flow. We used this
system in building our runtime prediction model.

Automatic MILP Solver Configuration By Learning Problem Similarities. A large
number of real-world optimization problems can be formulated as Mixed Integer Linear Programs
(MILP). MILP solvers expose numerous configuration parameters to control their internal algo-
rithms. Solutions, and their associated costs or runtimes, are significantly affected by the choice
of the configuration parameters, even when problem instances have the same number of decision
variables and constraints. On one hand, using the default solver configuration leads to poor subop-
timal solutions. On the other hand, searching and evaluating a large number of configurations for
every problem instance is time-consuming and, in some cases, infeasible. In this study, we aim to
predict configuration parameters for unseen problem instances that yield lower-cost solutions with-
out the time overhead of searching-and-evaluating configurations at the solving time. Toward that
goal, we first investigate the cost correlation of MILP problem instances that come from the same
distribution when solved using different configurations. We show that instances that have similar
costs using one solver configuration also have similar costs using another solver configuration in the
same runtime environment. After that, we present a methodology based on Deep Metric Learning
to learn MILP similarities that correlate with their final solutions’ costs. At inference time, given a
new problem instance, it is first projected into the learned metric space using the trained model, and
configuration parameters are instantly predicted using previously-explored configurations from the
nearest neighbor instance in the learned embedding space. Empirical results on real-world problem
benchmarks show that our method predicts configuration parameters that improve solutions’ costs
by up to 38% compared to existing approaches.

torchmSAT: A Progressive Neural Network Approach To The Maximum Satisfia-
bility Problem The remarkable achievements of machine learning techniques in analyzing discrete
structures have drawn significant attention towards their integration into combinatorial optimiza-
tion algorithms. Typically, these methodologies improve existing solvers by injecting learned models
within the solving loop to enhance the efficiency of the search process. In this work, we derive a single
differentiable function capable of approximating solutions for the Maximum Satisfiability Problem
(MaxSAT). Then, we present a novel neural network architecture to model our differentiable func-
tion, and progressively solve MaxSAT using backpropagation. This approach eliminates the need
for labeled data or a neural network training phase, as the training process functions as the solving

8

algorithm. Additionally, we analyze the feasibility of leveraging the computational power of GPUs
to accelerate these computations. Experimental results on challenging MaxSAT instances show that
our proposed methodology outperforms two existing MaxSAT solvers, and is on par with another
in terms of solution cost, without necessitating any training or access to an underlying SAT solver.
Given that numerous NP-hard problems can be reduced to MaxSAT, our novel technique paves the
way for a new generation of solvers poised to benefit from neural network hardware acceleration.

Chapter 2

Background

In this chapter, we introduce some fundamental algorithmic ideas which will be used as baselines in
the subsequent chapters. The aim of reviewing these ideas in a concise format is twofold. One one
hand, we provide the reader, who is new to combinatorial optimization, with a basic introduction to
understand the context of our contributions in this dissertation. On the other hand, we establish a
common conceptual cornerstone from which the other chapters can improve these ideas as they are
inherently integrated in each of our contributions. We will also formalize the notation used in this
dissertation in its more general formulation.

2.1 Basic Concepts

As presented in Section 1.2, this dissertation focuses on constrained optimization problems. The
most general form of such problems can be represented as:

argmin
x

c⊤x

subject to A⊤x ≥ b,

x ∈ Zp × Rn−p,

(2.1)

where c ∈ Rn denotes the coefficients of the linear objective, A ∈ Rm×n and b ∈ Rm denote
the coefficients and upper bounds of the linear constraints, respectively, n is the total number of
decision variables, p ≤ n is the number of integer-constrained variables, and m is the number of
linear constraints. The goal is to find feasible assignments for x that minimize the objective c⊤x.

While simple and concise, this formulation encodes a large number of practical problems. If p is
zero, i.e. the domain of x is continuous, the problem becomes relatively easy to solve even with a
massive number of variables. This will be referred to as a Linear Program in Subsection 2.4. When
p is a positive number, the problem becomes intractable and only approximate algorithms can find
a sub-optimal solution in a polynomial time.

9

10

2.2 Greedy Algorithms

In a greedy algorithm, a solver starts with an empty solution, i.e. assignment of x, and repeatedly
extends the current solution by making locally optimal choices at each step until a complete solution
is obtained. Greedy methods can also start with a complete feasible solution and then try to improve
the current solution further via local moves. While greedy algorithms can be applied to certain MILP
problems, they are not guaranteed to find the optimal solution in all cases because they make locally
optimal choices at each step. Greedy algorithms are more suited for specific problem types or as
heuristics to quickly find a suboptimal solution.

For example, the Knapsack problem can be formulated as a MILP problem and solved using a
greedy algorithm:

argmax
x

n∑
i=1

vixi

subject to
n∑

i=1

wixi ≤W

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

(2.2)

where vi represents the value of item i, wi represents the weight of item i, W is the maximum weight
capacity of the knapsack, and n is the number of items. The MILP formulation is meant to decide
which items to take to maximize the total value, while not exceeding the weight capacity of the
knapsack. A greedy algorithm to solve this problem is to sort the items by value-to-weight ratio
in a descending order, then iteratively add items to the knapsack as long as they don’t exceed the
weight capacity.

Greedy algorithms exhibit advantages in solving optimization problems.

1. Simplicity: The greedy algorithm is easy to understand and implement. The algorithm
typically involves sorting items by a specific criterion (e.g., value-to-weight ratio) and iteratively
selecting items based on this criterion.

2. Computational efficiency: Greedy algorithms are usually computationally efficient as they
make a single pass through the sorted list of items. The time complexity is dominated by the
sorting step, which is typically O(n log n), where n is the number of items.

3. Speed: Greedy algorithms can quickly provide a solution, which can be useful in practice
when an exact solution may not be required, or when the problem size is too large for more
sophisticated algorithms to handle within a reasonable time frame.

4. Good performance on certain problem types: For some specific problem types, such
as the fractional knapsack problem, the greedy algorithm is guaranteed to find the optimal
solution.

11

However, greedy algorithms also have significant limitations.

1. Suboptimal solutions: The main drawback of greedy algorithms is that they do not always
yield optimal solutions for all problem types, especially for problems that do not have a greedy-
choice property. Greedy algorithms make locally optimal choices at each step, which may not
always lead to the globally optimal solution.

2. Sensitivity to input data: The performance of a greedy algorithm can be sensitive to the
input data and may depend on the order in which items are considered. In some cases, a small
change in input data can significantly impact the quality of the solution.

3. Lack of exploration: Greedy algorithms do not explore alternative solutions and commit to
a specific choice at each step. This lack of exploration can result in suboptimal solutions, as
the algorithm does not consider the consequences of its choices beyond the current step.

4. Limited applicability: Greedy algorithms may not be suitable for all MILP problems, as
they rely on problem-specific heuristics and work best on problems with specific structures. For
more general MILP problems, other methods like dynamic programming, or branch-and-bound
may be more appropriate for finding the optimal solution.

Accordingly, better algorithms can address some of these limitations by improving optimality,
tolerating data variance, or offering enhanced exploration capabilities. We use a greedy algorithm
baseline in our work in Chapter 3.

2.3 Dynamic Programming

Dynamic programming breaks down problems into simpler, overlapping subproblems. It is particu-
larly well-suited for problems that exhibit optimal substructure and overlapping subproblems, which
are common characteristics of many combinatorial optimization problems. The fundamental steps
of dynamic programming are as follows:

1. Subproblems: Break the original problem down into smaller, simpler subproblems. These
subproblems are usually defined by the problem’s parameters or dimensions, and their solutions
can be combined to form the optimal solution for the larger problem. Determine the base cases,
which are the simplest subproblems with known solutions.

2. The recurrence relation: Develop a mathematical expression that captures the relationship
between the solution of a subproblem and the solutions of its smaller subproblems. This
expression, known as the recurrence relation, is the basis of the dynamic programming approach
and is used to build the solution iteratively.

3. Iterative search: Design a table or a data structure to store the results of the subproblems.
Using the recurrence relation and base cases, solve the subproblems in a systematic manner,

12

either iteratively (bottom-up approach) or recursively (top-down approach). In the bottom-
up approach, the algorithm starts with the base cases and builds the solution for the larger
problem iteratively by solving the subproblems in increasing order of complexity. In the top-
down approach, also known as memoization, the algorithm starts with the original problem and
recursively breaks it down into smaller subproblems, caching the results to avoid redundant
computations.

Dynamic programming addresses the exploration limitation of greedy algorithms. While still
providing suboptimal solutions, dynamic programming is empirically better than a simple greedy
algorithm. Take for example the knapsack problem presented in Equation 2.2. We can develop a
dynamic programming solution that breaks down the problem into smaller ones by create a table K

with dimensions (n+ 1)× (W + 1), where n is the number of items and W is the maximum weight
capacity of the knapsack. The rows represent items from 0 to n, and the columns represent possible
weight capacities from 0 to W . The search starts by initializing the first row and the first column of
the table K to 0, as there is no value when no items are selected or when the weight capacity is 0.
After that, the algorithm iterates through the items (i = 1 to n) and the weight capacities (w = 1

to W). For each item i and weight capacity w, the algorithm calculates the maximum value (i.e.
Objective in Equation 2.2) by either including the item i or not including it if the weight of item i

(wi) is less than or equal to the current weight capacity (w):

• Including item i: value = vi (value of item i) + K[i− 1][w − wi] (the maximum value that
can be obtained from the remaining capacity after including item i).

• Excluding item i: value = K[i − 1][w] (the maximum value that can be obtained without
item i).

Then, K[i][w] = max(value_including_i, value_excluding_i). If the weight of item i (wi) is greater
than the current weight capacity (W), then K[i][w] = K[i− 1][w] (the maximum value that can be
obtained without item i). The value in the bottom-right corner of the table, K[n][W], represents
the maximum value that can be obtained for the given knapsack problem.

The presented algorithm satisfies the MILP formulation. The objective function in the MILP
formulation is to maximize the total value of the items in the knapsack, which corresponds to the
bottom-right value in the dynamic programming table (K[n][W]). The constraint in the MILP
formulation ensures that the total weight of the selected items does not exceed the knapsack’s
weight capacity (W). In the dynamic programming algorithm, this constraint is incorporated by
considering weight capacities from 0 to W in the table and making decisions based on the weight of
each item. The decision variables in the MILP formulation are binary (xi ∈ 0, 1). In the dynamic
programming algorithm, the choices are made by either including or not including an item in the
knapsack, which implicitly represents the binary nature of the decision variables.

Dynamic programming has advantages over greedy algorithms in solving optimization problems.

1. Optimal solution: Dynamic programming guarantees an optimal solution for the problem,
unlike greedy algorithms, which may only provide suboptimal solutions in some cases.

13

2. Applicability: Dynamic programming can be applied to a wide range of problems, including
various combinatorial optimization problems, where the problem can be broken down into
smaller overlapping subproblems.

3. Time complexity: Dynamic programming can significantly reduce the time complexity of a
problem, as it avoids redundant computations by storing and reusing the solutions of subprob-
lems.

4. Flexibility: Dynamic programming can be adapted to various problem variations and con-
straints, making it a versatile technique for problem-solving.

Nevertheless, dynamic programming suffers from the following limitations:

1. Space complexity: Dynamic programming often requires a table or data structure to store
the results of subproblems, which can lead to high space complexity, especially for large problem
sizes or high-dimensional problems.

2. Problem formulation: Dynamic programming requires the problem to be broken down into
smaller overlapping subproblems and a recursive relationship to be identified. Formulating the
problem in this manner can be challenging for some problems.

3. Traceback complexity: In some cases, reconstructing the optimal solution from the table
or data structure can be complex and time-consuming.

4. Scalability: For very large problem instances or problems with a high number of dimensions,
dynamic programming may not scale well due to the increased time and space complexity.

In summary dynamic programming improves on greedy algorithms, but presents a pseudo-
polynomial algorithm which does not scale well on large problems. We incorporate dynamic pro-
gramming in our work in Chapter 5.

2.4 Linear Programming

Linear programming (LP) is an optimization technique used to find the best possible solution to
Equation 2.1 if and only if p = 0. In other words, the domain of the variables must be continuous.
To solve the original MILP, we can create a relaxation of the problem by allowing the decision
variables to be continuous rather than integers. This relaxation transforms the problem into a
Linear Programming (LP) problem, which can be solved more efficiently than MILP problems. Since
LP methods could produce fractional solutions, finding a feasible solution for the original problem
is achieved by rounding the fractional solution, which in itself may not necessarily be optimal.
However, rounding the LP relaxation solution does not always guarantee optimality, especially for
more complex instances of MILP.

14

The Simplex method is a widely used algorithm for solving linear programming problems. The
algorithm works by iteratively moving along the edges of the feasible region (defined by the con-
straints) to find the optimal solution. Variables in a problem can be classified as either basic or
non-basic variables. These classifications depend on the current solution and the tableau represen-
tation of the problem. A non-basic variable is a variable that is not part of the current basis (set
of linearly independent variables) in the tableau. Non-basic variables are set to zero in the current
basic feasible solution. In contrast, basic variables correspond to the variables that form the current
basis and have non-zero values in the basic feasible solution. The algorithm works as follows:

1. Initialization: Convert the linear programming problem into standard form, which involves
adding slack variables to transform inequality constraints into equality constraints. Then,
determine an initial basic feasible solution. If the reduced costs (the coefficients of the non-
basic variables in the objective function) are all nonnegative, the current solution is optimal.
Otherwise, proceed to the next step.

2. Pivot selection: Choose a nonbasic variable with a negative reduced cost to enter the basis
(this is called the entering variable). Determine the leaving variable by applying the minimum
ratio test, which selects the variable that reaches its upper bound first when the entering
variable is increased.

3. Update the solution: Perform a pivot operation, which involves updating the basis and the
solution by swapping the entering and leaving variables. This results in a new basic feasible
solution. Repeat these steps until an optimal solution is found or the problem is determined
to be unbounded.

In practice, there are numerous optimizations and variations of the algorithm, such as the use
of different pivot selection rules and the Two-Phase Simplex method for finding an initial basic
feasible solution. Additionally, it’s important to note that this algorithm assumes the problem
is in maximization form; if the problem is a minimization problem, it needs to be converted to a
maximization problem (e.g., by negating the objective function) before applying the Simplex method.

Linear programming, including the Simplex method and its descendants, are well-studied and
understood. They are known for:

1. Generalizability: Unlike greedy algorithms and dynamic programming, LP is not limited to
a specific problem type, and does not need to exploit certain problem characteristics to find a
solution.

2. Versatility: Linear programming can be applied to a wide range of problems in real-world
applications such as economics, engineering, and logistics, among others.

3. Efficient algorithms: There are several efficient algorithms, such as the Simplex method
and the interior point method, for solving linear programming problems. In many cases, these
algorithms converge to the optimal solution in a reasonable number of iterations.

15

4. Sensitivity analysis: Linear programming allows for sensitivity analysis, which helps under-
stand how changes in the coefficients of the objective function or constraints affect the optimal
solution. This feature is particularly useful for decision-making and scenario analysis.

However, linear programming has its own limitation:

1. Inability to handle integer constraints: Linear programming is designed for problems
with continuous variables. It is not directly applicable to problems with integer or mixed-
integer constraints, which require specialized algorithms like branch-and-bound or cutting-
plane methods.

2. Sensitive to problem formulation: The performance of linear programming algorithms can
be sensitive to the problem’s formulation. Some formulations may lead to faster convergence
or more stable solutions, while others may cause slow convergence or cycling.

3. Scalability: Although linear programming can handle large-scale problems, the time and
memory requirements can still grow rapidly with the problem size, making it difficult to solve
very large or high-dimensional problems.

MILP problems can be solved using a combination of LP techniques and other methods, such as
branch-and-bound, branch-and-cut, or cutting-plane algorithms. The Simplex method can be used
to solve the LP relaxations within these algorithms, providing bounds and helping to guide the search
for the optimal integer solution. In the branch-and-bound algorithm, for instance, the search tree
is explored by branching on fractional variables and solving LP relaxations at each node to obtain
bounds that can be used to prune the tree and reduce the search space as we will discuss in the
next section. Chapter 6 reflects on linear programming methods while it investigates gradient-based
methods to solve a MILP.

2.5 Branch-and-Bound

To tackle MILP problems (Equation 2.1), one common approach is to first relax the integer con-
straints, creating an LP relaxation. Solving this LP relaxation provides a bound on the optimal
solution of the original MILP problem. The branch-and-bound algorithm is a well-established tech-
nique to systematically explore the search space, combining the power of LP solvers with additional
methods to handle the integer constraints and find the optimal solution for the MILP problem. To
solve a MILP using branch-and-bound, the algorithm follows these high-level steps:

1. Relax the integer constraints: Convert the MILP problem into an LP problem by tem-
porarily ignoring the integer constraints. This is called the LP relaxation, and it provides an
upper bound (for maximization problems) or lower bound (for minimization problems) for the
optimal solution of the MILP problem.

16

2. Solve the LP relaxation: Use an LP solver, such as the Simplex method, to find the optimal
solution to the LP relaxation. If the solution already satisfies the integer constraints, it is the
optimal solution for the original MILP problem. Otherwise, proceed to the next step.

3. Branch: Create new subproblems by branching on one of the fractional variables in the
current LP relaxation solution. This involves adding new constraints to the problem that
force the selected variable to take either the floor or ceiling of its fractional value. These new
subproblems are called child nodes, and the process of creating them is known as branching.

4. Bound: Solve the LP relaxation for each child node to obtain bounds on the optimal solution.
If the LP relaxation solution of a child node is infeasible or has a worse objective value than the
best known integer solution, the node can be discarded (pruned). If the LP relaxation solution
of a child node satisfies the integer constraints, update the best known integer solution.

5. Select and explore: Choose one of the remaining unexplored child nodes and repeat steps 3
and 4. Continue this process of branching, bounding, and exploring until all nodes have been
pruned or the search space has been exhausted.

In its essence, the branch-and-bound algorithm is a search for the optimal solution. Instead
of a brute-force search, the idea of the method is to prune the search space at each bounding
step. Branch-and-bound is widely deployed in real world settings and remains the state-of-the-art
in solving MILPs as they have plausible advantages:

1. Optimality: Branch-and-bound guarantees finding the global optimal solution (if it exists)
within a finite amount of time, unlike previous methods that may only find suboptimal solu-
tions.

2. Pruning: The bounding mechanism of branch-and-bound efficiently prunes the search space
by eliminating subproblems that cannot lead to better solutions than the current best known
solution. This significantly reduces the number of nodes to be explored in the search tree.

3. Applicability: The branch-and-bound framework can be applied to various types of op-
timization problems, including MILP, combinatorial optimization problems, and non-linear
optimization problems with certain modifications.

Nonetheless, limitations of the branch-and-bound method are well-studied and can be summarized
below:

1. Exponential time complexity: The worst-case time complexity of branch-and-bound is
exponential, which means that solving large-scale or complex MILP problems can be compu-
tationally expensive and time-consuming.

2. Memory requirements: Branch-and-bound algorithms may require significant memory to
store the search tree, especially for large-scale problems or problems with a large number of
integer variables.

17

3. Difficulty handling non-convex problems: While branch-and-bound can be adapted to
solve some non-linear and non-convex optimization problems, it may struggle with problems
that have a large number of local optima or a highly non-convex search space.

In summary, branch-and-bound offers several advantages, such as guaranteeing global optimal-
ity, pruning the search space efficiently, and its flexibility and applicability to various types of
optimization problems. However, it also has some limitations, including exponential time complex-
ity, memory requirements, sensitivity to problem formulation and branching strategy, and difficulty
handling non-convex problems. In Chapter 4, we will explore methods to improve the performance
of solvers that are based on the branch-and-bound method.

Chapter 3

Sequential Optimization Using

Reinforcement Learning

3.1 Introduction

Logic synthesis is a fundamental process in the field of electronic design automation, which entails the
systematic conversion of high-level design descriptions, typically expressed in hardware description
languages, into optimized gate-level representations. This transformation enables the realization
of digital circuits that meet stringent performance, power, and area constraints. As an essential
step in the design of application-specific integrated circuits (ASICs) and field-programmable gate
arrays (FPGAs), logic synthesis bridges the gap between abstract design specifications and physically
implementable hardware, ensuring the efficient and accurate translation of a designer’s intent into
tangible electronic systems.

Contemporary logic synthesis tools utilize And-Inverter Graphs (AIGs) to encode the essen-
tial attributes for Boolean function optimization. The logic synthesis procedure is predominantly
comprised of three interdependent steps: pre-mapping optimizations, technology mapping, and
post-mapping optimizations. In the initial pre-mapping optimization phase, the AIG undergoes
technology-agnostic transformations to minimize graph size and, consequently, reduce the total area
while conforming to delay constraints. Subsequently, during the technology mapping stage, the
generic intermediate nodes are assigned to specific standard cells from a given technology (e.g., ASIC
standard cells). Lastly, the post-mapping optimization step encompasses technology-dependent re-
finements such as up-sizing and down-sizing of standard cells to further enhance the design’s perfor-
mance and resource utilization.

Designing an efficient logic synthesis optimization flow is a complex endeavor, necessitating ex-
pertise from seasoned designers. The primary challenge in creating such flows stems from the expo-
nential expansion of the search space due to the numerous available transformations. Specifically,
the various transformation options and their differing recurrences and permutations can profoundly

18

19

impact the Quality of Results (QoR) [188, 191]. Moreover, the escalating disparity and intricacy in
circuit designs have further exacerbated the optimization flow design process.

It is imperative to acknowledge that a universally optimal pre-defined sequence of transformations
does not exist, as it is incapable of generating the best QoR for all potential circuits. Consequently,
the optimization flows mandate meticulous fine-tuning for each individual input to achieve the de-
sired level of performance and efficiency. Concurrently, advancements in machine learning (ML),
particularly reinforcement learning (RL), have empowered autonomous agents to enhance their pro-
ficiency in navigating intricate environments. Recent accomplishments in implementing these agents
have demonstrated performance levels comparable to, or even surpassing, human expertise [162, 76].
For example, AlphaGo has been recognized as the inaugural computer program to defeat a profes-
sional human Go player [162].

In logic synthesis frameworks, there exist a rich set of primitive transformations, each optimizing
the circuit using a different algorithm (e.g. balancing, restructuring). Permutations of these op-
timizations generate different QoR. Furthermore, different repetitions of the same transformations
affect the QoR and therefore result in an exponentially growing search space. Synthesis flows
for large circuits often have tens or hundreds of optimization commands.

We define A = {a1, a2, ...an} as the set of available optimizations in a logic synthesis tool. Let k

be the length of an optimization flow. Assuming that optimizations can be processed independently
(e.g. no constraint for running a1 before a2), there exists nk possible flows. Yu et. al. show that
different flows indeed result in divergent area and delay results [188]. While human experts have
traditionally guided the search, the increasing complexity of the designs and synthesis optimizations
have highlighted the need for an autonomous exploration methodology.

In light of this, we propose a novel methodology based on RL that aims at producing logic
synthesis optimization flows. Our contributions in this work are as follows:

• We tackle the intricate task of devising an efficient design space exploration strategy for logic
synthesis optimization. By transforming the problem into a game-like environment that can
be comprehended by a reinforcement learning agent, we effectively leverage the potential of
advanced machine learning techniques to facilitate this exploration. To this end, we formulate
a comprehensive feature set, derived from the characteristics of the And-Inverter Graph (AIG),
which aids in capturing essential aspects of the optimization problem.

• We introduce a novel multi-objective reward function that guides the reinforcement learning
agent in its pursuit of minimizing the circuit area while adhering to specific delay constraints.
This approach enables a more targeted and effective exploration of the vast design space,
ultimately leading to optimized logic synthesis solutions that satisfy the stringent performance,
power, and area requirements of modern electronic systems.

• We present DRiLLS (Deep Reinforcement Learning-based Logic Synthesis), a novel frame-
work that harnesses the power of reinforcement learning to create logic synthesis optimization
flows. By employing this approach, we effectively eliminate the reliance on human experts

20

for tuning synthesis parameters, thereby streamlining the optimization process. DRiLLS is
a versatile framework, applicable to a diverse range of circuit designs without necessitating
specific configurations or setups. This adaptability ensures that DRiLLS is a valuable tool for
the broader electronic design community, enabling the efficient generation of optimized logic
synthesis solutions across various design contexts.

• We showcase the efficacy of our proposed methodology using the EPFL arithmetic benchmark
suite [9] as a testbed. In our evaluation, we compare DRiLLS against the best results obtained
from the benchmark suite when mapped to a standard cell library, as well as against classical
optimization algorithms, including greedy heuristics. Furthermore, we assess expert-developed
flows as a baseline for comparison purposes. Our findings reveal that DRiLLS consistently
surpasses the performance of previous techniques [9, 186], highlighting its potential as a robust
and effective solution for logic synthesis optimization in various design scenarios.

The rest of the chapter summarizes relevant previous work in Section 3.2. Next, in Section 3.3,
we present a background on RL that is utilized in our approach and provide a detailed discussion
on the proposed methodology. After that, we summarize our experimental results in Section 3.4.
Finally, Section 3.5 summarizes the main contributions of this work.

3.2 Related Work

The study of methodologies for design space exploration (DSE) in computing systems and electronic
design automation (EDA) technology has garnered considerable attention from researchers. At the
architectural level, Ipek et al. introduce predictive models founded on neural networks to examine the
design space encompassing memory, processor, and multi-chip processor domains, while forecasting
performance [74]. In a similar vein, Ozisikyilmaz et al. investigate design space pruning through
performance prediction for various computing configurations [142]. Their approach employs three
statistical models, each fine-tuned on a small subset of potential designs.

Additionally, a learning-based methodology that leverages random forests for design space ex-
ploration in high-level synthesis flows has been proposed [112]. This work further underscores the
growing interest in utilizing advanced machine learning techniques for optimizing design processes
in the field of electronic systems.

In more recent research, Ziegler et al. introduced SynTunSys [191], a synthesis parameter tuning
system that iteratively amalgamates optimizations while concentrating on the "survivor set" for
further examination. In each iteration, candidate scenarios are assigned estimated costs, and those
with the lowest cost values undergo evaluation. The cost estimator is subsequently updated based
on the learned costs [190].

Alternatively, Yu et al. formulated the problem of logic synthesis design flow composition as
a classification problem [188], employing convolutional neural networks to categorize sample flows
encoded as images into "angel" or "devil" flows. Their approach necessitates a fixed length for

21

optimization and a large sample size of pre-defined optimization flows for training and testing. Our
work diverges from previous studies in that we propose the use of a reinforcement learning agent to
explore the search space with the objective of optimizing specific synthesis metrics (e.g., area and
delay). This enables variable length optimization flows without requiring sample flows for training.

In recent years, reinforcement learning (RL) agents have exhibited remarkable prowess in navi-
gating complex environments [130, 162]. While early RL research primarily focused on domains with
fully observable state spaces or where features could be handcrafted, Mnih et al. broadened these
capabilities by introducing deep Q-networks (DQN) [130]. By leveraging the latest advancements in
deep neural networks, their agent attains state-of-the-art performance, rivaling human abilities.

Building upon the capabilities of RL agents, Lillicrap et al. expanded the action domain to
encompass continuous domains, specifically targeting physical domains in their work [109]. This
development further underscores the growing potential of RL in addressing a diverse range of complex
problems across various domains.

3.3 Method

3.3.1 Background on Reinforcement Learning

In this section, we briefly discuss the background necessary for developing our methodology. In
reinforcement learning, an agent is trained to choose actions, in an iterative manner, that maximize
its expected future reward. Formally,

• At each iteration k, and based on the current state of the system sk, the agent chooses an
action ak from a finite set of possible actions A.

• With the application of the action at step k, the system moves to the next state sk+1 and a
reward of g(sk, ak) is then provided to the agent.

• The agent iteratively applies actions, changing the state of the system and getting rewards.
It is then trained based on the collected experience to move toward maximizing its reward in
future iterations.

A policy is defined as a mapping M that, for each given state, assigns a probability mass
function M(·|a) for an action [95]. There are two major categories for implementing the mapping
M: value-based and policy-based methodologies. In value-based methods (e.g. Q-learning) a value
function is learned by the system that effectively maps (state, action) pairs to a singular value [180],
and picks the maximum over all possible actions. On the contrary, in policy-based methods (e.g.
policy gradient), the optimization is performed directly on the policy (M) [170]. Actor Critic
algorithms [95], as a hybrid class, combine the benefits of both aforementioned classes.

In actor critic methods, a tunable critic network provides a measure of how good the taken action
is (similar to a reward function), while the tunable actor network chooses the actions based on the
current state. More formally defined, the actor policy function is of the form πθ(s, a), and the critic

22

function is of the form q̂w(s, a); where s, and a represent the state and the action, while θ, and w

represent the tunable parameters within each network. Therefore, there exist two sets of parameters,
one for each network, that need to be optimized. The gradient optimization for the critic network
is performed as,

∆w = βδ∇w q̂w(sk, ak) (3.1)

where β sets different learning rate for policy and value. δ is the temporal difference error, which is
defined as

δ = R(s, a) + γq̂w(sk+1, ak+1)− q̂w(sk, ak) (3.2)

where γ is the discount factor. Similarly, the gradient optimization for the policy update (actor
network) is then defined as

∆θ = α∇θ(log πθ(s, a))q̂w(s, a) (3.3)

where α sets the learning rate. Note that actor network policy update is a function of the critic net-
work as well, which allows it to take into consideration not only the current state of the environment,
but also the history of learning from the critic network.

While very effective, actor critic models can suffer from high variability in action probabilities.
Advantage functions are proposed as a solution to reduce this variability. The advantage function
is defined as

A(s, a) = Q(s, a)− V (s) (3.4)

where Q(s, a) represents the Q value for action a in state s, and V (s) represents the average value
for the given state. In this work, we do not want to compute Q(s, a). Instead, we formulate an
estimate of the advantage function as

A(s) = r + γV (s′)− V (s) (3.5)

where r is the current reward and γ is the discount factor. This achieves the same result without
learning the Q function [96]. Next, we describe the proposed DSE methodology based on reinforce-
ment learning.

3.3.2 DRiLLS

DRiLLS, an acronym for Deep Reinforcement Learning-based Logic Synthesis, adeptly transforms
the design space exploration problem into a game-like environment. Contrasting with many rein-
forcement learning environments where gamification governs the environmental behavior, the task
at hand encompasses combinatorial optimization for a given circuit design. This presents a unique

23

Logic
Synthesis

Tool

Design

A2C Agent

1. design state 2. optimization 3. reward

4. collect
experiences

5. train

LS Environment

RL Environment

DRiLLS Framework

optimizations

Figure 3.1: The architecture of DRiLLS Framework. Numbers on the arrows represent the workflow
of our methodology, and are illustrated separately in Section 3.3.2.

challenge in defining the game’s state (i.e., environment) and establishing long-term incentives for
the agent to explore the design space without succumbing to local minima.

Figure 3.1 illustrates the architecture of our proposed methodology, which comprises two primary
components: the Logic Synthesis environment, responsible for setting up the design space exploration
problem as a reinforcement learning task, and the Reinforcement Learning environment, which uti-
lizes an Advantage Actor Critic agent (A2C) to traverse the environment in search of the optimal
optimization for a given state. Next, we delve into each component and the interplay between them
in greater detail.
1. Design State Representation. To model the combinatorial optimization for logic synthesis
as a game, we define the state of the logic synthesis environment as a set of metrics obtained from
the synthesis tool for a given circuit design, which serves as the feature set for the A2C agent. As
mentioned earlier, the state also embodies the environment’s response to an optimization suggested
by the second component of our framework, namely the Agent. We specifically extract the following
state vector:

AIG state =

primary I/O

nodes

edges

levels

latches

% ANDs

% NOTs

.

To confine the states within a particular range, as necessitated by the agent’s neural networks,

24

Table 3.1: Formulation of the multi-objective reward function. Decr. stands for Decrease and Incr.
stands for Increase.

Optimizing
(Area)

Decr. None Incr.

Constraint
(Delay)

Met +++ 0 -

Not Met
Decr. +++ ++ +
None ++ 0 - -
Incr. - - - - - -

we normalize all state values by their corresponding initial input design values. Normalization is also
essential for model generalization, allowing for application to unseen designs. While optimizations
alter all elements in the state vector except for the number of primary inputs and outputs, values
within the state vector depict representative characteristics of the circuit. For instance, a large
nodes value guides the agent towards reducing the number of nodes, which can be achieved by
restructuring the current AIG and maximizing the sharing of other nodes available in the current
network (e.g., resub and refactor commands in ABC). Furthermore, a large # levels value directs
the agent towards selecting a balance transformation. Consequently, the state vector represents the
circuit design at a specific optimization step and aligns with the optimization space, which we will
discuss next.
2. Optimization Space. The agent explores the search space consisting of seven primitive trans-
formations within the ABC synthesis framework [128]. Specifically, A = {resub, resub -z, rewrite,
rewrite -z, refactor, refactor -z, balance}. The first six transformations aim to reduce the size of the
AIG, while the final transformation, balance, decreases the number of levels. These transformations
interact with the state vector representation discussed previously, making them suitable for the
reward function described in the following section.
3. Reward Function. We define a multi-objective reward function that considers the changes
in both design area and delay. Specifically, the agent is rewarded for reducing the design area
while maintaining the delay under a pre-defined constraint value. Table 3.1 presents the reward
formulation of this function. For each metric (design area or delay), a transformation may decrease,
increase, or make no change to the metric. Consequently, we assign the highest reward (represented
as +++) for a transformation performed on a given AIG state that reduces the area and satisfies the
delay constraint. We give the lowest negative reward when the transformation executed increases the
design area and delay without meeting the constraint. Between these two extremes, the values and
magnitudes of the reward have been carefully selected to aid the agent’s exploration. Fundamentally,
we prioritize meeting the delay constraint. When not met, a positive reward is also given if the delay
has improved (i.e., decreased). This reward strategy prevents the agent from receiving negative
rewards in all attempts in situations where the delay constraint is too stringent for the design
to meet. Furthermore, when the area increases and the delay decreases (but does not meet the
constraint), a small positive reward is given as the agent is learning from not meeting the constraint.

25

Algorithm 1: DRiLLS Framework
Input : Design, Primitive Transformations
Output: Optimization_Flow

1 env = Initialize(LS_Env);
2 agent = Initialize(A2C);
3 for episode = 1 to N do
4 episode_design_states = [];
5 optimization_sequence = [];
6 synth_rewards = [];
7 design_state = env.reset();
8 for iteration = 1 to k do
9 opt_probs = agent.ActorForward(design_state);

10 primitive_opt = RandomChoice(opt_prob);
11 [next_design_state, synth_reward] = env.perform(primitive_opt);
12 episode_design_states.append(design_state);
13 optimization_sequence.append(primitive_opt);
14 synth_rewards.append(synth_reward);
15 design_state = next_design_state;
16 end
17 episode_rewards = DiscountRewards(synth_rewards, gamma)
18 loss = agent.OptimizerForward(episode_design_states, optimization_sequence,

episode_rewards);
19 agent.update(loss);
20 log(episode);
21 end

This reward formulation has proven to be efficient, as we will discuss in the following section.
4. Collecting Experiences. Algorithm 1 outlines the operation of our proposed methodology.

In this algorithm, lines 1 and 2 initialize the logic synthesis environment and the agent, respectively.
The agent is then trained over N episodes, where in each episode, the logic synthesis environment
is restarted; i.e., the original input design is reloaded (line 7). Following this, in lines 8-16, the
agent iteratively suggests a sequence of k primitive optimizations to create the optimization flow.
Specifically, in line 9, the agent computes the probability distribution for selecting a primitive op-
timization from the optimization space, A. Then, in line 10, one of the primitive optimizations is
chosen according to the probability distribution calculated in line 9. Next, in line 11, the chosen
optimization is executed to determine its impact on the designstate. Furthermore, the reward is
computed using the reward function presented in Table 3.1. Subsequently, we store the synthesis
state, the optimization performed, and the reward in pre-initialized variables. Ultimately, we transi-
tion the state of the agent to the state after performing the optimization. The number of iterations
is limited by k to provide the game with a termination condition, as the optimization improvements
on a given circuit design diminish in later iterations. After completing all iterations, we train the
A2C agent using the collected experiences, as we will discuss next.
5. A2C Agent Training. The training process begins by discounting the delay rewards over itera-
tions in order to prioritize earlier iterations in selecting an effective optimization (line 17). Following
that, in lines 18-19, the loss is calculated, and the actor and critic networks are trained to minimize

26

the loss value as described next. As discussed in Section 3.3.1, the agent has hybrid policy-based
and value-based networks, referred to as the actor and critic, respectively. Both networks have an
input layer of size equal to the AIG state vector length. Moreover, a reward, r, is passed to the critic
network for training, while a discounted reward is passed to the actor network (Equation 3.5). The
actor network outputs a probability distribution over the available transformations. Consequently,
the output layer in the actor network has a size equal to that of A. Since the agent is initialized
with random parameters, the transformations chosen at the beginning of the training process may
not necessarily be optimal. The parameters of both networks are updated to reduce the loss using
a gradient-based optimizer. This procedure is repeated for a predefined number of times (called
episodes), during which the agent is trained to predict improved optimization flows. In fact, the
choice of a hybrid reinforcement learning architecture is well-suited for combinatorial optimization
tasks, as it allows the agent to explore diverse optimization sequences while maintaining a path
towards optimal designs.

3.4 Empirical Results

We demonstrate the proposed methodology using the open-source synthesis framework ABC v1.01 [128].
DRiLLS is implemented in Python v3.5.2, and TensorFlow r1.12 [2] is employed to train the A2C
agent neural networks. All experiments are synthesized using ASAP7, a 7 nm standard cell library in
a typical processing corner. We evaluate our framework on EPFL arithmetic benchmarks [9], which
display a wide range of circuit characteristics. The characteristics of the evaluated benchmarks (e.g.,
I/Os, number of nodes, edges, and levels) can be found in [9]. The experimental parameters are set
as follows:

• Episodes (N): 50, Iterations (k): 50

• Networks Size: Actor: 2 fully connected layers, 20 hidden units each. Critic: one hidden
layer with 10 units.

• Weight initialization: Xavier initialization [58]

• Optimizer: Adam [90], Learning Rate (α): 0.01

• Discount rate (γ): 0.99

We use a small number of layers, as we observe that deeper neural networks exhibit random behavior
and do not train well in this framework. This can be attributed to the small number of features and
transformations used. The experimental results are obtained using a machine with an Intel Xeon
2x14 cores@2.4 GHz, 128GB RAM, and 1x500GB SSD, running Ubuntu 16.04 LTS. We will now
present our results.

27

6

6.5

7

7.5

8

8.5

9

9.5

15

16

17

18

19

20

21

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 7.5ns

(a) Log2

65

70

75

80

85

90

10

15

20

25

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 75ns

(b) Divisor

2

3

4

5

6

7

8

0.95

1.05

1.15

1.25

1.35

1.45

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 4ns

(c) Max

1.8

2

2.2

2.4

2.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 2.0ns

(d) Adder

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.3

1.4

1.5

1.6

1.7

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 0.8ns

(e) Barrel Shifter

0

5000

10000

15000

20000

135

140

145

150

155

160

165

1 5 9 13 17 21 25 29 33 37 41 45 49

D
el

ay
 (
n
s)

A
re

a
(𝑚
𝑚

2
)

Iterations

Delay Constraint = 1000ns

(f) Hypotenuse

Figure 3.2: Traces of DRiLLS agent navigating the design space to find a design with a minimum
area while meeting the delay constraint.

3.4.1 Design Space Exploration

Figure 3.2 illustrates the agent’s search for an optimized design that minimizes the area while meeting
the delay constraint. We plot one episode that finds the global minimum for several representative
benchmarks. In general, Figure 3.2 depicts the agent’s attempts to balance between reducing the
design area and satisfying the delay constraint. For example, we can observe the agent’s various trials
to execute a transformation that decreases the delay to meet the constraint but increases the design
area, such as iteration 30 in Log2 and iteration 26 in Max. Occasionally, exploration saturates, as
we can see in the nearly straight lines during some iterations. This demonstrates the actor-critic
networks’ ability to guide the exploration while occasionally exploring other transformations that
might reveal new search paths.

3.4.2 Comparison to Other Techniques

We compare the agent’s performance against EPFL best results, expert-crafted scripts, and a greedy
heuristic algorithm:

1. EPFL best results: best results are provided for size and depth. We compare against best
results for size, since it is more relevant to the agent’s nature of optimizing for area when
mapping to a standard cell library.

2. Expert-crafted scripts: we maintain a record of expert-crafted synthesis optimizations derived
from [186].

3. Greedy heuristics algorithm: we developed a baseline comparison that takes an initial input
design and spawns parallel threads to perform each of the given AIG transformations on the

28

design. Afterwards, each thread performs the mapping step using the delay constraint. The
algorithm then evaluates the mapped designs from all threads, and keeps the one with the
minimum area for the next iteration. After that, the process is repeated until two iterations
yield the same area.

Table 3.2 presents the results of the mentioned comparisons. The area and delay for the initial
design are obtained by loading the non-optimized designs in ABC and mapping them to ASAP7
without performing any transformation on the AIG. The delay is reported using the built-in timer
in ABC (using the stime command). We use the initial run to select a delay constraint value that
challenges all the methods studied in this work. We make the following observations:

• The greedy algorithm has a single optimization target (area). Although the delay constraint
was met in 4 designs, it is attributed to the best-effort mapping step that considers the delay
constraint. The increase in the area occurs in the first iteration that tries to meet the delay
constraint while mapping. Since the algorithm meets the stop criteria in the first few iterations,
it fails to reduce the area subject to a delay constraint. Results show the smallest average area
improvement.

• Although expert-crafted synthesis scripts have not improved the designs’ areas, they produced
optimized designs that meet the delay constraint in 9 out of 10 designs. This is not surprising,
as the techniques used aim to meet the delay constraint, therefore accepting near-optimal area
results [186].

• EPFL best results have shown decent improvements in 3 designs, meeting the delay constraint
in 4 of them. Although we benchmarked on the best results in terms of size, not depth, it is
reasonable that their optimization techniques have not been designed for standard cell library
mapping.

• DRiLLS agent meets the delay constraint in all designs while simultaneously improving the
design area by an average of 13.19%. In the two designs that DRiLLS increased their area,
it, in fact, met the delay constraint which the un-optimized design did not meet. This proves
that the reward function defined earlier is an effective one for training the agent. Moreover,
DRiLLS outperforms EPFL best result in all designs except Barrel shifter.

Figure 3.3 expands upon Table 3.2 by displaying the area-delay trade-offs provided by DRiLLS in
comparison to the greedy algorithm, expert-developed synthesis scripts, and the EPFL best results
for six benchmark cases. We define exploration run time as the total time taken by the agent,
which includes interaction with the Logic Synthesis Environment, extraction of AIG characteristics,
and optimization of the agent network parameters. The exploration time for the smallest design
(Adder) is 3.25 minutes, while for the largest (Hypotenuse), it takes 25.46 minutes. The average
exploration time per episode is 12.76 minutes. It is worth noting that once a model is trained on
a specific circuit design, it can be used (reloaded) for new explorations on different circuits without
the need for retraining.

29

0.8

1.3

1.8

2.3

2.8

3.3

2.8 3.8 4.8 5.8 6.8

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

(a) Max

6

8

10

12

14

16

18

20

85 135 185 235 285 335

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

Greedy
Expert-crafted Scripts

EPFL Best Result
DRiLLS Exploration Space

DRiLLS Best Result
Delay Constraint

(b) Square-root

15

20

25

30

6.4 7.4 8.4 9.4

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

(c) Log2

10

12

14

16

18

20

1.5 2.5 3.5

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

(d) Sin

12.5

14.5

16.5

18.5

20.5

22.5

24.5

26.5

3.5 4 4.5 5

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

(e) Multipler

10

12

14

16

18

20

1.5 2.5 3.5

A
re

a
 (
𝑚
𝑚

2
)

Delay (ns)

(f) Square

Figure 3.3: Design area vs. delay trade-offs. The vertical dotted red line shows the delay constraint.
For each benchmark, DRiLLS exploration space is indicated in green diamonds. A highlighted
triangle represents the best optimized design that meets the delay constraint. Other methods are
shown in red color with a cross mark, a plus mark and a circle for greedy, expert-crafted and EPFL
result respectively.

3.5 Conclusion

The primary objective of developing DRiLLS is to create an autonomous framework capable of ex-
ploring the optimization space for a given circuit design and achieving high Quality of Result (QoR)
without human intervention. Modeling this problem in a reinforcement learning context provides the
machine with a trial-and-error approach, similar to how human experts gain experience in optimiz-
ing designs. In this study, we present a reinforcement learning-based methodology that facilitates
autonomous and efficient exploration of the logic synthesis design space. Our proposed methodology
transforms the complex search space into a "game" in which an advantage actor-critic (A2C) agent
learns to maximize its reward (minimize area subject to a delay constraint) by iteratively selecting
primitive transformations with the highest expected reward. We have developed an AIG state rep-
resentation that effectively represents the feature set of a design state. Moreover, we introduce a
novel multi-objective reward function that guides the agent’s exploration process, allowing it to find
a minimal design area subject to delay constraint. Evaluating ten representative benchmarks, our
proposed methodology demonstrates superior performance compared to existing methods. DRiLLS
proves the viability of utilizing Reinforcement Learning for combinatorial optimization of hardware
circuit designs. It has considerable potential for application in related physical synthesis tasks,
eliminating the need for human expertise. The framework is open-source under a permissive license
(BSD-3) and publicly available on GitHub1.

1https://github.com/scale-lab/DRiLLS

30

T
ab

le
3.

2:
A

re
a-

de
la

y
co

m
pa

ri
so

n
of

lo
gi

c
sy

nt
he

si
s

op
ti

m
iz

at
io

n
re

su
lt

s.
A

gr
ee

dy
al

go
ri

th
m

op
ti

m
iz

es
fo

r
ar

ea
.

E
xp

er
t-

cr
af

te
d

sc
ri

pt
s

ar
e

de
ri

ve
d

fr
om

[1
86

].
E

P
F
L

be
st

re
su

lt
s

fo
r

si
ze

ar
e

av
ai

la
bl

e
at

[9
].

B
en

ch
m

ar
k

D
el

ay

C
on

st
r.

(n
s)

In
it

ia
l
D

es
ig

n
G

re
ed

y
E
xp

er
t-

cr
af

te
d

[1
86

]
E
P

F
L

B
es

t
S
iz

e
[9

]
D

R
iL

L
S

A
re

a

(u
m

2
)

D
el

ay

(n
s)

A
re

a

(u
m

2
)

D
el

ay

(n
s)

Im
pr

.

(%
)

A
re

a

(u
m

2
)

D
el

ay

(n
s)

Im
pr

.

(%
)

A
re

a

(u
m

2
)

D
el

ay

(n
s)

Im
pr

.

(%
)

A
re

a

(u
m

2
)

D
el

ay

(n
s)

Im
pr

.

(%
)

A
d
d
er

2.
00

86
7

2.
02

10
11

4.
10

-1
6%

17
72

1.
82

-1
04

%
16

90
1.

87
-9

4%
82

3
1.

97
5%

B
.
S
h
if
te

r
0.

80
24

99
1.

03
29

35
0.

66
-1

7%
15

34
0.

77
38

%
10

40
0.

77
58

%
14

00
0.

77
43

%

D
iv

is
or

75
.0

0
12

38
8

75
.8

3
22

43
9

79
.1

4
-8

1%
21

16
7

65
.0

5
-7

0%
16

03
1

74
.9

1
-2

9%
13

44
1

67
.6

1
-8

%

H
yp

ot
en

u
se

10
00

.0
0

17
69

38
17

74
.3

2
23

62
71

56
3.

12
-3

3%
21

08
28

52
5.

34
-1

9%
16

94
68

15
03

.8
8

4%
15

42
27

99
5.

95
12

%

L
og

2
7.

50
19

63
3

7.
63

30
89

3
6.

96
-5

7%
18

45
1

7.
45

6%
23

99
9

10
.1

2
-2

2%
17

68
7

7.
44

9%

M
ax

4.
00

14
27

4.
48

30
82

3.
79

-1
15

%
14

40
3.

93
-0

.8
8%

17
13

4.
84

-2
0%

10
37

3.
76

27
%

M
u
lt

ip
li
er

4.
00

19
61

7
3.

83
25

21
9

4.
38

-2
8%

21
09

4
3.

70
-7

%
19

94
0

5.
27

-1
%

17
79

7
3.

96
9%

S
in

3.
80

38
93

3.
65

55
01

2.
88

-4
1%

44
21

2.
19

-1
3%

48
92

4.
14

-2
5%

30
50

3.
76

21
%

S
qu

ar
e-

ro
ot

17
0.

00
11

71
9

32
9.

46
19

23
3

93
.7

1
-6

4%
16

59
4

92
.3

0
-4

1%
99

34
16

9.
46

15
%

90
02

16
7.

47
23

%

S
qu

ar
e

2.
20

11
15

7
2.

27
19

77
6

3.
96

-7
7%

16
37

3
1.

59
-4

6%
16

83
8

4.
06

-5
0%

12
58

4
2.

19
9

-1
2%

A
vg

.
A

re
a

Im
p
rv

.
0.

00
%

-5
3.

31
%

-2
6.

00
%

-1
6.

69
%

13
.1

9%

C
on

st
ra

in
t

M
et

2/
10

4/
10

9/
10

4/
10

10
/1

0

Chapter 4

Hyper-parameter Tuning Using Deep

Metric Learning

4.1 Introduction

Mixed Integer Linear Programs (MILP) is a class of NP-hard problems where the goal is to minimize
a linear objective function subject to linear constraints, with some or all decision variables restricted
to integer or binary values [54]. This formulation has applications in numerous fields, such as
transportation, retail, manufacturing and management [143, 17]. For example, last-mile delivery
companies repeatedly solve the vehicle routing problem as daily delivery tasks (stops and routes)
change, with the goal of minimizing total delivery costs [114]. Similarly, crew scheduling problems
have to be solved daily or weekly in the aviation industry, where the MILP formulation is the most
practical notation for expressing such problems [46]. Over the years, solvers have been well researched
and practically engineered to address these problems, such as SCIP [55], CPLEX [120], and Gurobi
[30]. These solvers mostly use branch-and-bound methods combined with heuristics to direct the
search process for solving a MILP [4]. In order to tune their behavior, they expose a large number of
configuration parameters that control the search trajectory. In implementing a branching strategy,
SCIP exposes configuration parameters to help in selecting the most promising decision variable
to branch on at each node in the branch-and-bound tree, which significantly impact the efficiency
and effectiveness of the solver. For example, the branching score function, branching/scorefunc ∈
{p, s, q}, and the branching score factor, branching/scorefac ∈ {0, 1}, help evaluate the potential
of expanding a specific branch in the search tree. Those are just two of more than 2500 parameters
with integer, continuous or categorical configuration spaces.

Automatic algorithm configuration is the task of identifying optimal parameter configurations
for solving unseen problem instances by training on a collection of representative problem instances
[50]. This process can be divided into two distinct phases. The primary tuning phase involves
selecting a parameters configuration based on a set of training instances representative of a specific

31

32

0 20 40 60 80
Configuration ID

20

40

60

80

100
Co

st
 (

Pr
im

al
 B

ou
nd

)
T=15mins

(a) Same Problem Instance

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Cost (Primal Bound)

0

100

200

300

400

#
 P

ro
bl

em
 In

st
an

ce
s

T=15mins

(b) Same Configuration

Figure 4.1: Effect of configuration parameters on the solution cost using SCIP [115] (T = 15mins as
suggested by [129]). (a) changing the parameters of the branch-and-bound algorithm on the same
instance. (b) using a single configuration on different instances. All problem instances have 195
decision variables and 1083 constraints.

problem. Subsequently, during the testing phase, the chosen parameter configuration is employed to
tackle unseen instances of the same problem. The objective is to identify, during the tuning phase,
a parameters configuration that minimizes a particular cost metric over the set of instances that
will be encountered during the deployment phase. There exist a rich literature on efficient search
methods for automatic algorithm configuration for optimization problems [113, 27, 28, 123, 67, 87].
They mostly differ in how they navigate the huge search space to find potential configurations fast
during the tuning phase.

In Figure 4.1, we investigate the effect of configuration parameters on problem instances from the
Item Placement benchmark in the ML4CO dataset [129]. In Figure 4.1(a), different configuration
parameters directly impact the solution’s cost of the same problem instance. A solution is an assign-
ment to the decision variables, and its cost is the value of the objective function in the formulated
MILP, which is to be minimized. In addition, using a single configuration for all problem instances
does not yield the same solution’s cost as shown in Figure 4.1(b). As a result, branch-and-bound
configuration parameters significantly affect the solution quality. Note that increasing the time limit
of the solver might not necessarily lead to better solutions since modern solvers are already heavily
optimized to find solutions fast. Moreover, time limits are usually determined by the real-world
context where a solver is deployed. Therefore, searching and evaluating configuration parameters
is desirable as it can potentially improve the cost of the solutions. In Figure 4.2, we search the
configuration space of every problem instance independently using SMAC [111]. We observe that
up to 89% cost reduction can be obtained by searching for a parameters configuration that makes
the branch-and-bound algorithm more efficient for the given problem instance. Unfortunately, this
search is time-consuming and cannot be performed online for every new problem instance. There-
fore, there is a need for methods to configure solvers on-the-fly while maintaining the expected cost
of using a configuration tuned per instance.

33

0 1 2 3 4 5 6 7 8 9
Problem Instance ID

0

25

50

75

100

Co
st

 (
Pr

im
al

 B
ou

nd
)

89% 86% 82% 82%
74% 76%

81%
71%

80%
70%

Default Config Best Config Found

Figure 4.2: A significant cost reduction (up to 89%) can be achieved by searching and evaluating
the configuration space of every problem instance independently. However, searching-and-evaluating
takes 15 minutes (time-limit) for each evaluated configuration to complete (e.g., 10 evaluations is
150 minutes). Data shown is obtained using SMAC [111] on problem instances from the ML4CO
dataset [129].

4.2 Motivation

Recently, machine learning (ML) has shown promising results for solving MILP problems [21, 32].
The motivation behind applying machine learning is to capture redundant patterns and characteris-
tics in problems that are being solved repeatedly. Researchers have been able to achieve promising
results by either integrating models within the solver’s branch-and-bound loop [57, 108, 179, 88]
or replacing the solver with an end-to-end algorithm that takes the raw problem instance as input
and directly or iteratively output a feasible solution [89, 175, 20, 97]. Learning to configure solvers
has also been explored early in [78, 185, 117]. The idea is to make a solver configuration instance-
specific. In that direction, a problem instance is represented as a vector of hand-engineered features
and similar instances are clustered together based on their vector representation. Then, various sets
of configurations are evaluated and assigned to each cluster. The limitation of these works has been
that features are designed rather than learned and instances within a single cluster might not, in
fact, be correlated to their final solutions’ costs. Nonetheless, this direction has opened the door
for instance-specific solver configuration. More recently, meta learning on MILP has seen growing
interest [100, 31]. Toward learning MILP representations for solver configuration, Valentin et al.
[172] have proposed a supervised learning approach to predict a configuration for a specific problem
instance amongst a finite set of configurations. However, this approach requires manually labeled
data and is limited to the set of candidate configurations chosen a priori for training (< 60). In
other words, supervised learning restricts the ability to explore the broader configuration space once
a model is trained and deployed.

In this work, we address the gap in existing approaches by: (1) learning representative MILP
similarities that correlate with the final solutions’ costs, and (2) using a learning method that does
not restrict the number of configurations to select from. We pursue these endeavors in a novel
way through two contributions. First, we learn an embedding space for MILP instances using
Deep Metric Learning [101]. Deep metric learning is a subfield of machine learning that focuses

34

Mixed Integer Linear
Program (MILP) Solver

subject to

Problem Instance

(Sub)optimal
Solution

Configuration
Parameters

Previous
Solver
Runs

Similar
Problem Instances

1

2
3

4

4 5

Figure 4.3: A high-level pipeline of our proposed method. The goal is to select config. parameters
based on similarity with previously solved problem instances.

on learning a distance function between input data points using deep neural networks. The goal is
to create a meaningful representation in which similar data points are mapped close together, and
dissimilar data points are mapped further apart, enabling more effective clustering, classification, or
retrieval tasks. Using deep metric learning, we learn a representative embedding function for MILP,
where problem instances with similar costs are closer to each other. Unlike existing instance-aware
approaches, instances’ features are not hand-engineered, but learned based on Graph Convolutional
Networks [92], that allows our model to capture the relationships between decision variables and
constraints. Second, we predict a parameters configuration for new problem instances using nearest
neighbor search on the learned metric space, which does not limit the number of configurations
to predict from. Our method is summarized in Figure 4.3. The goal is to select configuration
parameters based on a new problem instance’s similarity with previously solved problem instances
from the same distribution. Same distribution instances are problem instances that share similar
number of decision variables and constraints, and define a given optimization problem that is being
solved repeatedly.

We show that our predictions correlate with the final solution’s cost. In other words, finding a
closer instance in the learned metric space and using its well-performing configuration parameters
would ultimately improve the solver’s performance on the new unseen instance. We evaluate our
approach on real-world benchmarks from the ML4CO competition dataset [129] using SCIP solver
[55], and compare against both using an incumbent configuration from SMAC [111], and predicted
configurations from existing instance-aware methods. Our method solves more instances with lower
costs than the baselines and achieves up to 38% improvement in the cost.

4.3 Related Work

Machine Learning for Combinatorial Optimization. Learning-based optimization methods
have seen growing interest lately [21, 32]. Broadly speaking, they can be divided into methods inside
the solvers [88, 57, 108, 179], methods outside the solvers [100, 31], and methods that replace the
solvers [89, 175, 20, 97]. Our work is amongst methods outside the solver, which aims at improving

35

the solver’s performance by instantly predicting instance-aware parameters configuration. This is
orthogonal to existing work and can benefit from existing hyper-parameter search methods when
performed offline.
Instance-aware Solver Configuration. Instance-aware configuration methods have been ex-
plored early in ISAC [78], which stands for Instance-Specific Algorithm Configuration. The method
extracts features from problem instances and assigns problem instances with similar feature vectors
to a cluster using g-means clustering. Features include problem size, proportion of different variable
types (e.g., discrete vs continuous), constraint types, coefficients of the objective function, the linear
constraint matrix and the right hand side of the constraints. After that, assuming that problem
instances with similar features behave similarly under the same configuration, local search is used
to find good parameters for each cluster of instances. Although this approach allows us to bypass
the expensive search-and-evaluate at deployment time, features are hand-engineered and need to be
adapted for each problem, e.g., as in [13]. In other words, the algorithm requires further refining
of the distance metric in the feature space so that it can find better clusters. Hydra-MIP [185]
enhanced this approach by including features from short solver runs before selecting a configuration
for a complete solver run. It also uses pair-wise decision forests to select amongst candidate config-
uration parameters. Our approach is different since problem features are learned during training,
and correlates similarity to the costs of final solutions. Moreover, these approaches assign a single
parameters configuration for each cluster, which limits the portfolio of configurations available at in-
ference time. More recently, supervised deep learning was investigated in [172]. The method selects
a limited number of configuration parameter sets, and collects training data by running the solver
using the selected configurations on all problem instances separately. Using the labeled data, it can
predict the cost of running the solver on a new unseen instance using one of the configurations used
during training. Aside from the massive labeled data required for training, this approach limits the
potential of exploring other sets of configurations after the model is trained and deployed. Explor-
ing further solver configurations would require solving and labeling more problem instances, then
re-training the model.
Shallow Embedding vs. Deep Embedding. Instance-aware configuration methods represent
a MILP instance as a vector of values that encapsulate the primary characteristics of the problem
instance. The objective of a specific embedding (i.e., encoding) method is to ensure that similar-
ity in the embedding space (e.g., dot product) closely mirrors the similarity found in the original
problem representation. The effectiveness of an embedding method is determined by its ability to
uniquely identify and distinguish between problem instances that may share similar properties (such
as the number of decision variables and constraints) but exhibit differences in their solutions’ costs
within the same solving environment. A powerful embedding method can accurately differentiate
between such instances, enabling more effective and tailored configuration selection for each prob-
lem instance. Shallow embedding is the simplest encoding approach, where the encoder is just an
embedding lookup. For example, in ISAC [78], problem instances are encoded as feature vectors
for the Set Covering problem that include a normalized cost vector c, bag densities, item costs and

36

coverings, in addition to other density functions. These values are aggregated (using minimum,
maximum, average and standard deviation) to construct the final feature embedding of the problem
instance. Similarly, authors in [13] use ISAC’s method and focuses on the maximum satisfiability
problem (MaxSAT), with hand-engineered features that include problem size, balance features and
local search features. Hydra-MIP [185] extracts more features by executing short runs of the solver
(CPLEX) using a default configuration on each new instance. These features include pre-solving
statistics, cutting planes usage, and the branch-and-bound tree information. While shallow embed-
ding is straightforward to compute, these encoders are non-injective [184]. That is, different MILP
instances could have the same embedding using a shallow feature vector. Moreover, and by design,
shallow embeddings are not necessarily correlated with the final costs of the solver’s solutions.

In contrast, Deep encoders learn the embedding function during training according to a defined
loss function. In other words, a deep encoder is characterized by learnable parameters of a deep
neural network that defines embedding similarity based on a loss function. In our method, we
train a Graph Convolutional Network (GCN) to embed MILP instances to an embedding space
where the similarity of instances is defined based on their final solutions’ costs in the same solving
environment. Deep embedding is injective and uniquely encodes problem instances even if they
have the same shallow embedding (e.g., number of decision variables). In Section 4.7, we show
that when the size of the problem remains relatively similar, but the coefficients or structure vary,
deep embedding has a larger discriminative power over shallow embedding. In problems where the
problem size varies significantly, shallow embedding could be enough. In designing a system that is
invariant to the problem size, deep embedding addresses the need without hand-engineering features
for each problem separately.
Configuration Space Search. During the process of identifying similar problem instances, ad-
dressing the selection of parameter configurations remains a challenge. In situations where ample
time is available for exploration, such as testing different parameter configurations on a single prob-
lem instance, several methods have been proposed to navigate this vast search space. These methods
aim to identify a single robust configuration1 across a collection of problem instances, denoted as
I. Random search [23], evolutionary algorithms [140], Bandit methods [106], and Bayesian-based
optimization [159] are among the top-performing methods that have been applied successfully in
various optimization contexts [113, 27, 28, 123, 67, 87].

The SMAC package [111] is an instance of model-based optimization that employs Bayesian opti-
mization for searching parameters configuration [69]. The central concept of SMAC revolves around
building a probabilistic model, specifically a random forest model, which predicts the performance
of an algorithm on a set of instances, given a specific configuration. By sequentially updating this
model based on the observed performance of algorithm configurations, SMAC is able to efficiently
search for an optimal or near-optimal configuration within a pre-defined search space. The key
components of SMAC include the acquisition function [77], which guides the search process in terms

1Also called incumbent configuration in the context of parameters configuration search; not to be confused with
the incumbent solution of the solver itself, which is the x’s assignment with minimum cost of the MILP objective
function.

37

of exploration and exploitation trade-off, and the intensification procedure [106], responsible for
selecting a new incumbent configuration. The most common acquisition function used in SMAC is
the Expected Improvement (EI) function [165, 70], which aims to minimize the expected runtime of
the target algorithm.

Another popular package for algorithm configuration, the irace package [113] is based on the Iter-
ated Racing framework, which is a derivative of the F-race procedure [29, 15]. The main idea behind
irace is to iteratively sample and compare algorithm configurations on an increasing set of problem
instances, using statistical tests to eliminate poorly performing candidates. This iterative process
continues until a termination criterion is met, usually when a maximum number of iterations or a
maximum time is reached. The irace package is particularly well-suited for discrete and categorical
parameter spaces, as it does not require any explicit modeling of the performance landscape. The
search process is guided by a combination of adaptive sampling and statistical tests, which provide
a balance between exploration and exploitation. The elimination of underperforming configurations
is carried out using a statistical test, most commonly the Friedman test or the two-sample t-test,
which considers the performance of the remaining configurations. The key differences between both
packages is that SMAC adopts a model-based optimization strategy with Bayesian optimization,
building a surrogate model to predict algorithm performance, while irace is a model-free approach
relying on iterative sampling and statistical tests to identify the best-performing configurations.

In this work, our method of selecting parameters configurations based on problem instance sim-
ilarity is agnostic to the package used for the offline configuration search phase. We use SMAC
for its interoperability with the SCIP solver [55] through its Python binding [115] along with the
PyTorch Ecosystem [136] used for training the deep metric learning model. Nonetheless, after the
model training phase is completed, which entails learning the similarity, the system illustrated in
Figure 4.6 can be adapted to incorporate the irace package for an additional offline search of the
configuration space of previously solved problem instances. Our approach eliminates the necessity
to retrain the previously acquired similarity models.
Predicting Solver Configuration. Aside from using shallow or deep embedding, predicting a
solver configuration for an unseen instance requires selecting an already-evaluated configuration
from similar instances in the embedding space. ISAC [78] and MaxSAT [13] use G-means clustering
to cluster similar instances. Then, they assign a single configuration to each cluster to be used for new
instances that are embedded into that cluster. This approach evolves by refining the distance metric
in the feature space so that it can find better clusters in future iterations. Hydra-MIP [185] uses
pair-wise weighted random forests (RFs) to select amongst m algorithms for solving the instance, by
building m(m−1)/2 RFs and taking a weighted vote. When the number of parameters configuration
to select from is large (i.e., large m), calculating pair-wise RFs becomes computationally infeasible.
In our method, we use k-nearest neighbor (KNN) to predict a parameter configuration from the
closest problem instance in the learned embedding space. This allows our approach to scale the
exploration of configuration parameters without the restriction of refining clusters, or re-building
a limited number of pair-wise RFs. In both Hydra-MIP [185] and our method, k configurations

38

Table 4.1: Summary of instance-aware solver configuration methods. Details of the methods are
described in Section 4.3.

ISAC [78, 13] Hydra-MIP [185] Our Method

Features Hand-crafted Hand-crafted Learned
Embedding Shallow Shallow Deep
Injectivity Non-injective Non-injective Injective
Offline Search Genetic Algorithm Regression/Iterative Bayesian Search
Inference G-means Clustering Decision Forests KNN
#Configs Predicted 1 k (hyperparameter) k (hyperparameter)

can be predicted at once (with ranks) to potentially run the solver using multiple configurations
in parallel. Table 4.1 summarizes the differences between our method and existing instance-aware
solver configuration methods.

4.4 Preliminaries

4.4.1 MILP Formulation

In this work, we consider MILP instances formulated as:

argmin
x

c⊤x, subject to A⊤x ≥ b, and x ∈ Zp × Rn−p (4.1)

where c ∈ Rn denotes the coefficients of the linear objective, A ∈ Rm×n and b ∈ Rm denote
the coefficients and upper bounds of the linear constraints, respectively. n is the total number of
decision variables, p ≤ n is the number of integer-constrained variables, and m is the number of
linear constraints. The goal is to find feasible assignments for x that minimize the objective c⊤x.
A MILP solver constructs a search tree to find feasible solutions with minimum costs. The cost of
the solution found by the solver by the end of its search, or if the time limit is reached, is called
the primal bound. It serves as an upper bound to the set of feasible solutions. While there are
other methods to measure the solver’s performance, (e.g., dual bound, primal-dual gap, primal-dual
integral [4]), we adopt the primal bound at the end of the time limit for the purpose of training the
metric learning model.

4.4.2 Graph Neural Networks

Graph Neural Networks (GNNs) offer a powerful paradigm for analyzing complex relational data,
which is often encountered in Operations Research problems [176, 104]. GNNs are designed to learn
meaningful representations of nodes in a graph by incorporating both node features, edge features
and graph structure. The core principle behind GNNs is message-passing, where information is
aggregated from neighboring nodes to update the representations iteratively.

39

The message-passing framework for GNNs can be formalized as follows. Let G = (V,E) denote
a graph with nodes V and edges E. Each node vi ∈ V is associated with a feature vector xi. The
goal is to learn a representation hi for each node vi. The message-passing process in GNNs typically
consists of L layers, where each layer l updates the node representations based on the previous layer’s
representations. The update at each layer can be expressed as:

m
(l)
i =

∑
j∈N (vi)

M (l)(h
(l−1)
j , h

(l−1)
i eji), (4.2)

h
(l)
i = U (l)(h

(l−1)
i ,m

(l)
i) (4.3)

where N (vi) denotes the set of neighboring nodes of vi, M (l) is a message function that computes
the messages m

(l)
i to be sent from node j to node i at layer l, U (l) is an update function that

computes the new node representation h
(l)
i using the aggregated messages, and eji represents the

edge features, if present. Both M (l) and U (l) are typically implemented as neural networks, allowing
GNNs to learn complex, nonlinear relationships between nodes. In this work, we use a GNN from
[57] to model the relationships between decision variables and constraints in Equation 4.1.

4.4.3 Metric Learning

Deep learning models require a vast amount of data in order to make reliable predictions. In a
supervised learning setting, the goal is to map inputs to labels as in a standard classification or
regression problem. When the number of classes is huge, supervised learning fails to address real-
world applications. For example, face verification systems have a large number of classes, but the
number of examples per class is small or non-existent [154]. In this case, the goal is to develop
a model that learns object categories from a few training examples. But deep learning models
do not work well with a small number of data points. In order to address this issue, we learn
a similarity function between data points, which helps us to predict object categories given small
data for training. This paradigm is known as metric learning [101]. In this paradigm, a model
is trained to learn a distance function (or similarity function) over the inputs themselves. Here,
similarity is subjective, so the distance may have a different meaning depending on the data. In
other words, the model learns relationships in the training data regardless of what it actually means
in its application domain. Metric learning has seen growing adoption in real-world applications,
such as face verification [154, 178, 45], video understanding [103] and text analysis [43].

Measuring distances is a critical aspect of metric learning. Given two instances of some object
representation, Ii and Ij , a distance function, d, measures how far the two instances are from each
other. The Euclidean distance is challenging to reason about in higher dimensions even if the data
is perfectly isotropic and features are independent from each other. Therefore, the goal is to define
new distance metrics in higher dimensional spaces that are based on the properties of the data itself.
These are non-isotropic distances reflecting some intrinsic structures of the data. A parametric model
is trained to project instances to the new metric space through either a linear transformation of the

40

data such as the Mahalanobis distance [44], or a non-linear transformation of the data using deep
learning [84]. This projection step allows the Euclidean distance to capture relationships between
the features that are non-linear or more complex; in our case, the correlation between a problem
instance structure and its solution’s cost on a given solving environment.

In metric learning, instead of requiring labels for training, the model requires weak supervision
at the instance level, where triplets of (anchor a, positive p, negative n) are fed into the model.
The model is trained to learn a distance metric that puts positive instances close to the anchor and
negative instances far from the anchor. This is achieved by a Triplet loss function [154]:

L =

N∑
i

[||f(Iai)− f(Ipi)||
2−||f(Iai)− f(Ini)||2+α]+ (4.4)

where N is the number of triplets sampled during training. Ia, Ip and In represent the anchor
instance, similar instance and dissimilar instance, respectively. f is a parametric model that projects
instances to a learned metric space. The loss increases when the first squared distance (anchor-
positive) is larger than the second squared distance (anchor-negative). So, f is trained to decrease
this loss. In other words, it tries to make the first squared distance smaller, and the second square
distance larger. Here, the loss, L, will be equal to zero if the first squared distance is α-less than the
second squared distance. While there are other variants of the loss functions for metric learning, e.g.
Contrastive Loss [94], Triplet loss can provide more stable training compared to contrastive loss,
as it considers both positive and negative examples simultaneously for each anchor point [177]. In
addition, Triplet loss focuses on ensuring that the distance between the anchor and positive example
is smaller than the distance between the anchor and negative example, by a margin. This allows the
model to learn a more balanced similarity metric, especially for complex structures such as MILP.
In Section 4.6, we present a number of modifications during training in order to avoid having a
zero-loss early during training.

4.5 Data Validation

The fundamental motivation of our work is to define similarity among MILP instances based on their
final solutions’ costs after running the solver in the same environment (i.e., host machine, software
environment, configuration parameters, time limit, and random seed), and under the assumption
that all MILP instances are coming from the same problem distribution. Same distribution instances
are problem instances that share similar number of decision variables and constraints, and define a
problem that is being solved repeatedly. To our knowledge, no prior work has explored correlating
MILP similarity to the costs (objective function) of their final solutions.

First, we validate the assumption that MILP instances which have similar costs when solved in
a specific environment would have similar costs when changing the solver configuration. For this
validation, we use the Item Placement benchmark from the ML4CO dataset [129]. We run the solver
on 25% of the training dataset (i.e., 2500 MILP instances) using the default solver configuration

41

0 10 20 30 40 50
Configuration ID

20

40

60

80

100

Co
st

 (P
rim

al
 B

ou
nd

)
r=0.98

Inst. 1
Inst. 2

Figure 4.4: Two MILP instances that have similar costs when using the same default configuration
have similar costs when using other configurations. Other environment variables are fixed: solver
version, machine (cpu and memory) and random seed. r is the Pearson correlation coefficient.

and a time limit of 15 minutes. Each solver run is executed independently and is given the same
compute and memory resources. In Figure 4.4, we select two MILP instances that have similar
costs (|C(I1)− C(I2)| ≤ Cthr) when using the default solver configuration, and solve both of them
independently using different sets of configurations while still fixing all other hyper-parameters (i.e.,
cpu, memory, solver version, time limit and random seed). Here, Cthr = 1, and the C ∈ [0, 100].
We observe that the costs of the two instances are indeed positively correlated with a Pearson
correlation coefficient of r = 0.98. We extend this investigation to validate if this is the case for
other pairs of similar and dissimilar MILP instances in the collected dataset. So, we select 250
MILP instances (10%) that are similar in their costs, and another 250 MILP instances (10%) that
are largely dissimilar in their costs. We run each pair of instances independently using eight other
solver configurations and report their final solutions’ costs. Figure 4.5 shows a histogram of the
Pearson correlation coefficient for similar and dissimilar pairs of instances. We observe that similar
pairs of instances have a Pearson correlation coefficient > 0.75, which indicates a high positive
correlation, while dissimilar pairs of instances either have a small correlation coefficient < 0.3, or
a negative coefficient indicating an inverse correlation. This finding confirms that if we are able to
define MILP similarity based on their final solutions’ costs (unlike [78, 185] that define similarity
based on hand-crafted features without correlation to the final solutions’ costs), we will be able
to predict an effective parameters configuration for the solver for a new unseen MILP instance by
fetching a previously-evaluated configuration from a similar instance.

42

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Pearson Correlation Coefficient

0

25

50

75

100

125

150

175

In
st

an
ce

 P
ai

rs

(a) Similar instance pairs |C(Ii)− C(Ij)| ≤ Cthr

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Pearson Correlation Coefficient

0

20

40

60

80

In

st
an

ce
 P

ai
rs

(b) Dissimilar instances pairs |C(Ii)− C(Ij)| ≫ Cthr

Figure 4.5: Correlation between problem instances and their costs at different parameters config-
urations. (a) Pairs of instances with similar costs when using the default configuration are solved
simultaneously using other configurations and their cost correlations are measured using Pearson
correlation coefficient. (b) Likewise, pairs of instances with large cost difference when using the de-
fault configuration are solved simultaneously using other configurations and their cost correlations
are measured. Problem instance pairs were retrieved from the Item Placement dataset [129] where
each instance has 185 decision variables and 1083 constraints. The solver is run on 250 random
similar pairs and 250 random dissimilar pairs using eight different configurations for each run. Here,
Cthr = 1, and the C ∈ [0, 100].

4.6 Method

In order to define MILP similarity based on the final solutions’ costs, our approach is to use Deep
Metric Learning to learn the instance embeddings, and based on that predict instance-aware pa-
rameters configuration. Figure 4.6 shows an overview of our methodology. In contrast to supervised
learning where a large amount of data needs to be collected in order to train the model, we collect
training data on a small subset of the problem instances available. The method is divided into two
major parts: (1) a training phase to learn MILP similarities based on costs, and (2) an inference
phase to predict a parameters configuration for a new MILP instance. We present the details for
each phase in Subsections 4.6.1 and 4.6.2, respectively.

4.6.1 Learning MILP Similarity

In the training phase (5.1) of Figure 4.6, and given two MILP instances, Ii and Ij , the goal is to
train a parametric model that recognizes whether Ii and Ij are similar or not. As discussed in
Section 4.4, similarity is subjective and depends on the domain. In our case, there is no natural
way to find out whether two instances are similar or not just from their given problem formulation
(Equation 4.1). Even though one could map it to a graph isomorphism problem, small perturbations
of A can lead to different solutions from the solver. For example, a slight change in a constraint’s
coefficients could make the constraint trivial, or make the MILP instance infeasible [172].

We divide the training stage into four main steps. On one hand (5.1.1), we sample MILP instances
from the training set based on their final solutions costs. On the other hand (5.1.4), we define our

43

5.1.2 Instance Features

variable
features

constraint
features

5.1.3 Instance Embedding

GraphConv

5.1.4 Metric Learning5.1.1 MILP Triplet Sampling

Ba
tc

h
N

or
m

 +
Po

ol
in

g

C
O

ST No Sol.

Tr
ip

le
t

Sa
m

pl
in

g

subject to Solver

Fixed Config
5.

1
Le

ar
ni

ng
 M

IL
P

Si
m

ila
rit

y
5.

2
Pr

ed
ic

tin
g

So
lv

er
C

on
fig

ur
at

io
n

Configs Store

5.2.2 KNN5.2.1 Embedding New Instance 5.2.3 Configuration Space Exploration

SolverPredicted Config

Config 1
Config 2
Config 3
: Solution

Continuous
Updatessubject to

Figure 4.6: Overview of our method. Triplet samples are first collected on a few instances using
the default solver configuration. Instance features are extracted as a bipartite graph [57], then
embedded using a graph convolutional network. A triplet loss [154] function is used to train the
model end-to-end. Cthr: cost threshold for similarity, a: anchor instance, p: positive/similar in-
stance, n: negative/dissimilar instance, θ: learnable parameters of the GNN, d: distance between
embeddings, as defined in Equation 4.4. M refers to the trained GNN model. KNN refers to using
k-nearest neighbors to find a similar instance in the learned embedding space. The Config Store is
a continuously-updated data store to expand the portfolio of explored configurations after model
deployment.

loss function with the goal of bringing the learned embeddings of similar instances closer to each
other, and dissimilar instances further from each other. In between (5.1.2 and 5.1.3) lies a Graph
Convolutional Network (GCN) model that extracts features from problem instances and passes them
through convolutional layers of learnable parameters that reduce the loss during training.

MILP Triplet Sampling

In our method, if the difference between the solution cost of instance Ii and Ij is below a certain
threshold Cthr, then Ii and Ij are considered similar for the purpose of training the model. If the
cost difference is above Cthr, the instances are considered dissimilar. In the triplet sampling step,
the goal is to look up for similar and dissimilar instances in the training dataset. Algorithm 2 shows
the steps for the mining and training procedures. In line 1, we sample an arbitrary anchor instance
(a). In line 2, we sample a similar instance (p) where the difference in their costs under the default
solver configuration is less than a threshold. In our work, we introduce a new sampling schedule for
the training procedure. The goal is to avoid crunching the loss (Equation 4.4) to zero prematurely.
Therefore, in line 3, we start with hard negative sampling by looking for instances that have a cost
difference much larger than the threshold. The idea is that when starting with these negative pairs
(a, n), the model gets a chance to be able to push their embeddings further away from each other
when training for a certain number of epochs (line 4). Then, in lines 5-6, this restriction is relaxed

44

Algorithm 2: MILP Triplet Sampling
1 Input: Training dataset of MILP instances (I)
2 Input: Costs using default solver configuration (Ci)
3 Input: Cost threshold (Cthr)
4 Output: Triplets (a, p, n)

1: Select an arbitrary anchor instance (a) from I.
2: Find a similar problem instance (p) such that |C(Ia)− C(Ip)| < Cthr

3: Find a dissimilar problem instance (n) such that |C(Ia)− C(In)| ≫ Cthr

4: Train GNN model parameters for e1 epochs.
5: Find a dissimilar problem instance (n) such that |C(Ia)− C(In)| > Cthr

6: Continue training GNN model parameters for e2 epochs.
Using Loss: Ltriplet = [dap − dan + α]+

and the training loop starts seeing negative instances that have slightly larger cost difference than
positive instances. Theoretically, triplet sampling can be done using any other defined measure of
similarity. We chose to use the cost after running the solver in order to correlate similarity with the
final solutions costs.

Feature Extraction

The MILP formulation represented in Section 4.4 does not restrict the order of the decision variables
in the objective, nor the number and order of the constraints. Therefore, a feature extractor needs
to be invariant to their order to handle instances of varying sizes. In Step 5.1.2 of Figure 4.6, we
represent a MILP instance using the bi-partite graph representation from [57]. Each decision variable
is represented as a node, and each constraint is also represented as a node. An undirected edge
between a decision variable, vi, and a constraint, aj , exists if vi appears in aj , that is if Aij ̸= 0.
Variable nodes have features represented as the variable type (binary, integer or continuous) in
addition to its lower and upper bounds. They are represented as X ∈ Rn×d, where n is the number
of nodes and d is the features dimension. Constraint nodes have features represented in their
(in)equality symbol (<, >, =). They are represented as X ′ ∈ Rm×a, where m is the number of
constraints and a is the features dimension. Edge features represent the coefficients of a decision
variable appearing in a constraint, E ∈ Rn×m×e, where e is the number of edges. These features are
extracted once before the solver starts the branch-and-bound procedure, namely at the root node.
Therefore, each problem instance has a single graph structure representation before any cuts happen
at the root node (part of the heuristics-based algorithms). While the original representation in [57]
has additional features, we only extract the features of the problem instance, and not the solver’s
state.

Instance Embedding

In Step 5.1.3 of Figure 4.6, we parameterize our distance metric model using a GCN model [92].
The network structure has four convolutional layers, and the convolutional operator is implemented

45

as defined in [135]. The network parameters, θ1 and θ2, are updated within the end-to-end training
procedure where features of the decision variables are updated as: xn ← θ1xn+θ2

∑
m∈N (n) en,m.x′

m.
Similarly, the features of the constraints are updated as x′

m ← θ1x
′
m + θ2

∑
n∈N (m) em,n.xn. Graph

embeddings are then passed through batch normalization, max-pooling and attention pooling layers
to produce a latent vector which is used for the downstream metric learning loss.

Model Training

In Step 5.1.4 of Figure 4.6, the model is trained end-to-end using the loss function defined in
Equation 4.4. The distance function used is the Euclidean distance on the learned metric space.
Remember that the Euclidean distance tends to underperform when calculated on high-dimensional
data. However, the non-linear step introduced by the graph neural network enables it to capture
relationships between the features of the problem instances that are consistent with their correlation
to the final solution costs. In essence, the projection of the problem instance into a learned space
allows the Euclidean distance metric to overcome biased outcomes.

The training proceeds for a number of predefined epochs, while ensuring that the loss does not
fall to zero by adopting the proposed triplet sampling schedule in Algorithm 2. The larger the value
of α, the further positive instances are pushed away from negative ones. However, choosing a large
value of α will make the model set the value of the distance function d as zero. Thus, α should be
tuned for the training procedure.

4.6.2 Predicting Configuration Parameters

In the inference phase (5.2) of Figure 4.6, the solver is invoked to solve a MILP instance using a
given configuration (or default if none is provided). The goal of this phase is to allow a real-world
solver deployment to continue to autonomously improve over time as more configuration parameters
are explored. Thus, we propose a closed-loop system where solutions from real-world problems are
continuously saved for future evaluation and use.

Embedding New Instances

As motivated earlier in Section 4.2, we find effective configurations by using a configuration from
similar instances in the learned metric space. Therefore, the first step is to embed (i.e., encode) the
new problem instance using the learned model (M) from the training phase. The embedding time
is negligible compared to the solving time as it takes a few milliseconds to extract MILP features
and run them through the small GCN. One advantage of adopting a deep embedding method in our
approach is that it is inductive [64], and can generate embeddings for MILP instances of different
sizes (i.e., number of decision variables or constraints). In other words, it does not require re-training
the model to accommodate new instances seen in a real deployment.

46

Algorithm 3: Predicting Solver Configuration
1 Input: Unseen MILP instance (I)
2 Input: Trained embedding model (M)
3 Parameters: # of nearest neighbors (k), # of predicted configurations (n)
4 Output: Predicted solver configuration

1: Embed instance I using M .
2: Retrieve previously-solved k nearest neighbors.
3: Select n previously-explored configurations from each retrieved neighbor in a non-descending

order according to their associated costs.
4: Return the configuration with the lowest cost.

Nearest Neighbor Instances

A trained model is a model capable of measuring a distance metric between MILP instances. The
final embeddings of the instances are saved in a central store to be used in the prediction step.
Algorithm 3 gives the steps performed for predicting a parameters configuration for a new unseen
MILP instance. In Step 1, the problem instance is first embedded using the trained model. In Step
2, we perform a nearest neighbor search on the learned metric space. We introduce two tuning
parameters for the prediction: (1) k, representing the number of nearest neighbors we want to fetch,
and (2) n, representing the number of configurations for each neighbor, sorted in a non-descending
order by their solutions’ costs. In Step 3, we retrieve n previously-explored configurations for each
of the k neighbors. Then, in Step 4, we predict a parameters configuration as the one with the
minimum cost. If k = 1 and n = 1, then the algorithm predicts the lowest cost configuration
parameters of the nearest neighbor. In multi-core environments (e.g., cloud), a practitioner may
choose to run the solver in parallel using different configuration parameters and gather an ensemble
of solutions for the new problem instance. In this case, k and n can be exposed as hyperparameters
for the prediction model.

Configuration Space Exploration

As mentioned in Section 4.3, during the process of identifying similar problem instances, selecting an
appropriate parameter configuration remains a challenge. Essentially, when adequate time is avail-
able for exploration, navigate a vast search space requires a an exploration strategy for configuration
parameters that are most likely to yield good results. Given the huge number of potential solver
configurations, we term this issue as the exploration problem. In our approach, we provide initial
configurations to the problem instances used for similarity lookup by independently searching the
configuration space of each instance with SMAC [111]. The primary goal of SMAC is to find an opti-
mal set of configuration parameters for a given algorithm to minimize a specific performance metric
(e.g., MILP objective cost in our context) within a user-defined search space of possible configura-
tions. SMAC is based on a Bayesian optimization framework that utilizes surrogate models, such
as Gaussian Process Regression or Random Forests, to model the objective function. It employs an
acquisition function, such as Expected Improvement (EI), to balance exploration and exploitation

47

Table 4.2: Dataset Statistics

Decision Variables # Constraints

Benchmark Count Avg. Median Count Avg. Median

Item Placement 195 195 195 1,083 1,083 1,083
Load Balancing 61,000 61,000 61,000 64,081–64,504 64,307 64,308
Anonymous 1,613–92,261 33,998 4,399 1,080–12,6621 43,373 2,599

during the search process. SMAC iteratively refines its surrogate model by querying new points in
the configuration space space and updating the model with their corresponding objective function
values. This step is performed offline, separate from the training and inference loops.

However, once the model is deployed in a real-world setting, we enable it to evolve by incorpo-
rating a feedback loop in which a solver saves its results to the data store. Each data point consists
of a problem instance’s embedding, the configuration employed for solving, and the cost obtained
from the solver. Future lookups using KNN can immediately benefit from the newly added data
point without retraining the model since similarity is based on the already-learned embeddings.
This design choice allows our method to be deployed in real-world environments without requiring
frequent model retraining. For the implementation details of the data store, refer to Appendix A.

4.7 Empirical Results

4.7.1 Dataset

We used the publicly available dataset from the ML4CO competition [129]. The dataset consists of
three problem benchmarks. The first two problem benchmarks (item placement and load balancing)
are extracted from applications of large-scale systems at Google, while the third benchmark is
extracted from MIRPLIB – a library of maritime inventory routing problems2. The item placement
and load balancing benchmarks contain 10,000 MILP instances for training (9,900) and testing
(100), while the anonymous problem contains only 118 instances (98 and 20 for training and testing,
respectively). The dataset is available to download from the ML4CO competition website3 with a
full description on the problems formulation and their sources. The smallest of these problems are
extremely hard to solve to optimality. For example, after 48 hours of solving time using SCIP, an
instance of the Item Placement dataset was not solved to optimality on a high-end machine (Section
4.7.2). In fact, after 2 hours, the solver reports a gap of 22.00% and a search progress completion
of 23.05%. After 12 hours, the solver reports a gap of 14.00% and a search progress completion
of 32.05%. After 48 hours, the solver reports a gap of 10.28% and a search progress completion of
35.60%. In this section, we show some statistics on the dataset and reflect on how they affect our
approach of metric learning.

2Link: https://mirplib.scl.gatech.edu/instances
3Link: https://github.com/ds4dm/ml4co-competition

https://mirplib.scl.gatech.edu/instances
https://github.com/ds4dm/ml4co-competition

48

Table 4.2 shows the number of decision variables and constraints in each benchmark. All instances
in the Item Placement benchmark have the same number of decision variables and constraints. The
Load Balancing benchmark has the same number of decision variables, but the number of constraints
varies within a small range. The Anonymous benchmark exhibits a large variance in both the number
of decision variables and constraints. For a MILP solver, a high variance in the number of decision
variables or constraints has a direct impact on its solution. It also affects the learned embeddings
of these instances. While the high variance gives more discriminative power to the model (M), it
does not directly serve the purpose of finding a configuration for new instances using the nearest
neighbor. The reason is that the nearest neighbor might indeed not be close in distance in the
learned metric space, and the predicted parameters configuration would not be directly correlated
to the solver’s solution. Therefore, it is critical that the definition of “same distribution” instances
include the number of decision variables and constraints for the purpose of finding a parameters
configuration using metric learning.

4.7.2 Experimental Setup

In this section, we provide details on our runtime environment, the data utilized for training, and the
training methodology. Subsequently, we design a series of experiments to evaluate the effectiveness of
our approach, both in terms of learning meaningful MILP embeddings and its influence on the final
solution’s cost when employing the complete system illustrated in Figure 4.6. First, in Section 4.7.3,
we delve into the learned MILP embeddings and examine their correlation with the final solution
costs when solved in the same environment. Next, in Section 4.7.4, we explore the precision of the
predicted configurations in identifying suitable configuration parameters. Finally, in Section 4.7.5,
we compare our method with existing approaches for selecting parameter configurations and discuss
the implications of learning improved similarity models as they relate to the predicted costs after
solving.

Runtime Environment

The experimental results are obtained using a machine with Intel Xeon E5-2680 2x14cores@2.4 GHz,
128GB RAM, and a Tesla P40 GPU. The model was developed using PyTorch (v1.11.0+cu113) [144],
Pytorch Geometric (v2.0.4) [52], and PyTorch Metric Learning (v1.3.0) [136]. We used Ecole
(v0.7.3) [147] for graph feature extraction, convolution operators modified and adopted from [172],
PySCIPOpt (v3.5.0) [115] as the MILP solver, and SMAC3 (v1.2) [111] for the offline configuration
space search.

MILP Triplet Sampling

Given the training dataset, we run the MILP solver on all instances using the default parameters
configuration of the solver with a time limit of 15 minutes as suggested by [129]. The total number
of solved instances by the end of the time limit were 2599, 1727 and 38 for the item placement,

49

load balancing and anonymous benchmarks, respectively. This represents 26%, 17% and 38% of
the training benchmarks, respectively. We implemented the triplet sampling schedule as discussed
in Section 4.6, where hard negative sampling was used for the first 50 epochs, and the training
continues for 100 epochs in total. We used a batch size of 256 for the item placement, 64 for load
balancing, and the full 98 instances for the anonymous benchmark.

Model Training

The model consists of a graph neural network of four layers with 64 as the dimension of the hidden
layers. It is trained for each benchmark separately in order for the triplet sampling and training to
run on data coming from the same distribution. The output from the convolutional layers is passed
into a batch normalization layer, followed by a max pooling layer and an attention pooling layer.
The output embedding size is set to 256. We set α = 0.1 in the loss function.

4.7.3 Instance Embedding

We visualize the instance embeddings of the GNN before and after model training and compare it
to using shallow embeddings in Figure 4.7. The color bar represents the cost of the solution using
the default configuration parameters. The shallow embedding vector encodes presolving statistics
as in Hydra-MIP [185], which include the problem size, the minimum, maximum, average and
standard deviation of the objective coefficients (c) and the constraints coefficients (A, b). While
Hydra-MIP’s shallow embedding includes more features such as the cutting planes usage and the
branch-and-bound tree information, such information is not available before running the solver4.
From Figure 4.7, we observe that in the item placement benchmark, shallow embeddings do not
offer any discriminative power to the problem instances. In the load balancing benchmark, shallow
embeddings could indeed cluster problem instances, but clusters are not correlated with the final
solver’s costs. In the anonymous benchmark, instances with similar costs were clustered close to
each other, which gives shallow embedding a discriminative power in this case. Analyzing this
result in light of the dataset statistics (Table 4.2), we see that the anonymous benchmark has a
high variance in the number of decision variables and constraints. Therefore, a feature vector that
includes aggregated values could distinguish the problem instances. On the other hand, where item
placement has the same number of decision variables and constraints, a shallow feature vector could
not capture the graph connectivity properties, nor the coefficients values. Between these two cases,
the load balancing benchmark has the same number of decision variables, while the number of
constraints do not have a high variance (64,081 to 64,504 constraints). Shallow embedding was able
to cluster problem instances, but its clusters were not correlated to the final solver’s costs. The
learned embeddings in our method is discriminative in the three benchmarks.

4The implementation of shallow embedding is provided in the supplementary material. There is no publicly
available implementation of Hydra-MIP.

50

B
ef

or
e

E
m

be
dd

in
g

2

4

6

8

1e1

8.0

7.5

7.0

6.5

1e2

6
5
4
3
2
1

1e3

Sh
al

lo
w

E
m

be
dd

in
g

2

4

6

8

1e1

6.5

7.0

7.5

8.0

1e2

1
2
3
4
5
6

1e3

D
ee

p
E

m
be

dd
in

g 8

6

4

2

1e1

8.0

7.5

7.0

6.5

1e2

6
5
4
3
2
1

1e3

Item Placement Load Balancing Anonymous

Figure 4.7: Vector representations of MILP problem instances visualized using t-SNE [173]. Each
point is a problem instance where the color denotes its solution’s cost using SCIP’s [115] default con-
figuration. Item placement, load balancing and anonymous represent benchmarks from the ML4CO
dataset [129]. The first row (Before Embedding) represents the feature vector of instances before
learning any similarities (i.e., random). The second row (Shallow Embedding) encodes the vector
representation using [185]. The third row (Deep Embedding - Our Method) encodes the vector
representation in the learned embedding space. In the item placement benchmark, shallow embed-
ding does not offer any discriminative capability. In the load balancing benchmark, it could cluster
problem instances, but clusters are not correlated with the final solver’s costs. Shallow embedding
uniquely embeds the anonymous benchmark and the embedding is correlated to the final costs. The
discriminative power of deep embedding is evident in the three benchmarks, where similarity is
directly correlated with the cost after running the solver using the default configuration.

51

0 20 40 60 80 100
Nearest Neighbor Cost

0

20

40

60

80

100
Va

lid
at

io
n

In
st

an
ce

 C
os

t

(a) Item Placement MAE=18.07

6 7 8 9
Nearest Neighbor Cost 1e2

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Va
lid

at
io

n
In

st
an

ce
 C

os
t

1e2

(b) Load Balancing MAE=14.46

0 2 4 6
Nearest Neighbor Cost 1e3

0

2

4

6

Va
lid

at
io

n
In

st
an

ce
 C

os
t

1e3

(c) Anonymous MAE=801.36

Figure 4.8: Cost (primal bound) of using the predicted configuration from the nearest neighbor in
the learned metric space (x-axis) as compared to the actual cost after using it for the validation
instance (y-axis).

4.7.4 Prediction Accuracy

A key question in our approach is whether the nearest neighbor in the embedding space would exhibit
a similar solver behavior when using its parameter configuration. Here, we embed the validation
instances using our trained model, and then obtain a parameters configuration from the nearest
neighbor. Then, we run the solver using the predicted parameters configuration on the validation
instances (T=15mins). Figure 4.8 plots the solution’s cost of the predicted parameters configuration
from the nearest neighbor (x-axis) vs. its solution’s cost on the validation instance (y-axis). It shows
that there is indeed a correlation between the final cost of the solution using the predicted parameters
configuration, and the stored nearest neighbor cost using that configuration. The mean absolute
errors (MAE) were 18.07, 14.46, and 801.36 for item placement, load balancing and anonymous,
respectively. This correlation proves that, in reality, similar MILP instances based on the learned
metric space expose similar solver behaviors yielding similar solution costs. In other words, finding
a good parameters configuration for one problem instance can be used for similar instances without
repeating an exhaustive search at deployment time.

4.7.5 Comparing to Baselines

We compare our method against existing approaches in Table 4.3. The first baseline is using SCIP’s
default configuration, which is usually used by most practitioners. In addition, we obtain an in-
cumbent configuration by performing a configuration space search on the training instances using
SMAC [111]. We perform this search for each benchmark separately. Although the number of
unique configurations explored was 51012 over a period of over 12000 core-hours, this represents
a small subset of the configuration space. Moreover, we implement Hydra-MIP [185], which uses
a statistics-based vector for instance embedding and pair-wise weighted random forests for config-
uration selection. In Hydra-MIP, the pairwise weighted random forests (RFs) method is used to
select amongst m algorithms for solving the instance, by building m · (m − 1)/2 RFs and taking a
weighted vote. In our processed dataset, the number of unique configurations explored offline using

52

Table 4.3: Our Method vs. Existing Approaches. In the dataset [129], there are 100, 100 and
20 test instances for the item placement, load balancing and anonymous benchmarks, respectively.
Imprv. represents the average solution’s cost improvement over the cost obtained using the default
configuration of the SCIP solver. Cost is the value of the MILP objective function using the solution
found by the solver. Since the smallest problem instance takes several days to solve to optimality,
we limit the runtime to 15mins as suggested in [129] (Section 4.7.1). Wins represents the number
of instances that a method solved with the lowest cost within the time limit. Shallow embedding
+ KNN (our baseline) uses the same embedding vector as [185]. Deep embedding (our method) is
evaluated at k = 1 and n = 1 (See. Algo. 3).

Item Placement Load Balancing Anonymous

Configuration Wins Imprv. ↓ Wins Imprv. ↓ Wins Imprv. ↓
No Solution Found 0 - 0 - 11 -
Default SCIP Config 1 - 34 - 1 -
Incumbent from SMAC [111] 8 0.24±0.16 4 0.01±0.03 1 0.01±0.00
Hydra-MIP [185] 10 0.25±0.09 17 0.02±0.01 0 -
Shallow Embedding + KNN 16 0.17±0.08 5 0.04±0.06 3 0.11±0.02
Deep Embedding + KNN 65 0.38±0.06 40 0.04±0.03 4 0.26±0.07

SMAC are 22580, 27971 and 461 for the item placement, load balancing and anonymous training
benchmarks, respectively. Among those, the number of unique configurations that worked best on
their respective instances (excluding unsolved instances) are 4325, 3987 and 53. As a result for the
Hydra-MIP approach, building the portfolio by performing algorithm selection using pairwise RFs is
computationally infeasible (memory and compute). For example, in the item placement benchmark,
a total of 4325× 4324/2 = 9350650 RFs are needed. To obtain results for Hydra-MIP, we selected a
subset of the top 100 performing configurations in the item placement and the load balancing bench-
mark, and used all 53 best configurations of the anonymous benchmark. Lastly, we compare against
using the shallow embedding from Hydra-MIP with KNN, which avoids the scalability limitation of
RFs. Table 4.3 reports the number of instances solved with the lowest cost in each method, along
with the average cost improvement over using the default configuration. We see that our method
predicts configurations that solve more instances, with up to 38% improvement in the cost of the
objective function (confidence level of 95%).

Moreover, we investigate how our method brings instances with similar final costs close to each
other by plotting the winning predictions against their distance from their neighbors in the learned
embedding space. In Figure 4.9, the x-axis represents the distance between the validation instance
and its nearest neighbor, while the y-axis represents the method that offers a better parameters
configuration. We observe that the smaller the distance between the validation instance and its
nearest neighbor in the learned embedding space, the more probable the neighbor’s parameters
configuration to yield a better solution than other baselines. In other words, our method correlates
the similarity of the learned embedding to the final solution costs.

53

0.0 0.1 0.2 0.3 0.4 0.5
Distance in Learned Metric Space

B
as

el
in

e
O

ur
s

(a) Item Placement

0.0 0.1 0.2 0.3 0.4 0.5
Distance in Learned Metric Space

B
as

el
in

e
O

ur
s

(b) Load Balancing

0.0 0.5 1.0 1.5 2.0
Distance in Learned Metric Space

B
as

el
in

e
O

ur
s

(c) Anonymous

Figure 4.9: Similarity in the learned embedding space. The x-axis represents the distance between
the validation instance and its nearest neighbor in the learned metric space. The y-axis represents the
method that gives a better solution. The closer the nearest neighbor to the validation instance, the
better the predicted configuration by our method. Baseline represents the method with the lowest
cost amongst the default configuration, SMAC’s incumbent, Hydra-MIP and shallow embedding.

4.8 Conclusion

Generalizing to Other Solvers. MILP solvers expose different configuration parameters for their
internal algorithms. For example, while SCIP exposes over 2500 parameters5, CPLEX exposes 182
parameters6 and Gurobi exposes 100 parameters7. Due to the different algorithm implementations,
only a small subset of parameters have an exact match across all solvers. SCIP has been used
in this work for a number of reasons: (1) it is a stable open-source solver and its algorithms are
comprehensively documented, while commercial tools hide their implementation details (2) it exposes
a large number of configuration parameters to tune, and (3) it has been used in previous related
works [57, 100, 147, 172].

In order to generalize our method to other solvers, it is important to note that a solution’s cost
depends primarily on: (1) the problem instance, (2) the solver used (including the specific solver
version), (3) the time limit, (4) the hardware resources given to the solver (cores and memory), in
addition to (5) the configuration parameters. For the purpose of learning similarity between MILP
instances, the solver’s costs are used as a subjective measure of the similarity between two instances
that use the same solver version, time limit, hardware resource, and configuration parameters. Re-
placing the solver with another solver is possible for the sake of getting costs that could be used to
measure the similarity between different MILP instances. However, it is critical to fix all parameters
of the solving environment (hardware, solver tool and its version, time limit, configuration param-
eters) in order for the cost to be representative of the similarity. Once a similarity measurement is
established, two similar instances in one solver’s environment could potentially be used to determine
that these two instances will have similar costs in another solver’s environment. However, we have
not investigated this path in the scope of this study and will leave it for future work.

5https://www.scipopt.org/doc/html/PARAMETERS.php
6https://www.ibm.com/docs/en/icos/12.8.0.0?topic=cplex-list-parameters
7https://www.gurobi.com/documentation/9.0/refman/parameters.html

 https://www.scipopt.org/doc/html/PARAMETERS.php
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=cplex-list-parameters
https://www.gurobi.com/documentation/9.0/refman/parameters.html

54

Limitations. Our adoption of metric learning in configuring MILP solvers relies on data that
represent the same problem being solved repeatedly. In Section 4.6.1, we sampled triplets of anchor-
positive and anchor-negative based on Cthr. It is infeasible to identify similar triplets if problem
instances are coming from different distributions where the range of their costs varies significantly.
For example, the cost range of the Item Placement benchmark is [0, 100] while the cost range of the
Load Balancing is [500, 1000]. While finding a dissimilar pair is straightforward (e.g., one instance
from each benchmark), it is hard to find a similar pair where the cost difference is < Cthr. This means
that in order to train a deep embedding model for learning MILP similarity, the MILP formulation
needs to represent a problem being solved repeatedly, which is materialized in the number of decision
variables or constraints in the problem, as well as the range of their solutions’ costs.
Reproducibility. In Section 4.7, we refer the reader to the original dataset to download. A link to
the processed dataset (learned embeddings) is available in the supplementary material. In addition,
we describe our setup for training and the pipeline architecture. The source code along with the
training implementation is available in the supplementary material.

Chapter 5

Efficient Exploration Using Predictive

Modeling

5.1 Introduction

The proliferating scale of technology nodes enables state-of-the-art systems-on-chip (SoCs) to host
billions of transistors on a single die. The realization of these massive computational capabilities
has been enabled by EDA (Electronic Design Automation) tools for front-end and back-end design.
With hundreds of parameters to tune in each tool, design space exploration and efficient physical
implementation have been increasingly challenging and require a massive amount of computations
to achieve the required Quality of Results (QoR). EDA tools are essentially in a continuous search
for an optimal functional design that meets the Performance, Power and Area (PPA) requirements.
When the search space is huge, unbounded exploration is costly, or even infeasible. For large
EDA companies, these challenges have demanded frequent upgrades to their compute infrastructure
raising the cost of operation and maintenance. For small and rising EDA teams, the significant
upfront capital investment of setting up a suitable compute environment for their EDA jobs has
stiffled their innovation.

In the recent years, there has been a growing trend among EDA teams to utilize elastic compute
environments (i.e. Cloud) to gain near-instant access to compute resources [156, 49]. Cloud vendors
offer three main categories of elastic resources: (i) Infrastructure as a Service (IaaS) where users
get virtual access to physical hardware resources (i.e. virtual machines), (ii) Platform as a Service
(PaaS) where users run and manage their applications abstracting away the underlying server ad-
ministration, and (iii) Software as a Service (SaaS) where users get on-demand access to software
without having to manage their own installation. While PaaS and SaaS are the most appealing ways
for users to run their computation on the cloud, EDA teams have benefited most from having fine
control over their provisioned virtual machines in IaaS offerings.

Migrating EDA jobs to the cloud has helped teams meet the demands of their tapeout schedule,

55

56

hence reducing the time to market. For example, horizontal scaling by launching more virtual
machines allows EDA teams to complete a highly-parallelizable job, such as simulation, in less
time. Moreover, the scale of the cloud has accelerated the design space exploration and the physical
design optimization by launching many jobs in parallel with different parameters. Furthermore,
EDA teams have the flexibility to choose the configuration of hardware that meets their needs for
the exact pending job and only for the time needed to complete it. The advantage is that teams pay
only for the amount of compute time spent down to per-second billing.

However, moving EDA jobs to the cloud is not a straightforward path, especially for companies
with little or no experience managing cloud deployments. For example, design teams need to choose
the right machine configurations that achieve the best performance for their job. While simulation
and verification are known to be embarrassingly parallel (i.e. directly benefiting from the scale of the
cloud), the compute requirements for the synthesis and physical design stages are not well-studied,
especially in multi-tenancy environments. In addition, upfront runtime estimation is needed in order
to best utilize the allocated budget (measured in $) while meeting the tapeout schedule.

In addition, optimizing the cost of running cloud workloads have been intensively studied over
the past decade, both from the vendor’s operational perspective [38, 34, 35, 163, 149, 61, 164] and
the customer deployment perspective [152, 37, 141]. However, most of the proposed techniques are
general purpose and do not consider the potential optimization gain (performance-cost efficiency)
that can be achieved from a better understanding of the workload being deployed (e.g. compute,
memory and disk access patterns). Therefore, more focused studies have been dedicated to running
HPC workloads on the cloud [63, 148, 167, 121]. In particular, it has become apparent that the cost-
effectiveness of HPC on the cloud depends mainly on “raw performance” and “application scalability”.
While EDA jobs can be broadly classified as high-performance computing jobs [156], our study shows
that they are inherently diverse in their compute requirements. For example, we show that while
placement and routing need machines with higher memory-to-core ratio, logic synthesis can perform
just as well on general-purpose machines. Therefore, deploying all EDA jobs on high-end machines
incurs a huge and unneeded cost overruns. Unfortunately, there has been little to no public studies
on the unique characteristics of specific EDA jobs as a high-performance workload.

In this work, we aim to efficiently explore the design space with robust predictive modeling. To
that end, we perform an empirical study of characterizing and optimizing EDA jobs when running
in cloud environments. We summarize our contributions as follows:

1. We identify and formulate the problem of migrating EDA jobs to the cloud. The goal is to
utilize cloud resources in order to meet tapeout deadlines with minimum cost.

2. We characterize the performance of four EDA key applications (synthesis, placement, routing,
and static timing analysis) under different machine configurations. Using our observations,
we present practical recommendations for the types of cloud instances to provision for each
application.

3. We propose an integrated framework for analyzing and optimizing EDA flows on the cloud.

57

Logic Simulation

Logic Synthesis

Timing Analysis

Layout (P&R)

Verification

Sh
ar

ed
 B

lo
ck

 S
to

ra
ge

32 vCPUs

16 vCPUs

1 vCPU

24 vCPUs

32 vCPUs

su
bm

it
jo

bs

Figure 5.1: A reference EDA flow on the cloud

Using this framework, we developed a novel model based on Graph Convolutional Networks
(GCNs) that predicts the total runtime for a given EDA job using certain machine configura-
tions. Our model achieves a high runtime prediction accuracy of 87%.

4. We provide a new problem formulation for running EDA flows on the cloud as an optimization
problem and map it to the classical multi-choice knapsack problem (NP-hard). We provide an
open-source implementation that recommends optimal machine configurations that minimizes
the total cloud deployment cost (measured in $) by an average of 35.29%, while meeting
deadline schedule constraints.

5. We extend our optimization method to further reduce the deployment cost by up to 73% when
using cloud spot instances (machines with lowered service level guarantees).

In the following, we give a brief background in Section5.2, and discuss the related work in
Section 5.3. After that, in Section 5.4, we formulate the problem and discuss our proposed framework
to address it. Then, in Section 5.5, we present our experimental results. Lastly, we summarize the
work in Section 5.6.

5.2 Preliminaries

Cloud computing refers to the elastic compute resources that can be provisioned, scaled up or
shutdown on demand. Cloud providers, such as Amazon Web Services, Microsoft Azure or Google
Cloud, virtualize their physical infrastructure to share processing time, memory, storage and network
bandwidth among many users (known as tenants). In other words, virtualization creates a multi-
tenancy environment where more than one tenant use the same underlying hardware. In order to

58

achieve this, cloud vendors use a specialized software called the Hypervisor. The Hypervisor isolates
each tenant’s resources in a Virtual Machine (VM) that is accessible only by its owner, or other
authorized accounts.

Cloud Offerings. From a user perspective, cloud vendors offer three main categories of elastic
resources: (i) Infrastructure as a Service (IaaS) where users get virtual access to physical hardware
resources (i.e. virtual machines), (ii) Platform as a Service (PaaS) where users run and manage
their applications, abstracting away the underlying server administration tasks, and (iii) Software
as a Service (SaaS) where users get on-demand access to software without having to manage their
own installations. The shortest path to migrating legacy EDA applications to the cloud is to make
use of IaaS offerings.

In a standard IaaS offering, VMs are sold in units of: (i) vCPU: a virtual CPU is seen as a single
physical CPU core, or a single thread if Simultaneous Multi-Threading (SMT) is enabled in the
underlying hardware (called Hyper-Threading in Intel’s processors), (ii) Memory: a fixed number
of memory pages are solely reserved for the use of a VM and is expressed as the total memory size
reserved, and (iii) Storage: the size and type of the underlying storage device partition mounted on
the VM. In addition, cloud vendors offer different VM types that comprise varying combinations of
vCPUs and memory. For example, compute-optimized VMs have more vCPUs per unit of memory
that are suitable for compute-intensive applications. A memory-optimized VM has more memory
allocated per vCPU, which makes it suitable for memory-bound applications. While IaaS offerings
have advanced to virtualize other hardware such as network cards, GPUs and FPGAs, the scope of
this study is limited only to the compute resources in a standard IaaS offering.

Cloud EDA Flow. Figure 5.1 shows a reference EDA flow, where different stages of the flow run
on different VM configurations. The advantage is that a highly-parallel job, such as simulation or
verification, can take advantage of launching more VMs to accelerate job completion. In addition,
handing-off a job from one VM (e.g. running logic synthesis) to another (e.g. running timing
analysis) can take advantage of shared block storages to avoid data transfer time. A shared block
storage can be mounted to multiple VMs at the same time in what is known as a multi-attach feature.
Our study is concerned with selecting VM configurations for the reference flow that minimize the
total deployment cost while still meeting deadline constraints.

Virtual Machine Provisioning. Cloud vendors offer a programmable API (Application Pro-
gramming Interface) to manage the life-cycle of a virtual machine. What that means is that EDA
teams can, and should, automate the process of VM creation as needed for a given job. This helps in
reducing the cost of on-demand VMs, as well as increasing the utilization of the provisioned resources
(i.e. no idle resources are being billed). Moreover, full-environment images of a VM can be created
as a template for future provisioning. This means that a provisioned VM will have all the tools,
dependencies and environment configurations needed to run the job as soon as it starts, avoiding
installation or setup time. Furthermore, VM provisioning time usually takes minutes, and in some
cases seconds, which can be neglected as a proportion of the total runtime of an EDA job (usually
measured in hours). Taking full advantage of the programmable API unleashes the potential of the

59

cloud for expedited design space exploration as well as parameter tuning tasks in EDA tools.
Dynamic Scaling of Provisioned Resources. Virtual machines can be resized (i.e. increase

or decrease memory or #vCPUs). However, for technical reasons, scaling cannot be performed dy-
namically. In other words, a VM has to be shut down, resized and then turned back on with the new
resource allocations. This process will terminate any running jobs on the VM. EDA flows requiring
dynamic scaling of resources can utilize software containers [24]. Containerization is a technology
that offers the control and isolation of resources at the operating system kernel level. Cloud vendors
have recently started to offer containers as a service (CaaS). This allows for the dynamic scaling of
resources with lightweight API controls over the life-cycle of a provisioned container. EDA teams
can also benefit from the fast provisioning time of containers for their EDA jobs.

5.3 Related Work

Optimizing cloud deployment costs is a two-sided coin. On one side, cloud vendors seek to minimize
operational costs to be able to offer competitive pricing to their customers. To that end, a plethora
of research studies have been conducted with the goal of minimizing the provisional costs of running
and maintaining the infrastructure [38, 34, 35, 163, 149, 61, 164]. Efforts range from high-level
scheduling and provisional algorithms to low-level power and energy optimization. On the other
side, customers have also been striving to reduce their cloud spending. Rodriguez et. al. proposed
a resource provisioning and scheduling strategy for scientific workflows [152]. Their meta-heiristics
algorithm aims to minimize the total cost of workflow execution while meeting deadline constraints.
Chen et. al. extended Rodriguez’s work by implementing a genetic algorithm that was able to
produce scheduling results that meet tighter deadlines and take advantage of the cloud heterogeneity
[37]. However, both works are general-purpose workflow scheduling techniques and do not consider
the inherent compute requirements of each workflow step. More recently, Osypanka and Nawrocki
developed a machine learning framework to optimize the cost of a running system by continuously
looking at historical data of usage patterns and modifying infrastructure configurations accordingly
to save costs [141]. While these approaches generally work well, they overlook the optimization gain
that can be achieved from a better understanding of the workload being deployed (e.g. compute,
memory and disk access patterns), which is the case for most high-performance computing (HPC)
workloads.

To gain a better understanding of HPC on the cloud, which is offered by multiple vendors
[11, 60, 126], Gupta et. al. performed a performance evaluation on a range of platforms, from super-
computers to cloud environments [63]. They concluded that the public cloud is only cost-effective
for small-scale HPC deployments, but should be considered to complement on-premises resources.
Prukkantragorn and Tientanopajai also recognized the high cost of running HPC workloads on the
cloud [148]. They analyzed traces from running the high-performance linpack benchmark [145] on a
cloud provider with varying problem sizes. Their results showed that there is a pivot point (problem
size), where larger problem sizes would finish execution faster when running on a high-end HPC

60

offering. Problem sizes smaller than the pivot would always be more cost efficient to run on the
low-end HPC offering. Nonetheless, they only consider single-application runs, and not workflow-like
jobs similar to [152, 37]. Furthermore, Somasundaram et. al. developed a cloud resource broker
to efficiently manage cloud resources for scientific applications [167]. The main limitation of their
simulation is that it does not consider the hetereogenous nature of the cloud resources (i.e. different
machine configurations). In their comparative study of HPC on the cloud, Marathe et. al. compared
running HPC workloads on a dedicated cluster versus a cloud cluster for performance and cost effi-
ciency [121]. The main conclusion was that the cost-effectiveness depends on the “raw performance”
and the “application scalability” of the workload itself. This leads us to the importance of having a
deeper look at the EDA-specific workload when being run on cloud resources. In other words, EDA
jobs could have unique performance and scalability characteristics that require further studies.

This need has been realised by the EDA community who have witnessed increasing interest in
using the public cloud. While cloud vendors try to maximize hardware utilization, EDA teams aim
to get access to high-performance VMs with the lowest cost. On the architectural side, Lin et. al.
proposed a prototype system design, called Web-EDA, for managing EDA projects on the cloud
[110]. Similarly, Man et. al. described a system architecture for small and medium-sized teams
aiming to perform IC design and testing on the cloud [118]. Both proposals have been addressing
the architecture side of managing EDA assets in a distributed cloud environment. However, they do
not address the computational requirements of the specific EDA jobs.

On the infrastructure side of managing cloud jobs, Kamath et. al. have described in detail
Intel’s compute infrastructure, addressing the high availability requirements for EDA jobs that are
interactive in nature [81]. While this work provides details on the software and hardware that
supports thousands of design jobs, it can be classified as a private cloud environment where the
organization owns and manages the underlying infrastructure. Moreover, Seghal et. al. discussed
the security and licensing model of EDA tools on public cloud environments [156]. Authors also
identified the types for workloads on the cloud that fit the EDA use-cases. However, they provided a
broad classification for EDA tasks as single-run compute-intensive jobs. Our characterization shows
that different jobs in the EDA workloads have different compute requirements.

On the application side, Chen et. al. have proposed a cloud-native floorplanning algorithm that
takes advantage of the massive cloud scale [36]. More recently, scheduling EDA jobs on distributed
environments have also gained interest [160, 137]. However, both studies have been focused on
maximizing the utilization of a single cluster, and not on the performance of EDA jobs on multi-
tenant virtualized environments.

Our work supports and advances the recent need to move EDA jobs to public and private cloud
environments and offers detailed insights as well as a recipe for EDA teams to maximize the benefit
from using the cloud while minimizing the cost.

61

Characterization
Sec. III.A

Prediction
Sec. III.B

cloud instance types

$ cost calculator

runtime + speedup

Optimization
Sec. III.C

Inputs
- designs
- tools
- technology node

Outputs
EDA job cloud instance
 meets tapeout schedule

 minimim $ cost

Figure 5.2: Workflow of optimizing EDA cloud deployments

5.4 Method

Problem Definition. A fundamental question that faces EDA teams when migrating their EDA
jobs to the cloud is: what configurations of VMs should be provisioned for each job? And how can
the job completion time be reduced while minimizing the cost?

In order to answer these questions, Figure 5.2 draws our workflow that we propose in this thesis.
Specifically, we introduce the following problems:
Problem A. What is the right VM configuration for a given EDA job? In this context, a configu-
ration refers to the size of the VM in terms of #vCPUs. To address this problem, we characterize
four main EDA application jobs, namely: synthesis, placement, routing and static timing analysis.
We focus on characteristics that are intrinsic to the EDA job which affect the completion time.
Problem B: Given a design (in RTL or Netlist), estimate the runtime for a given EDA job when
using 1, 2, 4 and 8 vCPUs. Our proposed prediction model learns internal graph features of the
design that affect the total runtime of a given job on different machine sizes.
Problem C: Given the estimated runtime for each job under 1, 2, 4 and 8 vCPUs, as well as a
deadline constraint, select a machine size for each job such that the deadline is met and the total
cost is minimized. We address this problem using a mapping to the multi-choice knapsack problem
and implement an optimal solution using dynamic programming.

To address Problem A, we characterized the four jobs using commercial tools and a SPARC core
design from OpenPiton design benchmark [16] on a 14 nm technology node. All optimization efforts
of the tools have been set to “high". In addition, timing-driven optimizations have been used when
available. Other tuning parameters are kept to their default values. We then collected the execution
data from the system’s hardware performance counters for further analysis. Table 5.1 shows relevant
system configuration details of our experimental setup. We used Linux Control Groups to simulate
a multi-tenancy environment (reserving CPU cores and memory pages) as used in cloud hypervisors.

We used the Linux perf utility to instrument the hardware performance counters. We swept the
values of the performance counters under 1, 2, 4 and 8 vCPUs, and experiments are repeated three
times to get accurate measurements. This will show us how the different jobs can take advantage of

62

Table 5.1: Characterization system configuration

Processor
Intel Xeon E5-2680 v4 @ 2.40GHz (up to 3.30Ghz)
Dual socket, 14 cores each (24 threads with hyper-threading)
x86_64 architecture, Power governor: performance

Memory 128 GB DDR4

Cache L1: 32 kB (per core), L2: 256 kB (per core)
L3: 35 MB shared by all cores (per node)

Disk Samsung SSD 850 EVO 500GB

OS CentOS Linux 7 (Core), Control groups: enabled
Linux kernel: 3.10.0-957.27.2.el7.x86_64

SynthesisPlacement Routing STA0.0

0.5

1.0

1.5

2.0

2.5

Br
an

ch
 M

iss
es

 (%
)

1 vCPU
2 vCPU
4 vCPU
8 vCPU

(a) Branch Misses

SynthesisPlacement Routing STA0

10

20

30

40

Ca
ch

e
M

iss
es

 (%
)

1 vCPU
2 vCPU
4 vCPU
8 vCPU

(b) Cache Misses

SynthesisPlacement Routing STA0

10

20

30

Fl
oa

tin
g-

po
in

t A
VX

 O
pe

ra
tio

ns
 (%

)

1 vCPU
2 vCPU
4 vCPU
8 vCPU

(c) Floating-point Operations

SynthesisPlacement Routing STA0

25

50

75

100

125

150

175

Ru
nt

im
e

(m
in

ut
es

.)

1 vCPU
2 vCPU
4 vCPU
8 vCPU

(d) Total Runtime

Figure 5.3: Performance characterization of four representative EDA jobs

the cloud scalability, as well as their behavior. Due to license limitation of the available commercial
tool, we were only able to analyze up to 8 threads. Additionally, due to the economic dynamics of the
cloud offerings, virtual CPUs are sold in units of power 2 (e.g. 1, 2, 4, 8, 16, 32, ..etc.). Therefore,
finer-grained analysis (e.g. at 5 vCPUs) would not apply to a real-world cloud offering. Nevertheless,
the trend we observe in our analysis is indicative of the EDA tool behaviors and scaling-readiness.

It is important to note that performance counters measurements are influenced by both the un-
derlying micro-architecture of the processor (e.g. pipeline depth, in-order vs. out-of-order execution
paradigm, branch predictor accuracy, cache configuration, etc.) and the workload’s characteristics
(e.g. instruction mix, memory access patterns, types of branch instructions, etc.). Since we are
interested in the workload’s characteristics, we will be focusing on the relative comparison of the
measurements, and not the absolute numbers (hence using the same platform).

5.4.1 EDA Flow Characterization

Branch Prediction. Figure 5.3 summarizes our findings from the characterization experiments.
First, we observe that routing has a higher percentage of branch misses. We attribute this value
to the nature of the routing algorithms where there can be many trials before a net is successfully
routed with no design rule violations. In particular, graph search algorithms in the global routing
step and bipartite matching algorithms in the detailed routing [146] encompass a large portion of
conditional statements that cannot be avoided. Rip-up and reroute techniques also contribute to
halting the continuous execution of the routing algorithms.

Memory Access Patterns. In Figure 5.3-b, we observe that placement and routing have

63

1 2 3 4 5 6 7 8
vCPUs

1

2

3

4

5

6

7

8

Sp
ee

du
p

(x
)

dyn_node
aes
ibex
jpeg

swerv
ariane
coyote
sparc_core

Figure 5.4: Routing speedup for different designs. dyn_node is the smallest and sparc_core is the
largest (#instances).

significantly higher cache misses than synthesis and STA. Placement has a 45.11% cache misses rate
when using 1 vCPU and 33.84% when using 8 vCPUs, while routing has 27.15% and 29.84% cache
misses rate using 1 and 8 vCPUs respectively. We attribute this to the nature of the analytical
component in the placement engine that tries to optimize the half-perimeter wire length (HPWL)
across all the chip instances using convex optimization methods. This needs access to large vectors
to calculate the gradients, hence benefiting from the more cache available with more vCPUs.

Floating-point Operations. In Figure 5.3-c, we observe that the placement job requires more
floating-point operations that run on Advanced Vector Extensions (AVX) hardware. This can be
attributed to the analytical engine that tries to optimize the wire length across all the chip area
using convex optimization methods. This involves calculating gradients which relies on floating-
point operations. The STA job comes next in its percentage usage of the AVX hardware. This is
consistent with the nature of STA algorithms where calculating slacks involves graph traversal from
inputs to outputs, with access to floating-point values in the technology library.

Scalability and Speedup. In Figure 5.3-d, we observe that the routing job scales well with
more #vCPUs. This is consistent with the nature of the routing job, where nets in independent
grid cells can be routed in parallel with no conflict, as opposed to synthesis, placement and STA
where internal algorithms have inherent dependencies. Further analysis of the routing job, Figure
5.4 plots the speedups achieved on different designs of different characteristics and sizes. It shows
that adding more vCPUs does not eminently scale the routing job in all designs. Smaller designs
(such as dynamic_node and aes) have almost equal speedups for 4 and 8 vCPUs. This means that
the provisioned vCPUs might not offer the expected benefit from the cloud scale, and that there is
an opportunity to achieve the same outcome in nearly the same time with less resources.

Results from Figure 3 play a vital role in our optimization framework. They are used to determine
the type of virtual machines that give the best performance for a given job. Subsequently, they
determine the pricing (per second) for a job to be executed, which is also what our optimization
algorithm minimizes.

64

VM #1: 8 vCPU

node 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

node 1
14 15 16 17 18 19 20 21 22 23 24 25 26 27

VM #2: 8 vCPU
VM #3:
8 vCPU

thread
core

Figure 5.5: VM placement scenarios in a cloud environment.

Synthesis Placement Routing STA0

10

20

30

40

50
Ru

nt
im

e
(m

in
ut

es
.)

VM #1: Same Node
VM #2: Cross Nodes
VM #3: Hyper-threading

Figure 5.6: Impact of VM placement on the total runtime.

Hyper-threading and NUMA effects. The placement of a VM on a physical server can
significantly impact the performance of EDA workloads running inside it. Since modern cloud data
centers use dual-socket servers with hyper-threading enabled, non-uniform memory access (NUMA)
effects and competition for L1 cache can negatively impact the tenant’s workload. Figure 5.6 shows
three different scenarios of VM placement on a cloud server. In particular, VM #1 is given 8 vCPUs
on 8 different cores on the same node. This means that the virtual CPUs only share the last-level
cache (LLC), but have their own level 1 cache (L1). VM #2 is allocated across the two nodes. While
each vCPU has its own L1 cache, accessing LLC on the other node takes longer. VM #3 is allocated
on a single node where hyper-threading is enabled. This is a scenario where each 2 vCPUs share
the same L1 cache, and all vCPUs share the same LLC.

We observe that, for the routing job, and as compared to VM #1, VM #2 and VM #3 take
7.98% and 38% more time to complete the job respectively. The cache misses rates are 28%, 24%
and 29% for VMs 1, 2 and 3 respectively. Although VM #2 has less cache misses rate, it takes longer
as it accesses parts of the data on the other node. Additionally, VM #3 reveals the competition for
cache that happens when hyper-threading is enabled.

Main Takeaways. From the point of view of EDA teams running their EDA applications on
the cloud, we summarize our main recommendations:

1. Synthesis and STA jobs perform well on general-purpose VM instances with a balance between
computations and memory access. Placement and routing require VM instances with higher
memory-to-core ratio, with routing demanding more available L1 and LLC cache.

2. Placement jobs should be run on a compute instance with an underlying processor that sup-
ports Advanced Vector Extensions (AVX). STA jobs would also benefit from AVX hardware.

65

logic synthesis timing analysis placement routing

Cloud EDA Flow

... ...

Querying Engine Data Models Logs Parsers

Data Management

Predictive Analytics

ML models design (.v, .def)
 libraries (.lib, .lef)
 params (.sdc)

 Runtime
 Resources

Figure 5.7: Overall system architecture for analyzing and optimizing EDA flows on the cloud.

3. On large designs, routing jobs scale well with the number of vCPUs allocated. However, on
small designs, speedup is capped at a certain point.

5.4.2 Runtime Prediction

To address Problem B, we state that the runtime of chip design tasks depends on a number of factors
such as the design itself, the tools used, the technology node, the parameters used to instruct the tools
and the VM configuration. Without losing generality, when using the same tools, technology node,
default parameters and VM configuration, the runtime of a certain job depends on the complexity
of the design itself.

In order to build a predictive model for cloud EDA flows, we propose a fully-integrated workflow
to collect and analyze data, as well as to build and iteratively fine-tune models shown in Figure 5.7.
At the heart of the workflow lies a data management module that aids in collecting, storing and
analyzing EDA data. In addition, the module offers a flexible querying engine to help in developing
predictive models. We describe each module in the following subsections.

Data Management. Migrating to a cloud infrastructure not only solves existing problems in
legacy EDA projects, but also opens doors for a new generation of data-driven EDA applications.
In [51, 80, 65], the authors proposed a system for measuring a design process by collecting the
characteristics of design artifacts, design process, and QoR during the system development and
using these data points to optimize the design and improve productivity.

To manage EDA data collected from cloud environments, we propose a fully-integrated data
management framework, called EDA Analytics Central (EDAAC for short). The goal of EDAAC is
to make it easy and reproducible to perform the following tasks:

• Data collection: from log files using predefined shell tools and python scripts that extract
relevant metrics from an EDA flow.

• Data storage: to store and index data in a persistent structural database that can support
data analytics tasks. Data is then accessed through standardized data models.

66

AIG/Netlist Graph

Adj =

Cells Features
X =

Graph Conv

Graph
Embedding

Fully
Connected

NN

1 vCPU runtime
2 vCPU runtime
4 vCPU runtime
8 vCPU runtime

Figure 5.8: Our proposed runtime prediction model

• Data querying: to efficiently build predictive models utilizing the collected data, with the
goal of improving the execution of EDA flows on the cloud.

We discuss the implementation details on EDAAC in Section 5.5.
Predictive Model. A convenient starting point for building a runtime prediction model is

to use the size of the design as the main feature, and fit a regression model on the collected data
[181]. Hence, we built a baseline model that takes as input the number of nodes and edges of the
representative graph of the design and outputs the runtime for different machine sizes (i.e. #vCPUs).
As we will observe in the experiments section, these simple features are not distinguishing factors
of the “complexity” of the design. In other words, two designs of the same size can take different
runtime for a job because the structure of one of the designs is more complex. Therefore, we designed
an improved model that takes into account the structure of the design to be used as features.

Figure 5.8 shows the architecture of our model. The model takes as input the design in RTL
or netlist, and performs an embedding operation using Graph Convolutional Networks [92]. After
that, a fully-connected neural layer transforms the embedding into predictions for the runtime under
different machine sizes (i.e. #vCPUs). This model is trained for each application separately. Using
the predicted runtimes, we can calculate the speedup gains from using 2, 4 or 8 vCPUs as compared
to using only 1 vCPU.

We used two GCN layers with 256 and 128 hidden units each, followed by 1 fully connected
layer with 128 units. The model is trained for 200 epochs using Mean Square Error (MSE) as a loss
function and Adam as the optimizer (lr=1e-4). The loss function calculates the combined prediction
error for all four runtimes (i.e. 1, 2, 4 and 8 vCPUs).

Processing Input Design. When building a model to predict synthesis runtime, the input is
usually in RTL, which is not a graph. However, synthesis tools map the RTL into an intermediate
representation such as And-Inverter Graphs (AIG) before synthesizing and mapping to a technology
library. Therefore, our model can operate on the AIG representation of the design. The AIG is a
Directed Acyclic Graph (DAG), which means it preserves edge directions for the GCN.

In the back-end EDA (P&R), the input is expected to be a netlist, which is represented as a
hyper-graph. Figure 5.9 shows an example netlist (5.9-a) that has two input pins, four cells and
three output pins. Cell C1 is driving three other cells C2, C3 and C4 through the net marked in

67

C1

C2

C3

C4

PIN A

PIN B

PIN X

PIN Y

PIN Z

(a) Netlist Example

C1

C2

C3

C4

A

B

X

Y

Z

(b) Graph Representation

Figure 5.9: Graph extraction from design netlist.

A

B

C

D
E

F

(a) Input Graph

A
B

A

D
E

F
A

C
A

ReLU
+

Pooling

Layer-0

Layer-1
Layer-2

XA

XD

XE

XF

XA

XC
XA

C

F

E

FF

(b) Convolution Operation

Figure 5.10: Graph Convolution Operation

red. It is natural to represent each cell and every IO pin as a node in the graph. Nets are converted
to directed edges marked in red (5.9-b). This means that the feature vectors for cells C2, C3 and C4
will consider the feature vector of cell C1 when it gets updated through the propagation rule defined
in Equation 5.4.2. It also means that cell C1 will not learn about cells C2, C3 and C4. We can
also generalize the edge directionality of a net by adding directed edges between both the driving
cell and the load terminals (shown in dotted blue lines). This signifies that cell C1 will consider the
feature vectors of its loads.

Note that we only represent the nets connected to IO pins as directed edges to denote that
nodes representing input pins have a blind receptive field, while nodes representing output pins
communicate no feature vectors to other nodes. This restriction preserves important netlist features
about IO pins.

For illustration, consider the adjacency matrix of the sub-graph that contains the cells (no self-
loops). We also initialize a feature vector of length 2 for the purpose of illustration. We show a first
iteration of the propagation rule below.

A =

0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 , F =

1 −1

2 −2

3 −3

4 −4

 −→ X = A×F =

0 0

1 −1

1 −1

1 −1

Notice how cells C2, C3 and C3 learned the feature vector of cell C1, but C1 did not learn about
its loads. Adding self-loops will allow nodes to include their own feature vectors in the calculation.

Graph Convolutions. In traditional Convolutional Neural Networks (CNNs), the idea is to

68

apply a filter (also known as kernel) that produces a feature map from neighboring image pixels.
In Graph Neural Networks (GNNs), the key idea is to generate node embeddings based on local
neighborhoods. Figure 5.10 illustrates the convolution operation on graphs. Layer-0 embedding of
a node represents its input feature vector, xi. Nodes aggregate information from their neighbors in
each convolutional layer. This aggregation is followed by an activation function, such as ReLU, and
a pooling operation, such as sum-pooling. With that in-place, every layer is written as a non-linear
function:

H(l+1) = f(H(l),A) , (5.1)

where H(l) represents the activation at layer l, and H(0) is the input feature matrix, X . Looking at
the embedding of each node, we can elaborate on Equation 5.1 as follows:

hk
v = σ (Wk

∑
u∈N(v)

hk−1
u

|N(v)|
+ Bkh

k−1
v) ∀k ∈ {1, ...,K}

where, hk
v represents kth-layer embedding of node v. Wk and Bk are the trainable matrices which

are shared with all nodes of the graph. After K-layers of neighborhood aggregation, we get output
embeddings for each node that can be fed into a loss function. We can then run stochastic gradient
descent to train the aggregation parameters (i.e. Wk and Bk). A Graph Convolutional Network
(GCN) that has an architecture of two convolutional layers allows a node to learn about the features
of its neighbors in the first layer, and the features of its neighbors’ neighbors in the second layer.
In other words, increasing the number of layers in the GCN increases the receptive field size of each
node.

5.4.3 Optimizing Virtual Machine Provisioning

Given the runtime estimates, we now address Problem C. Our proposed solution maps the problem
to the multi-choice knapsack problem (MCKP) [85]. Using our predictions calculated in the previ-
ous section, each job can be run on a different machine configuration (i.e. #vCPUs), where each
configuration completes the job in t time and costs p in total.
Formulation. Let zl(C) be an optimal solution defined on l applications and with total runtime
constraint C:

zl(C) := min

l∑
i=1

Ni∑
j=1

sijpij (5.2)

such that,

l∑
i=1

Ni∑
j=1

sijtij ≤ C,

∑
j∈Ni

sij = 1, i = 1,, l,

sij ∈ {0, 1}, i = 1,, l, j ∈ Ni

69

Algorithm 4: Optimizing Cloud Deployment Cost Subject to Time Constraint
Input : Runtime constraint (C)
Input : For each job, for each configuration (N):

• t - array of predicted job completion times

• p - array of job deployment costs

• l - array of job applications (i.e. classes)

Output: Selected configuration for each application (s)
1 KC = [|l| × C] lookup table. Initialize to ∞; s = KC
2 w = [|l| ×N] weights table // represents runtime (sec.)
3 v = [|l| ×N] values table // represents cost ($)
4 for i in 0, .., |l| do
5 for j in 0, .., C do
6 KC[i][j] = 0 if i = 0
7 KC[i][j] = ∞ if j = 0
8 candidates = []; indices = []
9 for k in 0, .., w[i− 1] do

10 candidates = [candidates, KC[i− 1][j − w[i− 1][k]] + v[i− 1][k]]
11 indices = [indices, k]
12 end
13 if candidates is not empty then
14 KC[i][j] = min(candidates)
15 s[i][j] = indices[index of (min(candidates))]
16 end
17 end
18 end
19 if KC[|l|][C] = ∞ then
20 No solution that satisfies time constraint. Abort.
21 end
22 jobs = empty dictionary; i = |l|; j = C
23 while i ! = 0 do
24 jobs[i] = s[i][j]
25 j = j − w[i− 1][s[i][j]]
26 i = i− 1

27 end
28 s = jobs

where sij ∈ {0, 1} denotes whether we select VM configuration j for stage i or not, and Ni denotes
the number of configurations in a given stage. tij denotes the runtime of stage i when using j’s
configuration, which is obtained from the runtime predictions. Similarly, pij denotes the cost of
running stage i when using j’s configuration, which is obtained from the pricing table of the selected
cloud vendor. We assume that zl(C) :=∞ if no solution exists (i.e. the total runtime is not sufficient
to complete all the stages using the fastest machine configuration).

To solve (2), we implemented a pseudopolynomial solution through dynamic programming uti-
lizing Dudzinski and Walukiewicz approach [48]:

70

zl(C) = min

zl−1(C − tl1) + pl1 if 0 ≤ C − tl1,

zl−1(C − tl2) + pl2 if 0 ≤ C − tl2,

:

zl−1(C − tlnl
) + plnl

if 0 ≤ C − tlnl

Algorithm 4 shows a detailed implementation of the above approach. This implementation
provides an optimal solution provided that the runtime values are rounded to the nearest integer
(second). This is an assumption that we can safely make in our case since cloud machines are billed
per second (no fractions).

On-demand vs. Spot VMs. Costs used in our calculations can be obtained from the standard
pricing table from public cloud vendors. Some cloud vendors offer a type of VMs called spot (or
preemptible) instances. They are offered for a much lower price than the on-demand instances. The
way spot instances work is that a user makes a request for a VM having a specific configuration (from
Section 5.4.1), and includes a “maximum bid price” indicating the maximum that the user is willing
to be charged for that VM configuration. The cloud vendor satisfies the requests of the highest
bidders, and periodically recalculates a fair VM price (according to demand) and terminates those
instances whose maximum bid is below the new price. In other words, the cloud resource allocator
might stop (preempt) these instances if it requires access to those resources for other tenants. This
means that an EDA job might be killed prematurely before it completes. However, we can take
advantage of the huge cost saving that spot instances offer, by allowing EDA teams to determine
"how high" they should bid in order to guarantee that their EDA job will complete before the VM
is terminated.

In order to achieve this goal, we utilize the DrAFTS framework proposed in [182]. The framework
analyzes published time-series data from a cloud vendor1 and uses a non-parametric time series
analysis method to predict an upper bound on the maximum bid price and a lower bound on the
duration the bid will be competitive to prevent a termination due to market price. DrAFTS achieves
this by tracking the history of market prices and their associated durations for each point where
pricing data is available. Based on this price history, it then builds up a series of runtime durations
for which the maximum bid price prediction would have remained above the market price. After
that, it uses time-series analysis to predict a lower confidence bound for the requested duration.

In particular, given a time series of price history, a quantile for which a confidence bound should be
predicted (q ∈ (0, 1)), and the confidence level of the prediction (c ∈ (0, 1)), each price history’s data
point in the time series is treated as a Bernoulli trial with a probability q of success. Assuming that
data points are independent, the probability of getting exactly k successes is a Binomial distribution
with parameters n (number of price history data points) and q (quantile). The probability that no
more than k observations are greater than the qth quantile of the distribution is given by:

1Amazon web services in this study

71

6000 8000 10000 12000 14000 16000 18000 20000
Design Size (# cells)

200

300

400

500

600

700

Ru
nt

im
e

(s
ec

on
ds

)

Figure 5.11: Runtime as a function of the design size.

k∑
j=0

(
n

j

)
(1− q)jqn−j (5.3)

where taking k to be the largest integer for which this formula is smaller than 1− c gives the lower
confidence bound. Our integration takes as input the required VM configuration (as recommended
from Section 5.4.1) and the estimated runtime for a given job (as recommended from Section 5.4.2).
In addition, it takes the required probability for successful completion before the spot VM possibly
receives a termination signal by the cloud vendor (e.g. p >= 0.95). Then, we recommend a bid price
that guarantees a minimum duration for the requested VM, using c = 0.99 and a lower confidence
bound on the (1− q)th quantile. The higher the probability, the higher the recommended bid price.
Obviously, if the recommended bid price is higher than the estimated cost of running the same job
on an on-demand VM, a user should always choose the reliable execution of on-demand VMs.

5.5 Empirical Results

In this section, we describe our experimental setup and discuss the results.
Data Management. We implemented EDAAC as an open-source python package2. EDAAC

connects to a non-structural database engine, MongoDB [131]. MongoDB can be deployed on a
central cluster where all jobs in the EDA flow have access to it through EDAAC package. The
package serves as a middle-ware providing log file parsers, standardized data model schema and a
unified querying engine. These functionalities support the continuous optimization of the design,
as well as enable machine learning applications inside and around tools [80]. The package offers a
scalable solution to manage the future generation of data-driven EDA applications. We used this

2https://pypi.org/project/edaac/

72

200 150 100 50 0 50 100
Error (predicted - actual) of Runtime (sec.)

0

50

100

150

Te
st

 S
et

 In
st

an
ce

s

Zero Error

Figure 5.12: Runtime prediction errors. Avg. Error: 13%.

package for collecting runtime data in order to develop our proposed prediction model discussed
next.

We demonstrate our predictions on GF 14nm technology node and commercial EDA tools. We
implemented our model in Python and utilized Deep Graph Library for training.

Dataset. We use 18 representative benchmarks of different sizes and structures from EPFL
benchmark suite [10] and OpenCores [116]. We synthesize each benchmark applying different logic
optimizations to generate different netlists. The motivation is to challenge the GCN with netlists
that have different physical structures, but perform the same logic function. In addition, the varying
size of the netlists (#std_cells, #nets, #IOs) tests how wide and deep the graph convolutions can
aggregate information from nodes. We have a total of 330 unique netlists, with 2,640 data points
(runtimes) for different machine configurations. These designs range from a few hundred instances to
200k instances. We divide the dataset into training and test groups with 80% and 20% respectively,
where netlists of the test set belong to unseen designs in the training set.

Prediction Accuracy. Figure 5.11 shows the runtime of the training set (routing job) as a
function of the design size. We observe that designs with similar sizes take significantly different
runtimes. In other words, the design size is not a differentiating feature of how long it would take a
design to complete a specific job. When fitting a regression model, we found that the average error
is 22.7%. While this prediction accuracy might be acceptable in certain use cases, it could make a
huge difference when predicting cloud runtimes (and subsequently cloud deployment costs).

As discussed in Section 5.4, a graph-based neural network would be able to capture the inherent
complexity of the design that could be a differentiating factor for prediction tasks. We used Adam
optimizer [91] (learning rate = 1e−4) to train the model parameters. Figure 5.12 shows a histogram
of model prediction errors for the routing job. Runtime predictions given a netlist (placement,
routing, STA) achieves an average error of 13%. On AIGs (synthesis), the runtime prediction has
an average error of 5%. This highlights the capability of graph-based neural networks in capturing
the design complexity.

Optimization Results. Referring to Figure 5.2, our optimization module takes as input the
predicted runtime for a given EDA job on certain machine size (from Section 5.4.2), and the cost of

73

Table 5.2: Minimizing total cloud deployment cost subject to a time constraint. The mark (x)
denotes the recommended machine configuration. NA denotes Not Achievable.

Task vCPUs Runtime
(sec.)

Cost
($)

Total Runtime Constraint (sec.)
10000 6000 5645 5000

Synthesis
(general-
purpose
machine)

1 6100 0.1593
2 4342 0.1544 x
4 3449 0.1878 x
8 3352 0.3743 x

Placement
(memory-
optimized
machine)

1 1206 0.0370 x
2 905 0.0404
4 644 0.0468 x
8 519 0.0769 x

Routing
(memory-
optimized
machine)

1 10461 0.3208
2 5514 0.2463
4 2894 0.2103 x
8 1692 0.2506 x x

STA
(general-
purpose
machine)

1 183 0.0048
2 119 0.0042 x x
4 90 0.0049
8 82 0.0092 x

Total Runtime 8561 5904 5645 NA
Minimum Cost 0.4059 0.4894 0.711 NA

running the job on a machine type recommended for that job (as shown in Section 5.4.1). In order
to calculate the cost, we obtained the pricing table for the recommended machine types from AWS
at the time of this writeup, and calculated the total cost for each EDA job (cost = runtime in hours
× cost per hour).

To demonstrate our optimization, we applied different runtime constraints on predictions the
of the sparc_core design as shown in Table 5.2. Our algorithm outputs the recommended machine
configurations for each task that minimizes the total cost subject to the given total runtime constraint
(outputs in Figure 5.2). As we tighten the time constraint, we observe that the algorithm chooses
higher machine configurations in some tasks (but not all). A very tight time constraint cannot be
met and no solution is presented.

Figure 5.13 shows the cost savings that we get from running our optimization as compared to
over-provisioning (using 8 vCPUs in all stages) or under-provisioning (using 1 vCPU in all stages)
cloud instances. Under-provisioning cost is also relatively high although the per-second machine
costs are cheaper. This is because the runtime of the individual stages are significantly longer. Our
optimization offers an average of 35.29% cost saving with minimal overhead to the best runtime.

Furthermore, choosing to run the EDA jobs on spot VMs offers further cost savings. Figure 5.14
shows potential cost savings when bidding for spot VMs. A job completion probability of 95% offers
huge cost savings up to 73%, while a job completion probability of 99% offers cost savings up to
44%. Depending on the market price at the time of the request, spot VMs might have a cost close
to on-demand VMs; in which case, the EDA team should opt to run the jobs on on-demand VMs.

74

0.0
0.2
0.4
0.6

Co
st

 ($
)

over-provision
our optimization
under-provision

sparc_core coyote ariane swerv0

100

200

300

To
ta

l R
un

tim
e

(m
in

s.)

Figure 5.13: Cost savings from running our multi-choice knapsack optimization algorithm. Over-
provisioning runs all stages on 8 vCPUs. Under-provisioning runs all stages on 1 vCPUs. Average
cost saving: 35.29%

sparc_core coyote ariane swerv0.0

0.1

0.2

0.3

0.4

0.5

Co
st

 ($
)

on-demand
spot (p = 99%)
spot (p = 95%)

Figure 5.14: Further cost savings from choosing to run EDA jobs on spot VMs. p refers to the
probability that the job will complete before the machine is terminated by the cloud provider. Solid
bars indicate the minimum cost, and stacked dashed bars indicate the maximum cost; both depend
on the market price at the time of the request.

In summary, our method for optimizing EDA jobs on the cloud is inspired by a deeper under-
standing of the performance characteristics presented in Section 5.4.1. We have offered a complete
prediction and optimization pipeline for EDA teams aiming to migrate their workloads to the cloud
while keeping the cost minimum and meeting tapeout deadlines. While all experiments are done for
1, 2, 4 and 8 vCPUs (due to license limits), the characterization and methods can be applied on
larger designs and more CPU cores. The model and the optimization algorithm are both open-source
under BSD-3 license and are available on GitHub 3.

3https://github.com/scale-lab/EDAonCloud

75

5.6 Conclusion

We present a detailed performance characterization of four EDA applications (synthesis, placement,
routing, static timing analysis) on different cloud machine configurations. We recommend that
placement and routing jobs run on cloud machines with higher memory-to-core ratio. In addition,
placement jobs require that the underlying hardware supports Advanced Vector Extensions (AVX)
for floating-point operations. Moreover, the performance of routing jobs scales well with more vCPUs
added in the multi-tenancy environment. Based on our observations, we propose an integrated
framework for analyzing and optimizing EDA flows on the cloud. The framework offers a data
management solution and a predictive analytics module. Using this framework, we developed a
novel model based on Graph Convolutional Networks (GCNs) that predicts the runtime of a given
EDA job under different machine configurations. Our model achieves a runtime prediction accuracy
of 87%. Furthermore, we formulated a new optimization problem for deploying EDA applications
on the cloud, and presented a pseudo-polynomial optimal solution using a multi-choice knapsack
mapping. Our dynamic programming implementation reduces the total deployment cost by 35.29%,
while meeting tapeout deadline constraints. Costs costs could further be reduced by up to 73% when
using cloud spot instances.

Chapter 6

Fast GPU-native Combinatorial

Optimization

6.1 Introduction

Combinatorial optimization problems are a central and crucial class of problems in operations re-
search, computer science, and applied mathematics, characterized by the need to find an optimal
solution from a finite or countably infinite set of feasible solutions. These problems arise in numer-
ous real-world applications, including but not limited to scheduling [46, 54], routing [114], resource
allocation [41, 34], and network design [62, 1], where the goal is to optimize a given objective
function subject to specific constraints. The complexity of combinatorial optimization problems
is attributed to their discrete domains, which often leads to exponential growth in the number of
potential solutions, rendering them computationally intractable for exact solution methods, particu-
larly in large-scale instances. As such, the development of efficient and effective solution techniques
for combinatorial optimization problems remains an ongoing and challenging research endeavor [21].

Discrete optimization can be conceptualized as a search process over a discrete solution space,
where the primary objective is to identify an optimal or near-optimal solution from a set of fea-
sible solutions. This search process can be approached via various methods, each offering unique
trade-offs between computational efficiency and solution quality. Approximation algorithms, for in-
stance, provide provably near-optimal solutions within a specified performance guarantee, typically
expressed as a ratio or additive bound relative to the optimal solution [174]. Dynamic programming,
on the other hand, leverages a recursive problem decomposition strategy to systematically solve a
combinatorial optimization problem by solving its subproblems and storing their solutions to avoid
redundant computation [19]. Branch and bound is another widely used approach, which employs a
systematic exploration of the solution space using bounds and pruning techniques to eliminate sub-
optimal solutions, thus narrowing the search and reducing computational effort [3]. Each of these
methods offers distinct advantages and limitations, and the choice of the most suitable method

76

77

depends on the nature and requirements of the specific combinatorial optimization problem at hand.
The recent advancements in training neural networks have opened new avenues for addressing

combinatorial optimization problems using deep neural networks. Here, the neural network does
not predict solutions for the combinatorial optimization problem, rather the training process of the
neural network is the solving process of the problem instance. This line of research aims to leverage
the computational power of hardware accelerators, such as GPUs and TPUs, to efficiently search
the solution space and discover more optimal solutions. [8] present a new approach that does not
rely on data-driven training but instead utilizes backpropagation on a loss function defined by the
neural network architecture itself. By reducing the Maximum Independent Set problem (MIS) to a
neural network and employing a dataless training scheme, the proposed method updates the network
parameters to produce a satisfiable solution. Similarly, [155] use a graph neural network (GNN) [92]
to approximately solve canonical NP-hard problems that have a graph structure. By applying a
relaxation strategy to the problem Hamiltonian, a differentiable loss function is generated, which
is then used to train the graph neural network. The unsupervised training process is followed by
a simple projection back to integer variables. These works highlight the potential of utilizing well-
maintained and mature infrastructure of training deep neural networks in solving combinatorial
optimization, providing scalable and efficient solutions for a wide range of problems.

6.2 Motivation

Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) problems represent two prominent classes
of combinatorial optimization problems. In the case of SAT, the objective is to determine whether
there exists an assignment of truth values to a given set of Boolean variables that satisfies a given set
of logical clauses, typically expressed in conjunctive normal form (CNF). When the problem is non-
satisfiable, MaxSAT extends the SAT problem by seeking an assignment that maximizes the number
of satisfied clauses, rather than trying to satisfy all clauses. MaxSAT problems are of particular
interest due to their ability to model optimization scenarios where some degree of constraint violation
is tolerable, capturing a broader range of real-world applications [158, 161, 75]. Both SAT and
MaxSAT problems have been extensively studied, giving rise to a variety of algorithmic techniques
and heuristics aimed at efficiently solving or approximating solutions to these problems [12].

Existing MaxSAT solvers employ a diverse range of techniques to efficiently tackle the Maxi-
mum Satisfiability problem. These techniques can generally be classified into two main categories:
complete and incomplete methods. Complete methods, such as Branch and Bound algorithms [105],
search exhaustively for an optimal solution, guaranteeing the best possible assignment of truth val-
ues to satisfy the maximum number of clauses. Some complete solvers utilize SAT solvers as a core
engine, iteratively refining their search space by tightening the upper bound of unsatisfied clauses,
as seen in iterative SAT-based MaxSAT algorithms [132, 134]. In contrast, incomplete methods, like
local search algorithms, do not guarantee optimality but aim to find high-quality solutions in less
time. These methods involve exploring the solution space by iteratively making small changes to the

78

SAT Solver

Is satisfiable?

No;

MaxSAT
Solver

Refine
Yes

(a) Existing MaxSAT Solvers

 Forward

(b) Our torchmSAT Solver

Figure 6.1: Existing MaxSAT solvers depend on a SAT oracle to iteratively evaluate a Boolean
formula, F , and update the clauses in F to reduce the number of unsatisfied clauses, U . Our
torchmSAT solver eliminates the need for a SAT oracle and encodes F in the architecture of a neural
network. Maximizing satisfiability is performed using backpropagation on the neurons contributing
to U .

current assignment of truth values, guided by various heuristics and neighborhood search strategies
[124, 133]. Both complete and incomplete MaxSAT solvers have been successfully applied to real-
world problems, with the choice of solver being dependent on the problem size, required optimality
guarantees, and available computational resources.

In this thesis, we present a novel MaxSAT solver, called torchmSAT, that leverages neural net-
works and falls within the incomplete category. Departing from the conventional practice of in-
crementally enhancing existing SAT solvers for MaxSAT resolution, we propose a completely new
algorithm developed from scratch. As depicted in Figure 6.1, our method forgoes the necessity for
a traditional SAT solver as a fundamental component of the search algorithm in incomplete tech-
niques for MaxSAT. Rather than training a neural network to predict assignments that maximize
satisfied clauses, an inherently complex task, we develop a novel neural network architecture with
a differentiable loss function for solving MaxSAT. The key intuition is that by relaxing the binary
constraint of the problem and allowing the Boolean variables to be represented in a continuous do-
main, advances in deep learning libraries would allow this optimization to be executed efficiently.
Accordingly, the training process can be seen as a process that iteratively explores the solution
space, generating progressively improved variable assignments. Consequently, our approach elim-
inates the need for labeled training data, or the need to call an underlying SAT solver to testify
(un)satisfiability. Moreover, since our proposed solver is natively built using a reliable deep learning
library [144], we are able to run the solver on GPUs without any change to the data structure, the
solving algorithm or the optimization process. Therefore, we investigate the advantages of hardware
acceleration for solving MaxSAT, demonstrating that the acceleration of such computations enables
the solver to traverse the feasible solution space more rapidly. In essence, torchmSAT presents
a fresh approach for solving MaxSAT that could potentially open doors for a new generation of
combinatorial optimization solvers.

79

6.3 Preliminaries

MaxSAT Formulation. In propositional logic, a Boolean formula is composed of Boolean vari-
ables, x = {x1, x2, . . . xn}, and logical operators, including negations (¬), conjunctions (∧), and
disjunctions (∨). A common representation for Boolean formulas is the conjunctive normal form
(CNF), which is structured as a conjunction of multiple clauses, C = {c1, c2, . . . , cm}. Each clause
is a disjunction of literals, where a literal can be either a variable or its negation.

F = c1 ∧ c2 ∧ · · · ∧ cm

F = (x1,1 ∨ x1,2 ∨ · · · ∨ x1,n1) ∧ (x2,1 ∨ · · · ∨ x2,n2) ∧ · · · ∧ (xm,1 ∨ · · · ∨ xm,nm) (6.1)

This format facilitates the systematic analysis and manipulation of Boolean expressions for var-
ious computational tasks. A formula is deemed satisfiable if there is at least one assignment of
Boolean variables, x, that satisfies all clauses. In numerous applications, a formula may not be
entirely satisfiable, and the objective of MaxSAT solvers is to identify an assignment that satisfies
the greatest number of clauses. In this scenario, the number of unsatisfied clauses is referred to
as the cost of the CNF – a lower cost corresponds to a better assignment. In some applications,
(weighted) partial CNF formulas are considered. Clauses in a partial CNF formula are characterized
as hard, H, meaning that these must be satisfied, or soft, S, meaning that these are to be satisfied,
if at all possible.

SAT Oracle. Existing MaxSAT solvers employ SAT oracles to handle CNF formulas. A SAT
oracle is any algorithm that can determine the satisfiability of any given Boolean formula in the
conjunctive normal form (CNF). If the formula is satisfiable, the SAT oracle provides a satisfying
assignment; if not, it returns additional information such as an unsatisfiable core, U ⊆ F . The
unsatisfiable core, U , represents a subset of F ’s clauses that are inherently unsatisfiable. The task
of determining the satisfiability of a given CNF is indeed NP-complete [82].

Conflict-Driven Clause Learning (CDCL) is a method used by modern SAT solvers to
efficiently search the solution space and resolve conflicts during the search process. State-of-the-
art SAT solvers build upon the basic DPLL (Davis-Putnam-Logemann-Loveland) algorithm [139],
which employs backtracking and unit propagation, by adding clause learning and non-chronological
backtracking [26]. When a CDCL-based solver encounters a conflict, which occurs when the current
partial assignment of X leads to an unsatisfiable core U , it analyzes the conflict to generate a
new learned clause. This learned clause represents the assignments of variables contributing to the
conflict and helps in preventing the solver from introducing similar conflicts in the future. The solver
then performs jumping back several levels in the search tree instead of just one, using the learned
clause to guide the process. The main advantage of CDCL-based solvers is their ability to learn
from conflicts and use that knowledge to prune the search space more effectively. This results in
faster and more efficient SAT solving for many real-world problem instances.

80

MaxSAT Solvers. In an unweighted MaxSAT problem, a typical MaxSAT algorithm proceeds
by making several calls to an underlying SAT oracle such as CaDiCaL [53], Glucose [14] or Minisat
[168]. The difference amongst algorithms is how they orchestrate the calls to the SAT solver. For
example, the RC2 algorithm sends F to the SAT solver, which reports that F is unsatisfiable and
returns an unsatisfiable core, U . At least one of the clauses of the core will have to be disregarded
in order to fix the core. So, the algorithm proceeds by relaxing each clause in U (i.e. augmenting
the clause with a fresh variable called relaxation variable) and constrains the sum of the relaxation
variables to be at most one [72]. In other words, the algorithm starts by assuming all clauses can be
satisfied and iteratively relaxes this assumption until it finds a satisfying assignment. Similarity, the
FM algorithm [119] involves a sequence of calls to an unsatisfiability oracle, each of which generates
an unsatisfiable core. The clauses that are part of this unsatisfiable core are then relaxed, followed
by the introduction of a new constraint that pertains to the relaxation variables in the formula.
On the other hand, the LSU algorithm runs a series of satisfiability oracle calls refining an upper
bound on the MaxSAT cost, followed by one unsatisfiability call, which stops the algorithm [133]. In
other words, it finds an initial assignment with a suboptimal cost, and iteratively search for better
assignments to reduce the cost.

In our work, we present a novel MaxSAT algorithm that does not rely on a SAT oracle during
the search process. Instead, it adopts a progressive strategy akin to the one described in [133] and
relies entirely on the neural network for identifying unsatisfiable cores, U , and discovering improved
solutions through backpropagation.

6.4 Related Work

ML for MaxSAT. Several recent efforts have investigated the integration of machine learning in
solving SAT and MaxSAT problems. [157] train a graph neural network classifier to predict sat-
isfiability of random SAT problems. The model learns to search for satisfying assignments during
inference for problem instances that are larger than the ones seen during training. Similarly, [107]
present a framework for SAT solving utilizing Belief Propagation (BP). They introduce a Graph
Neural Network (GNN) architecture that embeds BP in the latent space and use the trained model
for marginal inference to obtain satisfying assignments for SAT. Other learning-based methods have
been proposed for MaxSAT. For example, [102] propose a method for learning combinatorial op-
timization problems from contextual examples, which indicate whether solutions are adequate in
specific contexts. The framework uses the MaxSAT formulation and considers a specific setting
where example solutions and negative solutions are context-specific. In the same way, [22] train
MaxSAT models from examples and use a genetic algorithm that decreases the number of evalua-
tions needed to find good models. [122] uses a supervised learning approach to develop an algorithm
that can fix Boolean variables based on local information from the Survey Propagation algorithm.
In general, this line of research collects training data on MaxSAT instances, and trains a model that
generalizes for bigger problems. Our method is different as it does not necessitate the gathering of

81

any training data.
NN-based Combinatorial Optimization. An emerging approach to incorporating machine

learning for tackling combinatorial optimization problems involves regarding the neural network’s
training process as the problem-solving procedure for a given instance. In this paradigm, a neural
network is dynamically generated based on the problem instance, and through multiple iterations
of forward and backpropagation, a series of learnable parameters embody the ultimate solution to
the problem instance. The absence of data requirements for training makes this method particularly
attractive for deployment in diverse settings. For instance, [8] introduce a technique that operates
on graphs and addresses the Maximum Independent Set (MIS) problem [171]. The core concept
involves representing the MIS problem as a single differentiable function, which facilitates the uti-
lization of differentiable solutions. [155] present a Graph Neural Network (GNN)-based solver for
approximately solving combinatorial optimization problems by encoding the optimization problem
using a Hamiltonian (cost function) and associating binary decision variables with vertices in an
undirected graph. A relaxation strategy is applied to generate a differentiable loss function for
learning the GNN’s node representations. After several iterations, a softmax activation is applied
to obtain one-dimensional probabilistic node assignments, which are then mapped back to integer
variables using a projection heuristic. Both work can be viewed as a Linear Programming (LP)
relaxation of the Mixed-Integer Linear Programming (MILP) formulation of the investigated prob-
lems, i.e. Maximum Independent Set (MIS), and Maximim Cut (MaxCUT). While our approach is
inspired by the same ideas, we address a different problem (i.e. MaxSAT), and eliminate the use of
GNNs.

6.5 Method

Key Idea. Our proposed method, torchmSAT, is conceptually inspired by the technique of Linear
Programming (LP) relaxations often utilized in the field of Mixed Integer Linear Programming
(MILP) [5]. In MILP, certain variables are constrained to take only integer values which makes the
optimization problem NP-hard. A common strategy to tackle this issue is to apply LP relaxation,
where the integer constraints on the variables are relaxed, allowing them to take on continuous
values. Similarly, in our method, we treat the binary variables of the MaxSAT problem as continuous,
allowing us to leverage the power of differentiable optimization methods. The challenge we try to
address becomes constructing a single differentiable function capable of approximating solutions for
MaxSAT problems. Once derived, implementing the optimization process using a neural network
allows us to capitalize on existing deep learning libraries, and their acceleration capabilities.

In what comes next, we begin by deriving a single differentiable function for MaxSAT using a
novel neural network architecture. We describe the key components, their interactions, and their
roles in the solving process. Following this, we show how our solver is different in finding unsatisfiable
cores and how the solving process proceeds.

The Neural Network Architecture. Our proposed single differentiable function for MaxSAT

82

1
0

-1

...

-1
0

0

...

0
-1

1

...

...... -1
1

1

...

0.23 -1.05 0.94

1 1 1

Learnable

......

......

 Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 6.2: Overview of torchmSAT neural network architecture. The learnable vector x represents
the assignments of the Boolean variables in a conjunctive normal form, F . The W matrix is fixed
and encodes a given MaxSAT instance represented in conjunctive normal form (CNF), i.e. Equation
6.1, where the rows represent boolean variables, and columns represent clauses. A value of 1 or -1
is assigned if a variable xi or ¬xi appears in clause cj respectively; and 0 otherwise. The output
layer calculates the unsatisfied cores, U . The loss function, L, calculates gradients with respect to
elements of x that are contributing to U . The neural network requires no data for training. Rather,
the training process functions as the solving process of maximizing the number of satisfied clauses
in F .

is modeled as a neural network. Figure 6.2 presents a high-level overview of its architecture. At
the heart of our solving algorithm lies a vector, x, which represents the relaxations of the Boolean
variables in a given MaxSAT instance (refer to Equation 6.1). The vector x is the only trainable
set of parameters within the neural network. Although x consists of real numbers, at any given
point in time during the solving process, we can project it back into the binary domain to derive the
variable assignments. To reverse the relaxation, we interpret xi = 1 when xi > 0, and 0 otherwise.
At the onset of the solving process, x is initialized with random real values. Interpreting the values
at this point merely corresponds to assigning random Boolean values to the variables. Throughout
the solving process, the values of x are incrementally updated in a direction that minimizes the loss.
This specific design prompts the network to progressively learn to satisfy an increasing number of
clauses.

In the context of backpropagation and the chain rule, the derivative of a multiplication operation
with respect to its inputs distributes the gradients. Therefore, the first hidden layer performs a
point-wise multiplication between x and a vector of identical length containing all values set to 1,
denoted as e. This vector serves to propagate the gradient to the corresponding xis during the
backpropagation process. After that, and to stabilize backpropagation, a tanh activation function
is applied to constrain the values of the first layer within the range of -1 to 1. The tanh activation
prevents the output of the first layer from reaching excessively high or low values, which could
potentially terminate the learning (i.e. solving) prematurely. The rest of the neural network is fixed
(i.e. non-learnable) and architected to encode our novel single differentiable function.

The second layer uniquely encodes a given MaxSAT instance. A matrix Wn,m is initialized at
the start of the solving process, with rows representing variables xi’s and columns representing
clauses cj ’s. A value of 1 is set if a variable xi appears in clause cj , while a value of −1 is set if its

83

negation ¬xi appears in cj . All other entries in the matrix are set to 0. This formulation results in
our unique differentiable function, f(x), which generates a vector U of length m:

U = f(x) = tanh(e⊙ x) ·W

where⊙ is element-wise multiplication, and · is a matrix multiplication. The entries of this vector,
U , indicate the (un)satisfiability status of each clause, serving as a dual-purpose: an evaluator for
SAT and a guide for variable gradients.

Example. Consider the following MaxSAT problem in CNF:

F = (¬x1) ∧ (¬x2) ∧ (x1 ∨ x2)

This formula is not satisfiable. It is evident that any combination of binary assignments for x1

and x2 can satisfy, at most, two clauses. Assume that x is initialized randomly as [0.43, 1.27], which
is interpreted as x1 = 1 and x2 = 1 since both values are positive. The output of the forward pass
is:

f(x) = tanh (
[
1 1

]
⊙
[
0.43 1.27

]
) ·

[
−1 0 1

0 −1 1

]
=

[
−0.41 −0.85 1.26

]
Similar to the reverse relaxation operation of x, the output of f(x) is interpreted similarly, i.e.

cj is satisfied if its activation in f is positive, and vice versa. In this case, the output indicates that
the first two clauses are unsatisfied, while only the last clause is satisfied. This represents the first
role of f(x) as a SAT evaluator. To satisfy the first two clauses, the values of x need to become
negative so that the activations of the first two clauses in f are positive. This is where the role of
the loss function comes in. The loss function, L, computes the MSE between f(x) and a zero vector
for the unsatisfied clauses. A single iteration of backpropagation updates the values of x1 and x2

in the negative direction of the gradient, moving their values closer to zero. For instance, with a
learning rate of 0.1, the new values of x will be [0.34, 1.23]. The process continues as the forward-
loss-backward loop attempts to satisfy the first two clauses. However, once the first two clauses are
satisfied (i.e., x’s are negative, representing a Boolean zero when reversing the relaxation), the third
clause becomes unsatisfied. This is when the training process explores other ways of satisfying more
clauses.

Unsatisfiable Cores Contrary to conventional MaxSAT solvers discussed in Section 6.4 that
rely on a SAT oracle to identify the set of unsatisfied clauses, U , if the formula is determined to be
unsatisfiable, our proposed neural network model directly infers the unsatisfied clauses from f(x).
Nevertheless, for larger problems, the activations of f(x) alone might not be enough to ascertain
satisfiability. The reason is that the matrix multiplication occurring in the first two layers is a non-
injective operation. This implies that distinct assignments for x might yield identical activations

84

Algorithm 5: torchmSAT Algorithm for Solving MaxSAT
Input : MaxSAT instance in conjunctive normal form (CNF). See Equation 6.1. Time limit (T)
Output: Assignment for Boolean variables (x) that maximizes satisfiability

1 Init x randomly. Construct W from CNF. Init s where sj = −len(cj). Set best_cost = #clauses.
2 agent = Initialize(A2C);
3 while current solving time < T do
4 Run forward pass, f(x). Calculate x′ where x′

i = 1 if xi > 1, and 0 otherwise.
5 Calculate unsatisfied clauses, U = x′ ·W == s.
6 if # unsatisfied clauses (U) < best_cost then
7 Save and output x′, the Boolean assignments of x. Update best_cost.
8 end
9 Calculate loss, L, for f(x) w.r.t variables contributing to the unsatisfied clauses, U .

10 Run backpropagation. Run a single step of optimizer.
11 end

for f(x). For instance, the inputs x = [0.43,−1.27] and x = [−1.27, 0.43] would result in the same
negative activation for the aforementioned third clause, despite the fact that the de-relaxed variable
assignments are totally different; one corresponds to [1, 0] while the other corresponds to [0, 1]. To
overcome this, we use an alternative method to establish (un)satisfiability of clauses. We construct
a vector, s, of length m, where each entry corresponds to the negative of the number of variables
present in its respective clause, i.e., sj = −len(cj). We also project x onto its Boolean domain,
such that x′

i = 1 if xi > 1, and 0 otherwise. This makes a clause in U unsatisfiable if and only if
x′ ·W = s. We use this projection to mask out satisfied clauses in the loss function, and only calculate
it for unsatisfied clauses. Consequently, gradients are computed exclusively for those variables that
contribute to the unsatisfied clauses, resulting in a more efficient optimization.

The Solving Process. In contrast to conventional MaxSAT solvers, which necessitate invoking
a SAT oracle, pausing to await a result, and then coordinating the subsequent call, our algorithm
operates differently. torchmSAT operates in a progressive manner, which implies that it incremen-
tally improves the solutions as the search process unfolds. Algorithm 5 shows the main steps of
our solving process. The solving process is an iterative procedure that alternates between a forward
pass, loss calculation, and backward propagation. In Line 1, we construct the neural network layers
based on the given problem instance. While the time limit has not been exhausted, the forward
pass, in Line 3, takes the current assignments of the Boolean variables, x, and computes the output
of the network, f(x). In addition, it calculates the reversed relaxation of x, denoted as x′, which is
used to determine clauses are currently satisfied by the assignment in Line 4. In Lines 5-7, if the
current assignment satisfies more clauses than previously found solutions, it outputs this result and
updates the value of the best cost (the lower, the better). In Line 8, the loss function calculates the
MSE between f(x) and a zero vector of the same length, reflecting the number of unsatisfied clauses.
The backpropagation step, in Line 9, adjusts the values of x according to the gradient calculated
by backpropagation, moving the assignments in a direction that reduces the number of unsatisfied
clauses. This process continues until all clauses are satisfied, as indicated by a zero loss, or a given
time limit is reached.

85

6.6 Empirical Results

In this section, we present a series of experiments designed to evaluate the performance of our pro-
posed algorithm and compare it with existing state-of-the-art MaxSAT solvers. Our experiments aim
to demonstrate the effectiveness of the method in various scenarios and showcase its strengths and
limitations. We describe the experimental setup, including the problem instances used, the choice of
benchmarks, and the evaluation metrics employed. Additionally, we provide a detailed analysis of the
experimental results, highlighting key observations and insights. Through these experiments, we aim
to validate the applicability of our approach and its potential impact on combinatorial optimization.

Setup. We use PyTorch (v1.10.2) [144]. No other dependencies are required to run torchmSAT
(e.g. no calls to a SAT oracle is made). We use Adam optimizer for backprogation with a learning rate
of 1e-4. For reproducibility and extensibility of our work, we use the PySAT toolkit (v0.1.8.dev1) [71]
to synthesize hard problem instances and compare against existing methods. The toolkit provides
a unified interface to various state-of-the-art SAT and MaxSAT solvers. The experimental results
are obtained using a machine with Intel Xeon E5-2680 2x14cores@2.4 GHz, 128GB RAM. For
experiments on hardware acceleration, a Tesla P40 GPU is utilized to run torchmSAT.

Evaluation Criteria. We will use a multi-faceted approach to thoroughly assess the perfor-
mance of our proposed method. First, we will investigate the cost obtained by our solver on problem
instances of varying complexity and sizes, and under different time constraints. The imposition of
a time limit in this scenario is crucial given the NP-hard nature of MaxSAT, which implies that
exploring and assessing the entire feasible region would necessitate exponential time. Secondly, we
will calculate the MaxSAT regret which quantifies the difference between the best solution found
by any baseline solver and the solution obtained by our solver. Lastly, we will assess the impact of
leveraging GPU acceleration on the performance of our solver.

Dataset. While the datasets of the popular MaxSAT evaluations 1 represent a set of non-trivial
SAT instances, we opt to test our methods on smaller, yet hard, dataset to validate the applicability
of the method. Although our method does not outperform one of the state-of-the-art SAT solvers,
torchmSAT offers a completely revamped method to solve MaxSAT problems without the need for a
SAT oracle. We employ PySAT to synthesize four representative datasets, encompassing combina-
torial principles extensively examined in the context of propositional proof complexity. Specifically,
they implement encodings for the pigeonhole principle (PHP) [40], the greater-than (ordering) prin-
ciple (GT) [99], the mutilated chessboard principle (CB) [7], and the parity principle (PAR) [6]. For
each principle, we synthesize 50 MaxSAT instances of increasing sizes where all problem instances
are not satisfiable. In other words, there is at least one clause that cannot be satisfied, and the goal
of MaxSAT solvers to find a feasible variable assignment that maximizes satisfiability. Synthesis
scripts are available in Appendix B.

Comparing with Existing MaxSAT Solvers. As discussed in Section 6.3, existing MaxSAT
algorithms proceed by making several calls to an underlying SAT oracle (i.e. solver). In PySAT,

1https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/

86

32 43
2

1.3
k

2.6
k

4.3
k

6.5
k

9.2
k

12
.2k

15
.8k

19
.8k

24
.2k

29
.1k

34
.4k

Problem Size (#C)

0
1
2
3

Co
st

 (#
U

)

1e4

RC2 FM LSU torchmSAT
T=1min. T=5mins. T=10mins.

C
B

32 43
2

1.3
k

2.6
k

4.3
k

6.5
k

9.2
k

12
.2k

15
.8k

19
.8k

24
.2k

29
.1k

34
.4k

Problem Size (#C)

101

103

Co
st

 (#
U

)

32 43
2

1.
3k

2.
6k

4.
3k

6.
5k

9.
2k

12
.2

k
15

.8
k

19
.8

k
24

.2
k

29
.1

k
34

.4
k

Problem Size (#C)

32 43
2

1.
3k

2.
6k

4.
3k

6.
5k

9.
2k

12
.2

k
15

.8
k

19
.8

k
24

.2
k

29
.1

k
34

.4
k

Problem Size (#C)

G
T

3
14

1
77

5
2.3

k
5.1

k
9.5

k
16

.0k
24

.8k
36

.5k
51

.4k
69

.8k
92

.2k
11

8.9
k

Problem Size (#C)

101

103

105

Co
st

 (#
U

)

3
14

1
77

5
2.

3k
5.

1k
9.

5k
16

.0
k

24
.8

k
36

.5
k

51
.4

k
69

.8
k

92
.2

k
11

8.
9k

Problem Size (#C)

3
14

1
77

5
2.

3k
5.

1k
9.

5k
16

.0
k

24
.8

k
36

.5
k

51
.4

k
69

.8
k

92
.2

k
11

8.
9k

Problem Size (#C)

PA
R

6
50

6
2.9

k
8.8

k
19

.7k
37

.1k
62

.5k
97

.6k
14

3.8
k

20
2.7

k
27

5.7
k

36
4.5

k
47

0.6
k

Problem Size (#C)

101

103

105

Co
st

 (#
U

)

6
50

6
2.

9k
8.

8k
19

.7
k

37
.1

k
62

.5
k

97
.6

k
14

3.
8k

20
2.

7k
27

5.
7k

36
4.

5k
47

0.
6k

Problem Size (#C)

6
50

6
2.

9k
8.

8k
19

.7
k

37
.1

k
62

.5
k

97
.6

k
14

3.
8k

20
2.

7k
27

5.
7k

36
4.

5k
47

0.
6k

Problem Size (#C)

P
H

P

3 81 41
5

1.2
k

2.6
k

4.9
k

8.2
k

12
.6k

18
.5k

26
.0k

35
.3k

46
.6k

60
.1k

Problem Size (#C)

101

103

105

Co
st

 (#
U

)

3 81 41
5

1.
2k

2.
6k

4.
9k

8.
2k

12
.6

k
18

.5
k

26
.0

k
35

.3
k

46
.6

k
60

.1
k

Problem Size (#C)

3 81 41
5

1.
2k

2.
6k

4.
9k

8.
2k

12
.6

k
18

.5
k

26
.0

k
35

.3
k

46
.6

k
60

.1
k

Problem Size (#C)

Figure 6.3: Performance of torchmSAT as compared to the state-of-the-art MaxSAT solvers in
PySAT [71], namely FM, RC2 and LSU (refer to Section 6.3 for detailed descriptions of algorithms).
Each row represents one of the datasets and each column is the time limit given to the solver. Each
dataset contains 50 problem instances of increasing size (number of Boolean variables and number
of clauses). In the plots, the problem size is parameterized by its total number of clauses on the
x-axis. On the y-axis, the cost represents the number of unsatisfiable clauses (U) by the end of the
time limit.

both the RC2 and the FM algorithms start their solving process by making a call to the underlying
SAT solver, which reports that F is unsatisfiable and returns an unsatisfiable core, U . The algo-
rithm proceeds by alternating between relaxing clauses and calling the underlying SAT solver. As
depicted in Figure 6.3, both methods struggle to find any assignment for moderately large problem

87

32 29
0

80
0

1.6
k

2.6
k

3.8
k

5.4
k

7.1
k

9.2
k

11
.4k

14
.0k

16
.7k

19
.8k

23
.0k

26
.6k

30
.4k

34
.4k

CB - Problem Size (#C)

0

2

4
Co

st
 (#

U
)

×103
torchmSAT CPU
torchmSAT GPU

3 45 20
4

56
1

1.2
k

2.2
k

3.6
k

5.6
k

8.2
k

11
.4k

15
.4k

20
.3k

26
.0k

32
.8k

40
.7k

49
.8k

60
.1k

PHP - Problem Size (#C)

0

1

2

3

Co
st

 (#
U

)

×102
torchmSAT CPU
torchmSAT GPU

Figure 6.4: Running torchmSAT on CPU vs. GPU, where it is capable of taking advantage of GPU
acceleration, and finds better MaxSAT solutions within the same time limit (5mins). For complete
results on scalability under different time limits, and on GT and PAR datasets, see Appendix D.

instances. The reason is that their solving process starts by calling the SAT oracle to establish
the unsatisfiability of the given formula, which is NP-hard. LSU is the best-performing algorithm
since it solves a given problem incrementally, delaying expensive calls to the SAT solver to the end.
Our proposed approach, torchmSAT, is designed to be progressive like LSU, but without calling
a SAT oracle. As evident from the plots, given more time, it becomes increasingly effective at
finding solutions with lower costs. Conversely, the LSU algorithm identifies an initial assignment
carrying a suboptimal cost, then incrementally searches for superior assignments to lower the cost.
This explains its position as the top-performing algorithm on the dataset. Our proposed method,
torchmSAT, excels at progressively generating viable solutions that surpass those of FM and RC2.
Indeed, when considering the GT dataset, torchmSAT’s performance approaches that of LSU.

In Table 6.1, we compute the average regret of RC2, FM, and torchmSAT relative to LSU, the
top-performing MaxSAT solver. For every problem instance, we calculate a solver’s regret as the
difference between the cost it achieves and the cost LSU achieves. As the results clearly show,
torchmSAT generally demonstrates a markedly lower average regret. Raw results for individual
problem instances can be found in Appendix C.

GPU Acceleration. The main premise of our method is the novel application of contemporary
GPUs and the evolving ecosystem of deep learning libraries and accelerators in solving MaxSAT
instances. In this section, we aim to demonstrate that by merely altering where the neural network
is initialized, without any modifications to its structure or the solving process described earlier. As
shown in Figure 6.4, executing torchmSAT on a GPU yields solutions to larger MaxSAT instances
with lower costs within the same time limit. This can be attributed to the enhanced speed of GPU
computations, which accelerates the forward-loss-backward loop (Algorithm 5), thereby enabling
more extensive exploration of the feasible region of variable assignments.

The use of GPUs in torchmSAT advances MaxSAT solving, offering an accelerated and efficient
exploration of the solution space. This acceleration is particularly transformative given that the
algorithm’s progressive nature means it benefits directly from more rapid computations, enabling it
to find better solutions within the same time frame. In contrast, traditional MaxSAT solvers are
inherently sequential and cannot take advantage of GPU acceleration.

88

Table 6.1: The average regret of the solvers. The regret(s, i) of a solver s on instance i is the difference
between the cost of the best solution found by s and the cost of best known solution: regret(s, i)
= costs,i − costbest,i. Cost is defined as the number of unsatisfied clauses, U . Considering LSU
is the the optimal solver (i.e. regret = 0), the table presents the average regret of torchmSAT as
compared to FM and RC2. In torchmSAT, regret decreases as the solving time limit increases. See
Appendix C.

RC2 FM torchmSAT

Dataset 1min 5mins 10mins 1min 5mins 10mins 1min 5mins 10mins

CB 12396 12396 12396 12408 12408 12408 1981 1496 1148
GT 31852 31245 30425 32552 32467 32206 30 13 2
PAR 130013 130013 130013 130040 130013 130013 28272 13363 11777
PHP 16688 16676 16676 16688 16688 16688 1384 55 47

6.7 Conclusion

Limitations. While our proposed method presents several notable advantages, it also has some lim-
itations. First, it currently only works for unweighted MaxSAT instances, meaning it cannot handle
instances where different clauses have different weights or importance. Secondly, the algorithm lacks
a definitive stopping criterion for backpropagation unless the optimal solution is zero. This means
it can be difficult to determine when the algorithm has reached an optimal solution or when to halt
the process except using timeouts. Lastly, the memory requirement for the method is O(nm), which
can be prohibitive for large instances. Although the matrix W is sparse, which could potentially be
leveraged to save memory, our current implementation does not take advantage of this sparsity.
Conclusions and Future Work. In conclusion, we have presented a new method for MaxSAT
solving that capitalizes on the use of neural networks. Our method, named torchmSAT, is a pro-
gressive approach that continually refines and improves its solutions over time. One of the core
advantages of torchmSAT is its independence from a SAT oracle, a feature that differentiates it
from traditional MaxSAT solvers. This makes our method more self-sufficient and less reliant on ex-
ternal components. Experimental results show that our method outperforms two existing MaxSAT
solvers, and is on par with another state-of-the-art solver for small to medium problem sizes. Addi-
tionally, torchmSAT is able to benefit from GPU acceleration, allowing for more rapid exploration of
feasible solution regions. Despite some limitations, torchmSAT represents a promising step forward
in MaxSAT problem solving. For future work, we aim to extend the capabilities of our method
to handle weighted MaxSAT instances, develop a clear stopping criteria for backpropagation, and
optimize memory usage by leveraging the sparsity of the matrix W . This could lead to a more
efficient, versatile and powerful solver that can tackle even more complex problems.

Chapter 7

Summary and Possible Extensions

This dissertation has aimed at improving the solving process of combinatorial optimization problems.
The main hypothesis is that looking historical data can indeed improve on classic optimization tech-
niques. We have explored multiple strategies to integrate machine learning models into the solving
process of combinatorial optimization problems. We have demonstrated these approaches through
various contributions, covering reinforcement learning for logic synthesis, cloud-based optimization
of EDA flows, deep metric learning for automatic configuration of Mixed Integer Linear Program-
ming solvers, and a progressive neural network approach for the Maximum Satisfiability Problem.
These studies underscore the potential of machine learning to significantly enhance optimization
algorithms, whether it be via in-loop, out-of-loop, or end-to-end modeling.

Key findings of our work include successful application of a reinforcement learning agent to
minimize area in chip design with specific timing constraints, effective cloud-based optimization of
EDA flows that achieved a 35.29% reduction in deployment costs, the use of deep metric learning to
improve solutions’ costs by up to 38% in MILP, and the creation of a novel neural network model to
solve the MaxSAT problem, outperforming two existing solvers. Our efforts thus demonstrate the
broad applicability of machine learning techniques in addressing complex optimization problems.

In conclusion, this dissertation showcases the exciting promise of combining machine learning
models with optimization problems. Through a multitude of methods and applications, we demon-
strate that the adaptability and performance of optimization solvers can be significantly improved.
As the challenges of real-world applications continue to grow in complexity, the fusion of machine
learning and optimization heralds a new era of innovative problem-solving approaches. In the next
sub-sections, we give a brief synopsis of the contributions and discuss future research directions.

7.1 Summary of Contributions

In Chapter 3, we have developed a framework based on reinforcement learning that can explore the
optimization space for a specific circuit design and attain high Quality of Result (QoR) autonomously.
This problem is modeled within the domain of reinforcement learning, granting the machine a process

89

90

of learning through trial and error akin to how humans become experts in optimization. This
approach essentially converts the complex search space into a “game”, where an advantage actor-critic
(A2C) agent learns to maximize its reward (minimize area under a delay constraint) by consistently
selecting elementary transformations that promise the highest expected reward. We have successfully
formulated an And-Inverter Graph (AIG) state representation that effectively delineates the feature
set of a design state. Furthermore, we have introduced an innovative multi-objective reward function
that directs the agent’s exploration process, enabling it to discover a minimal design area while
adhering to a delay constraint. Upon evaluating ten representative benchmarks, our suggested
methodology outperforms existing methods in terms of effectiveness. DRiLLS demonstrates the
feasibility of employing Reinforcement Learning in the combinatorial optimization of hardware circuit
designs, which reduces a design area by 13% while meeting delay constraints. It shows immense
promise for utilization in related physical synthesis tasks, potentially removing the necessity for
human expertise.

In Chapter 4, we have addressed the challenge of optimizing Mixed Integer Linear Programs
(MILPs) by predicting configuration parameters that lead to lower-cost solutions. We have demon-
strated that the choice of solver configuration significantly impacts solution quality and runtime,
even for problem instances with the same number of variables and constraints. By default, using the
solver’s default configuration often results in suboptimal solutions. To overcome this limitation, our
approach focuses on predicting the optimal configuration for unseen problem instances without the
time-consuming process of exhaustive search and evaluation. We first examined the correlation of
costs between MILP instances from the same distribution but solved using different configurations.
Our analysis revealed that instances with similar costs using one configuration tend to exhibit similar
costs when using another configuration in the same runtime environment.

Building on this insight, we have proposed a methodology based on Deep Metric Learning to
learn similarities among MILP instances that are indicative of their final solution costs. By training
a model to project problem instances into a learned metric space, we were able to capture the
underlying relationships among instances in terms of their solution quality. This learned embedding
space allowed us to leverage information from previously explored configurations to predict suitable
parameters for a new problem instance. During the inference phase, when presented with a new
MILP instance, our method instantly projects it into the learned metric space using the trained
model. By identifying the nearest neighbor instance in the embedding space, we can leverage the
configuration parameters from that neighbor to predict the optimal parameters for the new instance.
Our empirical results, based on real-world problem benchmarks, clearly demonstrate the effectiveness
of our approach. We observed improvements in solution costs of up to 38% compared to existing
approaches.

Overall, our study provides a promising solution to the challenge of configuration parameter
prediction for MILP solvers. By harnessing the power of deep metric learning, we effectively capture
the cost correlation among problem instances and leverage this knowledge to guide the choice of solver
configurations. The proposed methodology reduces the time overhead associated with searching and

91

evaluating configurations, while also delivering superior solution quality. These findings open up
new avenues for optimizing real-world optimization problems and can have significant practical
implications across various domains.

In Chapter 5, we have addressed the challenges faced by semiconductor and electronics companies
in leveraging cloud computing for design space exploration in logic synthesis and parameter tuning
in physical design. Cloud computing offers scalable compute resources, enabling companies to meet
tapeout schedules efficiently. However, deploying Electronic Design Automation (EDA) jobs on the
cloud requires a deep understanding of job characteristics in cloud environments, which is currently
lacking in public information. To tackle this problem, we first formulated the task of migrating EDA
jobs to the cloud. We then conducted a comprehensive characterization of four key EDA applications:
synthesis, placement, routing, and static timing analysis. Through our analysis, we established that
each EDA job requires specific compute configurations to achieve optimal performance. This insight
guided our subsequent efforts.

Based on the observations from our characterization, we introduced a novel model utilizing Graph
Convolutional Networks (GCNs) to predict the total runtime of a given EDA stage on different
compute configurations. Our model achieved an impressive prediction accuracy of 87%, providing
valuable insights for resource allocation and job scheduling. Furthermore, we presented a novel
formulation for optimizing cloud deployments to minimize costs while meeting deadline constraints.
Our approach utilized a multi-choice knapsack mapping, yielding a pseudo-polynomial optimal solu-
tion. By employing this method, we achieved a significant reduction of 35.29% in deployment costs,
with minimal impact on the overall runtime. Additionally, we introduced EDA Analytics Central,
a cloud-ready solution designed for the continuous optimization of a design throughout the entire
EDA flow. This system served as the foundation for building our runtime prediction model, enabling
real-time analysis and optimization of EDA jobs.

In summary, this chapter contributes to the advancement of cloud-based EDA by providing in-
sights into the characteristics of EDA jobs in cloud environments. Our proposed model based on
GCNs demonstrates high prediction accuracy, facilitating efficient resource allocation. Moreover, our
optimization formulation significantly reduces deployment costs by while ensuring deadline compli-
ance. The introduction of EDA Analytics Central enhances the overall EDA flow, enabling con-
tinuous optimization and improved design outcomes. These findings have practical implications for
semiconductor and electronics companies, empowering them to leverage cloud computing effectively
in their design processes and meet critical tapeout schedules.

In Chapter 6, we established a novel approach towards integrating machine learning techniques,
specifically a novel neural network architecture, into the solving process of combinatorial optimiza-
tion algorithms. This approach targets the Maximum Satisfiability Problem (MaxSAT), and rather
than enhancing existing solvers, it introduces a single differentiable function capable of approximat-
ing solutions for MaxSAT. Remarkably, this function is progressively improved via backpropagation,
which eliminates the need for conventional training phases or labeled data, thereby reframing the
network training process as the actual solving algorithm. Our proposed methodology not only

92

demonstrates feasibility but also exhibits exceptional performance. Indeed, our experimental find-
ings reveal that this approach significantly outperforms two of the existing MaxSAT solvers, while
matching the solution cost of another, without the necessity of using an underlying SAT solver.
Furthermore, the potential of leveraging the computational power of GPUs for accelerating these
computations has been explored, presenting an enticing avenue for further optimization and speed-
ups.

Given that a multitude of NP-hard problems can be translated into the MaxSAT format, the
implications of this methodology are far-reaching. We believe this work to lay the groundwork for
a new generation of solvers that are poised to harness the capabilities of neural network hardware
acceleration, pushing the boundaries of efficiency and performance in combinatorial optimization
problem-solving. Our findings encourage further investigation into the utilization of such techniques
for other NP-hard problems, foreseeing a potential paradigm shift in the way we approach these
complex computational challenges.

7.2 Potential Future Research

Building upon the contributions of this dissertation, there are several promising directions for future
research. These possibilities span across the fields of machine learning, optimization, and hardware
acceleration, with potential applications in various real-world scenarios.

Universal Embedding of Optimization Problems: Through all the methods we have de-
veloped, it has become apparent that learning problem representations is a critical component in
developing ML methods for combinatorial optimization. In Natural Language Processing (NLP),
tremendous research efforts led to the globally available embedding APIs (Application Programming
Interfaces) for natural language text. Developers and researchers alike are able to build numerous
downstream applications using the learned embeddings. In combinatorial optimization, there is a
need for such an embedding API that takes an optimization problem in its most general form (e.g.
integer programs) and produces meaningful embeddings. Such an API could be “fine-tuned” for
different problem domains and downstream applications. Investigating this direction could lead to
revolutionary ML-based methods for combinatorial optimization.

Defining Problem Instance Similarities: Being able to accurately define a subjective mea-
sure for defining optimization problem similarities would open doors for systems that can be practi-
cally deployed on production environments. However, our definition of similarity has been based on
solving problem instances to get some accurate measures about the solution quality within a time
limit. This could introduce friction in training such models. Therefore, there is an immense need to
find more efficient ways to define similarities between problem instances. This would lead to being
able to train larger models on larger datasets, ultimately improving downstream applications that
use such similarities (e.g. hyperparaemter tuning).

In-place Reinforcement Learning for Optimization: With our initial success in applying
reinforcement learning (RL) in the context of chip design optimization, there is a fiction in applying

93

the model to large problem instances due to the communication overhead between the RL agent
and the logic synthesis environment. Building an in-place RL agent within the logic synthesis
environment would make such models hugely practical to incorporate in practice. This might require
a fresh look on how we design RL algorithms in a new format different from how they are currently
established (separate model and game environment).

Hardware Acceleration: As we demonstrated with torchmSAT, leveraging ML acceleration
hardware can provide significant computational benefits. Future work could explore the use of
large-scale distributed acceleration technologies, such as GPU clusters. These infrastructures of-
fer a fundamentally advanced computing paradigm that could potentially lead to breakthroughs
in optimization problem solving. These future directions demonstrate the vast landscape for fur-
ther exploration, promising exciting opportunities to expand the horizons of machine learning in
optimization problems.

Appendix A

Data Management in Metric Learning

In order to offer a seamless integration of our method in existing environments, a data store is
required to save the results from the offline configuration space search. In this work, we use Mon-
goDB1 for that purpose. For each benchmark, we create a collection that contains records for each
problem instance in that dataset. Listing A.1 shows the schema used for each instance. It keeps
track of configurations explored for that instance along with their costs. In addition, it records the
embedding vector of the instance in order to be searched later with the nearest neighbor algorithm.
The parameters presented in the listing are the ones that were used for the configuration space
exploration using SMAC [111]. A detailed description of the definition of these parameters can be
found in their official documentation2. As discussed in Section 4.6, the metric learning approach
does not limit the number of configuration parameters explored offline. It also does not limit which
parameters are explored since it focuses on learning an embedding space where similarity between
instances can be quantified reliably. Thus, it is possible to learn a model for similarity once and
keep expanding the offline configuration space search without requiring to re-train the model.

1 instance_record = {

2 "configs": [

3 {

4 "seed": 0,

5 "cost": 0,

6 "time": 0,

7 "params": {

8 "branching/scorefunc": "s",

9 "branching/scorefac": 0.167,

10 "branching/preferbinary": False ,

11 "branching/clamp": 0.2,

12 "branching/midpull": 0.75,

13 "branching/midpullreldomtrig": 0.5,

14 "branching/lpgainnormalize": "s",

1Link: https://www.mongodb.com/
2Link: https://www.scipopt.org/doc/html/PARAMETERS.php

94

https://www.mongodb.com/
https://www.scipopt.org/doc/html/PARAMETERS.php

95

15 "lp/pricing": "l",

16 "lp/colagelimit": 10,

17 "lp/rowagelimit": 10,

18 "nodeselection/childsel": "h",

19 "separating/minortho": 0.9,

20 "separating/minorthoroot": 0.9,

21 "separating/maxcuts": 100,

22 "separating/maxcutsroot": 2000,

23 "separating/cutagelimit": 80,

24 "separating/poolfreq": 10

25 }

26 },

27 : # all configurations explored offline

28],

29 "bipartite": {

30 "vars_features": [...],

31 "cons_features": [...],

32 "edge_features": [...]

33 },

34 "embedding": [...]

35 }

Listing A.1: Problem Instance Record

Appendix B

Dataset Details in torchmSAT

We employ PySAT to synthesize four representative datasets, encompassing combinatorial principles
extensively examined in the context of propositional proof complexity. Specifically, they implement
encodings for the pigeonhole principle (PHP) [40], the greater-than (ordering) principle (GT) [99],
the mutilated chessboard principle (CB) [7], and the parity principle (PAR) [6]. For each principle,
we synthesize 50 MaxSAT instances of increasing sizes where all problem instances are not satisfiable.
In other words, there is at least one clause that cannot be satisfied, and the goal of MaxSAT solvers
to find a feasible variable assignment that maximizes satisfiability.

Below is the synthesis script.

1 from pysat.examples.genhard import CB , GT , PAR , PHP

2

3

4 def gen_php ():

5 for n_holes in range(1, 51):

6 cnf = PHP(n_holes)

7 cnf.to_file(fname=f"data/php/{cnf.nv}_{len(cnf.clauses)}_{n_holes }.zip")

8

9 def gen_cb ():

10 for size in range(1, 51):

11 cnf = CB(size)

12 cnf.to_file(fname=f"data/cb/{cnf.nv}_{len(cnf.clauses)}_{size}.zip")

13

14 def gen_gt ():

15 for size in range(1, 51):

16 cnf = GT(size)

17 cnf.to_file(fname=f"data/gt/{cnf.nv}_{len(cnf.clauses)}_{size}.zip")

18

19 def gen_par ():

20 for size in range(1, 51):

21 cnf = PAR(size)

22 cnf.to_file(fname=f"data/par/{cnf.nv}_{len(cnf.clauses)}_{size}.zip")

Listing B.1: Synthesis script for the datasets

96

97

For each dataset, we provide detailed statistics on the number of Boolean variables and clauses
in Table B.1.

98

Table B.1: Number of Boolean variables and clauses in each problem instance in the datasets. This
indicates the difficulty level of solving each instance.

CB [7] GT [99] PAR [6] PHP [40]

vars # clauses # vars # clauses # vars # clauses # vars # clauses

1 20 32 2 3 3 6 2 3
2 56 90 6 12 10 35 6 9
3 108 176 12 34 21 112 12 22
4 176 290 20 75 36 261 20 45
5 260 432 30 141 55 506 30 81
6 360 602 42 238 78 871 42 133
7 476 800 56 372 105 1380 56 204
8 608 1026 72 549 136 2057 72 297
9 756 1280 90 775 171 2926 90 415
10 920 1562 110 1056 210 4011 110 561
11 1100 1872 132 1398 253 5336 132 738
12 1296 2210 156 1807 300 6925 156 949
13 1508 2576 182 2289 351 8802 182 1197
14 1736 2970 210 2850 406 10991 210 1485
15 1980 3392 240 3496 465 13516 240 1816
16 2240 3842 272 4233 528 16401 272 2193
17 2516 4320 306 5067 595 19670 306 2619
18 2808 4826 342 6004 666 23347 342 3097
19 3116 5360 380 7050 741 27456 380 3630
20 3440 5922 420 8211 820 32021 420 4221
21 3780 6512 462 9493 903 37066 462 4873
22 4136 7130 506 10902 990 42615 506 5589
23 4508 7776 552 12444 1081 48692 552 6372
24 4896 8450 600 14125 1176 55321 600 7225
25 5300 9152 650 15951 1275 62526 650 8151
26 5720 9882 702 17928 1378 70331 702 9153
27 6156 10640 756 20062 1485 78760 756 10234
28 6608 11426 812 22359 1596 87837 812 11397
29 7076 12240 870 24825 1711 97586 870 12645
30 7560 13082 930 27466 1830 108031 930 13981
31 8060 13952 992 30288 1953 119196 992 15408
32 8576 14850 1056 33297 2080 131105 1056 16929
33 9108 15776 1122 36499 2211 143782 1122 18547
34 9656 16730 1190 39900 2346 157251 1190 20265
35 10220 17712 1260 43506 2485 171536 1260 22086
36 10800 18722 1332 47323 2628 186661 1332 24013
37 11396 19760 1406 51357 2775 202650 1406 26049
38 12008 20826 1482 55614 2926 219527 1482 28197
39 12636 21920 1560 60100 3081 237316 1560 30460
40 13280 23042 1640 64821 3240 256041 1640 32841
41 13940 24192 1722 69783 3403 275726 1722 35343
42 14616 25370 1806 74992 3570 296395 1806 37969
43 15308 26576 1892 80454 3741 318072 1892 40722
44 16016 27810 1980 86175 3916 340781 1980 43605
45 16740 29072 2070 92161 4095 364546 2070 46621
46 17480 30362 2162 98418 4278 389391 2162 49773
47 18236 31680 2256 104952 4465 415340 2256 53064
48 19008 33026 2352 111769 4656 442417 2352 56497
49 19796 34400 2450 118875 4851 470646 2450 60075
50 20600 35802 2550 126276 5050 500051 2550 63801

Appendix C

Raw Results in torchmSAT

In Table C.1, we provide the raw results discussed in the Experiments Section 6.6. It is a detailed
expansion of Table 6.1. The goal is to give a deeper look into Figure 6.3, and see how numbers relate
to each other.

99

100

Table C.1: Raw results for costs (i.e. number of unsatisfied clauses) obtained by different solvers.

RC2 FM LSU torchmSAT

1m 5m 10m 1m 5m 10m 1m 5m 10m 1m 5m 10m

CB 1 1 1 1 1 1 1 2 2 2 2 2 2
2 1 1 1 1 1 1 2 2 2 2 2 2
3 1 1 1 1 1 1 2 2 2 4 2 2
4 1 1 1 1 1 1 2 2 2 11 7 6
5 1 1 1 1 1 1 2 2 2 14 13 13
6 1 1 1 602 602 602 2 2 2 27 21 21
7 800 800 800 800 800 800 2 2 2 30 30 30
8 1026 1026 1026 1026 1026 1026 2 2 2 55 54 53
9 1280 1280 1280 1280 1280 1280 2 2 2 63 63 63
10 1562 1562 1562 1562 1562 1562 2 2 2 74 74 74
11 1872 1872 1872 1872 1872 1872 2 2 2 99 99 99
12 2210 2210 2210 2210 2210 2210 2 2 2 105 105 105
13 2576 2576 2576 2576 2576 2576 2 2 2 153 153 153
14 2970 2970 2970 2970 2970 2970 2 2 2 132 132 132
15 3392 3392 3392 3392 3392 3392 2 2 2 193 193 193
16 3842 3842 3842 3842 3842 3842 2 2 2 230 230 230
17 4320 4320 4320 4320 4320 4320 2 2 2 260 260 260
18 4826 4826 4826 4826 4826 4826 2 2 2 304 304 304
19 5360 5360 5360 5360 5360 5360 2 2 2 288 288 288
20 5922 5922 5922 5922 5922 5922 2 2 2 317 317 317
21 6512 6512 6512 6512 6512 6512 2 2 2 364 364 364
22 7130 7130 7130 7130 7130 7130 2 2 2 391 391 391
23 7776 7776 7776 7776 7776 7776 2 2 2 550 441 441
24 8450 8450 8450 8450 8450 8450 2 2 2 661 489 489
25 9152 9152 9152 9152 9152 9152 2 2 2 1426 502 502
26 9882 9882 9882 9882 9882 9882 2 2 2 1569 605 605
27 10640 10640 10640 10640 10640 10640 3 2 2 1687 698 698
28 11426 11426 11426 11426 11426 11426 3 2 2 1833 725 725
29 12240 12240 12240 12240 12240 12240 4 2 2 1995 787 787
30 13082 13082 13082 13082 13082 13082 3 3 3 2116 799 799
31 13952 13952 13952 13952 13952 13952 5 5 5 2280 887 887
32 14850 14850 14850 14850 14850 14850 4 3 3 2423 941 941
33 15776 15776 15776 15776 15776 15776 4 4 3 2614 920 920
34 16730 16730 16730 16730 16730 16730 6 6 5 2790 1093 1050
35 17712 17712 17712 17712 17712 17712 5 2 2 3030 1257 1117
36 18722 18722 18722 18722 18722 18722 7 7 7 3227 1608 1265
37 19760 19760 19760 19760 19760 19760 5 5 5 3433 1536 1234
38 20826 20826 20826 20826 20826 20826 10 10 9 3669 1641 1364
39 21920 21920 21920 21920 21920 21920 15 15 15 3797 3599 1426
40 23042 23042 23042 23042 23042 23042 6 6 6 4036 3785 1502
41 24192 24192 24192 24192 24192 24192 7 7 7 4268 4002 1688
42 25370 25370 25370 25370 25370 25370 10 10 10 4465 4176 1849
43 26576 26576 26576 26576 26576 26576 9 9 9 4701 4424 2097
44 27810 27810 27810 27810 27810 27810 5 5 5 4855 4606 2242
45 29072 29072 29072 29072 29072 29072 13 13 13 5109 4738 2307
46 30362 30362 30362 30362 30362 30362 12 12 12 5449 5034 5025
47 31680 31680 31680 31680 31680 31680 22 22 22 5621 5286 5243
48 33026 33026 33026 33026 33026 33026 9 9 9 5857 5460 5460
49 34400 34400 34400 34400 34400 34400 16 16 16 6182 5740 5736
50 35802 35802 35802 35802 35802 35802 29 29 29 6297 5945 5936

Continued on next page

101

RC2 FM LSU torchmSAT

1m 5m 10m 1m 5m 10m 1m 5m 10m 1m 5m 10m

GT 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 4233 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 6004 6004 1 1 1 1 1 1 1
19 1 1 1 7050 7050 1 1 1 1 1 1 1
20 1 1 1 8211 8211 8211 1 1 1 1 1 1
21 1 1 1 9493 9493 9493 1 1 1 1 1 1
22 10902 10902 1 10902 10902 10902 1 1 1 1 1 1
23 12444 1 1 12444 12444 12444 1 1 1 1 1 1
24 14125 14125 1 14125 14125 14125 1 1 1 1 1 1
25 15951 15951 1 15951 15951 15951 1 1 1 1 1 1
26 17928 1 1 17928 17928 17928 1 1 1 1 1 1
27 20062 20062 20062 20062 20062 20062 1 1 1 1 1 1
28 22359 22359 22359 22359 22359 22359 1 1 1 1 1 1
29 24825 24825 24825 24825 24825 24825 1 1 1 9 1 1
30 27466 27466 27466 27466 27466 27466 1 1 1 10 1 1
31 30288 30288 30288 30288 30288 30288 1 1 1 17 1 1
32 33297 33297 33297 33297 33297 33297 4 1 1 19 1 1
33 36499 36499 36499 36499 36499 36499 9 1 1 24 1 1
34 39900 39900 39900 39900 39900 39900 1 1 1 17 1 1
35 43506 43506 43506 43506 43506 43506 3 1 1 31 1 1
36 47323 47323 47323 47323 47323 47323 1 1 1 80 2 1
37 51357 51357 51357 51357 51357 51357 2 2 2 17 5 1
38 55614 55614 55614 55614 55614 55614 4 4 2 39 3 1
39 60100 60100 60100 60100 60100 60100 3 3 3 26 26 1
40 64821 64821 64821 64821 64821 64821 3 3 3 22 9 3
41 69783 69783 69783 69783 69783 69783 1 1 1 59 59 1
42 74992 74992 74992 74992 74992 74992 1 1 1 28 27 1
43 80454 80454 80454 80454 80454 80454 2 2 2 121 13 2
44 86175 86175 86175 86175 86175 86175 4 4 4 85 73 3
45 92161 92161 92161 92161 92161 92161 6 6 6 157 67 2
46 98418 98418 98418 98418 98418 98418 3 3 3 173 49 3
47 104952 104952 104952 104952 104952 104952 3 3 3 121 51 17
48 111769 111769 111769 111769 111769 111769 1 1 1 167 94 1
49 118875 118875 118875 118875 118875 118875 3 3 3 84 84 30
50 126276 126276 126276 126276 126276 126276 3 3 3 167 92 2

Continued on next page

102

RC2 FM LSU torchmSAT

1m 5m 10m 1m 5m 10m 1m 5m 10m 1m 5m 10m

PAR 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 3 1 1
5 1 1 1 1 1 1 1 1 1 3 3 3
6 1 1 1 1 1 1 1 1 1 5 3 3
7 1 1 1 1380 1 1 1 1 1 7 7 7
8 2057 2057 2057 2057 2057 2057 1 1 1 7 7 7
9 2926 2926 2926 2926 2926 2926 1 1 1 5 5 5
10 4011 4011 4011 4011 4011 4011 1 1 1 9 9 9
11 5336 5336 5336 5336 5336 5336 1 1 1 11 11 9
12 6925 6925 6925 6925 6925 6925 1 1 1 15 10 10
13 8802 8802 8802 8802 8802 8802 1 1 1 17 11 11
14 10991 10991 10991 10991 10991 10991 1 1 1 17 17 15
15 13516 13516 13516 13516 13516 13516 1 1 1 19 17 17
16 16401 16401 16401 16401 16401 16401 1 1 1 23 19 19
17 19670 19670 19670 19670 19670 19670 1 1 1 23 23 23
18 23347 23347 23347 23347 23347 23347 1 1 1 32 28 25
19 27456 27456 27456 27456 27456 27456 1 1 1 38 32 28
20 32021 32021 32021 32021 32021 32021 1 1 1 134 33 31
21 37066 37066 37066 37066 37066 37066 1 1 1 4553 30 30
22 42615 42615 42615 42615 42615 42615 1 1 1 5085 34 34
23 48692 48692 48692 48692 48692 48692 1 1 1 5745 31 31
24 55321 55321 55321 55321 55321 55321 1 1 1 6344 38 38
25 62526 62526 62526 62526 62526 62526 1 1 1 7490 45 40
26 70331 70331 70331 70331 70331 70331 1 1 1 8380 72 46
27 78760 78760 78760 78760 78760 78760 1 1 1 9294 51 38
28 87837 87837 87837 87837 87837 87837 1 1 1 10574 107 55
29 97586 97586 97586 97586 97586 97586 1 1 1 11300 89 73
30 108031 108031 108031 108031 108031 108031 1 1 1 12677 4705 53
31 119196 119196 119196 119196 119196 119196 1 1 1 14268 4693 44
32 131105 131105 131105 131105 131105 131105 1 1 1 15063 15063 126
33 143782 143782 143782 143782 143782 143782 1 1 1 17086 17086 258
34 157251 157251 157251 157251 157251 157251 1 1 1 18917 18917 466
35 171536 171536 171536 171536 171536 171536 1 1 1 20864 20864 1249
36 186661 186661 186661 186661 186661 186661 1 1 1 21759 21759 21759
37 202650 202650 202650 202650 202650 202650 1 1 1 24458 24458 24458
38 219527 219527 219527 219527 219527 219527 1 1 1 29072 26754 26754
39 237316 237316 237316 237316 237316 237316 1 1 1 37080 28506 28506
40 256041 256041 256041 256041 256041 256041 1 1 1 44488 30846 30846
41 275726 275726 275726 275726 275726 275726 24 1 1 51984 32926 32926
42 296395 296395 296395 296395 296395 296395 1 1 1 57826 34824 34824
43 318072 318072 318072 318072 318072 318072 1 1 1 63468 37285 37285
44 340781 340781 340781 340781 340781 340781 12 1 1 75878 41174 41174
45 364546 364546 364546 364546 364546 364546 92 1 1 92245 43744 43744
46 389391 389391 389391 389391 389391 389391 1 1 1 111230 46042 46042
47 415340 415340 415340 415340 415340 415340 3 1 1 130513 49045 49045
48 442417 442417 442417 442417 442417 442417 58 1 1 157500 52467 52467
49 470646 470646 470646 470646 470646 470646 77 1 1 174228 55854 55854
50 500051 500051 500051 500051 500051 500051 83 1 1 173900 60406 60406

Continued on next page

103

RC2 FM LSU torchmSAT

1m 5m 10m 1m 5m 10m 1m 5m 10m 1m 5m 10m

PHP 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 2 2 2
8 1 1 1 1 1 1 1 1 1 2 2 2
9 1 1 1 1 1 1 1 1 1 3 3 3
10 561 1 1 561 561 561 1 1 1 3 3 3
11 738 738 738 738 738 738 1 1 1 5 5 5
12 949 949 949 949 949 949 1 1 1 4 4 4
13 1197 1197 1197 1197 1197 1197 1 1 1 7 6 6
14 1485 1485 1485 1485 1485 1485 1 1 1 9 8 8
15 1816 1816 1816 1816 1816 1816 1 1 1 10 8 8
16 2193 2193 2193 2193 2193 2193 1 1 1 10 10 10
17 2619 2619 2619 2619 2619 2619 1 1 1 13 10 10
18 3097 3097 3097 3097 3097 3097 1 1 1 15 11 11
19 3630 3630 3630 3630 3630 3630 1 1 1 16 12 12
20 4221 4221 4221 4221 4221 4221 1 1 1 13 13 13
21 4873 4873 4873 4873 4873 4873 1 1 1 16 16 15
22 5589 5589 5589 5589 5589 5589 1 1 1 20 19 19
23 6372 6372 6372 6372 6372 6372 1 1 1 32 23 17
24 7225 7225 7225 7225 7225 7225 1 1 1 23 23 22
25 8151 8151 8151 8151 8151 8151 1 1 1 36 27 27
26 9153 9153 9153 9153 9153 9153 1 1 1 37 37 30
27 10234 10234 10234 10234 10234 10234 1 1 1 34 34 34
28 11397 11397 11397 11397 11397 11397 1 1 1 45 31 31
29 12645 12645 12645 12645 12645 12645 1 1 1 43 43 35
30 13981 13981 13981 13981 13981 13981 1 1 1 54 54 43
31 15408 15408 15408 15408 15408 15408 1 1 1 106 47 42
32 16929 16929 16929 16929 16929 16929 1 1 1 75 55 55
33 18547 18547 18547 18547 18547 18547 1 1 1 64 64 57
34 20265 20265 20265 20265 20265 20265 1 1 1 130 49 49
35 22086 22086 22086 22086 22086 22086 1 1 1 84 80 66
36 24013 24013 24013 24013 24013 24013 1 1 1 191 86 85
37 26049 26049 26049 26049 26049 26049 1 1 1 538 117 103
38 28197 28197 28197 28197 28197 28197 1 1 1 1651 70 70
39 30460 30460 30460 30460 30460 30460 1 1 1 3596 111 100
40 32841 32841 32841 32841 32841 32841 1 1 1 3985 115 111
41 35343 35343 35343 35343 35343 35343 1 1 1 4231 146 128
42 37969 37969 37969 37969 37969 37969 1 1 1 4607 86 86
43 40722 40722 40722 40722 40722 40722 1 1 1 4936 145 145
44 43605 43605 43605 43605 43605 43605 1 1 1 5171 108 98
45 46621 46621 46621 46621 46621 46621 1 1 1 5399 128 128
46 49773 49773 49773 49773 49773 49773 1 1 1 5924 161 115
47 53064 53064 53064 53064 53064 53064 1 1 1 6370 56 56
48 56497 56497 56497 56497 56497 56497 1 1 1 7023 145 88
49 60075 60075 60075 60075 60075 60075 1 1 1 7133 355 194
50 63801 63801 63801 63801 63801 63801 1 1 1 7552 233 233

Appendix D

GPU Acceleration in torchmSAT

The application of GPU acceleration in computational tasks offers remarkable advantages, particu-
larly when it comes to large-scale computations, such as those involved in combinatorial optimiza-
tion. The parallel processing capabilities of GPUs allow for significant speed enhancements, enabling
faster computation and consequently more rapid exploration of solution spaces. For our torchmSAT
method, which is reliant on neural networks and iterative computation, GPU acceleration can sig-
nificantly enhance the efficiency of the forward-loss-backward loop, enabling more rapid exploration
of the feasible region of variable assignments. This implies that given a time limit, we can expect
torchmSAT running on a GPU to find solutions of lower cost than it would when executed on a
CPU. Future exploration of GPU acceleration could bring about further advancements in MaxSAT
solvers and other similar combinatorial optimization problems, leading to more efficient and effective
solutions. Figures D.1, D.2 and D.3 show the scalability of our method under different time limits.
As expected, the use of GPUs pays off on larger problem instances, especially when the time limit
is tight.

104

105

32 29
0

80
0

1.6
k

2.6
k

3.8
k

5.4
k

7.1
k

9.2
k

11
.4k

14
.0k

16
.7k

19
.8k

23
.0k

26
.6k

30
.4k

34
.4k

CB - Problem Size (#C)

0

2

4
Co

st
 (#

U
)

×103
torchmSAT CPU
torchmSAT GPU

3 45 20
4

56
1

1.2
k

2.2
k

3.6
k

5.6
k

8.2
k

11
.4k

15
.4k

20
.3k

26
.0k

32
.8k

40
.7k

49
.8k

60
.1k

PHP - Problem Size (#C)

0

1

2

Co
st

 (#
U

)

×102
torchmSAT CPU
torchmSAT GPU

3 75 37
2

1.1
k

2.3
k

4.2
k

7.0
k

10
.9k

16
.0k

22
.4k

30
.3k

39
.9k

51
.4k

64
.8k

80
.5k

98
.4k

11
8.9

k

GT - Problem Size (#C)

0

1

2

Co
st

 (#
U

)

×101
torchmSAT CPU
torchmSAT GPU

6
26

1
1.4

k
4.0

k
8.8

k
16

.4k
27

.5k
42

.6k
62

.5k
87

.8k
11

9.2
k

15
7.3

k
20

2.7
k

25
6.0

k
31

8.1
k

38
9.4

k
47

0.6
k

PAR - Problem Size (#C)

0

2

4

Co
st

 (#
U

)

×104
torchmSAT CPU
torchmSAT GPU

Figure D.1: Running torchmSAT on CPU vs. GPU, where it is capable of taking advantage of GPU
acceleration, and finds better MaxSAT solutions within the same time limit (10mins).

32 29
0

80
0

1.6
k

2.6
k

3.8
k

5.4
k

7.1
k

9.2
k

11
.4k

14
.0k

16
.7k

19
.8k

23
.0k

26
.6k

30
.4k

34
.4k

CB - Problem Size (#C)

0

2

4

Co
st

 (#
U

)

×103
torchmSAT CPU
torchmSAT GPU

3 45 20
4

56
1

1.2
k

2.2
k

3.6
k

5.6
k

8.2
k

11
.4k

15
.4k

20
.3k

26
.0k

32
.8k

40
.7k

49
.8k

60
.1k

PHP - Problem Size (#C)

0

1

2

3

Co
st

 (#
U

)

×102
torchmSAT CPU
torchmSAT GPU

3 75 37
2

1.1
k

2.3
k

4.2
k

7.0
k

10
.9k

16
.0k

22
.4k

30
.3k

39
.9k

51
.4k

64
.8k

80
.5k

98
.4k

11
8.9

k

GT - Problem Size (#C)

0

5

Co
st

 (#
U

)

×101
torchmSAT CPU
torchmSAT GPU

6
26

1
1.4

k
4.0

k
8.8

k
16

.4k
27

.5k
42

.6k
62

.5k
87

.8k
11

9.2
k

15
7.3

k
20

2.7
k

25
6.0

k
31

8.1
k

38
9.4

k
47

0.6
k

PAR - Problem Size (#C)

0

2

4

Co
st

 (#
U

)

×104
torchmSAT CPU
torchmSAT GPU

Figure D.2: Running torchmSAT on CPU vs. GPU, where it is capable of taking advantage of GPU
acceleration, and finds better MaxSAT solutions within the same time limit (5mins).

106

32 29
0

80
0

1.6
k

2.6
k

3.8
k

5.4
k

7.1
k

9.2
k

11
.4k

14
.0k

16
.7k

19
.8k

23
.0k

26
.6k

30
.4k

34
.4k

CB - Problem Size (#C)

0

2

4

Co
st

 (#
U

)

×103
torchmSAT CPU
torchmSAT GPU

3 45 20
4

56
1

1.2
k

2.2
k

3.6
k

5.6
k

8.2
k

11
.4k

15
.4k

20
.3k

26
.0k

32
.8k

40
.7k

49
.8k

60
.1k

PHP - Problem Size (#C)

0

2.5

5
Co

st
 (#

U
)

×103
torchmSAT CPU
torchmSAT GPU

3 75 37
2

1.1
k

2.3
k

4.2
k

7.0
k

10
.9k

16
.0k

22
.4k

30
.3k

39
.9k

51
.4k

64
.8k

80
.5k

98
.4k

11
8.9

k

GT - Problem Size (#C)

0.0

0.5

1.0

1.5

Co
st

 (#
U

)

×102
torchmSAT CPU
torchmSAT GPU

6
26

1
1.4

k
4.0

k
8.8

k
16

.4k
27

.5k
42

.6k
62

.5k
87

.8k
11

9.2
k

15
7.3

k
20

2.7
k

25
6.0

k
31

8.1
k

38
9.4

k
47

0.6
k

PAR - Problem Size (#C)

0.0

0.5

1.0

1.5

Co
st

 (#
U

)

×105
torchmSAT CPU
torchmSAT GPU

Figure D.3: Running torchmSAT on CPU vs. GPU, where it is capable of taking advantage of GPU
acceleration, and finds better MaxSAT solutions within the same time limit (1min).

Bibliography

[1] On the minimization of traffic congestion in road networks with tolls. Annals of Operations
Research, 249:119–139, 2017.

[2] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015.

[3] Tobias Achterberg. Constraint Integer Programming. PhD thesis, 2009.

[4] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint integer pro-
gramming: A new approach to integrate cp and mip. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 5th International Con-
ference, CPAIOR 2008 Paris, France, May 20-23, 2008 Proceedings 5, pages 6–20. Springer,
2008.

[5] Shmuel Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathe-
matics, 6:382–392, 1954.

[6] Miklos Ajtai. Parity and the pigeonhole principle. In Feasible Mathematics: A Mathematical
Sciences Institute Workshop, Ithaca, New York, June 1989, pages 1–24. Springer, 1990.

[7] Michael Alekhnovich. Mutilated chessboard problem is exponentially hard for resolution.
Theoretical Computer Science, 310(1-3):513–525, 2004.

[8] Ismail R Alkhouri, George K Atia, and Alvaro Velasquez. A differentiable approach to the
maximum independent set problem using dataless neural networks. Neural Networks, 155:168–
176, 2022.

[9] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In IWLS, 2015.

[10] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), 2015.

[11] Amzon Web Services. Aws high performance computing: Virtually unlimited infrastructure
and fast networking for scalable hpc. https://aws.amazon.com/hpc/. Accessed: 2021-07-10.

107

https://aws.amazon.com/hpc/

108

[12] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Arti-
ficial Intelligence, 196:77–105, 2013.

[13] Carlos Ansótegui, Joel Gabas, Yuri Malitsky, and Meinolf Sellmann. MaxSAT by improved
instance-specific algorithm configuration. Artificial Intelligence, 235:26–39, 2016.

[14] Gilles Audemard and Laurent Simon. On the glucose SAT solver. International Journal on
Artificial Intelligence Tools, 27(01):1840001, 2018.

[15] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement strategies for the
f-race algorithm: Sampling design and iterative refinement. In Hybrid Metaheuristics: 4th
International Workshop, HM 2007, Dortmund, Germany, October 8-9, 2007. Proceedings 4,
pages 108–122. Springer, 2007.

[16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov,
Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, et al. Openpiton: An open
source manycore research framework. ACM SIGPLAN Notices, 51(4):217–232, 2016.

[17] Henrique Becker, Olinto Araujo, and Luciana S Buriol. Extending an integer formulation for
the guillotine 2d bin packing problem. Procedia Computer Science, 195:499–507, 2021.

[18] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

[19] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[20] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[22] Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns. Learning MAX-SAT models from
examples using genetic algorithms and knowledge compilation. In 28th International Con-
ference on Principles and Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[23] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of machine learning research, 13(2), 2012.

[24] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, 1(3):81–84, 2014.

[25] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

109

[26] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

[27] Mauro Birattari. Tuning Metaheuristics. Studies in Computational Intelligence. Springer,
Berlin, Heidelberg, 2009.

[28] Mauro Birattari, Thomas Stützle, Luis Paquete, Klaus Varrentrapp, et al. A racing algorithm
for configuring metaheuristics. In Gecco, volume 2. Citeseer, 2002.

[29] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-race and iterated
f-race: An overview. Experimental methods for the analysis of optimization algorithms, pages
311–336, 2010.

[30] Bob Bixby. The Gurobi Optimizer. Transp. Re-search Part B, 41(2):159–178, 2007.

[31] Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 595–604. Springer, 2018.

[32] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv
preprint arXiv:2102.09544, 2021.

[33] Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simul-
tanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[34] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of resource provisioning cost
in cloud computing. IEEE Transactions on Services Computing, 5(2):164–177, 2012.

[35] Shaoming Chen, Samuel Irving, and Lu Peng. Operational cost optimization for cloud com-
puting data centers using renewable energy. IEEE Systems Journal, 10(4):1447–1458, 2016.

[36] X. Chen, L. Wang, A. Y. Zomaya, L. Liu, and S. Hu. Cloud computing for vlsi floorplanning
considering peak temperature reduction. IEEE Transactions on Emerging Topics in Comput-
ing, 3(4):534–543, 2015.

[37] Zong-Gan Chen, Ke-Jing Du, Zhi-Hui Zhan, and Jun Zhang. Deadline constrained cloud
computing resources scheduling for cost optimization based on dynamic objective genetic al-
gorithm. In 2015 IEEE Congress on Evolutionary Computation (CEC), pages 708–714, 2015.

[38] Yi-Ju Chiang, Yen-Chieh Ouyang, and Ching-Hsien Hsu. An efficient green control algorithm
in cloud computing for cost optimization. IEEE Transactions on Cloud Computing, 3(2):145–
155, 2015.

[39] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization. John Wiley & Sons,
2004.

110

[40] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof systems.
The journal of symbolic logic, 44(1):36–50, 1979.

[41] George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

[42] George B Dantzig and John H Ramser. The truck dispatching problem. Management science,
6(1):80–91, 1959.

[43] Jason V Davis and Inderjit S Dhillon. Structured metric learning for high dimensional prob-
lems. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 195–203, 2008.

[44] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The mahalanobis
distance. Chemometrics and intelligent laboratory systems, 50(1):1–18, 2000.

[45] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4690–4699, 2019.

[46] Muhammet Deveci and Nihan Çetin Demirel. A survey of the literature on airline crew schedul-
ing. Engineering Applications of Artificial Intelligence, 74:54–69, 2018.

[47] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

[48] Krzysztof Dudziński and Stanisław Walukiewicz. Exact methods for the knapsack problem
and its generalizations. European Journal of Operational Research, 28(1):3–21, 1987.

[49] Omar El-Sewefy. Calibre in the cloud: Unlocking massive scaling and cost efficiencies, 2019.

[50] Yasemin Eryoldaş and Alptekin Durmuşoglu. A literature survey on offline automatic algo-
rithm configuration. Applied Sciences, 12(13):6316, 2022.

[51] Stephen Fenstermaker, David George, Andrew B Kahng, Stefanus Mantik, and Bart Thielges.
Metrics: a system architecture for design process optimization. In Proceedings of the 37th
Annual Design Automation Conference, pages 705–710, 2000.

[52] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[53] ABKFM Fleury and Maximilian Heisinger. CaDiCaL, kissat, paracooba, plingeling and treen-
geling entering the sat competition 2020. SAT COMPETITION, 2020:50, 2020.

[54] Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process
scheduling: Modeling, algorithms, and applications. Annals of Operations Research, 139:131–
162, 2005.

111

[55] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020.

[56] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

[57] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[58] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, pages 249–256, 2010.

[59] Fred Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & operations research, 13(5):533–549, 1986.

[60] Google Cloud. Gcp high performance computing. https://cloud.google.com/solutions/

hpc. Accessed: 2021-07-10.

[61] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. Sla-based optimization of
power and migration cost in cloud computing. In 2012 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 172–179. Ieee, 2012.

[62] Evren Güney. An efficient linear programming based method for the influence maximization
problem in social networks. Information Sciences, 503:589–605, 2019.

[63] Abhishek Gupta, Laxmikant V. Kale, Filippo Gioachin, Verdi March, Chun Hui Suen, Bu-Sung
Lee, Paolo Faraboschi, Richard Kaufmann, and Dejan Milojicic. The who, what, why, and
how of high performance computing in the cloud. In 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science, volume 1, pages 306–314, 2013.

[64] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[65] S Hashemi, CT Ho, AB Kahng, HY Liu, and S Reda. Metrics 2.0: A machine-learning based
optimization system for ic design. In Workshop on Open-Source EDA Technology, page 21,
2018.

https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc

112

[66] John H Holland. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992.

[67] Holger H Hoos. Automated algorithm configuration and parameter tuning. Autonomous
search, pages 37–71, 2012.

[68] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM (JACM), 21(2):277–292, 1974.

[69] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pages 507–523. Springer, 2011.

[70] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin Murphy. Time-bounded se-
quential parameter optimization. In Learning and Intelligent Optimization: 4th International
Conference, LION 4, Venice, Italy, January 18-22, 2010. Selected Papers 4, pages 281–298.
Springer, 2010.

[71] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for
prototyping with SAT oracles. In SAT, pages 428–437, 2018.

[72] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. RC2: an efficient maxsat solver.
Journal on Satisfiability, Boolean Modeling and Computation, 11(1):53–64, 2019.

[73] Michael D Intriligator. Mathematical optimization and economic theory. SIAM, 2002.

[74] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin Schulz.
Efficiently exploring architectural design spaces via predictive modeling. SIGPLAN Not.,
41(11):195–206, October 2006.

[75] Franjo Ivančić, Zijiang Yang, Malay K Ganai, Aarti Gupta, and Pranav Ashar. Efficient
sat-based bounded model checking for software verification. Theoretical Computer Science,
404(3):256–274, 2008.

[76] Max Jaderberg, Wojciech M Czarnecki, Dunning, et al. Human-level performance in first-
person multiplayer games with population-based deep reinforcement learning. arXiv preprint
arXiv:1807.01281, 2018.

[77] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455, 1998.

[78] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC–instance-specific
algorithm configuration. In ECAI 2010, pages 751–756. IOS Press, Lisbon, Portugal, 2010.

[79] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI physical design: from graph
partitioning to timing closure. Springer Science & Business Media, 2011.

113

[80] Andrew B Kahng and Stefanus Mantik. A system for automatic recording and prediction of
design quality metrics. In Proceedings of the IEEE 2001. 2nd International Symposium on
Quality Electronic Design, pages 81–86. IEEE, 2001.

[81] V. Kamath, R. Giri, and R. Muralidhar. Experiences with a private enterprise cloud: Providing
fault tolerance and high availability for interactive eda applications. In 2013 IEEE Sixth
International Conference on Cloud Computing, pages 770–777, 2013.

[82] Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations,
pages 85–103. Springer US, Boston, MA, 1972.

[83] Richard M. Karp. Reducibility Among Combinatorial Problems. In 50 Years of Integer Pro-
gramming 1958-2008: From the Early Years to the State-of-the-Art, pages 219–241. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[84] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066,
2019.

[85] Hans Kellerer, Ulrich Pferschy, and David Pisinger. The Multiple-Choice Knapsack Problem,
pages 317–347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[86] Hans Kellerer, Ulrich Pferschy, David Pisinger, Hans Kellerer, Ulrich Pferschy, and David
Pisinger. Multidimensional knapsack problems. Springer, 2004.

[87] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algo-
rithm selection: Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.

[88] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learn-
ing to run heuristics in tree search. In Ijcai, pages 659–666, 2017.

[89] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learn-
ing to run heuristics in tree search. In Ijcai, pages 659–666, 2017.

[90] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[91] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[92] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[93] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated an-
nealing. science, 220(4598):671–680, 1983.

114

[94] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

[95] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural infor-
mation processing systems, pages 1008–1014, 2000.

[96] Vijay R Konda and John N Tsitsiklis. Onactor-critic algorithms. SIAM journal on Control
and Optimization, 42(4):1143–1166, 2003.

[97] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[98] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end
constrained optimization learning: A survey. arXiv preprint arXiv:2103.16378, 2021.

[99] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta informatica, 22:253–275,
1985.

[100] Markus Kruber, Marco E Lübbecke, and Axel Parmentier. Learning when to use a decompo-
sition. In International conference on AI and OR techniques in constraint programming for
combinatorial optimization problems, pages 202–210. Springer, 2017.

[101] Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning,
5(4):287–364, 2013.

[102] Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation. Artificial Intelligence, 314:103794, 2023.

[103] Joonseok Lee, Sami Abu-El-Haija, Balakrishnan Varadarajan, and Apostol Natsev. Collabo-
rative deep metric learning for video understanding. In Proceedings of the 24th ACM SIGKDD
International conference on knowledge discovery & data mining, pages 481–490, 2018.

[104] Sangho Lee, Jeongsub Choi, and Youngdoo Son. Efficient visibility algorithm for high-
frequency time-series: application to fault diagnosis with graph convolutional network. Annals
of Operations Research, pages 1–21, 2023.

[105] Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Boosting
branch-and-bound MaxSAT solvers with clause learning. AI Communications, 35(2):131–151,
2022.

[106] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research, 18(1):6765–6816, 2017.

[107] Zhaoyu Li and Xujie Si. NSNet: A General Neural Probabilistic Framework for Satisfiability
Problems. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,

115

Advances in Neural Information Processing Systems, volume 35, pages 25573–25585. Curran
Associates, Inc., 2022.

[108] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convo-
lutional networks and guided tree search. Advances in neural information processing systems,
31, 2018.

[109] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[110] X. Lin, Y. Li, H. Dai, and D. Guo. Architecture of web-eda system based on cloud computing
and application for project management of ic design. In 2010 International Conference on
Anti-Counterfeiting, Security and Identification, pages 150–153, 2010.

[111] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile bayesian
optimization package for hyperparameter optimization. Journal of Machine Learning Research,
23(54):1–9, 2022.

[112] Hung-Yi Liu and L. P. Carloni. On learning-based methods for design-space exploration with
high-level synthesis. In Design Automation Conference, pages 1–7, May 2013.

[113] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

[114] Ali Louati, Rahma Lahyani, Abdulaziz Aldaej, Racem Mellouli, and Muneer Nusir. Mixed
Integer Linear Programming Models to Solve a Real-Life Vehicle Routing Problem with Pickup
and Delivery. Applied Sciences, 11(20):9551, 2021.

[115] Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz,
and Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP opti-
mization suite. In Mathematical Software – ICMS 2016, pages 301–307. Springer International
Publishing, Cham, 2016.

[116] The OpenCores maintainers. Opencores.

[117] Yuri Malitsky and Meinolf Sellmann. Instance-specific algorithm configuration as a method
for non-model-based portfolio generation. In Integration of AI and OR Techniques in Con-
traint Programming for Combinatorial Optimzation Problems: 9th International Conference,
CPAIOR 2012, Nantes, France, May 28–June1, 2012. Proceedings 9, pages 244–259. Springer,
2012.

116

[118] C. Man, Z. Shi, Z. Xu, Y. Zong, K. Pang, and Y. Li. Cloud-eda:a paas platform architecture
and application development for ic design test. In Proceedings of 2014 International Conference
on Cloud Computing and Internet of Things, pages 1–4, 2014.

[119] Vasco Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for weighted boolean op-
timization. In Theory and Applications of Satisfiability Testing-SAT 2009: 12th International
Conference, SAT 2009, Swansea, UK, June 30-July 3, 2009. Proceedings 12, pages 495–508.
Springer, 2009.

[120] CPLEX User’s Manual. IBM ILOG CPLEX optimization studio. Version, 12:1987–2018, 2018.

[121] Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R De Supinski, Barry Roun-
tree, Martin Schulz, and Xin Yuan. A comparative study of high-performance computing on
the cloud. In Proceedings of the 22nd international symposium on High-performance parallel
and distributed computing, pages 239–250, 2013.

[122] Raffaele Marino. Learning from survey propagation: a neural network for max-e-3-sat. Machine
Learning: Science and Technology, 2(3):035032, 2021.

[123] Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11:193–225, 1997.

[124] Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. Incremental cardinality
constraints for maxsat. In Principles and Practice of Constraint Programming: 20th Inter-
national Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings 20, pages
531–548. Springer, 2014.

[125] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver. In
Theory and Applications of Satisfiability Testing–SAT 2014: 17th International Conference,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings 17, pages 438–445. Springer, 2014.

[126] Microsoft Azure. Azure high performance computing. https://azure.microsoft.com/

en-us/solutions/high-performance-computing/. Accessed: 2021-07-10.

[127] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[128] Alan Mishchenko et al. Abc: A system for sequential synthesis and verification. URL
http://www. eecs. berkeley. edu/alanmi/abc, pages 1–17, 2007.

[129] ML4CO. Machine learning for combinatorial optimization - neurips 2021 competition. ml4co
competition. https://www.ecole.ai/2021/ml4co-competition/, 2021. Accessed: 2022-05-
16.

https://azure.microsoft.com/en-us/solutions/high-performance-computing/
https://azure.microsoft.com/en-us/solutions/high-performance-computing/
https://www.ecole.ai/2021/ml4co-competition/

117

[130] Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[131] Inc MongoDB. Mongodb. URL https://www. mongodb. com/. Cited on (2014), 9, 2014.

[132] António Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided MaxSAT with
soft cardinality constraints. In Principles and Practice of Constraint Programming: 20th
International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings 20,
pages 564–573. Springer, 2014.

[133] António Morgado, Federico Heras, Mark Liffiton, Jordi Planes, and Joao Marques-Silva. It-
erative and core-guided MaxSAT solving: A survey and assessment. Constraints, 18:478–534,
2013.

[134] Antonio Morgado, Alexey Ignatiev, and Joao Marques-Silva. MSCG: Robust core-guided
MaxSAT solving. Journal on Satisfiability, Boolean Modeling and Computation, 9(1):129–134,
2014.

[135] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 4602–4609, 2019.

[136] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Pytorch metric learning, 2020.

[137] Saurav Nanda, Ganapathy Parthasarathy, Parivesh Choudhary, and Arun Venkatachar. Re-
source aware scheduling for eda regression jobs. In European Conference on Parallel Processing,
pages 639–651. Springer, 2019.

[138] Isaac Newton. De analysi per aequationes numero terminorum infinitas. 1711.

[139] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract davis–putnam–logemann–loveland procedure to dpll (t). Journal
of the ACM (JACM), 53(6):937–977, 2006.

[140] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. Evaluation of a
tree-based pipeline optimization tool for automating data science. In Proceedings of the genetic
and evolutionary computation conference 2016, pages 485–492, 2016.

[141] Patryk Osypanka and Piotr Nawrocki. Resource usage cost optimization in cloud computing
using machine learning. IEEE Transactions on Cloud Computing, pages 1–1, 2020.

[142] B. Ozisikyilmaz, G. Memik, and A. Choudhary. Efficient system design space exploration
using machine learning techniques. In 45th ACM/IEEE Design Automation Conference, pages
966–969, June 2008.

118

[143] Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley &
Sons, United Kingdom, 2014.

[144] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[145] Antoine Petitet. Hpl-a portable implementation of the high-performance linpack benchmark
for distributed-memory computers. http://www. netlib. org/benchmark/hpl/, 2004.

[146] Sven Peyer, Dieter Rautenbach, and Jens Vygen. A generalization of dijkstra’s shortest path
algorithm with applications to vlsi routing. Journal of Discrete Algorithms, 7(4):377–390,
2009.

[147] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS, 2020.

[148] Pongtorn Prukkantragorn and Kitt Tientanopajai. Price efficiency in high performance com-
puting on amazon elastic compute cloud provider in compute optimize packages. In 2016
International Computer Science and Engineering Conference (ICSEC), pages 1–6, 2016.

[149] Haiyang Qian and Deep Medhi. Server operational cost optimization for cloud computing
service providers over a time horizon. In Hot-ICE, 2011.

[150] Joseph Raphson. Analysis aequationum universalis. Typis TB prostant venales apud A. and
I. Churchill, 1702.

[151] Ronald L Rardin and Ronald L Rardin. Optimization in operations research, volume 166.
Prentice Hall Upper Saddle River, NJ, 1998.

[152] Maria Alejandra Rodriguez and Rajkumar Buyya. Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds. IEEE transactions on cloud computing,
2(2):222–235, 2014.

[153] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4):455–472, 2006.

[154] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015.

[155] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

119

[156] Naresh Sehgal, John M Acken, and Sohum Sohoni. Is the eda industry ready for cloud com-
puting? IETE Technical Review, 33(4):345–356, 2016.

[157] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT solver from single-bit supervision. In International Conference
on Learning Representations, 2019.

[158] Ahmad Shabani and Bijan Alizadeh. PMTP: A MAX-SAT-based approach to detect hardware
trojan using propagation of maximum transition probability. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(1):25–33, 2018.

[159] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2015.

[160] Q. Shen, C. Yu, J. Xiao, S. Tang, X. Meng, and J. Li. Dynamic scheduling of eda scientific
workflows in hybrid computing environments. In 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/S-
martCity/DSS), pages 313–320, 2019.

[161] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum satisfiability in software
analysis: Applications and techniques. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pages
68–94. Springer, 2017.

[162] David Silver, Julian Schrittwieser, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[163] Jose Luis Lucas Simarro, Rafael Moreno-Vozmediano, Ruben S. Montero, and I. M. Llorente.
Dynamic placement of virtual machines for cost optimization in multi-cloud environments. In
2011 International Conference on High Performance Computing Simulation, pages 1–7, 2011.

[164] Aarti Singh, Dimple Juneja, and Manisha Malhotra. A novel agent based autonomous and ser-
vice composition framework for cost optimization of resource provisioning in cloud computing.
Journal of King Saud University-Computer and Information Sciences, 29(1):19–28, 2017.

[165] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. Advances in neural information processing systems, 25, 2012.

[166] Jan A Snyman, Daniel N Wilke, et al. Practical mathematical optimization. Springer, 2005.

[167] Thamarai Selvi Somasundaram and Kannan Govindarajan. Cloudrb: A framework for schedul-
ing and managing high-performance computing (hpc) applications in science cloud. Future
Generation Computer Systems, 34:47–65, 2014.

120

[168] Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-clause minimization.
SAT, 53(2005):1–2, 2005.

[169] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[170] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[171] Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set.
SIAM Journal on Computing, 6(3):537–546, 1977.

[172] Romeo Valentin, Claudio Ferrari, Jérémy Scheurer, Andisheh Amrollahi, Chris Wendler, and
Max B. Paulus. Instance-wise algorithm configuration with graph neural networks, 2022.

[173] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
machine learning research, 9(11), 2008.

[174] Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.

[175] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[176] Dujuan Wang, Jiacheng Zhu, Yunqiang Yin, Joshua Ignatius, Xiaowen Wei, and Ajay Kumar.
Dynamic travel time prediction with spatiotemporal features: using a gnn-based deep learning
method. Annals of Operations Research, pages 1–21, 2023.

[177] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2495–2504,
2021.

[178] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5265–5274, 2018.

[179] Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang,
Jun Zhou, and Xiaokang Yang. A bi-level framework for learning to solve combinatorial
optimization on graphs. Advances in Neural Information Processing Systems, 34:21453–21466,
2021.

[180] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[181] Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

121

[182] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. Probabilistic guarantees of execution
duration for amazon spot instances. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–11, 2017.

[183] Weili Wu and Zhongnan Zhang. Combinatorial Optimization and Applications: 14th Inter-
national Conference, COCOA 2020, Dallas, TX, USA, December 11–13, 2020, Proceedings,
volume 12577. Springer Nature, 2020.

[184] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487. PMLR, 2016.

[185] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated
algorithm configuration and selection for mixed integer programming. In RCRA workshop on
experimental evaluation of algorithms for solving problems with combinatorial explosion at the
international joint conference on artificial intelligence (IJCAI), pages 16–30, 2011.

[186] Wenlong Yang, Lingli Wang, and Alan Mishchenko. Lazy man’s logic synthesis. In ICCAD,
pages 597–604. IEEE, 2012.

[187] X Yang. Introduction to mathematical optimization. From linear programming to metaheuris-
tics, 2008.

[188] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Design Automation Conference, DAC ’18, pages 50:1–50:6. ACM, 2018.

[189] Gang Yu. Industrial applications of combinatorial optimization, volume 16. Springer Science
& Business Media, 2013.

[190] Matthew M Ziegler, Hung-Yi Liu, and Luca P Carloni. Scalable auto-tuning of synthesis
parameters for optimizing high-performance processors. In ACM International Symposium on
Low Power Electronics and Design, pages 180–185, 2016.

[191] Matthew M Ziegler, Hung-Yi Liu, et al. A synthesis-parameter tuning system for autonomous
design-space exploration. In DATE, pages 1148–1151, 2016.

	List of Tables
	List of Figures
	Introduction
	Taxonomy of Optimization Problems
	Pathways for Machine Learning in Combinatorial Optimization
	Thesis Contributions

	Background
	Basic Concepts
	Greedy Algorithms
	Dynamic Programming
	Linear Programming
	Branch-and-Bound

	Sequential Optimization Using Reinforcement Learning
	Introduction
	Related Work
	Method
	Background on Reinforcement Learning
	DRiLLS

	Empirical Results
	Design Space Exploration
	Comparison to Other Techniques

	Conclusion

	Hyper-parameter Tuning Using Deep Metric Learning
	Introduction
	Motivation
	Related Work
	Preliminaries
	MILP Formulation
	Graph Neural Networks
	Metric Learning

	Data Validation
	Method
	Learning MILP Similarity
	Predicting Configuration Parameters

	Empirical Results
	Dataset
	Experimental Setup
	Instance Embedding
	Prediction Accuracy
	Comparing to Baselines

	Conclusion

	Efficient Exploration Using Predictive Modeling
	Introduction
	Preliminaries
	Related Work
	Method
	EDA Flow Characterization
	Runtime Prediction
	Optimizing Virtual Machine Provisioning

	Empirical Results
	Conclusion

	Fast GPU-native Combinatorial Optimization
	Introduction
	Motivation
	Preliminaries
	Related Work
	Method
	Empirical Results
	Conclusion

	Summary and Possible Extensions
	Summary of Contributions
	Potential Future Research

	Data Management in Metric Learning
	Dataset Details in torchmSAT
	Raw Results in torchmSAT
	GPU Acceleration in torchmSAT
	Bibliography

