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BROWN UNIVERSITY

Abstract
Approximate Spike Encoding Neural Networks: ASPENN

by Andrew DUNCOMBE

Spiking Neural Networks (SNNs) are a neural network architecture that encodes in-
formation as a time series of binary pulses, or spikes, in order to perform low-power
neural tasks. This work presents the Approximate Spike Encoding Neural Network
(ASPENN), a SNN circuit design that uses a novel weight accumulator unit with mod-
ular approximate arithmetic components. This circuit is designed using Verilog and
synthesized using the Genus Synthesis Tool. This system is tested using the MNIST
handwriting digit dataset and analyzed for classification accuracy and design metrics
such as chip area and power consumption. ASPENN demonstrates improved compu-
tation performance over alternative neuron circuit designs. The circuit design and code
has been made open-source, allowing future researchers access to a complete SNN cir-
cuit design for use in later works.
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Chapter 1

Introduction

There is a growing desire in a number of fields to implement neural network algo-
rithms on embedded hardware. The explosion of digital data available in the world
has greatly increased the need for high-performance tools to process and analyze that
data. Modern NNs have achieved remarkable performance on various analysis tasks,
and embedded systems are already integrating NNs into a number of developing tech-
nologies, from IoT and wearable devices, to medical and industrial scanners.

SNNs are a neuromorphic-inspired architecture that aims to emulate how the hu-
man brain processes information. In a SNN, information is passed between neurons
using series of binary pulses, or spikes, instead of standard numerical information.
This allows SNN computation to avoid the use of expensive multiplication units alto-
gether and instead use simple addition and thresholding operations. SNNs are an ac-
tive area of research, and have demonstrated cutting edge performance on the MNIST
dataset [2], and a variety of other benchmarks [1]. SNNs are not without problems,
however. Spiking data is inherently event driven with irregular memory access pat-
terns, which makes implementation on traditional computation systems, such as CPUs
and GPUs, difficult. SNNs commonly need to be larger than traditional networks to
achieve a similar level of performance, which in turn often results in a greater number
of computations, even if each individual computation is simpler.

In this work, we propose the Approximate Spike Encoding Neural Network (AS-
PENN), a SNN design that leverages the irregular memory access patterns to improve
energy-efficiency. This design focuses on improving the core neuron update compu-
tation with a modular, multi-stage weight summation unit that is well suited for spik-
ing computation. This unit combines low-power counter compression and block-save
adder structures to perform efficient multi-operand addition. We also present an ap-
proximation method to further the improve the area and energy requirements of this
circuit. This unit is integrated into a complete network circuit that routes spiking in-
formation in order to take full advantage of the efficient adder design. This design is
verified on the MNIST handwriting digit dataset and achieves 98.42% accuracy, near
the cutting edge for this dataset. This performance is achieved by consuming only
2.5µJ of energy per image on average.
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Chapter 2

Background

2.1 Spiking Neural Networks (SNN)
Input
Layer

Hidden
Layers

Output
Layer

FIGURE 2.1: Feedforward
Neural Network Structure

Spiking neural networks are a variant of traditional neu-
ral networks that take inspiration from how the brain pro-
cesses information to perform energy-efficient computa-
tion. The primary difference is that instead of a neuron
always passing along information, it only passes along
information when that neuron is activated. This behav-
ior requires a concept of time within the network model.
Each neuron, therefore, produces a spike train of neuron
activations which are used to perform the network oper-
ation.

While there are neuron-level differences between tra-
ditional artificial neural networks and spiking networks,
many structural concepts are shared between them. The feedforward network is the
simplest neural network model, and this structure can be easily implemented using
a SNN. In a feedforward network with fully connected layers, each pairing of neu-
rons between adjacent layers is associated with some trained weight, and each neuron
uses the incoming weights to compute its activation. With standard networks, every
neuron from the previous layer contributes the corresponding weight for each neuron
update, while with SNNs, only those weights coming from spiking neurons are used.
More complex architectures are possible to implement, such as convolutional neural
networks, but this work will focus on the basic feedforward structure.

2.2 SNN Neuron Models

The core elements of any neural network are the individual neurons that process data
and the synapses that connect neurons. There are a variety of neuron architectures
that are commonly used in SNN circuit designs. One such neuron model, the Integrate
and Fire (IF) model, is particularly interesting due to its simple design and low-cost
implementation. Much of the language for describing SNN behavior is borrowed from
neuroscience. Each IF neuron contains a tracking value, called the membrane potential
voltage. In each simulated time-step, all synaptic weights leading from spiking neu-
rons in the previous layer to a single neuron in the receiving layer are summed to form
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the synaptic impulse voltage. This impulse is then added to the neuron’s potential,
and this new voltage is compared against some threshold value. If the threshold is
exceeded, the neuron fires an output spike and resets the membrane potential. If the
threshold is not exceeded, the membrane potential is set to the sum of the old potential
and the current impulse. This operation is described mathematically in Equation 2.1,
where vo[t] is membrane potential, vimp[t] is the calculated impulse voltage, and vre f is
the reference threshold.

vo[t] =
{

0 vo[t− 1] + vimp[t] ≥ vre f
vo[t− 1] + vimp[t] otherwise (2.1)

More complex neuron models have been proposed, mostly taking inspiration from
various characteristics of a brain’s biological neuron behavior. One such model is the
Leaky Integrate and Fire neuron (LIF), which subtracts some value from the neuron’s
potential after each timestep, simulating the gradual degradation of neuron’s poten-
tial after long periods of inactivity. Another method introduces a refractory period in
which a neuron cannot be updated from some small number of timesteps after it has
fired a spike. More complex models that better emulate biological neuron behavior
have been proposed, although most SNN implementations favor the simpler models
due to their more efficient structure and their relative ease of training. This work fo-
cuses its attention on the non-leaky IF neuron, although the resulting design could
easily be modified to implement these more complex models with relatively simple
changes.

2.3 Multi-Input Addition

Multi-input addition circuits are a specialized category of arithmetic that aims to im-
prove performance when adding three or more operands. Thabah et al. demonstrate
experimentally that Wallace Trees are generally the most efficient multi-input design
[15]. Wallace Trees use a network of carry-save adders (CSA) to perform multi-input
addition. An example for computing the sum of six inputs is shown in Figure 2.4.
Carry-save adders use a chain of full adders, but instead of sending each adder unit’s
carry signal to the next adder in the chain, the CSA outputs both the sum and carry
signals for every full adder unit. The sum and carry signals can then be used by other
CSA units. At the end of a CSA network, a single carry-propagate addition is neces-
sary to derive the final result. If a network of CSAs is constructed carefully, then many
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additions can be performed very quickly and efficiently. Wallace Trees do have issues,
however. Wallace trees are designed with a fixed number of inputs that are all present
at the same time, and the size of this system can become prohibitively expensive when
used on a large number of inputs. The SNN accumulate operation has an unknown
number of addition operands, which is difficult to implement with Wallace Trees. Fur-
thermore, since multiple neuron computation units will exist side-by-side, making the
neuron unit compact is an important concern. These reasons make Wallace trees an
unattractive option for performing the SNN accumulate operation.

Instead, a multi-input design that receives inputs sequentially would be better
suited for the spiking behavior of SNNs. This would allow an arbitrary number of
inputs to be summed together with a compact and efficient circuit. The most common
accumulator design is a Carry-Save Accumulator [5]. This design feeds an input into
a carry-save adder and latches the outputs to be fed back into the system. Once all in-
puts have been processed, a CPA unit is applied to derive the final summation result.
A diagram showing this operation is shown in Figure 2.5. This system is compact but
consumes a lot of energy when applied over many inputs. Input compression is an
alternative method to accumulate sequential information [18]. This method requires
more area but is more energy efficient. Compression circuits count the number of ones
in an input set [11]. These counts are then used by an arithmetic circuit to finish the
computation. Counter compression is a low-cost operation, much lower typically than
the CSA operation described above. While the second stage arithmetic circuit is typi-
cally more expensive, this cost is amortized over many inputs.

2.4 Approximate Neural Network Circuits

Neural networks have been shown to be resilient to computational approximations
[17]. This has led to a good deal of research focused on building approximate neu-
ral network circuits. These projects can be divided into two categories based on the
method used: 1) network-level approximations, and 2) neuron-level approximations.
Network-level approximations focus on reducing the neural network to a simpler form
[17], which hopefully reduces the number of computations the network performs.
Neuron level methods focus on using approximate computing circuits in the actual
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neuron computation [6], [9], [7]. These methods aim to introduce errors at the expense
of accuracy to improve performance of each computation.

Various works in recent years have attempted to apply network level approxima-
tion techniques to spiking neural networks. Some works have directly applied network
reduction and pruning strategies to SNNs [14], [12]. Other works have attempted to
use the unique computational behavior of SNNs, particularly their time-dependent
nature, to dynamically adjust the network during inference [13]. To the best of our
knowledge, no previous works have attempted to apply neuron level approximate
methods to SNNs beyond simple weight quantization.

2.5 Spiking Neural Networks Circuits

Up until recently, there have been significant hurdles facing wide-scale implementa-
tion of spiking neural networks. The most significant hurdle is the difficulties with
training SNNs, with often large performance divide between SNN implementations
and their more conventional counterparts. In recent years, great strides have been
made towards reducing this divide, and SNNs have met, and sometimes even ex-
ceeded, performance metrics on several common benchmarks. Several specialized
hardware systems have been developed to assist researchers with training and test-
ing of spiking algorithms [1], [3]. These systems have demonstrated impressive per-
formance gains on a variety of common benchmarks, both in terms of accuracy and
power consumption.

Other projects have made progress towards developing small-scale and highly-
optimized SNN processor chips [19, 13]. These proposed designs focus on providing
spiking networks for real-world embedded systems and edge devices. While less ap-
plicable to a wider range of problems than the industrial scale implementations popu-
lar for research of spiking algorithms and training methods, these small-scale accelera-
tors instead promise to perform a subset of important operations very efficiently. These
new systems will play a vital role in pushing spiking neural network implementations
into the mainstream.
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Chapter 3

Spiking Neuron Design

A great deal of research effort in developing spiking neural network circuits has been
devoted to training and optimizing these systems on the network level. Our ASPENN
design takes a novel approach by focusing on the lowest level of a SNN, the spik-
ing neuron itself. This section will describe the neuron circuit implementation and in
particular the weight accumulation operation itself. It will also present a method for
approximating the neuron’s accumulate operation.

3.1 Integrate and Fire Neuron

The simplest and most common spiking neuron model is the integrate-and-fire neuron
(IF). There are two phases to performing an IF neuron update. The first phase starts by
accessing the synaptic weights of all neurons in the previous layer that have fired in the
current time step. It then sums these weights together to form the synaptic impulse.
In the second phase, this impulse is added to the neuron’s current membrane potential
and compared against some threshold value. If the threshold is exceeded, the neuron
fires and resets. If not, the summed value is latched as the neuron’s new membrane
potential.

3.2 Weight Accumulation Unit Design

The core operation of an IF neuron is weight accumulation. This operation is re-
quired to sequentially add together a variable number of signed, fixed point weights.
Fixed point binary representations are commonly used in low-power computations be-
cause they can be used to represent fractional numbers without resorting to expensive
floating-point computation. Fixed point numbers also make it easy to use 2-s comple-
ment conversions to represent signed numbers. ASPENN represents the value, vb, of
a binary number, b, of size k using Equation 3.1. In this equation, b[1] is the least-
significant bit.

vb = −2k−1 ∗ b[k− 1] +
k−2

∑
n=0

2n ∗ b[n] (3.1)

To perform weight accumulation, ASPENN proposes an energy-efficient design
that combines parallel counter compression with adder tree networks [18]. The logic
behind choosing this design over a more conventional CSA accumulator deals with the
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FIGURE 3.1: Weight Summation Unit
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FIGURE 3.2: Counter Chain for c = 3:
P is a positive (+1) counter while N is

a negative counter (-1).

energy cost per input. While a CSA accumulator uses a moderate amount of energy for
every new input, ASPENN’s design performs a low-cost counting operation for every
new input, and then performs only a few, high-cost operations throughout the compu-
tation. These costs are amortized over the many inputs used during a computation and
reduce the overall energy consumption significantly. This structure decomposes into
three modular stages: 1) Counter Compression, 2) Block-Save Addition, and 3) CPA
addition. Figure 3.1 presents a dot-diagram of the proposed addition unit, where each
dot represents a single bit of binary data. A more detailed description of each stage is
given in the following sections.

3.2.1 Stage 1: Counter Compression

The first stage, Counter Compression, simply counts the number of ones in each bit
position for a sequence of inputs. Counter compression is an extremely low-power
operation, which benefits greatly from the sequential arrival of synaptic weights. For
an input with a width of k bits, this requires k counter compressors. ASPENN imple-
ments these parallel counters using short chains of resettable flip-flops [16]. Each of
these chains use a fixed number of flip-flops, c. There are two flavors of counter chain
used, a positive and a negative counter, which are shown in Figure 3.2. Each of the
k bit positions requires a separate counter, so this stage uses k ∗ c flip-flops. In Figure
3.1, the results of each counter is represented as a diagonal line of dots. The k− 1 least
significant bit positions are counted using a positive counter, but the most significant
bit position requires a negative counter. This is due to the signed binary representation
expressed in Equation 3.1, where the MSB has a negative contribution to the number’s
total value. This distinction is represented by the GREEN dots in 3.1.

3.2.2 Stage 2: Block-Save Addition

The second stage, Block-Save Addition, performs a set of small-scale additions on the
results of the Counter Compression stages. Each counter result is skewed and arranged
by significance, so as to accurately perform the necessary addition operation. This ar-
rangement can be seen in Figure 3.1. These skewed counter results are partitioned into
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blocks, and then the sum of each block is computed in parallel. The exact dimensions
of these blocks are carefully chosen to ensure that the resulting pieces form a disjoint
partition of the block-sum results [18]. Each block is colored with alternating RED and
BLUE colors in Figure 3.1, which correspond to the similarly colored inputs to the
CPA Addition. Each block in this stage runs in parallel and has a modular design that
is well suited for the approximation methods outlined in a later section.

3.2.3 Stage 3: CPA Addition

These block sum results, as well as the neuron’s current membrane potential, are added
together in this stage to produce an updated membrane potential. Additionally, the
sign bit from the MSB counter is extended and incorporated with this addition. These
extended bits are marked with an × in Figure 3. This stage first applies a carry-save
layer to reduce the three inputs down to two, and then applies a standard CPA opera-
tion. This stage contributes the most to the delay of this system, as it is the only stage
that cannot be parallelized effectively. More advanced adder designs could address
the latency issue, but often at the expense of additional hardware and energy costs, so
ASPENN uses a simple ripple-carry design.

3.2.4 Weight Accumulation Operation

There is a significant issue with this design that must be addressed. In the first stage,
the counter compressors have a fixed size, which limits the amount of data they can
count before the counter overflows and an error occurs. The capacity for a counter of
size c is given by:

capacity = 2c − 1 (3.2)

If c = 5, for example, then the counters can be filled with at most 31 inputs while
still guaranteeing an exact result. The actual number of inputs fed into this system
is determined by the number of neurons that have fired in the previous layer. The
number of inputs vary wildly from operation to operation. Having a capacity large
enough to process the maximum possible number of inputs directly is prohibitively
expensive and will mostly be wasted as most operations will not require the larger
capacity. This system can be adapted to accumulate an arbitrary number of inputs by
updating itself at regular intervals. This update activates Stages 2 and 3 and stores
the result to be fed back into the system as the additional input to Stage 3 discussed
previously. The Stage 1 counters are then reset and can continue counting without fear
of exceeding capacity. This operation continues until the neuron update has summed
all necessary weights. Once all spikes for a given timestep have been processed to
form the synaptic impulse, this value is compared against some threshold value, and a
spike fires if that threshold is exceeded. If a neuron fires a spike, the neuron’s potential
is reset, if not, then the neuron’s potential is updated for the next timestep.

3.3 Neuron Approximation Methods

Approximate computing is a category of optimization techniques that seek to improve
some design metric, such as area or energy consumption, at the expense of accuracy.
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This technique has proven effective for improving traditional neural networks [6, 9].
Neural networks have been shown to be resilient to computational approximation [17],
and SNNs show a similar robustness to computational approximations [14].

SNNs are a promising target for approximate computing optimizations. Since
spikes are generated based on thresholding the result of weight accumulation, an ap-
proximate computation can produce an equivalent spiking pattern to that of an exact
computation if the errors are not too severe. Neuron outputs are time dependent as
well, so minor time-shifts in internal spike trains may still produce correct final results.

The weight accumulator design described above performs exact, multi-input ad-
dition. Since this circuit uses a highly modular design, it is easy to incorporate ap-
proximate components when appropriate. ASPENN incorporates approximation tech-
niques in the Block-Save Addition and the Standard Addition Stages of the multi-input
adder described previously. These techniques are described in detail in the following
sections. ASPENN’s weight accumulator unit has a further advantage in that an ap-
proximation applied to the computation amortized any error that occurs over all inputs
fed into the system. This reduces the expected error per input significantly.

The first method applied to ASPENN is aimed at developing a technique to con-
vert exact adder trees into approximate adder trees and apply this technique to the
block-save operation of Stage 2. The following sections will discuss how to generate
optimal, exact adder trees of arbitrary size, various properties of these trees, and finally
how to convert exact trees into approximate trees with lower power consumption. The
second method applies a standard library of 2-input approximate adders to Stage 3 of
the weight accumulator unit.

3.3.1 Exact Adder Trees Generation

FA

FA

FA

FA

FA

FA

FIGURE 3.3: Exact 5x2 Block
Adders. Size: 6, Depth: 4

Adder trees are circuits comprised of full and half
adders that can be used to sum together inputs of
arbitrary number and dimension. These trees can be
thought of as generalizations of standard addition
circuits, which are conventionally limited to two in-
puts of fixed size. An example of an adder tree for
adding 5 inputs of size two is given in Figure 3.3. In
this and all other adder tree diagrams in this report,
inputs are marked as black dots, outputs are marked
as white dots, and the number of dashes through a
signal marks the significance of that signal. There
are a variety of methods to generate adder trees, but the method generally considered
optimal is the Three Greedy-Approach [11]. This method greedily connects signals of
the same significance level in groups of three or two, depending on availability. The
choice of selection greedily picks the signals with the minimum delay from the input
set. Pseudocode for generating optimal, exact adder trees using the Three-Greedy Ap-
proach is given in Algorithm 1. Trees generated using this method have the smallest
possible size and depth. Size is defined as the total number of adders. Depth is de-
fined as the maximum number of adders on a path between an input and an output.
For purposes of determining size and depth, half and full adders both count as 1 adder
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unit. More fine-grained approaches can simulate the real-world differences between
these various circuit components for increased performance, but this project we will
use the simpler model for its ease of design.

Algorithm 1 Optimal Adder Tree Generation with the Three Greedy-Approach

DEFINE: hal f Adder ← {inX , inY , outSUM, outCARRY}
DEFINE: f ullAdder ← {inX , inY , inZ, outSUM, outCARRY}
INPUT: signals← initial list of signal queues
adders← empty list
index ← 0
while index < length of signals do

if length of signals[index] = 2 then
AdderH ← new halfAdder
AdderH .inX ← dequeue signals[index][0]
AdderH .inY ← dequeue signals[index][1]
AdderH .outSUM → signals[index]
AdderH .outCARRY → signals[index+1]
AdderH → adders

else
AdderF ← new fullAdder
AdderF.inX ← dequeue signals[index][0]
AdderF.inY ← dequeue signals[index][1]
AdderF.inZ ← dequeue signals[index][2]
AdderF.outSUM → signals[index]
AdderF.outCARRY → signals[index+1]
AdderF → adders

end if
if length of signals[index] = 1 then

index += 1
end if

end while

Before moving on to describing a method to convert exact adder trees into ap-
proximate trees, it is helpful to understand some properties of the signals found within
these circuits. We reasonably assume random inputs where each input bit has an equal
chance of being either a zero or one. For a single full or half adder unit given random
inputs, the output bits each have an equal probability of begin zero or one, although
these two probabilities are not independent. Since an adder tree is entirely comprised
of full and half adder units, and both the inputs and outputs of these units have the
same distribution, we observe that all signals in an adder tree have a 50% chance of
being either zero or one. Therefore, fixing any of these signals to a specific value has
a 50% chance of introducing an error with magnitude equal to the significance of that
signal. The sign of that error is determined by what it is set to: setting the signal’s
value to 1 will cause a positive error, while a value of 0 will introduce a negative error.
This signal fixing can be thought of as making a guess as to the result of a signal before
it is computed.
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FIGURE 3.4: Full Adder Reduction Diagrams: Full adder with 0, 1, and
2 input signals fixed. Depths of input and output signals based off some

depth, "d".

3.3.2 Approximate Adder Tree Conversion

Exact adder trees can be converted into approximate adder trees by performing a se-
quence of signal fixations. Converting to an approximate adder tree takes two steps,
choosing signals to fix, and choosing what values to fix those signals to. Each signal
chosen for fixation produces an error with a magnitude determined by the significance
of that signal. The choice of the value, either 0 or 1, determines the sign of the er-
ror. Any fixed signal will create an approximation, but only by being strategic can this
approximation be used to improve performance. Performance can be improved by re-
ducing either the size or the depth of the tree, both of which correspond directly to
improvements in energy consumption. For picking signals to fix, we have derived two
useful heuristics: The Depth-Mismatch Heuristic, and the ±1 Heuristic.

The Depth-Mismatch Heuristic can be applied whenever the input signals to a
specific adder unit have mismatched depths. First, it is important to note that the
output signal of an adder unit is simply the maximum input signal depth plus 1. If
the input signal with maximum depth is fixed to some value, then the output signal’s
depth can be reduced by the difference between the depths of the fixed signal and the
next deepest input signal. For example, assume an adder unit has three input signals
with depths {d, d, d+1}, then the output signals have depth (d + 1) + 1 = d + 2. Now, we
fix the third signal, thereby removing it from the depth calculation. The new output
signal depth is therefore only (d) + 1 = d + 1. This operation is illustrated in Figure 3.4.
Fixing one of a full adder’s inputs has the additional benefit of reducing that unit to a
simpler half adder, although the choice of what value the signal is fixed to will change
the type of half adder it is reduced to. If the input signal is fixed to a 0, corresponding
to a negative error, the full adder reduces to a negative-type half adder. Fixing the
input signal to a 1 causes a reduction to a positive-type half adder. Truth tables for
these two types are shown in Table 3.1. This method can also be applied to half adders
with input depth mismatches, in which case the circuit reduces to a single inverter.
This rule is helpful when depth mismatches exist and can directly reduce the depth of
an adder tree by fixing only one signal.

When there are no adder units with depth mismatches, then the ±1 Heuristic can
be applied instead. This heuristic can only be applied to full adders, and fixes two
input signals to opposite values. This operation reduces a full adder down to a single
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inverter, as shown if Figure 3.4. As inverters are typically considered negligible circuit
components, especially when compared against full and half adders, this reduction es-
sentially removes the full adder’s contribution to both the size and complexity of the
adder tree. While this method requires twice as many fixations as the Depth-Mismatch
Heuristic, it reduces the complexity of the original circuit to a greater degree. To un-
derstand why the input signals must be fixed to opposite values, it is best to examine
the logical functions of these reductions. Table 3.1) shows the truth tables for a vari-
ety of full adder reductions. For convenience, assume that all input combinations are
equally likely. From this table, it is clear that the probability that an error occurs for
the inverter reduction is %50, the same as for the half adder reductions. Interestingly,
however, is that the expected error of this reduction is zero, while the expected error of
the half adder reductions is ±0.5, depending on the type of half adder used. Notably,
the variance is higher for the inverter than the half adders.

TABLE 3.1: Full Adder Reductions: Each reduction column contains the
carry and sum output values (C and S), as well as the error (E) compared

against the full adder result.

Inputs FA(X, Y, Z) HAN(X, Y) HAP(X, Y) INV(X)
Z Y X C S C S E C S E C S E
0 0 0 0 0 0 0 0 0 1 +1 0 1 +1
0 0 1 0 1 0 1 0 1 0 +1 1 0 +1
0 1 0 0 1 0 1 0 1 0 +1 0 1 0
0 1 1 1 0 1 0 0 1 1 +1 1 0 0
1 0 0 0 1 0 0 -1 0 1 0 0 1 0
1 0 1 1 0 0 1 -1 1 0 0 1 0 0
1 1 0 1 0 0 1 -1 1 0 0 0 1 -1
1 1 1 1 1 1 0 -1 1 1 0 1 0 -1

Once a set of signals have been selected, the errors introduced by these fixations
can be represented as a sequence of magnitudes. Selecting values for these signals is
an equivalent problem to assigning a sign to every value in this magnitude sequence.
The goal of this task is to reduce the absolute value of the expected error generated
by this set of signal fixations. By assuming that every error occurs with an equal 50%
probability, then the expected error of a set of n fixations, E[s f ], is given by equation
??. We have developed two heuristics for value selection: Alternating Signs, and Most
Significant Sign.

E[s f ] = 0.5 ∗
n

∑
k=1

s f [k] (3.3)

The Alternating Signs Heuristic is best applied when there exist two fixed sig-
nals of the same magnitude. This method fixes these two signals to alternating signs,
one positive and one negative. By choosing opposite signs, the induced errors have a
chance of cancelling out, thereby producing a correct final answer even with approxi-
mate components. This method can also reduce the maximum error, as it prevents the
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magnitudes from compounding if both signals have an error. It is this principle which
is applied to good effect by the ±1 Rule.

The Most Significant Sign (MSS) Heuristic is best applied when there exists a
strictly increasing sequence of fixation magnitudes. An example magnitude set that
exhibits this property is {2, 4, 8, 16}. Applying this rule will fix all signals to the same
sign, except the most significant signal which will have an opposite sign. This method
minimizes the magnitude of the expected error induced by that set of fixations. For
example, applying the MSS method to the sequence shown above will yield a signed
magnitude set of {+2, +4, +8,−16}. This assignment produces an expected error of
only −1, which is minimal for this set. The expected error can be reduced even fur-
ther if the MSS method is expanded slightly by adding a repeated fixation at the least
significant signal. So if the fixation set instead has magnitudes {2, 2, 4, 8, 16}, then the
extended MSS method will produce the signed errors {+2, +2, +4, +8,−16}, which has
an expected error of 0.

3.3.3 Approximate Weight Accumulator unit

Each block in Stage 2 of the weight accumulator unit can be converted into an exact
adder tree. The tree structure for a completely full 5x2 block is shown in Figure 3.5.
All possible Depth Mismatches are marked with colored circles. Also shown are two
potential approximate conversions. The first approximate tree, Design #1, has had
the Depth-Mismatch Rule applied twice, producing a fixation magnitude set of {1, 2}.
The MSS method is applied to form a signed error set of {+1,−2}. In the second
tree, Design #2, the Depth-Mismatch rule is applied a third time, to produce a fixation
magnitude set of {1, 2, 4} and a signed error set of {+1, +2,−4}. These designs reduce
the depth of the exact 5x2 adder tree to 3 and 2 respectively. Both have an expected
error of −0.5.

Since the results of these block-save adders are used to form pieces of the inputs
to the Stage 3 addition, it is helpful to examine the induced errors of adjacent blocks
in relation to one another. Suppose there are two adjacent blocks, A and B, arranged
{A, B}. Let Block A be approximated with Design #1, and Block B be approximated
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FIGURE 3.5: Approximate 5x2 Adder Conversion: (Left) Exact 5x2 adder.
Depth Mismatches marked with RED, GREEN, and BLUE. Size=6, Depth=4.
(Center) Approximate 5x2 Adder Design #1. Size=6, Depth=3. (Right) Aap-

proximate 5x2 Adder Design #2. Size=6, Depth=2.
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with Design #2. Block A’s significance values are shifted by the width of Block B, so
Block A’s fixation magnitude set will be multiplied by some power of 2. For instance, in
the case where c = 5, the block width is 2, so Block A’s magnitude set will be multiplied
by 22 = 4. Combining the fixation magnitude set from each block forms a new fixation
magnitude set: {1, 2, 4, 4, 8}. This set can be divided into two sub-sequences, {1, 2}
and {4, 4, 8}. This first sequence matches the criterion for applying the MSS method,
while the second matches the criterion for applying the Extended MSS method. Af-
ter applying these rules to the sequences, this arrangement has a signed error set of
{+1,−2, +4, +4,−8}, with an expected error of −0.5.

A second approximation method is applied during Stage 3. This method uses an
approximate, 2-input adder to perform the final CPA addition. While there are many
potential options for approximate adders, [6, 7], the EvoApprox8b Library [10] has the
greatest number and range of options. This library has been generated by applying
a genetic algorithm to an exact addition circuit, and the results are guaranteed to be
near the Pareto frontier for approximate addition. While there were many options
balancing accuracy, cost, and power consumption, we chose design 2JY, a 16-bit signed
adder. This choice was made after a series of experiments showed that this design was
better on a wider range of criterion when synthesized.
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Chapter 4

Spiking Neural Network Design

The previous sections detailed the design of a single neuron, and methods to approxi-
mate that neuron’s computation. This section will now go over how to construct a net-
work of these neurons to perform a neural task. ASPENN is designed and trained to
perform handwritten digit classification on the MNIST dataset, a common benchmark
for neural network algorithms. This chapter will first describe the network design and
discuss the training method used. It will then describe the network-level architecture
design and memory management system.

4.1 SNN Design and Training

The Modified National Institute of Standards and Technology (MNIST) dataset is a
large collection of images of handwritten digits [8]. Each image is encoded as a 28x28
pixel grid of greyscale values. Each image is classified as a single digit between 0− 9.
ASPENN takes as input one of these images and classifies that image with a corre-
sponding digit. Training spiking neural networks has traditionally been a challenging
task facing SNN researchers, but great strides have been made in recent years. AS-
PENN is trained using a technique to convert trained ANNs into high-accuracy SNNs
[2]. The first step in this training process is to train an ANN using standard back-
propagation techniques on a network of rectified linear unit (ReLU) activations. ReLU
activations can be thought of as approximations of a neuron’s spiking rate, and so can
be converted directly into a network of Integrate-and-Fire neurons.

The final step in this method is weight normalization, which constrains all the
weights in a layer to limit the maximum spiking activity during a timestep. Nor-
malization both improves accuracy and reduces convergence time. The normalization
training stage guarantees two things about the network weights. The first guarantee is
that each weight has a magnitude less than 1. The second is that every neuron in the
entire network can use a spiking threshold equal to 1. Furthermore, SNNs have been
shown to be robust to small precision weight quantization [14]. This allows ASPENN
to use q0.8 signed fixed-point numbers for synaptic weights, and q8.8 numbers for the
impulse and membrane potentials, with minimal impact on accuracy as opposed to
floating point numbers. A fixed point structure described using Q notation is writ-
ten as qA.B, where A is the number of integer bits, while B is the number of decimal
bits. ASPENN’s weights, therefore, require only 8 bits of data per weight. Importantly,
ASPENN’s training process does not account for the quantization, and instead trains



Chapter 4. Spiking Neural Network Design 16

R1

R2

R3

R4

Spike Memory Spike Cache

S1 -> R1
S2 -> R1
S3 -> R1
S4 -> R1

R
S1
S2
S3
S4

S1 -> R2
S2 -> R2
S3 -> R2
S4 -> R2
S1 -> R3
S2 -> R3
S3 -> R3
S4 -> R3
S1 -> R4
S2 -> R4
S3 -> R4
S4 -> R4

Main Memory

Data Cache Controller Neuron Matrix

FIGURE 4.1: SNN Architecture (5 Components): (1) Main Memory stores
weights and spikes. (2) Cache pre-loads sets of weights for easy access. (3)
Controller directs memory flow. (4) Neuron Matrix contains the physical
computation units. (5) Spike Cache passes spikes between the memory

systems and the Control unit.

the weights purely using floating point numbers. The conversion to fixed point occurs
after training.

ASPENN uses a fully connected feedforward architecture to perform MNIST clas-
sification. The network parameters used in this project has four layers. The input layer
has 784 neurons, one for each pixel in an MNIST image. There are also two hidden
layers with 1024 neurons each, and an output layer with 10 neurons, one for each pos-
sible digit class. This network is trained in Matlab using a tool developed by Diehl
[2]. A network trained with these parameters can achieve classification of accuracy
of 98.48%, which is near cutting edge for this dataset. The output class is determined
by whichever output neuron has had the highest spiking activity during a classifica-
tion. Each classification runs over 10 timesteps, which is experimentally determined
to be approximately the point where the answer converges to its final value. The input
layer’s behavior is not based on any neuron update model, but rather is determined
directly from the input image. First, a random number is generated for each pixel at
each timestep and is compared against that pixel’s true value. The corresponding in-
put neuron fires a spike at that timestep if the randomly generated number exceeds the
pixel value. This operation is applied to all input pixels for the duration of a classifi-
cation and generates a set of spike trains for an input image. Generating input spike
trains from images will not be handled directly by the ASPENN circuit presented here
but will instead be generated during a preprocessing stage and made available for AS-
PENN at runtime.

4.2 SNN Circuit Architecture

ASPENN’s network design is comprised of 5 components. (1) Main Memory, (2) Data
Cache, (3) Controller, (4) Neuron Matrix, and (5) Spike Router. A diagram showing
the network architecture is shown in Figure 4.1. The first component is the Main
Memory. This unit stores all neuron weights, as well as a set of Spikes. The Data Cache
periodically has sets of weights loaded from Main Memory and assists with high-speed
data transfer by avoiding the need for frequent Main Memory reads and writes. The
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Controller unit coordinates data flow from the memory system to the neuron matrix,
as well accessing the Spike Cache during neuron computation. The Neuron Matrix
contains all physical neuron computation units and is where the core neuron update
operation takes place. The last component is the Spike Router, containing both the
Spike Memory and the Spike Cache. Spikes are passed back and forth between the
Cache and the Memory as needed. The following sections will go over each of these
components in more detail.

4.2.1 Main Memory

The Main Memory system for ASPENN contains all weight memory data, as well as
Spike Memory. The size requirements to store all the data is far too large for on-chip
memory, but an off-chip DDRAM component can implement this functionality easily.
For the purposes of this report, we will assume the use of the Micron Technologies 46V
DDRAM chip (MT46V). This component is cheap, has significant memory storage, and
is easy to use. ASPENN has network dimension {784, 1024, 1024, 10}, which requires
nearly 1.86 million weights to be stored. As each weight has a size of 1 byte, this
corresponds to roughly 1.8 MB of main memory storage. The MT46V, by comparison,
has 256 MB of memory available.
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FIGURE 4.2: Main Memory:
Weights grouped according

to receiving neuron (R).

The arrangement of weights inside the memory sys-
tem is an important consideration in ASPENN’s design.
Figure 4.2 shows a small-scale feedforward neural net-
work, and a memory system containing all corresponding
synaptic weights. This network has a spiking layer (S),
and a receiving layer (R). Notably, the weights in mem-
ory are grouped by receiving layer, not by spiking layer.
As the physical neuron unit performs the operation of the
receiving neuron, it makes the neuron computation more
efficient to group data in this way. Since multiple physical
neurons are being computed in parallel, it is convenient
to group neurons in the receiving layer together. Each of
these groups will have a size equal to the total number of
neurons in the neuron matrix. This grouping divides the main memory into a set of
weight blocks, where each block contains the weights leading from every spiking neu-
ron in a layer to a set of receiving neurons. During data loading to the cache, it is a
block which is loaded directly into the Data Cache. Sets of these blocks are pre-formed
for each layer in the network and placed into the Main Memory for later use. Block
sizes are determined by the size of the Neuron Matrix and the number of neurons in a
given layer, and is expressed in Equation 4.1.

block size_i = (layer size_i) ∗ (neurons in matrix) ∗ (weight size) (4.1)

4.2.2 Data Cache

ASPENN’s Data Cache contains a block of weights loaded from Main Memory. This
cache is implemented on-chip as scratchpad memory. This means that the Controller
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unit controls all aspects of this cache directly. The Data Cache implements two primary
operations: weight block loading, and weight reading. During each load operation,
the entire cache is filled up by a block from memory. Once a block has been loaded, it
remains in the cache until the corresponding neurons have completed all their compu-
tation and updates. The two important parameters for any cache design are the cache
size, and the cache line width. The cache size is the same as the maximum block size,
which is simply the block size, as determined in Equation 4.1, for the largest layer in
the network.

For example, ASPENN’s largest layer has 1024 neurons, and weights are 1 byte
each. Assume that there are 64 physical neurons in the Neuron Matrix. These param-
eters yield a cache size of 1024 ∗ 64 ∗ 1 = 64kB. During a weight reading operation, a
single cache line will be read. A cache line size of one byte is needlessly inefficient,
so instead several weights will be present on each cache line. ASPENN uses a cache
line of four bytes, so four weights will be received during each read operation. Each
of these weights will correspond to different receiving neurons, but the same spiking
neuron. In the Neuron Matrix, this group of four neurons is referred to as a Neuron
Tile.

4.2.3 ASPENN Controller

The ASPENN Controller coordinates the memory flow during classification. This sys-
tem performs several operations relating to loading and reading from the cache, access-
ing the Spike Cache, and sending weight data to the Neuron Matrix. Five parameters
are required to coordinate this memory flow. (1) The layer index determines which
layer is being computed. ASPENN has three layers of simulated neurons, as the input
layer is pre-computed. (2) The page index determines which group of receiving neu-
rons is being computed. (3) The time index tells what time step the system is currently
on. An MNIST classification runs for 10 timesteps on ASPENN. (4) The spike index
indicates which spike is being read from the Spike Cache. (5) The tile index indicates
which tile in the Neuron Matrix weights will be sent to. An algorithm that describes
how these parameters are used is given in Algorithm 2.

At a high level, the controller goes through every neuron in every layer by loading
and feeding the Neuron Matrix the proper weight data, as determined by the previous
layer’s spiking activity. Each page loaded into the Data Cache contains all weights re-
quired for computing the spike activity for every neuron in that block. As the neuron
update requires many internal updates and refreshes, it is easiest to initialize a set of
neurons in hardware and compute those neuron’s activity for every timestep before
moving onto the next set. This avoids the need for loading and reloading the neu-
rons’ membrane potential, saving both time and energy. It also allows for each page
of weights to be loaded exactly once from memory, at the start of that set of neuron’s
computations. The Spike Cache must contain all spikes from the previous layer for
every timestep. The Spike Cache only needs to be loaded when a new layer begins,
as the same spiking activity is shared by every neuron in each layer. A neuron’s out-
put spikes are processed by the Spike router, whose operation is described in a later
section.
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Algorithm 2 ASPENN Controller

INITIALIZE: MainMemory← TrainedWeights
INITIALIZE: SpikeMemory← InputImage
for (layeri = 0; layeri < numLayers; layeri += 1) do

SpikeCache← SpikeMemory
for (pagei = 0; pagei < numPage; pagei += 1) do

DataCache←MainMemory[layeri][pagei]
RESET: Neuron Matrix
for (timei = 0; timei < numTimeSteps; timei += 1) do

for (spikei = 0; spikei < numSpikes; spikei += 1) do
Spike← SpikeCache[timei][spikei]
for (tilei = 0; tilei <; tilei += 1) do

Weight← DataCache[spikei][tilei]
Weight→ NeuronMatrix[tilei]

end for
end for
NeuronMatrix.SpikeOut→ SpikeMemory

end for
end for

end for

4.2.4 Neuron Matrix

The Neuron Matrix contains all physical computation units in ASPENN. The matrix is
an addressed set of neuron tiles, which in turn are groupings of individual neurons.
The Neuron Matrix receives as input a weight from the Controller, as well as an ad-
dress indicating which tile that weight is being sent to. There are also some control
signals, such as a reset signal. Direct tile addressing, where data wires connect the con-
troller directly with each tile and activated using large address decoders, consumes
an unnecessarily large amount of routing resources. Instead, ASPENN uses a tree of
binary-decision data splitters, where each splitter uses a single bit of the address to
decide where to send data. A representation of this routing system is given in Figure
4.3, where each bit in the address is used to direct the data either left or right. ASPENN
has a Neuron Matrix of 16 tiles, which requires a 4-bit address. Routing data in this
system requires 15 binary splitter junctions. This method is beneficial as the total num-
ber of on-chip routing resources is significantly reduced in exchange for only a minor
increase in logic resources.

A Neuron Tile is a grouping of several neuron units. The input to a tile is a set of
weights from the Controller. ASPENN packs 4 neurons into each tile. Simply copying
4 instances of the neuron unit described in the previous chapter is an inefficient solu-
tion. It is worth keeping in mind that since the Controller loops through sending data
to every tile in the Neuron Matrix, there will be significant downtime between valid
data inputs. This relaxed time constraint allows for some neuron resources to be shared
within the tile. The first stage of the neuron update, Counter Compression, cannot be
shared, as each counter cannot be overwritten between input arrivals. Therefore, four
copies of the Counter Compressor exist in a single Neuron Tile. Stages 2 and 3 of the
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weight accumulator, as well as the membrane potential thresholding unit, are shared
among all neurons in the tile. Each tile contains only a single instance of these units.
Inputs to the Neuron Update component are multiplexed between the four Counter
Compressors. Membrane potentials for each neuron are stored separately and are sim-
ilarly multiplexed as inputs to the Neuron Update component. Control logic is also
shared, although it does need to be expanded a bit to account for the additional com-
plexity brought on by the shared resources.

4.2.5 Spike Router

The Spike Router is made up of two sub-components, the Spike Memory and the Spike
Cache. The Spike Memory exists on the same DDRAM chip as the Main Memory.
The Spike Cache exists as additional on-chip scratchpad memory, alongside the Data
Cache. Each of these components are divided into time blocks that group spikes that
occur at the same simulated time. For ASPENN’s design, there are 10 blocks, one
for each timestep. Each block needs to be large enough to comfortably allow for the
maximum expected spiking activity for a layer in a single timestep. Experimentally,
this has been determined to be less than 512, so the Spike Cache has 10 blocks with 512
possible spikes, or 51,200 spikes total. Each spike corresponds to an address indicating
which neuron has fired that spike. The size of each spike must be enough to cover
the address space of the largest neuron layer. As the maximum layer size in ASPENN
is 1024, each spike needs to be 10 bits long. Altogether, this memory system requires
approximately 64kB of storage.

At the start of classification, a spiking pattern for a pre-processed input image is
loaded into the Spike Memory. Once a new layer begins computation, the entirety of
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the Spike Memory contents is loaded into the Spike Cache. During operation, spikes
are consecutively read from the Spike Cache and are used as addresses to read from
the Data Cache. Once a neuron tile has finished computation for a single timestep, it
will fire an output spike pattern for the neurons in that tile. This pattern is interpreted
by the Spike Router and converted into a set of valid spike addresses. These spikes are
then written to the proper time block in the Spike Memory. This operation continues
for every neuron in a layer until the spiking activity for that layer is complete. Once
a layer has finished computation and all spikes have been processed and written to
memory, the Spike Cache is reloaded with the new Spike Memory contents.
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Chapter 5

Evaluation

ASPENN has been evaluated to examine two primary factors, the network’s classifica-
tion accuracy, and the circuit’s performance in terms of area and power consumption.
A hardware implementation for ASPENN was developed at the register-transfer level
using Verilog HDL and synthesized using the Cadence Genus synthesis tool on the
gscl-45 nm library. The memory system is evaluated using OpenRAM, an open source
tool that models SRAM and DRAM technologies [4]. In the following chapter, AS-
PENN is analyzed at several levels. First, an ASPENN neuron with an exact weight
summation unit is analyzed and compared against alternatives. Next, similar metrics
are analyzed for approximate neurons with a variety of configurations. Finally, the
ASPENN network is analyzed for classification accuracy and overall area and power
consumption.

5.1 Exact ASPENN Neuron

We first evaluate the design of a single exact ASPENN neuron. For this and all other
evaluations, neurons have a weight data size of 8 bits, and a Stage 1 Counter size of
5. This analysis is broken down into the several stages of a neuron, as well as for the
neuron as a whole. The design analyzed here is that of a single, stand-alone neuron
without any of the extra overhead required to form a neuron tile. A carry-save accu-
mulator with the same input dimensions is also analyzed. The CSA is further broken
into its two stages, the accumulator, and the final addition. In Table 5.1, the area,
power, and timing characteristics of these components are shown.

Circuit Area Power Delay Energy
[µm^2] [mW] [ps] [pJ]

1) CSA: Accumulate 426.1 95.1 223 0.103
2) CSA: Update 348 79.3 1349 0.525
3) ASPENN: S1 623.7 20 185 0.037

4) ASPENN: S2/3 599.7 62.3 1405 0.875
5) ASPENN: Complete Neuron 1811.5 116 1488 1.726

TABLE 5.1: Exact Neuron Circuit Metrics: 1) Carry-save adder accumulate
circuit, 2) Carry-save adder update circuit, 3) ASPENN Stage 1, counter
compressors, 4) ASPENN Stages 2 and 3, block-save addition and CPA
addition, 5) ASPENN Complete Neuron, Stages 1, 2, 3, and thresholding
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Stage 2 Stage 3 Area Power Delay Energy Energy Acc
Config. Exact/Approx [µm^2] [mW] [ps] [pJ] Red. [%] [%]
Exact Exact 597 62.27 1405 0.875 0 98.33
(0,1) Exact 580.1 59.83 1314 0.786 -10.17 98.31
(1,2) Exact 564.1 57.09 1314 0.75 -14.29 96.47
Exact Approx 578.6 59.95 1435 0.86 -1.71 98.42
(0,1) Approx 567.8 57.99 1362 0.79 -9.71 97.9
(1,2) Approx 546.7 55.17 1326 0.732 -16.34 96.49

TABLE 5.2: Approximate Weight Accumulator Metrics: Stage 2 Configura-
tions are either Exact, with all exact adder tree blocks, or approximate with
either one or two blocks replaced with an approximate adder tree circuit.
Stage 3 Configurations are either an exact CPA adder, or an approximate

CPA adder

These results demonstrate two important qualities of the proposed ASPENN de-
sign. The first is that the Stage 1 counter compressors consume an order of magnitude
less energy than the other stages, which is beneficial as that is the component most fre-
quently active. It also points towards Stages 2 and 3 as the most beneficial to optimize,
due to their relatively expensive operation.

The second quality deals with the relative advantage of ASPENN over a CSA accu-
mulator. While at first glance it seems like the ASPENN neuron computation consumes
more energy than the CSA, ASPENN gains a significant advantage when the relative
frequency of use for each operation is considered. Over a full set of inputs, 31 in the
c = 5 case, the CSA adder performs an accumulation operation 31 times, and a final ad-
dition operation once. This yields an energy per input of: (31 ∗ Eacc + Eadd)/31 = 0.12pJ.
With the same input set, the ASPENN neuron activates the Stage 1 counters 31 times,
and the neuron update once, resulting in an energy per input of (31 ∗ ES1 + Eupdate)/31 =
0.065pJ. This is an energy per input reduction of 45.6%, demonstrating a clear advan-
tage for the ASPENN weight accumulator design in terms of energy efficiency. No-
tably, however, this comes at the expense of nearly twice as much area, although these
factors are mitigated due to ASPENN’s neuron tiling implementation.

5.2 Approximate ASPENN neuron

An important element of the ASPENN project is its various approximation strategies
and their impact on performance. This section details these impacts on the neuron level
by modifying the single exact neuron analyzed above. Please refer to section 3.3.3 for a
detailed overview of the approximate weight accumulator unit. In brief, Stages 2 and 3
of the weight accumulator unit will be approximated using a variety of configurations.
For the Stage 2 approximations, there are two reasonable approximate adder tree de-
signs, marked as Design #1 and Design #2. See Figure 3.5 for diagrams of these two
designs. These approximate adder designs can be used to replace the functionality of
the exact adder trees used in Stage 2. ASPENN experiments with two configurations
of these designs. The first is to use just the less extreme approximation, Design #1,
while the second is to use both approximate adder tree designs in adjacent blocks. It
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is worth noting that the least significant block does not contain a full set of inputs, and
is therefore trivially computed, and will be skipped by these approximation configu-
rations. The Stage 3 approximation uses an open source in-exact adder to perform the
final addition. This method is tried with all the Stage 2 configurations. The design
metrics of these various configurations are summarized in Table 5.2.

The physical design metrics are derived using the Genus tool with the same syn-
thesis parameters as in the previous section. These metrics are given only for the Stage
2/3 sub-component of the neuron, as the other pieces of the neuron are unaffected by
these approximation methods. The accuracy metric is found using a SNN network
simulator that uses an emulation of the various approximate neuron configurations.
This simulator is applied to the MNIST dataset [8]. For comparison, a purely software
SNN with the same structure and floating-point weights achieves 98.46% accuracy on
the same dataset. Energy reduction is compared against the exact case.

The first row in Table 5.2 corresponds to an exact ASPENN neuron, and there-
fore can be used to show the effect of weight quantization on network accuracy. This
effect is very small, as MNIST accuracy drops only 0.13% from the software baseline.
From the exact circuit, we see progressively lower energy consumption with slightly
worsening accuracy. The configuration with the greatest efficiency gain is shown in
the last row in the table, with two Stage 2 approximate adder trees as well as the Stage
3 approximate addition. This configuration reduces energy consumption by -16.34%
with only a 1.84% reduction in accuracy compared to the exact configuration. No-
tably, the approximate adder tree replacements in Stage 2 are the primary contributor
to the efficiency gains made by these configurations. The Stage 3 approximation only
contributes around 2% extra efficiency gain, although this gain is made with either a
negligible, or in some cases positive, impact on accuracy.

5.3 ASPENN Network

5.3.1 Network Component Analysis

This project also synthesizes and evaluates a complete ASPENN circuit. Only the on-
chip components of ASPENN are physically synthesized. The Main Memory system in
particular will not be analyzed, as most of the system’s characteristics are determined
by the choice of DDRAM chip. The other memory subsystems, the Data Cache and
the Spike Cache, are implemented using OpenRAM, an open source SRAM memory
compiler [4]. The particular silicon technology used was FreePDK45, an open source
process design kit and standard cell library designed for educational and research use.
The design characteristics for these two cache systems is shown in Table 5.3.

The other on-chip components, the Controller, and the Neuron Matrix, are de-
signed with Verilog HDL and synthesized using the Genus Synthesis Tool. These com-
ponents are analyzed at three levels: first a single Neuron Tile, then the complete Neu-
ron Matrix, and finally the matrix plus the Controller. This final system contains all
of ASPENN’s non-memory components. The results of these components synthesis
are outlined in Table 5.4. ASPENN’s total area is given by the sum of the cache area,
as well as the Neuron Matrix and Controller components. The largest component by
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Cache Area Leakage Read/Write Delay Energy
Type [µm^2] Power [mW] Power [mw] [ps] pJ

1) Data 633,284 0.529 18.2 648 11.79
2) Spike 70,442 0.052 3.68 519 1.91

TABLE 5.3: ASPENN On-Chip Memory Subsystem Analysis: 1) Data
Cache and 2) Spike Cache

System Area Power Delay Energy
Design [µm^2] [mW] [ps] [pJ]

1) Neuron Tile 5213 1.79 1942 3.48
2) Neuron Matrix 84,093 21.1 1944 41.02

3) Matrix+Controller 91,250 22.3 2104 46.92

TABLE 5.4: ASPENN On-Chip Computation Subsystem Analysis: 1) Neu-
ron Tile (4 neurons per tile), 2) Neuron Matrix (16 tiles per matrix, 64 neu-

rons total), 3) Neuron Matrix + Controller

far is the Data Cache, although that system uses less energy when compared to the
computation units of the Neuron Matrix.

5.3.2 Network Energy Consumption Analysis

ASPENN’s net energy consumption can be estimated using these component level
metrics. The activity of a network is driven by the spiking activity of the neuron, as
this activity directly impacts the rate at which various components are used during a
classification. Spiking activity can be used to calculate the effect of the memory sub-
system, as well the computation units in the Neuron Matrix and the Controller unit.
The total energy consumption of the memory system can be estimated based on the
network’s expected activity and the individual cost for a read/write operation. Dur-
ing operation, each spike is loaded to the Spike Memory exactly once and is loaded
from the memory to the Spike Cache exactly once. A spike is re-used for every neuron
active in a Matrix, so it only needs to be read once per active neuron set. This analy-
sis will ignore the energy consumption required to access the Main Memory, as that is
specific to the choice of DDRAM chip. The Spike Cache energy contribution is given
by Equation 5.1.

Espike cache = Escwrite ∗ (numspikeslayer1 + numspikeslayer2 + numspikeslayer3)/sizetile

+ Escread ∗ (numspikeslayer1 ∗ sizelayer2 + numspikeslayer2 ∗ sizelayer3

+ numspikeslayer3 ∗ sizelayer4)/(sizematrix ∗ sizetile)
(5.1)

The size of each layer is determined by the network parameters, while the number
of spikes for each layer varies depending on the image being classified. A similar
equation is derived for the Data Cache’s energy contribution. Each weight in the SNN
network is loaded into the cache once, again grouped by neuron tile. Each spike causes
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TABLE 5.5: ASPENN Energy Consumption Analysis

System Net Energy Proportion
Component [nJ] [%]
Spike Cache 44 1.76
Data Cache 2,367 94.68

Computation 89 3.56
Total 2,500 100

all corresponding weights to be read from the cache. This behavior results in the total
Data Cache energy contribution to be expressed by Equation 5.2.

(5.2)
Edata cache = Edcwrite ∗ (sizelayer1 ∗ sizelayer2 + sizelayer2 ∗ sizelayer3 + sizelayer3

∗ sizelayer4)/sizetile + Edcread ∗ (numspikeslayer1 ∗ sizelayer2

+ numspikeslayer2 ∗ sizelayer3 + numspikeslayer3 ∗ sizelayer4)/sizetile

The computational unit’s energy consumption is also driven by the spiking activ-
ity. Each spike initiates a computation in every neuron in the receiving layer, although
most of these computations are low-cost Counter Compression operations. For each
block of inputs, determined by the size of counters, a single complete update of each
neuron tile is performed. The computation energy consumption of ASPENN can there-
fore be determined by Equation 5.3.

Ecomputation = Ecounters ∗ (numspikeslayer1 ∗ sizelayer2 + numspikeslayer2 ∗ sizelayer3

+ numspikeslayer3 ∗ sizelayer4)/sizetile + Eneuron_tile ∗
(

sizelayer2 ∗
⌈numspikeslayer1

sizeblock

⌉
+ sizelayer3 ∗

⌈numspikeslayer2

sizeblock

⌉
+ sizelayer4 ∗

⌈numspikeslayer3

sizeblock

⌉)
/sizetile

(5.3)

While the exact spiking activity of each layer is highly dependent on the input
image, an average activity can be determined experimentally through simulation. For
an exact ASPENN system with the layer parameters {784, 1024, 1024, 10}, the three
non-output layers are determined to have a spiking activity of 1029, 279, 610 spikes
per classification. These parameters and activity can be used in Equations 5.1, 5.2,
and 5.3. The results of the various energy contributions are given in Table 5.5. These
results estimate that ASPENN’s average energy consumption per classification is 2.5
µJ. Much of this energy consumption is dominated by the memory system.
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Chapter 6

Conclusion

Spiking neural networks are a promising alternative to standard network architectures.
ASPENN is a novel SNN accelerator design that is intended to offer an energy effi-
cient implementation of the spiking network computation. ASPENN is designed to
be modular and parameterizable, so that a variety of network sizes and dimensions
can be implemented easily. ASPENN’s novel weight accumulator unit improves com-
putational energy consumption by 45.6% over the standard CSA accumulator units
at the expense of a modest increase in circuit area. Several approximation methods
and configurations are applied to this weight accumulator unit, and a novel method
to approximate arbitrary adder trees is presented. The modular design of the accu-
mulator unit makes it easy to incorporate approximate modules into the wider design.
These methods contribute to a further 16.34% energy reduction compared against the
exact accumulator, while causing a decline in classification accuracy of less than 2%.
ASPENN’s average energy consumption per classification is estimated to be 2.5 µJ.

Currently, ASPENN only supports feed forwards network architectures with non-
leaky Integrate-and-Fire neurons. Future improvements to the ASPENN system could
include other neuron variants, such as leaky IF neurons, and refractory periods, as well
as more advanced network architectures such as convolutional spiking networks. The
approximation technique developed for ASPENN could also be expanded upon, and
more techniques could be applied to improve the neuron computation performance.

All code for this project can be found on Github using the following link:

https://github.com/scale-lab/ASPENN.git.

https://github.com/scale-lab/ASPENN.git
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